
TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 1

Engineering of Framework-Specific Modeling
Languages

Michał Antkiewicz, Krzysztof Czarnecki, Matthew Stephan

Abstract—Framework-specific modeling languages (FSMLs) help developers build applications based on object-oriented frameworks.

FSMLs model abstractions and rules of application programming interfaces (APIs) exposed by frameworks and can express models of

how applications use APIs. Such models aid developers in understanding, creating, and evolving application code.

We present four exemplar FSMLs and a method for engineering new FSMLs. The method was created post-mortem by generalizing the

experience of building the exemplars and by specializing existing approaches to domain analysis, software development, and quality

evaluation of models and languages. The method is driven by the use cases that the FSML under development should support and the

evaluation of the constructed FSML is guided by two existing quality frameworks. The method description provides concrete examples

for the engineering steps, outcomes, and challenges. It also provides strategies for making engineering decisions.

Our work offers a concrete example of software language engineering and its benefits. FSMLs capture existing domain knowledge

in language form and support application code understanding through reverse engineering, application code creation through forward

engineering, and application code evolution through round-trip engineering.

Index Terms—framework-specific modeling language, domain-specific language, object-oriented framework, application programming

interface, API, feature model, framework-specific model, forward engineering, reverse engineering, round-trip engineering, evolution,

code pattern, mapping

F

1 INTRODUCTION

O BJECT-ORIENTED frameworks are widely used to
develop applications in many domains. Frame-

works provide domain-specific concepts, which are generic
units of functionality. Developers create framework-
based applications by writing framework completion code
(also known as application code), which instantiates
these concepts. For example, the framework underlying
Eclipse’s workbench offers concepts such as views and
editors [1], [2]. Eclipse’s outline view and Java edi-
tor are instances of these concepts. In order to create
such instances, the developers perform implementation
steps, such as subclassing framework-defined classes,
implementing framework-defined interfaces, and calling
appropriate framework services. Concept instantiation is
governed by the application programming interface (API)
of the framework. The API specifies the programming
elements exposed to the user, e.g., the classes to subclass
and the methods to call, and how they should be used.

Framework APIs are often complex and difficult to
use. They may provide many concept variants and several
ways of instantiating them. For example, an Eclipse edi-
tor may be single- or multi-page. Furthermore, an action
can be added to the editor’s toolbar directly or through
an action contributor mechanism. Some implementation
steps are different for a multi-page editor compared to

• M. Antkiewicz, K. Czarnecki, and M. Stephan are with the Department of
Electrical and Computer Engineering, University of Waterloo, Waterloo,
ON, N2L 3G1, Canada.
E-mail: {mantkiew, kczarnec, mdstepha}@gsd.uwaterloo.ca

a single-page one. In addition, the developers have to
respect API-prescribed constraints on the implementation
steps, such as having to instantiate a multi-page action
contributor for a multi-page editor rather than a regular
action contributor. Finally, the developers also have to
follow general rules of API engagement. For example,
the callback methods that are called by Eclipse’s User
Interface (UI) framework API must not be blocking.

API documentation, sample applications, and wiz-
ards, if available, offer some support in writing com-
pletion code. Cookbook-style articles and tutorials can
be effective in demonstrating how framework-provided
concepts should be instantiated; however, their main
drawback is their passive nature, meaning that the devel-
opers must still perform the necessary implementation
steps manually. Since steps implementing a particular
concept are often scattered across the application code
and tangled with steps implementing other concepts,
writing and understanding completion code can still
be challenging. This scattering and tangling is also the
reason why sample application code may be difficult to
use as an implementation guide. In addition, cookbook-
style documentation is often partial and does not cover
the full range of concept variants. In contrast, API refer-
ence documentation, such as that produced by Javadoc,
is usually more complete; however, this form of docu-
mentation describes only individual API elements, such
as interface methods, and does not explain the higher-
level concepts whose instantiation involves multiple API
elements. Code generation wizards, as offered by some
frameworks, are an active form of concept instantiation
knowledge. Unfortunately, they usually cannot be re-

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 2

run with different settings once the generated code has
been modified by a developer. Also, they typically cover
only a few of the most used concept variants and they
do not provide traceability between the configuration
parameters and the generated code.

We believe that the existing support for application
developers can be significantly improved by taking a
language perspective on framework APIs. In essence,
a framework’s API implicitly defines a domain-specific
language, whose concepts are implemented and exposed
through the mechanisms of the framework’s program-
ming language. The implementation is supplemented
with documentation in natural language whenever the
programming language is insufficient. For example, the
concept of a Java Applet being a mouse listener [3] cor-
responds to several Java Applet API elements, including
an API call to register a mouse listener and another call
to deregister it. Whereas the API calls are represented
by Java, the higher-level concept of an Applet being a
mouse listener is defined in the Applet API documenta-
tion. The language-oriented perspective is based on the
premise that application developers think about these
higher-level concepts when programming, even though
the concepts might not be explicitly represented by the
programming language constructs.

Framework-specific modeling languages (FSMLs) [4], [5]
are an explicit representation of the domain-specific
concepts provided by framework APIs. FSMLs are used
for expressing framework-specific models (FSMs) of ap-
plication code. Such models describe the instances of
framework-provided concepts that are implemented in
the application code. In an FSM, each concept instance
is characterized by a configuration of features. Features
are concept properties such as single- or multi-page in
the Eclipse editor example. Features correspond to code
patterns that implement them in the application, such
as classes implementing framework interfaces, calls to
framework methods, and ordering of such calls.

We present our experience from building four FSMLs:
Eclipse Workbench Part Interactions (WPI) FSML, Java
Applet FSML, Apache Struts FSML, and Enterprise Java
Beans 3 (EJB) FSML. The experience is presented as
an FSML engineering method, which we devised post-
mortem. Similar to the Unified Process of object-oriented
software development [6], the method is iterative and use-
case-driven. FSML use cases are central to the method
since they embody the value proposition of FSMLs.
Thus, FSML scoping and design decisions are made
with respect to the use cases that the FSML under
development should support. The method considers five
main use cases in which FSMLs provide value to applica-
tion developers: framework API understanding, completion
code understanding and analysis, completion code creation,
completion code evolution, and completion code migration.
The method divides the life cycle of an FSML into iter-
ations, each further subdivided into four phases: incep-
tion, elaboration, construction, and transition. Each phase
involves several development activities and activities are

subdivided into steps. The method adopts and extends
activities from feature-oriented domain analysis [7]. The
method description provides concrete examples for the
development steps and the outcomes and challenges in
each activity based on the four FSMLs. It also provides
strategies for making engineering decisions, such as
deciding the language scope or the language structure.

We ground the FSML approach in the design science
paradigm [8] and a semiotic framework of model qual-
ity [9], [10]. Design science is a research paradigm in
which “knowledge and understanding of a problem
domain and its solution are achieved in the building and
application of the designed artifact” [8]. The semiotic
framework distinguishes between syntactic, semantic,
and pragmatic qualities, and we apply it at the level of
FSMs, FSMLs, and the entire framework-specific modeling
foundation (FSMF). Some aspects of FSM and FSML
qualities must be considered separately for each FSML;
others depend on the FSMF and, thus, are inherent
to the FSML approach. The assessment of the FSML-
dependent qualities is part of the method. The method
uses Cognitive Dimensions [11], [12] to asses the pragmatic
quality of FSMLs.

The main contributions of this work are the four
FSMLs and the experience of building them, packaged as
an engineering method. The four languages constitute a
set of exemplars, i.e., representative examples, of FSMLs.
These exemplars demonstrate the ability of the FSML
approach to support code understanding, creation, evo-
lution, and migration for practical Java frameworks.
The method offers FSML developers concrete steps and
guidelines and is a necessary step in the maturation
of the FSML approach. We make no claims about the
quality of the method; however, the four FSMLs were
evaluated as prescribed by the method.

The paper is organized as follows. We first describe
how we applied the design science paradigm to de-
velop the FSML approach (Section 2), followed by a
brief overview of the key concepts and mechanisms of
the approach (Section 3). We apply the model quality
framework and Cognitive Dimensions to the different
elements of the FSML approach in Section 4. We present
the FSML engineering method in Section 5, followed by
method justification in Section 6. We discuss the maturity
of the different elements of the FSML approach and
suggest directions for future work in Section 7. Finally,
we discuss the related work in Section 8 and conclude
the paper in Section 9.

2 RESEARCH APPROACH

The FSML approach was developed according to the
design science paradigm [8], [13], which seeks to create
innovations intended to solve a given problem using
two processes: build and evaluate. These processes aid
researchers in understanding the problem domain and
in devising and checking feasibility of novel solutions.
In contrast, the behavioural science paradigm, rooted in

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 3

natural science methods, takes a different approach:
researchers develop theories, i.e., principles and laws, to
explain and predict existing phenomena and then seek
to justify these theories. Thus, the main processes in be-
havioural science are theorize and justify. Design science
and behavioural science paradigms are complementary
and inseparable. On the one hand, a successful artifact,
as shown by evaluation, created using the design science
paradigm may be subjected to theorize and justify to
further the artifact’s understanding. On the other hand,
successful theories, as shown by justification, can be
leveraged when building new artifacts in design science.

The design science paradigm categorizes artifacts as
instantiations, constructs, models, and methods. For a given
solution, instantiations are implementations of the ap-
proach, constructs constitute the conceptual foundation
of the approach, models explain relationships among
constructs, and methods explain the process of creating
new instantiations. Often, instantiations are created prior
to constructs, models, and methods.

To address the challenges of framework API usage,
we built four FSMLs, each for a different framework
and purpose. These FSMLs are the instantiations of the
approach. The WPI FSML was built first and it was
manually implemented. The Struts FSML was built next.
It was also manually implemented, but it reused parts
of the WPI FSML’s implementation. Common parts of
both FSML implementations were then factored out and
generalized into an FSML infrastructure, which allowed
FSMLs to be specified declaratively. The Applet FSML
was the first language specified fully declaratively on
top of the infrastructure. Eventually, all four languages
were specified declaratively and the infrastructure was
further generalized and refined during that process.
Through that generalization, basic constructs and models
of the FSML approach emerged. We refer to them as the
framework-specific modeling foundation (FSMF). The
FSML engineering method is the final artifact required by
the design science paradigm; we present it in Section 5.

3 FRAMEWORK-SPECIFIC MODELING FOUN-
DATION (FSMF)

The main constructs of the FSMF are shown in Fig-
ure 1. The framework API (implicitly) provides a set of
domain-specific concepts along with the constraints on
their instantiations. The application code uses the API by
implementing instances of these concepts. A concept in-
stance is implemented through code patterns that adhere
to the rules and constraints of the API. Code patterns
can be structural (e.g., subclassing a framework class)
or behavioural (e.g., calling a framework method in the
control flow of an object, order of method calls) [14].

An FSML explicitly models the concepts and con-
straints prescribed by the framework API as feature mod-
els. Feature models represent concepts as hierarchies of
features, which are distinguishing characteristics among

Fig. 1. Modeling framework API usage by FSMs

concept instances [7]. In particular, we use cardinality-
based feature models [15], [16], which support multiple
instantiations of features, feature attributes (including
feature reference attributes), additional constraints over
features (such as implies or excludes), and feature inher-
itance. The distinction between a concept and a feature
is a matter of focus: the root of the feature hierarchy
within the current scope of consideration denotes a
concept, whereas its children denote features of that
concept. When the scope changes, a feature may become
a concept and vice versa [17, apdx. A]. Thus, any node
in a feature hierarchy can be seen as a concept for all
of its descendents, and any node except the root can be
seen as a feature of any of its direct or indirect parents.

Effectively, feature modeling is the abstract syntax def-
inition formalism for FSMLs. Other choices such as class
models or textual grammars are also possible; however,
feature models are particularly well suited because of
their ability to concisely represent commonalities and
variabilities and their wide use in domain analysis [7],
[17, ch. 4]. The suitability of feature modeling to domain
analysis is important since a substantial part of FSML
engineering can be understood as domain analysis.

An FSM models the API usage of the application.
It describes concept instances as feature configurations,
which consist of feature instances configured according to
the constraints imposed by the FSML’s defining feature
model. Each feature instance corresponds to one or more
code patterns that implement the feature instance in
the application code. An FSM can help application de-
velopers answer questions such as how the application
is using the framework, what concepts the application
implements, whether the application uses the framework
correctly, and how the application should use the frame-
work.

Importantly, features may represent both high-level
domain concept properties, such as single- or multi-
page for the Eclipse editor example, and low-level im-
plementation variants, such as adding an action to the
editor’s toolbar directly or through a contributor. The
high-level features are usually defined by aggregating
or referencing lower-level features in the feature model
or both. Consequently, the code pattern implementing a

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 4

Fig. 2. Defining feature-instance-to-code-pattern corre-

spondence using mapping definitions

high-level feature is a composition of the code patterns
corresponding to the lower-level features that it aggre-
gates or references.

Figure 2 illustrates how the correspondence between
feature instances and code patterns is established. The
figure is divided into four parts, each representing a
different artifact: application, FSM, FSML, and FSML
infrastructure. A feature instance in an FSM represents
one or more code patterns in the application. Instances
of the relationship between the code patterns and feature
instances are referred to as traceability links. The feature-
instance-to-code-pattern correspondence is specified as
part of the FSML definition by attaching mapping def-
initions to features. Each mapping definition contains
a pattern expression that specifies the desired code pat-
terns using a mapping type. Mapping types are generic
and reusable specifications of feature-instance-to-code-
pattern correspondences that are provided by the FSML
infrastructure. For example, there are mapping types for
specifying the correspondence to Java classes that are
compatible with a given type, calls to methods with
a given signature, or XML elements on a given path.
Mapping types define parameters, such as the method
signature or the XML element path, which are set in
pattern expressions.

Since the mapping types are only specifications, they
are implemented by code queries for detecting the speci-
fied code patterns in the application code and code trans-
formations for adding the code patterns to or removing
them from the code. Effectively, code queries enable
reverse engineering (RE), i.e., the automatic retrieval of
FSMs from application code by detecting feature in-
stances in the code [14]. Code queries are executed for
features in the FSML’s metamodel. If a code pattern is
matched, an instance of the given feature is added to the
FSM and a traceability link is established. Traceability
links allow navigating from feature instances in the
model to code patterns and vice versa. Analogously,
code transformations enable forward engineering (FE), i.e.,
the generation of code from FSMs by successively exe-
cuting, for each of their feature instances, the transforma-
tions for code pattern addition. Finally, both code queries

and code transformations enable round-trip engineering
(RTE), i.e., the ability to propagate modifications of the
application code to its model and vice versa [18]. In RTE,
a prescriptive FSM, i.e., a model of how an application
should use an API, is first compared with the descriptive
FSM, i.e., the FSM of how the current application code
actually uses the API. The descriptive model is obtained
through RE, and the comparison uses the last-reconciled
model as a reference, i.e., we use a 3-way compare [19].
The last-reconciled model records the common base of
the prescriptive and the descriptive models from the
time of their last reconciliation. The reference allows us
to determine whether a feature instance present only
in one of the two models, i.e., the descriptive or the
prescriptive one, was added to one them or removed
from the other. After the comparison, the user can review
the differences and resolve conflicts, if any. As a last
step, the prescriptive model and the code are updated.
The prescriptive model is updated by copying the new
features from the descriptive model and/or removing
the features that are not present in the descriptive model.
The code is updated by executing code transformations
that add, remove, or modify feature implementations
in the code. Currently, code transformations support
only code addition. If the code transformations are not
implemented, RTE can still be used for comparing the
code and the model and incrementally updating the
model.

In general, the queries and transformations of the
mapping types for specifying behavioural patterns can
only be approximations of the respective mapping type
semantics. This limitation is due to the undecidability of
dynamic properties of programs. For code queries, ap-
proximation means the possibility of false negatives, i.e.,
feature instances undetected by the query but present
in the code; and false positives, i.e., feature instances de-
tected by the query but absent from the code. The quality
of approximation can be measured using precision and
recall [20]. Precision is related to false positives: the fewer
false positives, the higher the precision. Recall is related
to false negatives: the fewer false negatives, the higher
the recall. A perfect approximation has both precision
and recall of 100%. Our previous work showed the fea-
sibility of devising code queries that were able to detect
all the behavioural features of three exemplar FSMLs in
a large body of open-source application code with very
few false negatives (high recall) and false positives (high
precision) [14]. The exemplars considered in that study
were the WPI, Applet, and Struts FSMLs. Code queries
and transformations may define additional parameters, i.e.,
parameters that are needed in addition to those defined
by the corresponding mapping types. These parameters
may be set as part of mapping definitions in order to
tune the behavior of the queries and transformations. For
example, query parameters may determine the context-
sensitivity of the code analysis, and transformation pa-
rameters may specify the preferred location for a method
call to be added.

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 5

Fig. 3. Overview of FSML Use Cases

The generic FSML infrastructure delegates the execu-
tion of code queries and transformations to pluggable
mapping interpreters. This mechanism simplifies the im-
plementation of new mapping types that may be re-
quired by a particular FSML and it allows support for
multiple artifact types, such as Java, XML, and C/C++.
The related Ph.D. thesis [5] contains details on the tech-
nical aspects of the infrastructure: its architecture and
implementation.

The FSML approach was designed to support five use
cases illustrated in Figure 3.

1) Framework API understanding (AU) through
manual inspection of the concepts and mapping
definitions of the FSML metamodel.

2) Completion code analysis and understanding
through RE. This use case groups four more specific
use cases:

a) understanding (U) by inspecting the FSM and
navigating to code patterns through traceabil-
ity links;

b) referential integrity checking (RIC) by evaluating
model queries over the FSM to check whether
consistent values are used throughout the
code, possibly throughout multiple artifacts of
different types such as Java and XML;

c) API constraint checking (ACC) by evaluating
cardinality and additional constraints over the
FSM; and

d) model analysis (MA) by analyzing or transform-
ing the FSM in order to retrieve information
needed to achieve the language’s value propo-
sition. The processing may range from simple
model filtering to applying inference rules.

3) Completion code creation (C) by generating code
for an existing FSM through FE. Creation involves
incrementally adding new code patterns to the
existing code; however, it is the developer’s respon-
sibility to manually resolve possible conflicts, such

as duplicate methods or classes. Manual conflict
resolution is necessary because FE does not take
into account existing code as RTE does.

4) Completion code migration (M) between frame-
work versions or even different but conceptually
similar frameworks through RE and FE. In the first
case, the migration requires detecting deprecated
features and adapting their implementation to the
new API. In the second case, the migration can be
achieved through applying RE to the code that uses
the source framework and executing specialized FE
to produce the code that uses the target framework.
Both frameworks need to be conceptually close
since a single model is used. Otherwise separate
source and target FSMLs with a model transfor-
mation are required.

5) Completion code evolution (E) by independently
evolving and synchronizing the completion code
and the FSM through RTE. Evolution of the code
can be observed by comparing FSMs extracted at
different points in time. The code can be evolved
by first changing its corresponding FSM and then
propagating the changes to code using RTE. Unlike
FE, RTE first identifies feature instances that are
already implemented and only adds code patterns
related to new feature instances.

We will provide concrete examples of feature models,
mapping types, and mapping definitions in Section 5.

4 ARTIFACT QUALITIES IN THE FSML AP-
PROACH

Following the design science paradigm, any novel ar-
tifact built (constructs, models, methods, and instanti-
ations) must be evaluated with respect to its goals. In
particular, the quality of the FSMLs being engineered
needs to be measured and such measurement needs to
be part of an FSML engineering method. This section
presents a framework for defining the quality of models
and languages, which we use to define the quality of
FSMs, FSMLs, and the FSMF. The framework builds
on prior work on model quality [9], [10] and Cognitive
Dimensions for evaluating notations [11], [12].

4.1 Model Quality

Lindland et al. proposed a general semiotic framework
for defining the quality of models [9]. Their basic as-
sumption, rooted in semiotics (e.g., [21]), is that a model
is expressed in some language, represents some domain,
and has some audience (cf. Figure 4). In this setting, three
basic types of model quality can be considered [9].

Syntactic quality is the extent to which the model is
well-formed with respect to the modeling language.

Semantic quality is the extent to which the model is
valid and complete with respect to the domain. Validity
means that all statements made by the model are correct
about and relevant to the domain. Completeness means

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 6

Fig. 4. General Quality Framework [9]

that the model makes all the statements about the do-
main that are correct and relevant. The relevancy of the
statements depends on the scope of the model: the real-
world domain being modeled may contain properties
that are irrelevant and, thus, outside the scope of the
model.

Pragmatic quality is the extent to which the model
can be constructed, comprehended, and modified by
its audience. More precisely, the comprehension goal of
pragmatic quality is the complete and correct under-
standing of the model by its interpreting audience. Fur-
thermore, a model created or modified by an audience
should completely and correctly reflect the intention of
the audience. Pragmatic quality depends on many model
properties that impact the ease of creation, comprehen-
sion, and modification, such as visual appearance (e.g.,
use of diagrams or text, meaningful icons and names,
and quality of layout), conciseness, and closeness of
mapping (i.e., the extent to which the structure of the
domain is explicit in the model). These properties are
highly interdependent. For example, conciseness can be
improved at the cost of explicit structure by introducing
shorthands.

Lindland et al. introduced the notion of feasibility
of quality goals [9]. Intuitively, feasibility means that
the benefits of improving the quality with respect to
a given goal should be greater than the drawbacks of
doing so. For semantic quality, feasible validity is reached
when the benefits from removing an invalid statement
from the model are less than the drawbacks; feasible
completeness is reached when the benefits of adding
new statements is less than the drawbacks. Drawbacks
may involve both economic issues and factors such as
user preference and ethics. For pragmatic quality, feasible
comprehension is reached when the benefits from correctly
comprehending statements in the model that have not
yet been considered or were misunderstood are less than
the drawbacks. Similarly, feasible construction and feasible
modification balance benefits and drawbacks by relaxing
the requirement that a newly constructed or modified
model completely and correctly reflects the intention of
the audience.

Lindland et al. also distinguish between qualities and
the means for improving the qualities. For example,
syntactic quality can be improved by means of error
prevention (such as structured editing), error detection
(syntax checking), and error correction (such as auto-
matic correction proposals). In our setting, means for
improving semantic quality include model consistency
checking, RE, FE, and RTE. Finally, means for improving

Fig. 5. Quality framework applied at each of the three

levels of the FSML approach

pragmatic quality include visualization, filtering, expla-
nation, animation and simulation, and refactoring.

In addition to these three basic qualities, we also
consider the organizational quality of a model, which is
the extent to which the model fulfills the goals of the
organization that is using it [10]. Organizational quality
reflects the ultimate value of a model to an organization.
This quality depends on the syntactic, semantic, and
pragmatic qualities of the model, but it also considers
social aspects of an organization, such as the diversity
of its members who use the model and the rules and
practices of the organization.

4.2 Quality of FSMs, FSMLs, and the FSM Founda-

tion

We apply the model quality framework at three levels:
FSMs, FSMLs, and the FSM foundation (cf. Figure 5). The
domain of an FSM is a particular API usage that the
model represents. The primary audience for FSMs are
application developers, but FSML developers and FSML
infrastructure developers also need to read and create
FSMs as part of their work (the primary audience of each
artifact is typed in bold face in Figure 5). As expected,
the syntactic quality of an FSM is defined with respect to
its FSML; the semantic quality is defined with respect to
the API usage it represents; and the pragmatic quality is
defined with respect to its audience. These three quality
types are defined along the same lines for an FSML,
except that the domain is a set of API usages; the syntax
is defined by the specification of the FSM foundation;
and the primary audience are FSML developers.

We distinguish between the pragmatic quality of the
FSML extent, i.e., the set of valid FSMs, and the prag-
matic quality of the metamodel, i.e., the FSML definition.
The reason is that, in general, the same FSML extent
can be defined by many different metamodels, e.g., each
using inheritance differently, and each such metamodel
has its own pragmatic quality. The pragmatic quality of
the extent can be thought of as the cumulative pragmatic
quality of the models in that extent. Given the seman-
tics to be expressed, the language enables achieving a

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 7

certain level of pragmatic model quality. In general, if a
language contains representational redundancy, i.e., if there
is more than one way to express the same semantics,
a particular model may not achieve the best pragmatic
quality, e.g., conciseness, that would be possible for the
given semantics. In FSMLs, since the mapping from API
usages to FSMs is a function, there is no representational
redundancy: given a particular API usage, the pragmatic
quality of the extent directly translates into the pragmatic
quality of a given model. Obviously, the pragmatics of
the metamodel and the pragmatics of the extent overlap.

The pragmatic quality of FSMLs can be assessed using
the Cognitive Dimensions (CDs) framework [11], [12].
The framework takes a whole-system view: it assesses
the quality of a system consisting of the notation and its
environment. The environment is essentially the means
used to manipulate representations in the notation, i.e.,
the modeling means in our context. The framework
defines the following dimensions.

Abstraction Gradient reflects whether a notation disal-
lows, allows, or even requires defining new abstractions
when creating a new model. The notation is then referred
to as abstraction-hating, abstraction-tolerant, or abstraction-
hungry, respectively. Abstraction mechanisms add to the
weight of a language in terms of learning and usage cost.
In particular, abstraction hungry languages suffer from
“delayed gratification” because the appropriate abstrac-
tions must be defined before the programmer’s inherent
goals can be addressed [12]. FSMLs are abstraction-
hating: an FSM instantiates only the language-provided
abstractions (concepts and features) and no new abstrac-
tions can be created as part of the FSM.

Closeness of mapping represents the similarity of the
structures in the domain to the structures in the model.
In general, FSMLs can represent both hierarchies of
API-related application code elements and structures
that cross-cut such hierarchies; however, closeness of
mapping needs to be assessed for individual FSMLs as
part of the FSML engineering method.

Consistency is related to the “guessability” of a nota-
tion. When a subset of the language has been learnt,
how much of the remainder can be inferred? For FSMLs,
consistency translates into the use of consistent and
meaningful criteria for naming, nesting, and grouping of
features in the FSML metamodel. This dimension needs
to be assessed as part of the method.

Terseness is related to the number of model elements
needed to express a meaning. FSMLs promote terseness
since FSMs contain only concept and feature instances
without any superfluous syntax. Support for computing
default feature selections can help improve this dimen-
sion for FE and RTE by allowing the modeler to state
only the features of interest explicitly.

Error-proneness is related to the question whether the
notation induces mistakes. It needs to be assessed for
individual FSMLs as part of the method.

Hard mental operations refers to the existence of men-
tal operations at the notation level that are difficult

to perform, such as certain combinations of constructs
being difficult to understand. For example, if a property
of interest is represented by several features scattered
across an FSM rather than a single feature, inferring the
feature may require resorting to paper and pencil. This
dimension needs to be assessed for individual FSMLs as
part of the method.

Hidden dependencies are dependencies among model
elements that are implicit in the model and are difficult
to uncover. The hierarchical structure of concepts is
explicit and most visible. Dependencies created through
feature attributes referring to other features are less
visible and require some means to support their traver-
sal. The most hidden dependencies are incurred by
the additional constraints defined over two or more
features, such as implications and mutual exclusions.
This dimension is assessed for each FSML as part of the
method. Interestingly, the vast majority of dependencies
in our four exemplar FSMLs were encoded in feature
hierarchies, and only relatively few reference attributes
and additional constraints were needed.

Premature commitment refers to situations where mod-
elers have to make decisions before they have the in-
formation they need, e.g., when information has to be
specified in a strict order. The natural construction order
for concept instances in an FSM is top-down; however, a
feature configuration interface can additionally support
bottom up configuration by choice propagation. Conse-
quently, FSMLs do not require premature commitment.

Progressive evaluation refers to the ability to build a
model incrementally. FSMLs support the incremental
creation of models. In particular, incremental code addi-
tion and round-trip engineering allow testing the result
of adding new concept and feature instances.

Role-expressiveness refers to the ability to recognize the
role of an element in a model and is related to self-
describability of the notation. The role-expressiveness of
a vanilla FSM is relatively low since all elements are
concept or feature instances; however, this quality can
be improved by annotating concepts and features with
feature types indicating their roles, e.g., components,
connectors, API constraints, high-level domain proper-
ties, and implementation variants. Our exemplar FSML
implementations use custom icons to make these roles
visible in FSMs. Assessing this dimension is part of the
method.

Secondary notation refers to the ability to use layout,
colour, or other cues to convey extra meaning above and
beyond the official semantics of the language. Support
for comments and annotations can be easily provided.

Viscosity is related to the amount of effort required to
perform a given change. The presence of global depen-
dencies such as references and cross-cutting constraints
increases viscosity. Viscosity can be reduced by improv-
ing modularity, i.e., increasing cohesion and reducing
coupling. The exemplar FSMLs have low viscosity with
respect to feature re-configuration as they have only few
references and constraints. FE and RTE help reduce the

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 8

viscosity of FSMs in the presence of application code.
Visibility is related to the ability to see all the relevant

information simultaneously (assuming a large enough
display). Visibility can be improved by providing filter-
ing facilities.

Some of the dimensions, such as abstraction gradient,
are specific to the entire approach; other need to be
assessed for individual FSMLs as part of the FSML
engineering method. The dimensions to be assessed on
an FSML-basis are closeness of mapping, consistency,
error-proneness, hard mental operations, hidden depen-
dencies, role-expressiveness, viscosity, and visibility.

Finally, the quality of the entire approach depends
on the quality of the FSM foundation (cf. Figure 5).
For the sake of our discussion, we take the Platonic
stance that an ideal FSMF exists and only waits to be
discovered and explicitly represented. This stance allows
us to consider the qualities of the FSMF specification
and implementation, such as the degree of formality (not
shown in the figure), semantic correctness, and usability.

4.3 Quality of RE, FE, and RTE

The purpose of modeling means is to improve model
quality. Thus, we also need to consider the quality of the
key modeling means in our context, namely RE, FE, and
RTE. These means rely on a set of algorithms which are
part of the foundation [5]. These algorithms have been
tested using the exemplar FSMLs.

The RE algorithms are designed such that they can
only produce well-structured models modulo possible
violations of cardinality and additional constraints. Such
violations are allowed since RE should also be able
to produce models of applications that use an API
incorrectly. The semantic quality of RE depends on the
correctness of the mapping definitions and code queries
implementing the corresponding mapping types. Since
the queries are approximations of the mapping defini-
tions, our goal is to achieve feasible semantic quality.
The mapping definitions and queries are tested for the
presence of false positives and false negatives on sample
applications as part of the method and improved as
needed. The improvement may require modeling fea-
tures differently, adjusting their mapping definitions, or
even implementing new queries. RE has no impact on
the model pragmatics since there is only one correct
model for a given application.

FE relies on the mapping definitions and code trans-
formations implementing the corresponding mapping
types in order to create syntactically and semantically
correct code. Thus, the mapping definitions and the
transformations need to be tested for different input
models as part of the method. Depending on the ap-
plication context, the generated code may or may not
be complete; thus, our goal is feasible completeness. In
addition to syntactic and semantic correctness needed to
achieve feasible validity, other qualities of the generated
code, such as performance and readability, also need to

be assessed as part of the method. As a result of the
assessment, the FSML may need to be refined, e.g., by
adding new feature implementation variants.

RTE relies on the quality of the mapping definitions
and their queries and transformations in a similar way
as RE and FE do; however, RTE places additional re-
quirements on the transformations, as they should be
able not only to add implementations of concept and
feature instances to an existing application, but also
remove or modify implementations. Currently, the FSML
infrastructure provides only transformations for adding
implementations. That is, removals and modifications
need to be done manually at the code level; however,
the infrastructure eases this process by providing full
traceability between the model and the code. Further-
more, RTE relies on the quality of matching between the
currently asserted prescriptive model and the descriptive
model retrieved from the application code. The matching
relies on the definition of concept and feature keys,
which is part of the method.

4.4 Organizational Quality of FSMLs

The organizational quality of an FSML is the extent to
which the FSML fulfills its stated use case goals (cf.
Figure 3). This quality relies on qualities of the involved
artifacts and means.

For framework API understanding, application de-
velopers rely on the syntactic, semantic, and pragmatic
quality of the metamodel.

For completion code understanding and analysis, ap-
plication developers rely on the semantic completeness
of the FSML (i.e., the ability to express all relevant
information), the pragmatic quality of the FSML extent
(for model comprehension), and the quality of RE (only
few false negatives and/or false positives).

For completion code creation, application developers
rely on the semantic and pragmatic quality of FSMLs,
the quality of code generation (FE), and the syntactic and
semantic quality of FSMs. Means such as editing assis-
tance (e.g., auto-completion) and consistency checking
can improve syntactic and semantic quality of FSMs.

For completion code migration, application developers
rely on the same qualities as those for code understand-
ing and analysis and for code creation.

For completion code evolution, application developers
additionally rely on the quality of model comparison and
code transformation.

FSML developers also rely on the pragmatic quality of
the metamodel in order to evolve it.

Finally, application, FSML, and infrastructure devel-
opers ultimately depend on the quality of the FSMF.

5 FSML ENGINEERING METHOD

This section presents the FSML engineering method. The
method was constructed post-mortem by generalizing

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 9

Fig. 6. Inputs to method construction

the experience of building four FSMLs and by specializ-
ing a set of well-established, general approaches (cf. Fig-
ure 6): Feature-Oriented Domain Analysis (FODA) [7], [17,
ch. 4], the model quality framework [9], the Cognitive
Dimensions framework [11], [12], and a few elements
of the Unified Process [6]. We refer to these general
approaches as the base approaches of the method.

Constructing the method allowed us to elicit and
organize our experience in a systematic way. The base
approaches provided the overall method structure and
the generic concepts and steps that were used to drive
the elicitation. FODA was selected as a basis for the do-
main scoping and feature modeling activities. The model
quality and the Cognitive Dimensions frameworks were
used to establish the evaluation criteria for FSMLs as
described in Section 4. The overall iterative life cycle
model and the idea of use-case driven development were
borrowed from the Unified Process. This choice was
motivated by the fact that the exemplar FSMLs were
developed in an iterative and use-case driven fashion.

The exemplar FSMLs were developed outside of a
controlled environment since their development drove
the creation of the FSML foundation and infrastructure
as described in Section 2. Thus, we relied on retrospec-
tion and inspection of the current and past versions of
the FSMLs to provide concrete examples of engineering
steps and issues. The elicitation of these steps and issues
involved specializing the base approaches to the FSML
context, e.g., extending FODA to handle cardinality-
based feature modeling and mapping definitions, while
identifying corresponding examples in the FSML meta-
models and recalling the issues that arose during their
creation.

Since the method embodies our experience with FSML
engineering, we make no claims about the method’s
completeness or generality. Instead, we justify the engi-
neering steps with examples from the exemplar FSMLs.1

Furthermore, Section 6 provides more information on
how well the base approaches fit the actual experience
and how they had to be specialized and adapted. Sec-
tion 6 also gives ideas of how the method may be

1. The complete metamodels of the FSMLs can be found else-
where [5], [22].

specialized during its application.

5.1 Overview

The design and implementation of FSMLs is an iter-
ative and incremental process. In each iteration, new
entities, such as concepts, features, mapping types and
definitions, and implementations of code queries and
transformations are added and existing ones are evolved.

The overall structure of our engineering method was
inspired by the Unified Process for software develop-
ment [6]. The life cycle of an FSML consists of multiple
iterations, each having the following phases as shown
on Figure 7. Each iteration has different focus and re-
quirements and the goal of each iteration is to deliver a
working increment in functionality to the users.

Fig. 7. FSML life cycle: iterations and phases

1) Inception is the initial planning phase. It is focused
on resolving global questions such as determining
the value proposition of the language and the use
cases to be supported for the current iteration.

2) Elaboration is focused on identifying the main con-
cepts and creating the overall structure of feature
models.

3) Construction is a refinement phase in which the con-
cepts are decomposed into features and mapping
definitions are created. Additionally, new mapping
types, code queries, and code transformations can
be added or existing ones can be refined.

4) Transition is focused on improving the quality of
the language, verifying whether the language de-
livers its value proposition, and preparing it for the
release to the users (application developers).

Within each phase, FSML developers perform several
activities and activities consist of steps. Certain activities
are dominant in certain phases, but each activity can
potentially be performed in any phase. For example,
value proposition is usually defined in the inception
phase, but it can also be redefined in the subsequent
phases. Furthermore, activities are performed iteratively.
For example, the identification of a concept is followed
by the identification of its features, which may be fol-
lowed again by the identification of another concept.

The following sections describe the phases and their
dominant activities. The activities and steps are pre-
sented in the form of instructions that can be followed
directly by FSML developers. These instructions are
marked by ! . We also mark questions that should be
answered by a step or activity by ? . The presentation
uses a naming scheme whereby each activity is labeled

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 10

Fig. 8. FSML life cycle: phases and their dominant

activities in a single iteration

with the initial letter of the corresponding phase name
and its consecutive number in the activity list for the
phase. Each step is labeled by its activity label and
the number representing its position within its activity.
For example, I1 is the label of the first activity of the
inception phase and I1.1 is the first step of that activity.
Figure 8 illustrates the intensity of performing different
activities in different phases of the FSML’s life cycle.
The figure suggests that the activities and steps need
not be performed in the order of their presentation in
the method. Furthermore, not every step and activity are
performed in every iteration.

5.2 Inception

Inception takes as input a concrete framework for which
an FSML is to be designed or a framework and an
existing FSML to be refined. Table 1 shows information
related to the inception of the four exemplar languages.
The first row shows the inception date in the first
iteration for each language. In this phase, the following
activities are performed.

I1: Determine the purpose of the language.
? What problem or problems should the language ad-

dress and what is the value proposition for this iteration?
! Value proposition should justify the effort of perform-

ing the iteration.
Table 1 summarizes the value propositions for the four

exemplar FSMLs. The main motivation for developing
the WPI FSML was that implementing Eclipse work-
bench part interactions involves several implementation
steps that are usually highly scattered in the completion
code. Thus, determining the presence and the properties
of interactions in the completion code was challenging
for application developers. Also, some necessary imple-
mentation steps could be easily missed when implement-
ing interactions. Consequently, the value proposition of
the WPI FSML was to ease the understanding of the
interactions by providing a model and navigability to
the corresponding code fragments and to simplify the
creation of interactions by checking API constraints and
by offering round-trip engineering.

The Struts FSML was initially developed to demon-
strate the feasibility of automatic migration of Struts
applications to the Java Server Faces (JSF) framework.
Struts and JSF are two frameworks for developing web

applications that are conceptually similar, with JSF pro-
viding more advanced features. Later, the focus of the
Struts FSML shifted toward visualizing page flow and
checking the referential integrity between Java comple-
tion code and the corresponding XML configuration files.
The latter aspect is important in Struts-based develop-
ment since framework concept instances are represented
both in Java and XML and they are related by name. This
naming convention increases the possiblity of naming
mistakes that are typically discovered only at runtime
and thus reducing productivity. The FSML allows de-
tecting such mistakes at development time.

The Applet FSML was developed primarily as a ped-
agogical example. It provides an overview of the main
features of applets from the viewpoint of the Applet API
and supports full round-trip engineering. This language
was the main example used when extending our FSML
infrastructure with support for declarative mapping def-
initions. It was also used to compare the FSML approach
with the design fragments approach, which documents
usage patterns for framework APIs [23]. We used the
same set of 56 applets as a benchmark for testing the
FSML. Since the Applet API is relatively simple, the
Applet FSML is particularly useful as an introductory
example when learning the FSML approach.

The main motivation for the EJB FSML were chal-
lenges caused by the introduction of Java annotations as
an additional configuration mechanism in EJB 3.0. The
new mechanism supplements the usual configuration
through XML-based deployment descriptors. The EJB 3.0
specification defines a set of complex rules governing
the merge and overriding of configuration information
specified in Java and XML. As a result, tool support
is required in order to see the final configuration and
to understand how it originated. The EJB FSML offers
exactly such a tool. Furthermore, a secondary purpose
of the FSML is to detect EJB antipatterns, such as Bloated
Session or Fragile Links [24].

I2: Determine which use cases should be supported.
? Which use cases are required to achieve the lan-

guage’s purpose in the current iteration?
! Consider the use cases illustrated in Figure 3 and

described in Section 3.
The use cases supported by each exemplar FSML are

specified in Table 1.
Framework API understanding (AU). Since the Applet

FSML covers most of the scope of the Applet API, it
can be used to learn about Java applets. The remaining
FSMLs focus on specific aspects of the corresponding
framework API, such as areas that are difficult to under-
stand in completion code, and they also can be used to
learn about these aspects.

Completion code understanding (U). All four exemplars
support this use case.

Referential integrity checking (RIC). Struts FSML con-
tains features that correspond to information from Java
and XML and features that correspond to the referential
integrity constraints.

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 11

TABLE 1

Inception of the exemplar FSMLs

WPI FSML Struts FSML Applet FSML EJB FSML

Inception Fall 2005 Fall 2006 Fall 2006 Fall 2007
Developers Michał Antkiewicz Michał Antkiewicz, Aseem P.

Cheema
Michał Antkiewicz Matthew Stephan

Framework Eclipse Workbench 3.x Apache Struts 1.x Java 5.0 Applet Sun EJB 3.0
Value
proposition

Provide (1) design-level overview
of the system, which contains
workbench parts and interactions
among them; (2) navigability to
the crosscutting implementation;
and (3) API constraints checking.
Demonstrate feasibility of round-
trip engineering.

Initial focus was on (1) semi-
automatic completion code mi-
gration from Struts to Java Server
Faces; later the focus changed to
(2) referential integrity checking
between Java and XML and (3)
visualizing web-page flow. Last
(4) code creation was added.

(1) Drive the extension of the generic
FSML infrastructure to support defining
FSMLs declaratively; (2) Compare FSML
approach to design fragments approach
using applets as benchmark. (3) Demon-
strate feasibility of round-trip engineer-
ing. (4) Provide an introductory FSML
example.

Provide (1) an overall
configuration view
merging information
from Java and
deployment descriptors
and (2) support
detection of EJB
antipatterns.

Use cases U, ACC, C, E M, later U, RIC, last C AU, U, ACC, C, E U, RIC, ACC, MA
Horizontal
scope

editors, views, selection interac-
tions, part life cycle interactions,
adapter interactions

actions, forwards, messages,
forms, XML declarations

applets, status, mouse listeners, threads,
parameters

EJBs, business
interfaces, Java
annotations, XML
declarations, override
rules

Artifact
types

Java, plugin.xml Java, XML Java Java, XML

API constraint checking (ACC). All exemplars except
Struts FSML support this use case (Struts FSML focuses
solely on checking referential integrity).

Model analysis (MA). In EJB FSML, the analysis in-
volves applying override rules to produce a run-time
view of the EJB configuration.

Completion code creation (C). WPI, Struts, and Applet
FSMLs support incremental code creation. Support for
this use case was later added to Struts FSML since all
code transformations for the used mapping types were
already implemented.

Completion Code Migration (M). Both Struts and JSF
frameworks have similar concepts but different ways of
implementing them and therefore the completion code
can be automatically migrated [25]. The first version of
the Struts FSML supported this use case.

Completion Code Evolution (E). WPI and Applet FSMLs
support RTE for all of their features.

I3: Determine the sources of knowledge about the
framework and the domain.
? Which sources provide information about the con-

cepts and features in the scope?
! Consider the following items as possible sources of

framework knowledge: API documentation, tutorials,
articles, expert knowledge, experience, sample appli-
cations, and existing metamodels and XML schemas
provided with the framework.

Table 2 showcases the sources of knowledge that were
used in the design of the exemplar FSMLs and the
distribution of the FSML features over these sources.
Each three-row block in the table provides the number of
features (second row) originating from the given source
(first row). The third row contains the percentage of the
total number of features in the language that originated
from the given source. A summary of features originat-
ing from all documents is given in the column ΣDoc.
Features originating from non-documentation sources
are presented in columns to the right of the column
ΣDoc. The last column gives the total number of features

for each language.
A significant percentage of the features in WPI and

Applet FSMLs were created from experience (Table 2).
These statistics reflect the fact that the developer of
these FSMLs had previous experience in using the cor-
responding frameworks. In contrast, the developers of
the Struts and EJB FSMLs did not have prior experi-
ence with the frameworks; thus, the vast majority of
the features were extracted from documentation. The
distribution of features over their documentation source
types largely depends on the availability and quality of
the corresponding sources. For frameworks that have
extensive configuration schemas, such as Struts and EJB,
the schemas were a significant source of knowledge,
e.g., 28% of features for Struts and 18% of features for
EJB. Such schemas can be viewed as metamodels of
the artifacts they represent and can be, to some degree,
incorporated into the FSML. For the sample FSMLs,
only two features (for Applet FSML) were obtained from
example applications (EA); however, their subfeatures
were later added based on API documentation. Also,
the mapping definitions of many features were improved
based on the analysis of example applications [14].

I4: Determine the scope of the language.
? What concepts and features are in the scope of the

language?
! Consider horizontal and vertical scope.

Horizontal scope is measured with respect to the cover-
age of the API. The breadth of the horizontal scope can
be delineated early by deciding which top-level concepts
should be included. The decision is guided by the value
proposition. For example, the purpose of the FSML could
be to (1) enforce certain API constraints and good prac-
tices and to detect typical errors or omissions, antipat-
terns, or bad code smells or (2) support understanding
and implementing features that are difficult to locate in
the code due to scattering and tangling. For each case,
only the concepts and features involved in these areas of
difficulty would be included. The horizontal scope is also

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 12

TABLE 2

Distribution of features over sources of knowledge

Source kind API Tutorials Articles ΣDoc Other (non-doc) ΣF

W
P

I Source DW [26] TW1 [1] AW1 [2] AW2 [27] AW3 [28] D* I E X F*
Features 11 - 6 - 7 11 6 41 14 15 - 1 71
Percentage 15.5% 8.5% 9.9% 15.5% 8.5% 57.8% 19.7% 21.1% 1.4% 100%

S
tr

u
ts Source DS [29] SS [30] TS1 [31] AS1 [32] D* I X F*

Features 3 13 14 - 8 - - 38 7 - - 2 47
Percentage 6.4% 27.7% 29.8% 17.0% 80.9% 14.9% 4.3% 100%

A
p

p
le

t Source TA1 [33] TA2 [34] D* I E EA F*
Features - - 19 7 - - - 26 23 24 2 - 75
Percentage 25.3% 9.3% 34.7% 30.7% 32.0% 2.7% 100%

E
JB

Source DE [35], [36] SE [37] TE1 [38] D* I F*
Features 21 13 27 - - - - 61 12 - - - 73
Percentage 28.7% 17.8% 36.9% 83.5% 16.4% 100%

Source Description
f Letter indicating a framework. W - Eclipse Workbench, S - Apache Struts, A - Java Applet, and E - Sun EJB3.0
Df Features from API documentation, such as Javadoc or other specifications, where f is the framework.
Sf Features from schemas contained in the framework, where f is the framework.
Tf i Features from the framework’s tutorials, where f is the framework and i is the identification number for the tutorial.
Af i Features from articles, where f is the framework and i is the identification number for the article.
D* All the features derived from any of documents.
I Implied features. For example, every class has a name, so a feature name is implied.
E Features from expert knowledge.
EA Features example applications that use the framework.
X Extra features added by FSML developer. These features were related to a view filtering capability of the FSM editor.
F* All features of the FSML.

influenced by the kinds of stakeholders, their experience,
and their viewpoints. For example, quality assurance
engineers are likely to be interested in detecting API
constraint violations, whereas developers are likely to
have broader interests. The key concepts in scope of
the exemplar languages and supported artifact types are
listed in Table 1.

Vertical scope refers to the depth of the feature models.
The deeper the models, the more detailed and fine-
grained features become. Usually, the leaves of the hier-
archy correspond to the implementation steps stipulated
by the API, such as calling a framework method, or
the parameters of these steps, method call’s arguments.
The vertical scope is usually impacted by the choice
of the use cases to be supported. In particular, adding
support for forward and round-trip engineering to an
existing FSML that only supported reverse engineering
will sometimes require deeper feature decomposition to
model alternative implementation variants. Planning the
horizontal scope is the main goal of I4; the vertical scope
will more clearly emerge in later stages as the use cases
are implemented.

Languages targeting API understanding are likely to
cover the entire API. Their horizontal scope may em-
phasize the most used areas and perhaps also the more
tricky ones. The horizontal scope of the Applet FSML is
fairly balanced. Languages for reverse engineering are
likely to focus on areas that are more difficult to under-
stand, such as workbench part interactions for WPI. Lan-
guages supporting integrity checking, e.g., Struts FSML,
are quite selective in terms of their horizontal scope.
Model analysis involves adding higher level concepts for
representing the results of the model analysis. Also, the
extracted model is typically scoped toward the model
queries that need to be executed, which is the case

for the antipattern detection in the EJB FSML. Adding
support for incremental forward engineering and round-
trip engineering typically requires deeper vertical scope
than reverse engineering. We observed this in WPI and
Applet FSMLs. Adding support for these use cases
required adding more detailed features, such as those
representing method call arguments. Finally, migration
requires determining the commonalities and differences
between the source and target domain of the migration.

5.3 Elaboration

E1: Identify framework-provided concepts in the scope
(cf. Box 1).
? Which concepts should be included in the current

iteration?
! Use the identified sources of knowledge to find rele-

vant concepts.
API documentation, tutorials, and articles. These sources

provide concepts and features representing the intended
API use as envisioned by the framework developers.

Experience and best practices. These sources provide
concepts and features on how expert developers use the
framework. Note that experts often contribute articles
and tutorials.

Sample applications. Analysis of sample applications,
both supplied with the framework and real-life appli-
cations, may provide information about not only the
typical API uses, but also the unusual ones, which may
not be available from other sources.

Metamodels and XML schemas. These sources provide
concepts and features that are made explicit by frame-
work developers. Note that various configuration di-
alogs and wizards supplied together with the framework
can be based on these metamodels or schemas.

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 13

E1: Identify framework-provided concepts in the scope

The following fragments of the Java Applet Tutorial [33] are used as a running
example. We identify a single concept: Applet.
“An applet is a special kind of Java program that a browser enabled with Java
technology can download from the internet and run.”

“An applet must be a subclass of the java.applet.Applet class, which pro-
vides the standard interface between the applet and the browser environment.”

“Swing provides a special subclass of Applet, called javax.swing.JApplet,
which should be used for all applets that use Swing components to construct
their GUIs.”

“Life Cycle of an Applet: Basically, there are four methods in the Applet class
on which any applet is built.

init: This method is intended for whatever initialization is needed for your
applet. It is called after the param attributes of the applet tag.

start: This method is automatically called after init method. It is also called
whenever user returns to the page containing the applet after visiting other
pages.

stop: This method is automatically called whenever the user moves away from
the page containing applets. You can use this method to stop an animation.

destroy: This method is only called when the browser shuts down normally.”

“To draw the applet’s representation within a browser page, you use the paint
method.”

“Parameters are to applets what command-line arguments are to applications.
They allow the user to customize the applet’s operation. Applets get the user-
defined values of parameters by calling the getParameter method.”

“You should also implement the getParameterInfo method so that it returns
information about your applet’s parameters.”

Box 1: An example for activity E1

E2: Determine kinds of concepts in scope (cf. Box 2).
? What is the nature of the concepts?

! Classify concepts as component-oriented, connector-
oriented, or port-oriented.

Component-oriented concepts are those that do not re-
late other concepts with each other; rather, they aggre-
gate other concepts and features. Component-oriented
concepts usually correspond to code components, such
as Java classes or XML documents.

Connector-oriented concepts model connections among
other concepts using references. Connector-oriented con-
cepts can correspond to code components (e.g., classes
implementing listeners), but they can also correspond to
code patterns scattered across the components related
by the connector, such as scattered method calls or XML
declarations.

Port-oriented concepts interface between the compo-
nents and connectors, i.e., they enable connecting a
connector to a component. They often correspond to Java
interfaces.

E3: Define the overall structure of the feature model
(cf. Box 3).
? How should the feature model be organized?

A feature model of an FSML is a hierarchy of features.
We represent the hierarchy using indentation, i.e., sub-
features are indented further to the right.

E3.1: Define a model root. A model root is the container
of all concepts and features and it always corresponds
to the entire application.

E3.2: Introduce features for grouping related con-
cepts/features. A feature model can be divided into logical
parts that group related concepts or features. This step
may require the introduction of new concepts or fea-

E2: Determine kinds of concepts in scope

The concept Applet is a component-oriented concept because it is a Java class
and it does not reference other concepts.

The concept ViewPart in WPI FSML represents a graphical view in Eclipse. It is
a component-oriented concept because it is a Java class and it does not reference
other concepts.

The concept AdapterRequestor in WPI FSML is a connector-oriented concept.
It relates a part that requests an adapter with multiple AdapterProviders. The
concept corresponds to an adapter request method call.

The concept BusinessInterface in EJB FSML is a port-oriented concept. The
concept and all non-abstract concepts that inherit from it allow EJB clients to
connect to EJBs. Specifically, EJB clients connect to EJBs through a business
interface by specifying the interface using Java annotations (@Local or @Remote)
or through the XML deployment descriptor.

The characterization of the concepts is helpful in determining the structure of the
language, that is, which concepts should be main concepts and which concepts
should be parts (subfeatures) of other concepts. In WPI FSML, the concept
ViewPart was modeled as a separate concept so that it can be represented
in the model once and referenced by other concepts. We also chose to model all
connector-oriented concepts in WPI FSML as separate concepts; however, they
could also be modeled as subfeatures of parts. In EJB FSML, explicit business
interfaces are modeled as separate concepts and then are referenced, whereas
derived business interfaces are subfeatures of other concepts.

Box 2: Examples for activity E2

tures whose only purpose is to group its children. The
grouped elements could be related conceptually or based
on the source code artifact they represent.

E3.3: Characterize concepts as base or derived concepts.
Instances of derived concepts correspond to the same
code patterns as instances of base concepts do. Code
patterns that instances of base concepts correspond to
are specified directly in the metamodel using mapping
definitions. In contrast, code patterns that instances of
derived concepts correspond to are specified using a
base-concept reference, which can point to an instance of
the base concept (cf. Box 3). The base-concept reference
mechanism is useful in at least three ways. First, it helps
reduce redundancy in the metamodel because essential
features of base concepts need not be copied to the de-
rived concepts. Second, it allows for specifying derived
concepts as standalone concepts rather than subfeatures
of their base concepts. Third, it supports composition of
multiple FSMLs by allowing concepts in one language
to be derived from concepts of another language.
! For derived concepts, create a base-concept reference

subfeature typed with the base concept.

5.4 Construction

In this phase, the feature model is refined into a complete
metamodel and any additional required artifacts, such as
queries, transformations, and test suites, are created.

C1: Decompose the concepts into features.

? How should the concepts be decomposed into fea-
tures?

C1.1: Choose appropriate level of abstraction and granular-
ity (cf. Box 4).
? Which features are important with respect to the value

proposition? Which features can be abstracted away?
! Use the criteria below to decide which features are

potentially useful to include.

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 14

E3: Define the overall structure of the feature model

AppletModel

Applet

overridesLifecycleMethods

The concept Applet is a child of the model root AppletModel. The feature
overridesLifecycleMethods is used for grouping features corresponding
to the life cycle methods.

EJBApplication

InformationFromAnnotations

InformationFromDeploymentDescriptor

In EJB FSML, the feature InformationFromAnnotations is used for grouping
subfeatures related to Java annotations and the feature InformationFrom-

DeploymentDescriptor is used for grouping subfeatures related to the XML
deployment descriptor.

WorkbenchPartInteractions

Part

ViewPart -|> Part

EditorPart -|> Part

AdapterRequestor

requestor (Part) <baseConcept>

The concept Part is a base concept and the AdapterRequestor is a derived
concept. The feature requestor is a base-concept reference of the concept
AdapterRequestor and it specifies that each instance of the concept Adap-
terRequestor will correspond to the same code pattern that the referenced
base-concept instance corresponds to, which is an instance of the concept Part
in this case. Note that instances of both ViewPart and EditorPart concepts
can be values of the requestor reference. Alternative designs (without the base-
concept reference mechanism) are as follows:

Part Part

AdapterRequestor ViewPart -|> Part

ViewPart -|> Part EditorPart -|> Part

EditorPart -|> Part ViewAdapterRequestor -|> ViewPart

EditorAdapterRequestor -|> EditorPart

In the first case, the AdapterRequestor is not a standalone concept and in the
second case, inheritance is used to make sure that the adapter requestor concepts
are views and editors. Both alternative designs are suboptimal and do not reflect
modeler’s intention. Additionally, the base-concept reference mechanism enables
seamless FSML composition. For example, the concept AdapterRequestor

could be defined in a different FSML.

Box 3: Examples for activity E3

Features corresponding to implementation steps. Any API
usage ultimately involves some implementation steps,
such as subclassing a framework class, implementing
a framework interface, implementing callback methods,
invoking a framework service, placing a Java annota-
tion, creating framework-stipulated XML declarations,
or setting XML attribute values. Every FSML will include
some amount of these features.

Frequently used features. These features are likely to
increase the usefulness of the language.

Composite features. These features are defined in terms
of other features. Higher-level abstractions are defined as
composite features over features representing individual
implementation steps. Such higher-level features usually
add significant value to the language.

Features related to complex API constraints or dependen-
cies. Including these features in the language will enable
checking these constraints in FSMs.

Features related to protocols. Ordering of framework-
related calls is typically enforced by frameworks (call-
back protocols); however, application programmers are
sometimes required to follow protocols related to the life
cycle of framework components. These protocols incur
constraints such as that certain framework services must
be invoked in conjunction and/or in a certain order. Such

C1.1: Choose appropriate level of abstraction and granularity

AppletModel

Applet

extendsApplet

overridesLifecycleMethods

init

destroy

registersMouseListener

deregisters

parameter

name

Thread

InitializesThread

!<1-1>

initializesThreadWithRunnable

initializesWithThreadSubclass

providesParameterInfo

providesInfoForParameters

Implementation steps. Most of the features correspond to implementation steps.
For example, in order to create an instance of the concept Applet, the developer
must create a Java class which extends the framework class Applet, override life
cycle methods (e.g., init or destroy), register and deregister mouse listeners
by adding calls to the appropriate methods, or retrieve values of parameters by
adding a method call and specifying the name of the parameter (cf. Box 1).

Frequently used features. Examples of features that almost every applet has are the
features init and parameter.

Features involved in API constraints. The features parameter and provides-

ParameterInfo are involved in a constraint providesInfoForParameters.
The constraint asserts that if at least one parameter is used, the applet should
provide information about the parameters.

Features with variability. The feature Thread is an example of a feature with
two functionally equivalent implementation variants. In Java, a thread can be
initialized in two ways: by instantiating the Thread class or subclassing the
Thread class. The choice is modeled using an exclusive-or feature group !<1-1>.

Scattered features. In our exemplar FSMLs most composite features are scattered
features, for example the feature Thread.

StrutsApplication

StrutsConfig

ActionDecl

path

FormDecl

ForwardDecl

Composite features. The feature StrutsConfig is a composite feature because it
groups all features related to the action, form, and forward declarations in the
struts-config.xml file.

WorkbenchPartInteractions

SelectionListener

registersAs

!<1-3>

globalSelectionListener

deregisters

deregistersSameObject

registersBeforeDeregisters

globalPostSelectionListener

specificSelectionListener

Features related to life cycle protocol. In our exemplar FSMLs, features related to
listeners have a life cycle because the listener has to be first registered and later
deregistered, when no longer needed. The feature globalSelectionListener
corresponds to the registration method call and the feature deregisters

corresponds to the deregistration method call. Furthermore, the features
deregistersSameObject and registersBeforeDeregisters, specify that
the same object must be used in both method calls and that the registration must
occur before deregistration, respectively.

Features with variability. The feature registersAs is an example of a feature
with three alternative functional variants. A selection listener can be registered
as a global selection listener, a global post selection listener, or a specific selection
listener. Registering a listener in different ways achieves different effects for the
same feature. The choice is modeled using an inclusive-or feature group !<1-3>

instead of an exclusive-or one because a listener of each kind can be registered
simultaneously.

Box 4: Examples for step C1.1

constraints are easy to violate in the code and therefore
including features that represent them in the language
should be considered.

Features with variability. Features that have significantly

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 15

different functional or implementation variants are likely
candidates for inclusion in the language. Functional vari-
ants achieve different functional effects, whereas imple-
mentation variants are different ways of implementing
the same effect.

Scattered features. These features correspond to code
patterns scattered across the completion code. They can
correspond to the scattered patterns directly or through
their subfeatures. The key value of supporting scattered
features is that they can be localized in the model
and ease the access to and comprehension of the cor-
responding code patterns that are scattered across the
code. Effectively, an FSM can represent alternative code
decompositions.

C1.2: Decide on feature nesting (cf. Box 5).
? Which features should be parent features and which

should be subfeatures?
! In general, feature nesting may follow partonomies,

taxonomies, and other dependencies [39]. Since features
represent code patterns, a subfeature relationship be-
tween a parent and a child feature may correspond to
part-of, is-a, or other dependencies between the repre-
sented code patterns. Use the criteria below to decide
on feature nesting.

Code pattern nesting. Feature nesting may mirror syn-
tactic nesting of the code patterns that the features
correspond to.

Code pattern subtyping. Feature nesting may mirror
subtype relationship between the code patterns that the
features correspond to.

Other dependencies. Feature nesting may mirror other
dependencies, such as declaration-use, control-flow, or
data-flow dependencies, between the code patterns that
the features correspond to.

C1.2: Decide on feature nesting

Code pattern nesting. The features corresponding to fields and methods are likely
children of features corresponding to classes (cf. Box 4, the features Thread and
init are children of Applet). Also, features corresponding to XML attributes
are children of features corresponding to XML elements (cf. Box 4, the feature
path is a child of ActionDecl).

AppletModel

Applet

extendsApplet

extendsJApplet

Thread

...

initializesWithThreadSubclass

overridesRun

Code pattern subtyping. Features corresponding to being assignable to more
specific types (e.g., extendsJApplet) are children of features corresponding
to being assignable to more general types (e.g., extendsApplet) because of the
semantics of type inheritance (extending JApplet implies extending Applet).

Other dependencies. The feature overridesRun specifying that a subclass of the
class Thread should override the method void run() only applies if the vari-
ant with a subclass is used (the feature initializesWithThreadSubclass).

Box 5: Examples for step C1.2

C1.3: Specify cardinality constraints (cf. Boxes 6, 7).
? What should be the valid number of instances of

a feature in every feature configuration? Cardinality
constraints of which features and feature groups are
essential for an instance of their parent feature to exist?

! Choose between the kinds of cardinality listed below.
Feature cardinality is an interval [m..n], m ≥ 0 ∧

(n ≥ m ∨ n = ∗), specifying how many instances of
a given feature (at least m and at most n) should be
present as children of that feature’s parent in a feature
configuration. In general, feature instances correspond
to API-stipulated code patterns in the completion code
and the cardinality of a feature depends on the possible
number of patterns that can be matched.

Feature group cardinality is an interval <m-n>, 0 ≤
m ≤ n ≤ k specifying how many instances of features in
a feature group of size k should be present as children
of that group’s parent feature in a feature configuration.
Feature groups represent a choice over a number of
grouped features. Feature groups with cardinality <1-
1> model an exclusive-or choice, that is, that exactly
one instance of one of the grouped features should be
present. Feature groups with cardinality <1-k>, where
k is the number of grouped features, model an inclusive-
or choice, that is, that at least one instance should
be present. A feature group with cardinality <0-k> is
equivalent to k optional features.

The semantics of a feature model is a set of legal
feature configurations, that is, configurations in which
all constraints (including cardinality constraints) are sat-
isfied. We introduce the notion of essential constraints
to define a superset of the legal feature configurations
in which the essential constraints are never violated but
in which other constraints can be violated. Essentiality
can be thought of as a modifier on feature and group
cardinality that specifies that both lower and upper
bounds of the cardinality must not be violated. Knowing
that certain constraints will never be violated in any
configuration from that superset allows us to detect and
reason about incorrect concept instances. Essentiality of
additional constraints can be expressed by modeling
them as features (cf. C1.4) whose cardinality is essential.

Essential features. These features correspond to patterns
that are the minimum requirements to identify a concept
instance. Without its essential features an instance can-
not be considered an instance of a particular concept.
Essential feature is a short form for essentially mandatory
feature. We mark cardinality of essential features using
the exclamation point (!), that is, ![1..1].

Essential feature groups. Often, several different essen-
tial features are possible and more than one may or may
not be allowed to be present at the same time. Such
situations can be modeled using essential feature groups
!<m-n>.

Mandatory features. These features correspond to pat-
terns that should be present according to the API but
which are not essential. Mandatory features have cardi-
nality [1..1].

Optional features. These features correspond to patterns
that may be present according to the API. Optional
features have cardinality [0..1]. Optional features can be
grouped in feature groups to capture certain constraints
among them, such as that certain patterns are alternative

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 16

C1.3: Specify cardinality constraints

AppletModel

[0..*] Applet

![1..1] extendsApplet

[0..1] extendsJApplet

[0..*] Thread

![1..1] typedThread

[1..1] InitializesThread

!<1-1>

[0..1] initializesThreadWithRunnable

[0..1] initializesWithThreadSubclass

[1..1] nullifiesThread

[1..1] providesInfoForParameters

EJBProject

[0..1] InformationFromAnnotations

[0..*] EJBClass

[0..*] SessionBean -|> EJBClass

[0..1] remoteInterfaceSpecification

![1..*] remoteInterfaces (RemoteLocalInterface)

[1..1] interfaceName

[0..*] StatelessEJB -|> SessionBean

![1..1] statelessAnnotation

[0..1] InformationFromDeploymentDescriptor

[0..*] DDStatefulEJB -|> DDSessionBean

![1..1] sessionType

![1..1] isStatefulSessionType

Essential features. Essential features of component-oriented concepts may
correspond to being assignable to a certain type (extendsApplet or
typedThread), being annotated with a Java annotation of a certain type
(statelessAnnotation), or being declared as a component in an XML
configuration file (isStatefulSessionType). Essential features of connector-
oriented concepts may correspond to method calls that attach the connector
to a component (cf. Box 7, requestsAdapter). Finally, an essential feature
of port-oriented concepts may correspond to explicitly naming the port in a
Java annotation of the component (remoteInterfaceSpecification and
interfaceName).

If an instance of the essential feature extendsApplet was missing, a
given class would not be considered an instance of the concept Applet.
Similarly, a class will only be considered an instance of a stateless EJB
in the annotation section of the language (that is, under the feature
InformationFromAnnotations) if the class is annotated with a stateless
annotation (the feature statelessAnnotation).

Essential feature groups. The feature group !<1-1> specifies that an instance of
InitializesThread cannot exist without an instance of at least one of the
grouped features.

Mandatory features. For example, the features initializesThread and nul-

lifiesThread are required for the correct implementation of a thread but they
are non-essential since only the feature typedThread is required to determine
that a given field is a thread.

Often, mandatory features are used to model API constraints, so that a missing
instance of a mandatory feature indicates constraint violation. For example, the
feature providesInfoForParameters corresponds to an API constraint.

Optional features. For example, the feature extendsJApplet indicates that the
developer can optionally extend another API class. Examples of optional grouped
features are initializesThreadWithRunnable and initializesWith-

ThreadSubclass.

Box 6: Examples for step C1.3

(exclusive-or).

Multiple features. These features correspond to pat-
terns that can be repeated in the code. We distinguish
three kinds of multiple features depending on the lower
bound of the feature cardinality: optional multiple, with
cardinality [0..n]; mandatory multiple, with cardinality
[m..n]; and essential multiple, with cardinality ![m..n],
where m ≥ 1 ∧ (n > m ∨ n = ∗). Essential multiple is a
short form for essentially mandatory and multiple. Usually,
concepts have cardinality [0..*] since there may be no or
many concept instances implemented in an application.

Prohibited features. These features correspond to pat-
terns that should not be present in the code. Prohibited
features have cardinality [0..0]. Prohibited features may
represent undesirable situations, such as API misuses,

C1.3: Specify cardinality constraints

WorkbenchPartInteractions

[0..*] Part

[0..*] EditorPart -|> Part

[0..0] extendsMultiPageEditor

[0..*] SelectionListener

...

[0..*] globalSelectionListener

[1..*] deregisters

[0..*] AdapterRequestor

![1..1] requestor (Part) <baseConcept>

![1..*] requestsAdapter

Multiple features. The feature globalSelectionListener corresponds to the
registration method calls and it is an optional multiple feature. In the feature
configuration, each instance of the feature will correspond to a single method
call. The feature deregisters is a mandatory multiple feature because for
every registration method call there should be at least one deregistration call.
The feature requestsAdapter is an essential multiple feature because a given
part is an adapter requestor only if it requests at least one adapter by calling the
method getAdapter.

Prohibited features. For example, the feature extendsMultiPageEditor corre-
sponds to an editor extending a deprecated API class MultiPageEditor.

Box 7: Examples for step C1.3 (cont’d)

code smells, or uses of deprecated API elements. Essen-
tially prohibited features have the cardinality ![0..0].

C1.4: Specify additional constraints (cf. Box 8).
? Which additional constraints are not captured by the

feature hierarchy?
! Model additional constraints as features with attached

model queries.
Not all constraints can be expressed by the feature

hierarchy or the cardinality constraints alone, e.g., global
constraints involving features from different parts of the
hierarchy. Such additional constraints can be modeled
as features, each with an attached model query. These
features are usually mandatory, meaning that if the
attached query evaluates to false or to an empty set, the
modeled constraint is violated.

C1.4: Specify additional constraints

StrutsApplication

[1..1] StrutsConfig

[0..*] ActionDecl

[0..1] type (String)

[1..1] actionImpl (ActionImpl) <where attribute:

qualifiedName equalsTo: ../type>

[0..*] ActionImpl

[1..1] qualifiedName (String)

The feature actionImpl models a referential-integrity constraint. The constraint
implies that every correct action declaration (ActionDecl) must have an action
implementation (ActionImpl). To model this, actionImpl has a reference
attribute of type ActionImpl, that is, the feature represents a reference to
an instance of ActionImpl. For each instance of ActionDecl, the attached
model query retrieves all instances of ActionImpl whose qualifiedName has
the same value as type of the ActionDecl instance. Finally, the cardinality
of actionImpl specifies that there should be exactly one such instance of
ActionImpl.

Box 8: An example for step C1.4

A special case of such global constraints are referential
integrity constraints. These constraints model correspon-
dences between concepts, such as “every instance of a
given concept with some property has a corresponding
instance of another concept with some other property.”
Such a constraint can be modeled by a feature with a ref-
erence attribute and an attached model query (cf. Box 8).
The query retrieves the corresponding instances and the

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 17

feature’s cardinality specifies the expected number of the
corresponding instances.

C1.5: Define features with reference attributes to connect
concepts (cf. Box 9).
? Is the concept related to other concepts? For example,

connector-oriented concepts are related to the concepts
they connect.
! Define features with reference attributes that can point

to instances of other concepts. Use <baseConcept>

annotation to define base-concept references (cf. E3.3) or
use model queries to locate instances of the concepts.

C1.5: Define reference features

WorkbenchPartInteractions

[0..*] Part

[0..*] AdapterProvider

![1..1] provider (Part) <baseConcept>

![1..1] providesAdapter

![1..*] adapters (String)

[0..*] AdapterRequestor

![1..1] requestor (Part) <baseConcept>

![1..*] requestsAdapter

[1..1] adapter (String)

[0..*] adapterProvider (AdapterProvider) <where

attribute: providesAdapter/adapters

contains: ../adapter>

AdapterRequestor is a connector-oriented concept. It references 1) a part
through the requestor base concept reference and 2) multiple adapter
providers through the adapterProvider feature. The constraint specifies
that the values of that reference should be all instances of the concept
AdapterProvider whose list of provided adapters contains the requested
adapter.

Box 9: An example for step C1.5

C2: Create mapping definitions for the features (cf.
Box 10).
? What code patterns should concept/feature instances

correspond to?
! Create mapping definitions to specify the correspon-

dence between concept/feature instances and code pat-
terns.

C2.1: Choose a mapping type.
! Choose an existing mapping type that defines the

correspondence of the feature to code patterns. Define
a new mapping type if needed.

Table 3 presents the mapping types that are used in
the examples in Box 10. The complete set of the 49
mapping types used in the exemplar FSMLs can be
found elsewhere [5], [22].

Each mapping type can have a number of param-
eters. We categorize the parameters into core, reverse,
and forward parameters. Core parameters define the
correspondence, reverse parameters are used only by
code queries (cf. Table 4) to control code pattern match-
ing, and forward parameters are used only by code
transformations (cf. Table 5) to control code pattern
creation. Some parameters are optional; we present them
in square brackets, and we show the default values for
these parameters following the bar symbol (|). In general,
the parameters that are present in Table 4 but missing in
Table 3 are reverse parameters. Similarly, the parameters
present in Table 5 but missing in Table 3 are forward
parameters. Furthermore, parameters can be specified
statically, i.e., by providing their literal value in mapping

definitions, or dynamically, i.e., by having their value
retrieved from other features during RE, FE, or RTE.

C2.2: Specify static parameter values in the mapping defi-
nition.
! Specify literal values for parameters that should be

specified statically, such as the name of an interface that
the feature should correspond to. Extend the mapping
type with new parameters if needed.

C2.3: Specify features for the retrieval of dynamic parameter
values.
! For each parameter to be specified dynamically, decide

whether the value should be determined implicitly using
the context mechanism (explained shortly) or explicitly
using a path. Ensure that the appropriate parent features
from which values will be retrieved using the context
mechanism exist. Adjust the order of features to make
sure that the mapping definitions of features from which
values are retrieved are evaluated before the mapping
definitions using these values are evaluated.

The context mechanism is a convenience mechanism
that obviates the need to explicitly specify the path
to a parent feature from which the value needs to be
retrieved. The context mechanism will pick the closest
parent feature instance that corresponds to a code pat-
tern which is assignment-compatible with the type of
the parameter. The code pattern is then assigned to the
parameter. The context mechanism also allows for reuse
of feature model fragments in different places in the
hierarchy since explicit references to parent features do
not have to be hardwired.

C2.4: Implement missing code queries and transformations.
! Implement new queries and transformations for newly

defined mapping types. Extend existing queries and
transformations if they need to better approximate their
mapping types and handle additional code patterns.

Code queries are required for reverse and round-
trip engineering. Code transformations are required for
forward and round-trip engineering. Existing mapping
types provide default implementations of code queries
and transformations. Tables 4 and 5 present code queries
and transformations for the mapping types in Table 3.

C3: Add key annotations (cf. Box 11).
? How should instances of concepts/features be identi-

fied?
Every concept/feature instance should be uniquely

identifiable in an FSM. In the current infrastructure,
instances are considered matching if their keys match.
Keys are required for RTE because the correspondence
between the instances from the descriptive, prescriptive,
and last-reconciled models is established based on their
keys. Keys are also needed for establishing traceability
links during RE.

By default, a key for every concept/feature contains
the concept’s/feature’s name; however, since there may
be many instances of the same concept or feature in a
single model, keys need to be enriched with additional
information. This enrichment is specified using key anno-
tations which are interpreted by the FSML infrastructure

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 18

C2: Create mapping definitions for the features

AppletModel <project>

[0..*] Applet <class>

[1..1] name (String) <fullyQualifiedName>

![1..1] extendsApplet <assignableTo: ’Applet’>

[0..*] parameter <callsReceived: ’String getParameter(String)’ location: ’void init()’>

[0..*] name (String) <valueOfArg: 1>

[0..1] providesParamInfo <methods: ’String[][] getParameterInfo()’>

[1..1] providesInfoForParameters <constraint: ../parameter implies: ../providesParameterInfo>

Table 3 presents selected mapping types used in the example above. Values of some mapping type parameters were specified statically. Some parameters were left
unspecified and their values will be retrieved using the context mechanism. For example, let’s consider the mapping definition <assignableTo: ’Applet’>

that uses the assignableTo: mapping type. The mapping type defines two parameters: c and t. In the mapping definition, only the value of the parameter t
is set to ’Applet’. The parameter c is left unspecified leaving the determination of its value to the context mechanism during the FSML execution. The context
mechanism will use the Java class that the closest parent feature corresponds to as the value of the parameter c. In our example, c will be set to the Java class that
the concept instance Applet corresponds to. Analogously, the value of the parameter mc in the mapping definition <valueOfArg: 1> will be the method call
that the feature parameter corresponds to. Target features for the retrieval of the code patterns for dynamic parameters can be always explicitly specified using
path expressions, such as, ../parameter.

The semantics of the above metamodel is as follows. The model root AppletModel always has to correspond to the entire application (project). Each instance of
the concept Applet corresponds to a Java class. Value of the feature name is the fully qualified name of the Java class. Instance of the feature extendsApplet will
be present only if the Java class is assignable to the Applet class. Because the feature extendsApplet is an essential feature of the concept Applet, the instance
of the concept cannot correspond to a class that is not assignable to the class Applet. Each instance of the feature parameter corresponds to a method call to
getParameter received by an object of the class. Each value of the subfeature name of parameter corresponds to the value of the first argument of the method
call. An instance of providesParamInfo corresponds to an implemented or overridden method getParameterInfo by the class.

An example of a forward parameter is location, used in the mapping definition for the feature parameter. The parameter specifies that the code transformation
should create the method call in the body of the method init.

Box 10: Examples for activity C2

TABLE 3

Selected and simplified mapping types for structural and behavioural code patterns in Java

Structural Pattern Expres-
sion

Structural Element(s) Matched

project matches a project
class matches a Java class
c fullyQualifiedName matches the fully qualified name of the class c
c assignableTo: t matches if objects of the class c are assignable to the type t
c methods: s matches methods with signature s that are implemented or overridden (but not inherited) by the class c

Behavioural Pattern Ex-
pression

Run-time Event Pattern(s) Matched

c callsReceived: s matches method calls to methods with the signature s received by objects assignable to the class c

mc valueOfArg: i matches run-time values of the i
th argument of the method call mc

TABLE 4

Code queries for the mapping types from Table 3

Code Query Expression |
Defaults

Result

c getAssignableTo: t [con-
crete: e] | e=true

True if the class c is assignable to the type t. In essential mode, set of classes assignable to the type t, limited to concrete
classes only if e=true. (The essential mode means executing the query for an essential feature. It is an optimization used to return only
classes that satisfy the essential feature and thus avoid checking all classes in the system [5, s. 2.5.2].)

c getFullyQualifiedName A fully qualified name of the class c.
c getMethods: s A set of methods of signature s in the class c. The signature s may contain * for the method name.

c getCallsReceivedTI: s
A set of method calls with the signature s, such that the receiver of each call is assignable to the type c. In the case when
the type of the receiver is more general then the type c, the query traverses the receiver’s dataflow graph backwards to infer
its more specific type.

mc getArgValConstantProp: i A set of values of the i
th argument of the method call mc retrieved using interprocedural constant propagation limited in

scope to the class that contains the method call.

when computing keys for instances.

! If a given concept/feature can only have a single
instance in the entire model, do nothing. Otherwise,
consider how the instances should be distinguished from
each other by including keys or values of other instances.

If a value of a subfeature should be included in the key,
put the annotation key on that subfeature. If the key of
the parent instance should be included in the key, put
the annotation parentKey on the concept/feature. If the
concept/feature can be instantiated multiple times under
a single parent instance, put the annotation indexKey

to include the index of the instance in the sequence of all
instances which are children of the same parent instance.

The annotation key should be used on features that
contain distinguishing values, such as fully qualified
name and field or method name. The annotations
parentKey and indexKey can be used in conjunction,
if necessary.

C4: Add support for new use cases (cf. Box 12).

? Which additional use cases can be added?

Usually, the evolution of mapping types, code queries,
and transformations is driven by the need to achieve

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 19

TABLE 5

Code transformations for the mapping types from Table 3

Code Transformation Expres-
sion | Defaults

Result

p addClass: n [in: q] | q=”
Creates a compilation unit with a class declaration named n in package q. Retrieves values of the parameters n and q from
subfeatures with mapping types className and qualifier or fullyQualifiedName.

c addAssignableTo: t [concrete:
e] | e=true

If t is an interface, adds a c implements t superinterface declaration or adds t to the existing list of implemented interfaces.
If t is a class, adds a c extends t superclass declaration. If e=true, adds implementations of the unimplemented methods
of the superinterface or an abstract superclass.

c addMethod: s [name: n]
Adds a method declaration of signature s in the class c. If method name n is given, replaces the name from the signature s
with n. If the signature contains * for the method name, the parameter n is mandatory. Retrieves the value of the parameter
n from a feature with the mapping type methods.

c addCallTo: s [receiverExpr: r]
location: l [position: p] | r=”,
p=after

Creates a method call to a method with the signature s with the receiver expression r in the method of signature l of the
class c at the position p ∈ {before, after}.

mc addArgVal: i [values: v] Adds values of the i
th argument of the method call mc. Adds a literal for a single value. For multiple values creates a

variable and multiple assignments with values v.

C3: Add key annotations

AppletModel

[0..*] Applet

[1..1] name (String) |key|

![1..1] extendsApplet |parentKey|

[0..1] extendsJApplet |parentKey|

[0..*] parameter |parentKey,indexKey|

[0..*] name (String)

By default, a key for every feature contains the feature’s name. According to
the key annotations, the key for Applet will also contain the applet’s fully
qualified name; for extendsApplet, it will contain the key of Applet; and
for parameter, it will contain the key of Applet and an index of the instance
in the list of parameters.

The annotation indexKey should be used as rarely as possible because it makes
the key very sensitive to the position of the given feature in the list of instances.
This position changes easily when the code is rearranged.

Box 11: An example for activity C3

the value proposition of a language. Often, however, it
is possible to add support for new use cases with very
little cost.

C4: Add support for new use cases

Initially Struts FSML was not required to support round-trip engineering; how-
ever, since all required code transformations for the mapping types used in the
language were available, adding support for round-trip engineering amounted
to setting forward parameters in mapping definitions.

Box 12: An example for activity C4

C5: Build a test suite (cf. Box 13).

? What code patterns/feature configurations should the
language support?

! Create completion code/feature configurations that
are in scope of the language. Use the test suite to test
the use cases.

The code should have both correct and incorrect pat-
terns with respect to the mapping definitions. The former
should be matched by code queries and produced by
code transformations. The latter should be missed by
code queries.

Feature models typically have very large number of
possible configurations and it is not possible to build
code that tests each configuration; however, there is
some degree of orthogonality in the feature models,
meaning that not all features are related with each
other. This facilitates testing parts of the feature model

separately, thus, greatly reducing the number of config-
urations that have to be tested.

5.5 Transition

In Transition, the language is extensively analyzed,
tested, and refined until the required quality and use-
fulness are achieved. No more new concepts and fea-
tures are added (i.e., feature freeze in Figure 7); however,
modifications to the metamodel required for fixing errors
are allowed. The purpose of this phase is to deliver a
working end product of the iteration. The phase and the
iteration end when the language can deliver the value
proposition established in the inception phase. We group
this phase’s activities by the qualities they evaluate (cf.
Section 4).

5.5.1 Syntactic quality

We omit details of syntactic quality evaluation (activity
T1) since it can be performed by the tools (e.g., syntax
checks).

5.5.2 Semantic quality

The semantic quality of an FSML is determined by the
feasible validity and completeness of the API usages
encoded in its metamodel with respect to the FSML
scope.

T2: Perform semantics evaluation.
? Is the feature model satisfiable? Does the FSML com-

pletely and correctly model the relevant API usages? Is
the implementation of code queries and transformations
correct? What is the precision and recall of the code
queries? Does the generated code compile? Is it com-
plete or skeletal? Are the code patterns created by code
transformations matched by code queries?

T2.1: Check feature model satisfiability. Verify that the set
of legal feature configurations is non-empty and that
each feature is instantiated in some configuration sat-
isfying the essential constraints. The latter requirement
acknowledges the possibility of features used only to
detect incorrect API usages (prohibited features). Correct
additional constraints that may cause contradictions (cf.
C1.4).

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 20

C5: Build a test suite

Test code

public class MyApplet extends Applet {

public void init() {

String color = getParameter("color");

String paramName = "width";

if (...)

paramName = "height";

...

String dim = getParameter(paramName);

}

public void start() { ... }

public String[][] getParameterInfo() {

return ...;

}

}

Framework-specific model

[1] Applet

[1] name (’MyApplet’)

[1] extendsApplet

[1] lifecycleMethods

[1] init

[1] start

[1] parameter

[1] name (’color’)

[1] parameter

[1] name (’width’)

[1] name (’height’)

[1] providesParamInfo

[1] infoForParams

Generated code for the model

public class MyApplet extends Applet {

public void init() {

getParameter("color");

String param0 = "width";

param0 = "height";

getParameter(param0);

}

public void start() {

}

public String[][] getParameterInfo(){

return null;

}

}

The above test code can be used for testing the reverse engineering use case of the Applet FSML. The FSM is a result of reverse engineering the test code. The
model contains an instance of the concept Applet and instances of its features. The instances are created for the underlined code patterns matched by the code
queries.

The framework-specific model can be used for testing the forward engineering use case. The code generated for the model is the result of the execution of code
transformations for each feature instance.

Round-trip engineering use case can be tested by performing changes to the code or to the model and reconciling the differences. Round-trip engineering first
reverse engineers the descriptive model from the current code and compares it with the prescriptive model. Automatic reconciliation of changes is guided by the
result of the comparison and developer’s decisions.

Box 13: Examples for activity C5

T2.2: Check relevant API usages T2.3: Evaluate mapping definitions

AppletModel <project>

[0..*] Applet <class>

[0..*] parameter <callsReceived: ’String Applet.getParameter(String)’ location: ’void init()’>

[0..*] name (String) <valueOfArg: 1>

[0..*] Thread <field>

[1..1] InitializesThread

!<1-1>

[0..1] initializesThreadWithRunnable <assignedNew: ’void Thread(Runnable)’ position: ’after’ loca-

tion: ’void init()’>

[0..1] initializesWithThreadSubclass <assignedNew: initializer: true subtypeOf: ’Thread’>

[0..*] singleTaskThread <callsTo: ’void Thread(Runnable)’ statement: true>

During the evaluation of the precision and recall of code queries, we analyzed a large body of sample applications and noticed a few additional variants for
implementing features that were not included in the FSMLs.

For example, applet threads can also be initialized by subclassing the class Thread and directly overriding the method run (this variant is also explicitly mentioned
in the API). We refined the Applet FSML by inserting a feature group <1-1> and adding new features starting with initializesWithThreadSubclass.

We also noticed, that some applets used single-task threads that were not assigned to a field but were simply instantiated in an individual statement (regular
threads are instantiated in the right hand side of an assignment to a field). To support single-task threads, we added new features, starting from the feature
singleTaskThread. We also had to extend the mapping type callsTo by introducing a new parameter statement that specifies whether only method/constructor
calls that are statements should be matched by the code query.

T2.4: Evaluate the implementation of code queries and transformations

Similarly, we refined code transformations to enable generating different variants. During code generation, certain additional decisions have to be made and these
are specified using the forward parameters of the mapping types.

For example, the code transformation for the mapping type assignNew creates an assignment to a field in which the right hand side is a constructor call of the
given signature. Such an assignment can be created in two ways: as an individual statement in a method body or as a field initializer. The mapping definition of the
feature initializesThreadWithRunnable uses the first variant, and the assignment will be generated at the end of the method init. The mapping definition
of the feature initializesWithThreadSubclass uses the second variant by setting the value of the forward parameter initializer to true.

We first developed simple code queries for Java that employed simple approximations of behavioural code patterns. We then evaluated the precision and recall
of those code queries [40]. Although the precision and recall were very high, we learned that the code queries can be improved without incurring a prohibitive
increase in the execution time. We also implemented and evaluated the precision and recall of the new and more sophisticated code queries [14].

The feature models still had to be adjusted to support the more powerful code queries. For example, a simple code query for the mapping type argVal was
returning a value of a method call argument only if the argument was a constant or a literal. Therefore, it was sufficient for the feature name to have the cardinality
[0..1]. The new code query performs constant propagation if the argument of a method call is a variable. Because constant propagation may return multiple potential
values of the variable, the cardinality of the feature name had to be changed to [0..*].

Box 14: Examples for steps T2.2, T2.3, and T2.4

T2.2: Check relevant API usages (cf. Box 14). Create
sample feature configurations and verify that all legal
feature configurations represent correct API usages and
that illegal feature configurations represent incorrect API
usages (validity). Verify that every relevant API usage is
represented in the feature model (feasible completeness).
Use the API definition, sample applications, and best
practices to identify missing API usages. Extend the
feature models and mapping definitions as needed.

T2.3: Evaluate mapping definitions (cf. Box 14). Verify that
the mapping definitions correctly represent the corre-
spondence between feature instances and code patterns
as required by the API usages in scope.

T2.4: Evaluate the implementation of code queries and
transformations (cf. Box 14). Refine code queries and
transformations to improve the semantic quality of the
retrieved models (precision and recall) and the generated
code (correctness and completeness). Adjust the feature

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 21

model to the refined queries and transformations. Ver-
ify that the queries and transformations correctly use
all mapping type parameters. Verify that code patterns
created by code transformations are matched by code
queries for the same mapping types.

5.5.3 Pragmatic quality

The pragmatic quality of an FSML needs to be evalu-
ated at two levels: the level of FSMs and the FSML-
metamodel level. Thus, the evaluation involves deter-
mining the feasible comprehension, creation, and modi-
fication of FSMs and the FSML metamodel.

T3: Perform pragmatics evaluation.
? Is the model/metamodel easy to understand, create,

and modify?
T3.1: Evaluate model/metamodel comprehension, creation,

and modification (cf. Boxes 15, 16).
Evaluate closeness of mapping, consistency, error-

proneness, hard mental operations, hidden dependen-
cies, role-expressiveness, viscosity, and visibility dimen-
sions for sample modeling tasks by asking questions
similar to those included in the Cognitive Dimensions
questionnaire [41], e.g., “What kind of things are more
difficult to see or find? Do some kinds of mistake seem
particularly common or easy to make?” Use readily
understood feature names. Use appropriate concrete syn-
tax, e.g., characteristic icons and visualization of rela-
tionships (designing concrete syntax is outside of the
scope of the current method). Consider model filtering,
transformation, and analysis to display different views
of the model for different comprehension tasks.

For the metamodel, evaluate the decomposition of
concepts into features and metamodel modularity (e.g.,
use of references and constraints). Detect redundancies
and use references and feature inheritance where appro-
priate.

T3.2: Evaluate support for the required use cases (cf.
Box 17). Verify that the language can be used to perform
the required use cases. Use the test suite to execute the
required tasks.

5.5.4 Organizational quality

The organizational quality of a FSM or a FSML is the
extent to which the model or language fulfills the goals
of the users in an organization.

T4: Perform organizational evaluation (cf. Box 18).
? Is the language fulfilling its purpose and providing

the value as expected? Is the retrieved model useful
for application developers? Is the generated code useful
for application developers? How much more work do
application developers need to invest to get the code
working?
! Perform user studies to assess whether the language

delivers its value proposition.

6 METHOD JUSTIFICATION

We justify the presented method by tracing its origins to
the base approaches, which are well-established, and to

T3.1: Evaluate model/metamodel comprehension, creation, and

modification

Screenshot: concrete syntax of an FSM expressed using Applet FSML.

Examples of cognitive dimensions evaluation for exemplar FSMLs.

Closeness of mapping. The main purpose of the EJB FSML is to present a run-
time configuration view by merging information from the Java code and the
XML deployment descriptors, which is very difficult to see both in the code
and in an FSM reverse engineered using EJB FSML. Therefore, to improve the
pragmatic quality of the retrieved EJB FSML models with respect to the closeness
of mapping, we implemented a model transformation that applies inference rules
to the extracted model and computes a run-time configuration of the EJB project
and thus making the run-time configuration explicit [22].

Consistency. Different kinds of listeners in Applet FSML are similar in structure.
Learning one kind of listener (e.g., mouse listener) allows the user to easily
“guess” how to use other kinds of listeners (e.g., key listener).

Terseness. All FSMs are terse because they only contain information relevant to
their value proposition and abstract away unrelated information from the code.
Still, the models can be large making it difficult to locate needed information.
However, due to their hierarchical nature, FSMs can be explored top-down by
expanding certain branches of the tree while other branches remain collapsed.
FSMs also do not contain all necessary information needed for code creation
because some information is encoded in the mapping definitions as defaults.

Additionally, not all features are presented as a feature hierarchy. Features with
attributes are presented as properties shown in a separate view (cf. screenshot,
lower right) of the features shown in the hierarchy. Descriptive labels of hierarchy
features also contain values of the property features that are not visible in the
hierarchy.

Error proneness. Our model editors are structured, which reduces error proneness.
It is still, however, possible to construct an incorrect model. An automatic and
generic model validation implemented in the infrastructure can be used to find
errors in the model, e.g. violations of additional constraints.

Hard mental operations. In FSMs in Struts FSML, it was difficult to find an action
implementation (in Java) for a given action declaration (in XML). Therefore, a
referential integrity constraint was introduced that allows a developer to quickly
navigate to the implementation or determining that it is yet missing.

Box 15: Examples for step T3.1

the actual experience of developing the four exemplar
FSMLs (cf. Figure 6). Our discussion accounts for the
origin of each step and also gives insight on how the
steps were scheduled and executed during the actual
FSML development. As expected, the reality of that
development was more complex and exploratory than
the method communicates or needs to communicate [42];
however, this section gives a more complete picture of
the actual development and it provides ideas of how the
method may be specialized when applied.

6.1 Division of the lifecycle into four phases

The four lifecycle phases, Inception, Elaboration, Con-
struction, and Transition, were borrowed from the Uni-
fied Process. Each FSML had a clear Inception phase,

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 22

T3.1: Evaluate model/metamodel comprehension, creation, and

modification

Hidden dependencies. The number of features representing constraints that crosscut
the feature hierarchy and referential integrity constrains is very low relatively to
the total number of features (WPI FSML: 5/71, Struts FSML: 5/47, Applet FSML:
1/75, EJB FSML: 4/73) and therefore number of hidden dependencies is low.

Pragmatic quality of FSMs with respect to hidden dependencies is also improved
by offering traceability links (cf. screenshot, lower left part) between the model
and the code that allow the developer to immediately jump to code patterns that
implement a given feature.

Role expressiveness. To improve role expressiveness (as compared to the generic
feature configuration from Box 13), we developed simple concrete syntaxes that
utilize descriptive labels for features and icons (cf. screenshot).

Viscosity. Removing or modifying features involved in constraints and referenced
from other features may trigger constraint violations in remote parts of the model.
In out FSM editors, model validator can be used to asses the impact of changes.
Later, the changes can also be undone.

Since code pattern removal is not implemented, removal of a feature in the model
requires manual removal of a corresponding code pattern.

Visibility. A model expressed using WPI FSML shows both local and external
workbench parts. External parts are those visible in the class path of the project
and they cannot be modified. Therefore, to improve visibility when working with
local parts, we implemented simple model filtering that hides all external parts.

Box 16: Examples for step T3.1 (cont’d)

T3.2: Evaluate support for the required use cases

We performed extensive evaluation of reverse engineering [14] and tested
forward and round-trip engineering [5, ch. 5, 6]. We evaluated the precision and
recall of code queries by reverse engineering a large set of applications using
WPI, Struts, and Applet FSMLs, and manually identified false positives and false
negatives of code queries for behavioural Java code patterns (code queries for
structural code patterns have 100% precision and recall). The results showed
weighted average precision of 100% and recall of 96% for the behavioural code
queries.

Tests of forward engineering using WPI and Applet FSMLs showed that the code
created using code transformations is correct with respect to the respective APIs.
We verified that automatically by reverse engineering the generated code and
comparing the original and the extracted models, which were equivalent modulo
feature ordering and inherited behaviour from superclasses.

Tests of round-trip engineering (RTE) using WPI and Applet FSMLs showed
that 1) the code created in multiple iterations using RTE was equivalent to
the code created using forward engineering; and 2) the model created in
multiple iterations using RTE was equivalent to the model created using reverse
engineering.

All these evaluations also (indirectly) confirmed the correctness of reverse,
forward, and round-trip engineering algorithms and infrastructure support.

Finally, Cheema tested migration by semi-automatically migrating a real-world
Struts-based application with 20 KLOC of Java to JSF [25]. The original code
was first reverse engineered using the first version of the Struts FSML. Next,
a specialized migration code generator was used to produce JSF compliant
completion code. The code generator was guided by the model and it was capable
of migrating not only the completion code, but also the bodies of actions. The
migration did not include UI code.

Box 17: Examples for step T3.2

in which the goals and the scope of the language were
defined. All goals of WPI and Applet were set at the
beginning of the development; the support for code
creation and evolution were only added later; however,
the goals for Struts and EJB FSMLs shifted or were
expanded during development (cf. Table 1). Thus, the
Inception phase was revisited for Struts and EJB FSMLs
in later iterations.

The evaluation of the languages, particularly testing
activities, were done continuously after each change
to the metamodel or the infrastructure; however, there
were a few periods of extensive evaluation, such as the
study of RE or evaluating EJB antipattern detection on
open-source applications. Major parts of these evaluation

T4: Perform organizational evaluation

None of the exemplar FSMLs has been released to the public yet. Evaluation
methods such as controlled experiment, action research, or survey can be used to
evaluate the organizational quality of FSMLs.

Organizational quality can also be assessed using indirect measures, which are
likely less expensive to obtain than performing user studies. For example, to
evaluate the claim that framework-specific models modularize each concepts
of interest as a single feature hierarchy and the corresponding code patterns
are usually scattered over the completion code, we computed two metrics:
concern diffusion over components (CDC) and concern diffusion over operations
(CDO) [5, ch. 7], where each concern aggregates all features related to the
same Java class, one implementing a view, an editor, an applet, or an action
in our case. We computed the metrics on a large set of example applications
and results showed that, indeed, the code patterns that implement the concepts
are highly scattered. 70% of Eclipse editors and views are implemented in two
or more components and 55% of them in three or more components, where
components are individual classes and XML documents. 60% of Struts actions
are implemented in two or more components. Only 10% of Java applets are
implemented in two or more components; however, the Applet FSML does not
consider applet declarations in HTML files, which adds another component.
Finally, at least 55% of all concerns are implemented in two or more operations.
These indirect measures indicate that FSMLs can potentially reduce the effort
of code comprehension by providing traceability to the scattered code patterns
because framework-specific models present related features in a single hierarchy
and thus provide an alternative to the way the code is decomposed.

Box 18: Examples for activity T4

periods can be viewed as Transition.
The distinction between Elaboration and Construction

was more subtle, but it reflected the fact that some initial
construction of the feature models took place before
creating any mapping definitions and detailed features.
We classified the creation of these initial feature models
as Elaboration. These initial feature models were fairly
shallow, at most one or two levels below the model
root. Some grouping features were created at level two
during elaboration; additional ones were created later in
Construction as needed. The feature models were refined
and their mapping definitions were created later, and we
classified these activities as Construction.

6.2 Use-case-driven development

Support for use cases was added incrementally, as pre-
scribed by the method. Code understanding (U) was the
primary use case for each exemplar FSML except for
the Struts FSML, which was initially built to support
migration (M). Code creation (C) and code evolution
(E) were considered for Applet and WPI FSMLs from
the beginning, but the actual implementation of the use
cases was sequenced. The FSML metamodel was first
built for U and tested. Then it was refined for C and
tested. Then it was further refined for E and tested. The
necessary refinements were not extensive and they were
mostly additive, such as providing additional parame-
ters for code transformations in mapping definitions, or
adding detailed features representing implementations
variants. When transitioning from C to E, some keys
had to be verified and adjusted in order to achieve
the desired model matching. Furthermore, some code
transformations needed adjustment and, consequently,
additional parameters had to be provided in mapping
definitions. The fact that these refinements were not
extensive and mostly additive is not surprising since the
mapping definitions define the semantics of the features

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 23

regardless whether they are realized by queries for RE
or transformations for FE or RTE. For Struts, the initial
language designed for M was first redesigned to support
U because the focus of the language shifted. The support
for referential integrity checking (RIC) was subsequently
added by mostly creating new features with reference
attributes and appropriate constraints. At last, support
for C was added to Struts opportunistically, mostly
because all the mapping types used by the language
were already supported by existing transformations. The
EJB FSML development started with U, followed by RIC
(similar to Struts) and API constraint checking (ACC).
The support for model analysis (MA) was added last.
Again changes to the EJB FSML through these iterations
were mostly additive.

6.3 Tracing activities and steps to the development
of the exemplar FSMLs

All activities and steps presented in the previous section,
except step T3.1 and activity T4, were performed during
the development of the exemplar FSMLs as illustrated by
the examples in Boxes 1–17. Step T3.1 and activity T4,
which require user studies, were added to the method
for completeness as suggested by the model quality
framework. All of the performed steps were executed
for every exemplar FSML; however, the step execu-
tion varied among the FSMLs. For example, E2 distin-
guishes among component-oriented, connector-oriented,
and port-oriented concepts. All exemplar FSMLs have
component-oriented concepts; only WPI, EJB, and Struts
FSMLs have connector-oriented concepts; and only EJB
FSML has port-oriented concepts. Furthermore, steps re-
lated to queries and transformations, i.e., C2.4 and T2.4,
would be executed differently depending on whether the
given FSML needed transformations to support forward
or round-trip engineering or not. In particular, all exem-
plar FSMLs support forward engineering except the EJB
FSML, which did not require this capability to achieve
its value proposition.

6.4 Tracing activities and steps to the base ap-
proaches

All of the steps in Inception and Elaboration can be
seen as specializations of the generic steps given in
the Feature Modeling Process [17, ch. 4], which is an
extension of FODA [7]. Some steps in Construction, such
as defining feature nesting (C1.2), specifying cardinality
constraints (C1.3), and specifying additional constraints
(C1.4), are specializations of generic feature modeling
steps to the FSML context; however, the steps in activities
C2-C5 are specific to FSMLs and do not have their
counterparts in FODA. All of the steps in Transition
are classified according to the quality criteria derived
from the model quality framework and the Cognitive
Dimensions discussed in Section 4.

6.5 Iterative development and scheduling of activi-
ties and steps

The FSMLs were developed iteratively. All of them
except EJB were developed concurrently with the in-
frastructure; thus, the actual development process was
more complex and exploratory than what the method
suggests.

We can distinguish five major periods in this develop-
ment: 1) development of the first WPI FSML prototype
and later Struts FSML prototype with code reuse from
WPI; 2) development of Applet FSML with a fully
declarative metamodel that was driving the develop-
ment of the generic FSML infrastructure, followed by
the migration of WPI and Struts FSMLs to the infras-
tructure; 3) the first RE evaluation for Applet, WPI, and
Struts FSMLs [40]; 4) development of the EJB FSML and
the second RE evaluation for Applet, WPI, and Struts
FSMLs [14]; 5) the FE & RTE evaluation for Applet and
WPI FSMLs [5].

Each of these periods involved multiple iterations.
Iterations were not timeboxed: iterations involving in-
frastructure construction and implementation of code
queries and transformations were longer; iterations in-
volving mostly metamodel construction were shorter.
The evaluation periods included both Construction and
Transition phases since the FSMLs were refined in the
course of the evaluations.

The development of the EJB FSML resembled closely
the process prescribed by the method since most of
the required mapping types (including the queries and
transformations) and the infrastructure were already
present. The EJB FSML development had five itera-
tions: 1) development of an initial, basic version of the
language, which included the development of missing
code queries for Java 5 annotations; 2) adding support
for XML deployment descriptors and extension of code
queries for XML; 3) broadening the horizontal scope to
cover more cases related to override rules; 4) develop-
ment of model analysis and adding features required by
the model analysis, and 5) development of EJB antipat-
tern detection and adding required features.

In general, the iterations were not uniform as not every
step, every activity, not even every phase of the method
were performed in each iteration. Usually, adding new
features was driving required extensions to the 1) algo-
rithms and infrastructure; 2) mapping types; and 3) code
queries and transformations. These extensions required
continuous testing.

Closely related concepts were added together, other
concepts were added and decomposed in depth one
by one. Features were always added while keeping
their mapping definitions in mind and specifying them
later: we found it difficult to consider features without
thinking about their mapping definitions at the same
time. The reason was that mapping definitions often
referred to other features through the context mechanism
or explicit paths, so we had to understand how to place

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 24

and decompose new features in relation to the existing
ones.

The evolution of the metamodel was continuous.
There were a few significant refactorings of the meta-
models that invalidated existing models; however, most
changes were additive and existing models were au-
tomatically migrated. The main reasons for metamodel
evolution were 1) adding new feature groups and new
implementation variants; and 2) adjusting to new capa-
bilities of code queries and transformations. In addition
to continuous testing in Construction, the evaluation
periods involved review of metamodel structure and
extensive testing of the mappings, queries, and trans-
formations.

6.6 Development effort

The effort required to develop a new FSML depends
mostly on the availability of the required mapping types
and their implementations. Assuming that all required
mapping types are implemented and the developer is
familiar both with the framework and the FSML method,
a new FSML can be built in the order of days thanks to
the declarative nature of FSML definition. Implementing
new code queries and transformations and any neces-
sary infrastructure extensions can be time consuming;
however, Master’s students without previous knowledge
of the target framework and without experience in the
FSML approach were capable of building an FSML
within weeks, which included implementing missing
mapping types. These students had access to the first
author to ask questions about the approach and the
infrastructure since a description of the method did not
exist at that time.

7 DISCUSSION AND FUTURE WORK

In the spirit of the design science paradigm (cf. Sec-
tion 2), we now turn to discuss the adherence of our
research approach to the paradigm and the maturity
and limitations of the individual elements of the FSML
approach.

Hevner et al. proposed seven guidelines that should
be followed when applying the design science (DS)
paradigm [8]. We list these guidelines and briefly discuss
to what extent our research adheres to them.

Design as artifact. DS research must produce one or more
artifacts in the form of a construct, a model, a method, or an
instantiation. Our research led to the new construct of
FSMLs, four exemplar FSMLs as instantiations, and a
FSML engineering method.

Problem relevance. The produced artifacts must address
an important and relevant problem with respect to a con-
stituent community. Difficulties of framework API usage
represent a practical problem [43], [44], and its relevance
is highlighted by a plethora of approaches designed to
address it (cf. Section 8).

Design evaluation. The utility and quality of the artifacts
must be demonstrated through evaluation. We established

the criteria for evaluating FSMLs in Section 4. The exem-
plar FSMLs were evaluated as prescribed, modulo user
studies. The FSML engineering method has not been
evaluated. We return to the topic of evaluation in the
following two subsections.

Research contributions. DS research must yield new
contributions related the artifacts, foundations, or methodolo-
gies. We claim the exemplars and the FSMF as artifact-
related contributions since they address the limitations
of other approaches as argued in Section 8; however,
experimental comparison is future work.

Research rigor. DS requires the application of rigorous
methods in both artifact construction and evaluation. The
FSMF has been implemented in the form of a generic
infrastructure; the infrastructure has been extensively
tested using the exemplars; and the exemplars have
been carefully evaluated, e.g., using precision and recall.
The engineering method is based on well-established
approaches, which allowed us to systematically and
thoroughly elicit the modeling patterns and strategies
used to construct the exemplars. A formalization of the
FSMF, however, is still required.

Design as a search process. DS research is inherently
iterative. FSMLs, FSMF, and the method were constructed
and evaluated iteratively. The results of the evaluations
were used as feedback to improve the artifacts.

Communication of research. DS research must be com-
municated to both technical and managerial audiences. To
address the needs of managerial audiences, we presented
examples of use cases and value propositions and dis-
cussed development effort. The artifacts are also docu-
mented in sufficient detail to allow a technical audience
to recreate them [5], [14].

In the following sections, we elaborate on the the
maturity of the different elements of the FSML approach
and their limitations and suggest future work.

7.1 Exemplar FSMLs

The exemplar FSMLs target four widely used Java frame-
works. The FSMLs are declaratively specified and their
metamodels are interpreted by the infrastructure. Re-
verse engineering was extensively evaluated for WPI,
Struts, and Applet FSMLs [14]. Forward engineering and
round-trip engineering were tested for WPI and Applet
FSMLs [5]. Use cases U, RIC, ACC, MA, C, E, and M
were tested by FSML developers, but the results were not
published. The use case AU was performed by several
members of our research group who learned the FSML
approach.

The key limitations of the exemplar FSMLs are as
follows.

Lack of user studies. The FSMLs need to be evaluated
in user studies. Ultimately, their usefulness needs to be
confirmed in practice. To this end, user communities
for these or additional languages should be established.
The effectiveness of the languages could then be studied
using surveys, case studies, or action research.

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 25

Limited generality of the exemplars. The exemplar
FSMLs target widely used Java frameworks with differ-
ent characteristics; however, the exemplar FSMLs will
only be representative for those API concepts of other
frameworks that can be modeled using the same map-
ping types as the ones used in the exemplars. We will
return to this issue shortly.

7.2 FSML engineering method

The presented FSML engineering method was con-
structed by specializing the base approaches to the
FSML context and by generalizing from the experience
of building the four exemplars. The method was first
presented in the related Ph.D. thesis [5] and significantly
revised and extended in this paper, most importantly by
applying the model quality and Cognitive Dimensions
frameworks.

The key limitations of the method are as follows.
Created by retrospection. Since we do not have a

detailed record of each language’s development history,
we relied on retrospection and we might have missed
some details. We addressed this threat by looking at the
current [5] and past [40], [45] versions of the FSMLs.

Parallel infrastructure development. WPI, Struts, and
Applet FSMLs were developed in parallel to the de-
velopment of the FSML infrastructure; therefore, their
development might not be representative. We addressed
this threat by providing more detail on the actual de-
velopment and justifying our method design in Sec-
tion 6. Also, as the number of FSMLs built increases and
the foundation matures, the number of changes to the
FSML infrastructure required to support new require-
ments will likely decrease. We observed that effect in
the development of the four exemplars. In particular,
the development of the EJB FSML required much fewer
infrastructure extensions than the previous exemplars.

Lack of user studies. The FSML engineering method
needs to be tested by third-party users. To that end, we
envision conducting an exploratory experiment in which
subjects would apply the method to a well defined part
of a framework’s API. The goal of the experiment would
be to understand the questions and issues the subjects
faced during the method application and how these
questions and issues impact the quality of the produced
FSMLs.

7.3 FSMF

The Framework-Specific Modeling Foundation (FSMF)
was described elsewhere [5]. The generic FSML infras-
tructure is the implementation of the foundation. The
infrastructure implements the means used by the use
cases and it supports the four exemplar FSMLs. The
mapping types are implemented by code queries and
transformations as pluggable mapping interpreters.

The key limitations of the FSMF are as follows.
Generality of the mapping types. The set of mapping

types we developed can be used to model a great variety

of API concepts, but it is certainly not exhaustive. Thus,
the creation of new mapping types is considered as a
part of the method. The set of mapping types that can be
supported is limited by the ability to implement the cor-
responding code queries and transformations. In partic-
ular, implementing effective queries and transformations
for highly dynamic code patterns, such as complex object
structures typically required by graphical UI frameworks
(e.g., Java Swing), may be difficult or infeasible. Code
queries for such code patterns may require sophisticated
static analyses, which would significantly increase the
time of RE and RTE or reduce the semantic quality (i.e.,
precision and recall) of the retrieved models. Further-
more, the existing mapping types only support Java and
XML; however, mapping types for other languages, such
as C/C++ or Ruby, could be implemented.

Code pattern addition only. The current support for
RTE is limited in the model-to-code direction to au-
tomatic code pattern addition only. Manual additions,
modifications, and removals in the code are automati-
cally reflected in the corresponding FSMs upon synchro-
nization. We experimented with automatic commenting-
out of the code that corresponds to the concept and
feature instances removed from the related FSM; how-
ever, this capability needs to be further developed and
studied. Similarly, automatic code modification, such as
refactoring one implementation variant into another one
to reflect the corresponding change in the related FSM,
needs further investigation.

Fixed locations for code pattern addition. A challenge
in automatic forward and round-trip engineering is the
choice of the locations for code pattern addition, i.e., new
code patterns are added to code locations predefined
in mapping definitions, which may require application
developers to move code patterns to suitable locations.
Lee et al. proposed and prototyped a number of new
FSML-based means [46] to address this challenge. These
means can be invoked directly in the source code, but
with an FSM hidden in the background or shown on the
side. Framework-specific content assist can be used to add
implementations of new concept or feature instances di-
rectly in the code; framework-specific keyword programming
provides keyword-programming support [47] based on
FSML feature names; framework-specific content outline
presents an FSM of the currently opened source file; and
framework-specific error highlighting marks API violations
detected through an FSM directly in the source code.
These new means required extensions to the FSML in-
frastructure, such as reverse navigability from code to
FSM, specialized FSML metamodel interpretation, and
extensions to code transformations.

Support for existing code. The main difference be-
tween FE and RTE, which both only add code patterns, is
that in FE the code is created from scratch and in RTE the
code is added to existing user’s code. In FE, the FSML
developer can easily predict the resulting code since code
transformations will be executed for every feature. In
RTE, some features may be already implemented in the

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 26

application and the added features must be seamlessly
integrated. Currently, the same code transformations are
used in both forward and round-trip engineering and
therefore the quality of the code created in RTE may
be lower than in FE. Also, the tests of RTE that we
performed [5] did not involve third party applications.

Tensions between use cases. Currently, the method
suggests that a single FSML metamodel can be used
in many use cases, which is certainly the case with
all exemplar FSMLs. In general, however, this approach
might not always work because achieving high quality
in one use case may conceivably reduce the quality
of another use case or even render the other use case
infeasible. The method prescribes incremental addition
of support for new use cases which may require some
restructuring of the metamodel. In our experience, this
was never a problem since adding support for a new use
case typically required only additions to the metamodel.
We always started with the RE capability that only had
features required for code comprehension (U). Adding
FE, needed for code creation (C), typically required
adding new subfeatures with information required by
code transformations, such as field and method names.
Adding RIC and ACC typically required adding features
with reference attributes and features that represent con-
straints. Adding model analysis (MA) required creating
a new metamodel for the view (i.e., the result of the
analysis) and implementing an external model transfor-
mation. Adding migration (M) required implementing
a specialized code transformation. Adding RTE after
FE, needed for evolution (E), only required adding key
annotations for instance matching, which is necessary
for model comparison. Often, however, the required key
annotations were already present since they were needed
for establishing traceability links in RE. In general, differ-
ent feature decompositions for different purposes could
be provided as views as in the case of MA. Exploring
effective ways of defining such views is future work.

Lack of formalization. Another limitation is the lack
of formalization of the FSMF. The semantics of an FSML
is specified as a semantic domain and a semantic map-
ping [48]. The semantic domain is a set of static and
behavioral code patterns, and the semantic mapping
is given by the mapping definitions. Although these
concepts are currently not formalized, we have related
mapping types to pointcut languages [40]. Thus, a for-
malization of the FSMF could build on the existing
work on formal models of pointcut languages over
static code patterns [49] and dynamic code patterns [50].
The complete semantic mapping for an FSML is given
compositionally through the mapping definitions of its
features. A formalization of this model is future work.

Furthermore, the use of code queries and transfor-
mations need to be formalized is in order to better
understand the rules of their composition, such as pre-
and post-conditions. Code query and transformation
composition is important since the metamodel of an
FSML can be understood as a compositional definition of

a code query in reverse engineering and a compositional
definition of a code transformation in forward engineer-
ing. A formalization of round-trip engineering would
provide insights into the properties of the approach,
such as what exactly are the conditions of reconciliation
and what are the limitations of instance identification
(matching).

No guidance for concrete syntax. The method does
not provide any guidance for building concrete syntaxes
for FSMLs. Effective concrete syntax improves pragmatic
quality and it is a prerequisite for any studies involv-
ing users. The creation of the concrete syntax could
be driven by the concept kinds; e.g., FSMLs including
both component-oriented or connector-oriented concepts
may require a diagrammatic lines-and-boxes notation. The
concrete syntax should ideally leverage results related to
supporting feature model configuration, constraint prop-
agation, and supporting different configuration inter-
faces, such as tree view and configuration wizards [51],
[52], [53]. We developed simple concrete syntaxes for
the exemplar FSMLs that utilize a generic graphical tree
editor customized with icons and descriptive labels (cf.
Box 15).

8 RELATED WORK

8.1 Engineering of domain-specific languages

(DSLs)

DSLs for framework APIs. The idea of designing mod-
eling languages for frameworks is not new. In 1996,
Roberts and Johnson proposed that language tools, such
as visual builders, should be the last stage in the evolu-
tion of black-box frameworks [54]. The FSML approach
provides a systematic method to building such lan-
guages declaratively.

In their 2005 survey on DSLs [55], Mernik et al. iden-
tify the following DSL development phases: decision,
analysis, design, implementation, and deployment. The
survey mentions the creation of a “user-friendly” nota-
tion for an existing library or a framework as a possible
motivation for the creation of a DSL in the decision
phase. In the analysis phase, informal or formal domain
analysis is performed to capture domain concepts by
using implicit and explicit sources of knowledge, such as
documentation, experience, and example code. Feature-
oriented domain analysis (FODA) [7] is included as a
possible analysis method. The authors further state that
no clear guidelines exist as to how a language could
be designed from the results of domain analysis. In our
method, FODA is specialized and extended to support
the complete definition and implementation of an FSML.
Furthermore, our method gives specific guidelines on
how the concepts and features are obtained, scoped,
structured, mapped to code, and evaluated.

Bravenboer and Visser present MetaBorg [56], a
method for embedding DSLs into general-purpose lan-
guages. A program expressed in an embedded DSL is

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 27

included inside a host program written in a general-
purpose language. During the assimilation phase, the
embedded DSL program is translated into the host
language. Bravenboer and Visser demonstrate their ap-
proach by implementing a simple DSL on top of Swing,
which is a Java framework for GUI programming. The
assimilation of DSL programs produces the framework
completion code. Code generation in MetaBorg is lo-
calized, i.e., it replaces the embedded DSL program
with the completion code within the host program. In
contrast, FSMs are external to the program using the
API, and code generation for FSMs has global and
incremental character with respect to the target program.
Furthermore, assimilation is performed during compi-
lation and the developer is not intended to customize
the generated code. In FSMLs, the generated code is
integrated into the source code and it may be customized
as needed thanks to round-trip engineering.

Domain-Specific Modeling Languages (DSMLs).
DSMLs are specification-level DSLs for capturing re-
quirements or designs. FSMLs can be viewed as a special
kind of DSMLs for expressing the design of framework-
based applications in relation to the framework API.

Most DSML development approaches (e.g., [57], [58],
[59]) are based on metamodeling using some form of
class models (e.g., [60], [61], [62]) or entity-relationship
models [63]. The metamodeling notation for FSMLs is
cardinality-based feature modeling [15], extended with
reference attributes and inheritance. The expressiveness
of the resulting notation is comparable with that of class
modeling [16]. The main advantage of feature modeling
are its explicit constructs for variability constraints such
as feature groups. Furthermore, our metamodeling no-
tation supports additional concepts such as essentiality
and keys.

Kelly and Tolvanen present a process for designing
DSMLs for 100% code generation [64]. They assume
the existence of a domain framework and give gen-
eral guidelines for building and adopting a DSML for
that framework. They also assume that the framework
is mature and complete such that the code generated
from a model never has to be manually modified. The
development process consists of the following activi-
ties: selecting an appropriate domain, ensuring proper
training and management support, defining the DSML,
pilot project, and deployment. The authors advocate use
scenarios to drive the development of DSMLs. They
also provide guidelines on how to identify and define
modeling concepts, design concrete syntax, and develop
code generators using scripting and a template-based
approach. The approach targets languages that are closer
to system requirements and normally require significant
amount of generated code that is not intended to be
modified manually. In contrast, FSMLs target the use
of frameworks and they usually are much closer to the
respective framework APIs. They also support reverse
engineering and round-trip engineering, which allows
manual edits of the generated code. In contrast to DSMLs

with 100% code generation, FSMLs target model-supported
engineering, where models are optional since they can be
retrieved from code at any time. In a sense, FSMLs follow
a single-source principle, where all relevant information
is stored in one place, which is source code of the appli-
cation. FSMLs may also be of particular interest when the
application domain of interest is not mature and stable
enough to create a high-level DSML. FSMLs may have
a lower adoption barrier, particularly in cases where an
organization would already use frameworks for which
FSMLs existed. Furthermore, due to the narrower scope
of FSMLs, we are able to give more detailed guidelines
and process for language development.

Quality of models and languages. Moody reviewed
50 different proposals to evaluating quality of conceptual
models [65]. Some of these approaches are specific to
particular notations such as UML or ER/EER. Only
few of these approaches were empirically evaluated.
The framework by Lindland et al. [9], which we use
in our work (cf. Section 4), is one of the few general
approaches that were evaluated. It is important to note
that Lindland et al. also showed that other properties
of models, such as correctness, minimality, traceability,
consistency, and unambiguity are subsumed by their
framework [9]. In our application of the framework,
we had to extend the definition of pragmatic quality to
cover model creation and modification in addition to the
already addressed comprehension aspect. Furthermore,
we apply this framework at three levels: FSMs, FSMLs,
and FSMF.

SEQUAL [10] is a comprehensive semiotic quality
framework for models that grew out of the framework
by Lindland et al. Additionally to syntactic, semantic,
and pragmatic qualities, SEQUAL proposes four more
kinds of qualities: empirical, perceived semantic, social,
and organizational. Empirical quality is related to prop-
erties that can be empirically perceived by just looking
at a model and without considering its syntax or se-
mantics (e.g., use of colors, quality of layout, presence
of redundancy). Perceived semantic quality relates the
model semantics to what the audience already knows
about the model domain and how that may influence
their model understanding. Social quality is related to
how differently a given model may be interpreted by
different members of the audience. Furthermore, the
quality is related to the ability to express such differences
and to support consensus building. Means to improve
social quality include model comparison and model
merging facilities. In this paper, we only considered
the organizational quality. We chose not to consider
empirical quality since we view it as highly overlapping
with the pragmatic quality. Furthermore, we feel that
the concept of perceived semantic quality needs further
elaboration and concretization to be readily applicable
in our context; however, we recognize the relevance of
social quality to FSMLs, since FSMLs may have mul-
tiple simultaneous users of different backgrounds, e.g.,
application developers, architects, and quality assurance

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 28

engineers. We leave this aspect for future work.
The Cognitive Dimensions (CDs) framework has been

previously used to assess the pragmatic quality of mod-
eling languages (e.g., [66]) and DSLs (e.g., [67]). Black-
well at al. [68] provided criteria for extending CDs
with new dimensions. User studies with FSMLs may
well reveal that the CDs framework may need further
adaptation and extension to the context of FSMLs.

8.2 Modularization of crosscutting concerns

Aspect-Oriented Programming (AOP). The goal of AOP
is to modularize the implementation of crosscutting con-
cerns [69]. Similar to AOP, FSMLs also address the issue
of understanding and maintaining crosscutting concerns.
In particular, FSMLs help to locate the implementation
of framework-provided concepts and features that may
be scattered across the application code and tangled with
the implementation of other concepts. Interestingly, the
FSML mapping types used for defining behavioural pat-
terns are essentially pointcut language constructs. Some
of the mapping types correspond to AspectJ constructs
and other, such as data-flow related mapping types, go
beyond AspectJ [14].

In contrast to AOP languages such as AspectJ, FSMLs
do not separate the scattered code fragments into sep-
arate aspect modules, but leave them inline and sup-
port their localization through traceability links. This
approach is less invasive for existing applications that do
not use an aspect language. Also, it can be argued that
not all crosscutting code is appropriate to be separated
out [70]. A hybrid approach that either leaves the cross-
cutting separated or inline and allows to freely switch
between the two is also possible (e.g., [71]). Exploring
such hybrid strategies in the context of FSMLs is future
work.

Feature-Oriented Programming (FOP). The goal of
FOP approaches such as AHEAD [72] is to allow ap-
plications to be synthesized from different configura-
tions of features. Features are increments in program
functionality and FOP seeks to provide mechanisms to
encapsulate features as first-class modules. FOP and
FSMLs are similar in that they both use feature models
to express the configurability of features and they both
consider the mapping of features to code and other
artifacts such as XML configuration files; however, there
are two important differences. First, FOP specifically
targets product-line engineering and seeks to synthesize
entire applications in an application domain. That is,
each application is fully described by a particular fea-
ture configuration. In contrast, FSMs model only one
aspect of framework-based applications, namely how the
framework-provided concepts and features are instanti-
ated in the application code. In particular, applications
are likely to contain significant amounts of code that is
application-specific and is not reflected in their FSMs.
Second, FOP focuses on the modularity and composi-
tionality of features and it exploits their algebraic prop-
erties in application synthesis and optimization. That

is, FOP helps to create highly modular application and
product-line architectures. As a result, existing applica-
tions need to be re-factored into appropriate features in
order to take advantage of FOP [73]. In contrast, FSMLs
focus on the ability to automatically reverse engineer
models from applications that use the framework for
which the FSML was designed. Furthermore, both the
application code and the FSMs can be freely edited
and automatically kept in sync through round-trip en-
gineering. Thus, FSMLs do not impose any architectural
constraints on applications beyond what is required by
the corresponding framework. Nevertheless, both ap-
proaches are complementary and exploring synergies
between them is future work.

8.3 Supporting framework-based application devel-
opment

Documentation-oriented approaches. Early approaches
to supporting framework instantiation focused on pro-
viding API documentation in the form of cookbooks [74],
which outlined development tasks and steps supple-
mented with code examples. Pree et al. showed how
cookbooks could be made active and how development
steps could automated [75]. Ortigosa et al. went further
by using intelligent agent technology to interactively
guide the user in making implementation choices based
implementation recipes [76].

In 1992, Johnson proposed documenting frameworks
using patterns [77]. The patterns described the purpose
and the design of a framework and common ways of
using it.

Fontoura et al. proposed a special profile of the UML
language for representing framework APIs called UML-
F [78]. The profile defines annotations that can be placed
on API elements to indicate their function. The users
specialize a UML-F model to produce the design of their
application and a supporting tool transforms the model
into code. The tool has the form of a wizard that can only
generate code, i.e., it cannot be used for maintaining the
consistency between the model and the code.

Pattern-based approaches. Hakala et al. proposed a
pattern-based approach to generating task-driven pro-
gramming environments for frameworks [79]. In this
approach, specialization patterns are used to describe
extension points of frameworks. A tool called FRame-
work EDitor (FRED) is used by application developers
in the process of casting, i.e., instantiating the given spe-
cialization pattern in the code. FRED supports iterative
and incremental casting which reflects the natural way
programmers work.

Tourwe proposed documenting framework’s design
using design patterns and then using such documenta-
tion to provide active support in framework-based soft-
ware evolution [80]. After manually identifying design
pattern instances used in the framework, the associated
tool can support framework evolution and instantiation
related to these pattern instances. The tool can create

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 29

subclasses of framework API classes and add empty
method declarations in the application code to sup-
port framework instantiation. Application developers
are expected to provide implementation for the created
method bodies.

More recently, Fairbanks proposed encoding common
framework API usage patterns as design fragments [23].
Such a design fragment has a name, a goal that can
be accomplished by implementing it, description of
classes, methods, fields, and method and constructor
calls that need to be created to accomplish the goal,
and description of the relevant parts of the framework’s
API. Developers choose a design fragment they wish to
implement and manually bind it to their code allowing
the tool to check the correctness of the implementation.

The FSML approach differs from pattern-based ap-
proaches by emphasizing a more conceptual view of the
API as a language rather than focusing on individual
API usage patterns. In particular, FSMLs can include
higher-level domain concepts, which are then decom-
posed into individual implementation patterns. Similarly
to the pattern approaches, in which the patterns have
to be identified and specified manually, FSMLs have to
be built manually; however, FSMLs support automatic
feature instance location in the application code and the
addition of feature instance implementations to code
at the level of individual statements (rather than class
skeletons only). Furthermore, through variability mecha-
nisms, FSMLs can encode and organize many alternative
ways of implementing a single concept, each of which
would require a separate design pattern or fragment.

Framework API usage comprehension and pattern
mining. The pattern-based approaches discussed previ-
ously assume that the patterns are identified and speci-
fied manually. Manual identification of such patterns in
sample applications can be a difficult task because of the
potentially large amount of application code that needs
to be processed. Several tool-supported approaches have
been proposed to ease this task.

Specification mining is concerned with extracting API
call protocols form application code. These approaches
use either dynamic analysis, e.g., [81], [82], [83], [84],
or static analysis, e.g., [85], [86], [87], to extract API
call sequences from sample applications, and then apply
mining techniques to generalize the sequences to generic
protocol specifications. Interestingly, these approaches
mainly focus on library APIs rather than framework
APIs. The relevance of API protocols to libraries is
obvious: library components, such as network connec-
tions and cashes, require their users to observe lifecycle
protocols, such as those involving component creation,
initialization, actual processing, tear-down, and destruc-
tion. In contrast, frameworks tend to enforce protocols
themselves using callbacks, and the framework API
users only need to know which framework services
should be called in which callback. Therefore, protocol
mining seems less useful for frameworks than libraries.

Several approaches deal with mining for specific

framework API usage patterns. For example, Prospec-
tor [88] and PARSEWeb [89] mine for API call sequences
needed to arrive at some API type (class or interface)
given another API type. XSnippet [90] mines for code
fragments instantiating a given API type. All these ap-
proaches require the API user to issue a query, upon
which one or more code fragments based on the sample
applications is produced.

Strathcona [91] and FrUiT [92] also search existing
sample code for API usages, but they obviate the need
to state queries explicitly. Instead, they use the current
code under development as a query. Strathcona locates
relevant code in sample applications based on heuristi-
cally matching the structure of the code under devel-
opment to the example code, where structure covers
information such as type hierarchies and method call
graphs. FrUiT mines sample code for frequent API usage
patterns as association rules, e.g., subclass A ⇒ call m,
which is similar to the earlier CodeWeb approach [93].
In contrast to CodeWeb, however, FrUiT uses such rules
to suggest implementation steps for a Java class under
development.

FUDA [94], [95] allows developers to extract entire
implementation templates for concepts of interest. In-
stead of specifying a code-oriented query, the developer
uses a tracer to collect two execution traces of the
concept of interest, e.g., a context menu, from one or
two applications. The traces can be optionally marked
with the beginning and the end of concept execution.
Based on these traces, FUDA Analyzer generates a Java-
like concept implementation template by intersecting
the traces and statically extracting further information
from the sample application code. A limitation of FUDA
is its inability to detect implementation variants: the
implementation template is useful for implementing a
single variant of a concept.

FSML engineering can clearly benefit from tool sup-
port to mine existing application code for API usage
patterns: such mining would allow the discovery of new
concepts and features for the FSML under construc-
tion. During the development of the exemplar FSMLs,
we used an existing FSML version to reverse engineer
sample code. We then followed the traceability links
from the extracted FSMs to code and also used Eclipse’s
search capabilities to manually discover missed patterns.
However, a proper pattern mining tool could make this
process more systematic by completely scanning the
framework-application boundary and by organizing the
discovered patterns into feature models annotated with
pattern occurrence statistics. Mining probabilistic feature
models from sets of feature configurations obtained by
static program analysis [96] is a step towards such tool
support. Further exploration of API usage mining for
FSML engineering is future work.

Framework API constraint checking. Hou and
Hoover proposed an approach to checking applications
for adherence to structural API constraints specified in
Structural Constraint Language (SCL) [97], [98]. The ap-

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 30

proach was demonstrated for C++ and Java frameworks.
In addition to basic program structure queries, SCL of-
fers simple control-flow and data-flow-based constructs.
Many of the API constraints present in the exemplar
FSMLs could be written as SCL constraints. FSMLs go
beyond API constraint checking by representing and or-
ganizing these constraints as a language and supporting
forward and reverse engineering.

Framework API migration. Two categories of frame-
work API migration can be distinguished: upgrading
application code from an older API version to a newer
one and migrating application code from one framework
to a different one.

There has been recently a flurry of work in the first
category, e.g., recording API refactorings and replying
them on the application code to be updated [99], in-
ferring such refactorings by comparing different API
versions [100], or inferring them from already migrated
applications [101]. We have not encoded upgrades using
FSMLs; however, upgrades should be feasible using a
single metamodel since they require relatively simple
code changes.

In the second category, we already mentioned migra-
tion from Struts to Java Server Faces using FSMLs [25]
(cf. Box 17). Another example of API migration between
different frameworks is ajaxification, i.e., migration of
multi-page web applications to Asynchronous JavaScript
and XML (AJAX) [102]. In AJAX, a web application is
displayed on a single page whose parts can be reloaded
individually instead of reloading the entire page. To
help with such a migration, the authors proposed first
reverse engineering a multi-page web application into a
navigation model and later clustering pages with similar
URLs that could be included on a single page. Finally, the
resulting single page UI model would be translated into an
implementation for a particular AJAX framework. This
migration process could be viewed as applying RE, MA,
and FE. Exploring the above and additional migration
scenarios using FSMLs is future work.

9 CONCLUSION

The main contributions of this paper are four exemplar
FSMLs and the experience of building these languages
presented in the form of an engineering method. The
method provides FSML developers with a detailed and
comprehensive set of steps, guidelines, and examples.

The development of the FSML approach is grounded
in the design science paradigm and the method repre-
sents a necessary step in the maturation of the FSML
approach. The method was constructed by specializ-
ing well-established approaches: feature-oriented do-
main analysis (FODA), the model quality framework of
Lindland et al., the Cognitive Dimensions (CDs) frame-
work, and some elements of the Unified Process. Spe-
cializing these approaches to the FSML context allowed
us to systematically elicit, structure, and document our
experience. We have justified the method by tracing its

steps back to the development of the exemplar FSMLs
and to the elements of the base approaches.

In the course of the method development, FODA
had to be extended to handle cardinality-based fea-
ture models and the special FSML modeling constructs
such as essentiality, keys, and mapping definitions. The
model quality framework was applied at three levels:
framework-specific models, modeling languages, and
the modeling foundation, while distinguishing between
the pragmatic quality of a language extension and its
metamodel (cf. Figure 5). The CDs framework was used
to evaluate the pragmatic quality of the exemplar FSMLs
(cf. Box 6). Furthermore, the development of the ex-
emplar FSMLs showed that a single FSML metamodel
can be used to support multiple use cases and that
metamodel changes needed to support each additional
use cases were mostly additive.

Future work includes performing user studies with the
exemplar FSMLs and the method, extending round-trip
capabilities with code removal and refactoring capabili-
ties, and formalizing the overall approach.

We believe that the paper provides a strong case for
the benefits of modeling framework APIs as modeling
languages by showing how such languages can support
API understanding and completion code understand-
ing, analysis, creation, evolution, and migration. The
FSML approach can be categorized as model-supported
engineering, in which models are supporting artifacts.
This is in contrast to model-driven engineering, where
models are the primary source artifacts. FSMs can al-
ways be extracted using RE and discarded if no longer
needed. Furthermore, FSMs can be always kept up-
to-date through RTE, regardless whether the code or
the language definition has changed. In the latter case,
after adding new features to the FSML, existing FSMs
can simply be updated with instances of these new
features matched in the code through RTE. Therefore,
incremental development of FSMLs as prescribed by the
method also supports incremental adoption of such lan-
guages in practice with minimal changes to the existing
development processes.

ACKNOWLEDGMENTS

The authors would like to thank Herman Lee for imple-
menting the XML mapping interpreter used by the Struts
and EJB FSMLs and Henry Lau for implementing some
of the code transformations for mapping types related to
Java. We also thank the anonymous reviewers for their
valuable comments. This research was supported by IBM
Centers for Advanced Studies in Ottawa and Toronto,
the Natural Sciences and Engineering Research Council
of Canada, and the Ontario Research Fund.

REFERENCES

[1] Eclipse documentation - Version 3.3: Editors, Eclipse Foundation,
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.
platform.doc.isv/guide/editors.htm.

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 31

[2] D. Springgay, Creating an Eclipse View, November 2001, http://
www.eclipse.org/articles/viewArticle/ViewArticle2.html.

[3] Java Tutorials, Lesson: Applets, Sun Microsystems, http://java.sun.
com/docs/books/tutorial/deployment/applet/index.html.

[4] M. Antkiewicz and K. Czarnecki, “Framework-specific modeling
languages with round-trip engineering,” in MoDELS, ser. LNCS,
vol. 4199, 2006, pp. 692–706.

[5] M. Antkiewicz, “Framework-specific modeling languages,”
Ph.D. dissertation, University of Waterloo, 2008, http://hdl.
handle.net/10012/4030.

[6] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software
development process. Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[7] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software
Engineering Institute, Carnegie Mellon University, Tech. Rep.
CMU/SEI-90TR -21, 1990.

[8] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science
in information systems research,” MIS Quarterly, vol. 28, no. 1,
pp. 75–105, 2004.

[9] O. I. Lindland, G. Sindre, and A. Sølvberg, “Understanding
quality in conceptual modeling,” IEEE Softw., vol. 11, no. 2, pp.
42–49, 1994.

[10] J. Krogstie, G. Sindre, and H. Jørgensen, “Process models rep-
resenting knowledge for action: a revised quality framework,”
Eur. J. Inf. Syst., vol. 15, no. 1, pp. 91–102, 2006.

[11] T. R. G. Green, “Cognitive dimensions of notations,” in People
and Computers V, A. Sutcliffe and L. Macaulay, Eds., 1989, pp.
443–460.

[12] T. R. G. Green and M. Petre, “Usability analysis of visual pro-
gramming environments: A ’cognitive dimensions’ framework,”
J. Vis. Lang. Comput., vol. 7, no. 2, pp. 131–174, 1996.

[13] S. T. March and G. F. Smith, “Design and natural science research
on information technology,” Decis. Support Syst., vol. 15, no. 4,
pp. 251–266, 1995.

[14] M. Antkiewicz, T. Tonelli Bartolomei, and K. Czarnecki, “Fast
extraction of high-quality framework-specific models from ap-
plication code,” J. Autom. Soft. Eng., vol. 16, no. 1, pp. 101–144,
Mar. 2009.

[15] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Soft-
ware Process Improvement and Practice, vol. 10, no. 1, pp. 7–29,
2005, special issue on Software Variability: Process and Manage-
ment.

[16] M. Stephan and M. Antkiewicz, “Ecore.fmp: A tool for edit-
ing and instantiating class models as feature models,” ECE,
Univeristy of Waterloo, Tech. Rep. #2008-08, 2008, http://gp.
uwaterloo.ca/tr/2008-stephan-ecore-fmp.pdf.

[17] K. Czarnecki and U. W. Eisenecker, Generative programming:
methods, tools, and applications. Addison-Wesley Publishing Co.,
2000.

[18] M. Antkiewicz and K. Czarnecki, “Design space of heteroge-
neous synchronization,” in GTTSE, ser. LNCS, vol. 5235, 2008,
pp. 3–46.

[19] S. Khanna, K. Kunal, and B. C. Pierce, “A formal investigation
of diff3,” in FSTTCS, 2007.

[20] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel, “Per-
formance measures for information extraction,” in Proceedings of
DARPA Broadcast News Workshop, 1999, pp. 249–252.

[21] W. Nöth, Handbook of Semiotics. Bloomington: Indiana University
Press, 1996.

[22] M. Stephan, “Discovery of Java EE 5 EJB antipattern instances
using framework-specific models,” Master’s thesis, University of
Waterloo, 2009, in preparation.

[23] G. Fairbanks, D. Garlan, and W. Scherlis, “Design fragments
make using frameworks easier,” in OOPSLA, 2006, pp. 75–88.

[24] B. Dudney, S. Asbury, J. Krozak, and K. Wittkopf, J2EE AntiPat-
terns. Wiley, 2003.

[25] A. P. Cheema, “Struts2JSF - framework migration in J2EE using
Framework-Specific Modeling Languages,” Master’s thesis, Uni-
versity of Waterloo, 2007, http://hdl.handle.net/10012/3031.

[26] Javadoc for Package org.eclipse.ui.part, Eclipse Foundation,
2007, http://help.eclipse.org/help33/index.jsp?topic=/org.
eclipse.platform.doc.isv/reference/api/org/eclipse/ui/part/
package-summary.html.

[27] C. Pandit, Make your Eclipse applications richer with view linking,
2005, http://www-128.ibm.com/developerworks/opensource/
library/os-ecllink/.

[28] M. R. Hoffmann, Eclipse Workbench: Using the Selection
Service, April 2006, http://www.eclipse.org/articles/
Article-WorkbenchSelections/article.html.

[29] Struts Javadoc, Apache Software Foundation, 2006, http://struts.
apache.org/1.3.5/apidocs/index.html.

[30] “Struts 1.35 dtd,” Apache Software Foundation, July 2006, http:
//struts.apache.org/1.3.5/dtds/struts-config 1 3.dtd.

[31] Struts 1.35 User Guide, Apache Software Foundation, jul 2006,
http://struts.apache.org/1.3.5/userGuide/introduction.html.

[32] A Walking Tour of the Struts MailReader Demonstration Application,
Apache Software Foundation, http://svn.apache.org/viewvc/
struts/struts1/trunk/apps/mailreader/src/main/webapp/
tour.html?revision=481833.

[33] Lesson: Applets, Sun Microsystems, Inc., February 2008,
http://java.sun.com/docs/books/tutorial/deployment/
applet/index.html.

[34] Processes and Threads, Sun Microsystems, Inc., February
2008, http://java.sun.com/docs/books/tutorial/essential/
concurrency/procthread.html.

[35] JavaTM Platform Enterprise Edition, v 5.0 API Specifications, Sun
Microsystems, Inc., 2007, http://java.sun.com/javaee/5/docs/
api/.

[36] L. DeMichiel, EJB Core Contracts and Requirements, Sun Microsys-
tems, Inc., May 2006.

[37] “Enterprise JavaBeans deployment descriptor schema,” Sun
Microsystems, Inc., May 2006, http://java.sun.com/xml/ns/
javaee/ejb-jar 3 0.xsd.

[38] E. Jendrock, J. Ball, D. Carson, I. Evans, S. Fordin, and K. Haase,
The Java EE 5 Tutorial, Sun Microsystems, Inc., September 2007,
http://java.sun.com/javaee/5/docs/tutorial/doc/index.html.

[39] K. Lee and K. C. Kang, “Feature dependency analysis for product
line component design,” in ICSR, ser. LNCS, no. 3107, 2004, pp.
69–85.

[40] M. Antkiewicz, T. Tonelli Bartolomei, and K. Czarnecki, “Auto-
matic extraction of framework-specific models from framework-
based application code,” in ASE, 2007, pp. 214–223.

[41] A. Blackwell and T. Green, “A cognitive dimensions ques-
tionnaire,” February 2007, http://www.cl.cam.ac.uk/∼afb21/
CognitiveDimensions/CDquestionnaire.pdf, last accessed Feb.
20, 2009.

[42] D. L. Parnas and P. C. Clements, “A rational design process:
How and why to fake it,” IEEE Trans. Softw. Eng., vol. 12, no. 2,
pp. 251–257, 1986.

[43] D. Hou, K. Wong, and H. J. Hoover, “What can programmer
questions tell us about frameworks?” in IWPC, 2005, pp. 87–96.

[44] F. Shull, F. Lanubile, and V. R. Basili, “Investigating reading
techniques for object-oriented framework learning,” IEEE Trans.
Softw. Eng., vol. 26, no. 11, pp. 1101–1118, 2000.

[45] M. Antkiewicz and K. Czarnecki, “Framework-specific modeling
languages; examples and algorithms,” ECE, U. of Waterloo, Tech.
Rep. 2007-18, 2007.

[46] H. Lee, M. Antkiewicz, and K. Czarnecki, “Towards a generic
infrastructure for framework-specific integrated development
environment extensions,” in DSPD, 2008.

[47] G. Little and R. C. Miller, “Keyword programming in Java,”
Automated Software Engineering, vol. 16, no. 1, pp. 37–71, march
2008.

[48] D. Harel and B. Rumpe, “Meaningful modeling: What’s the
semantics of ”semantics”?” Computer, vol. 37, no. 10, pp. 64–72,
2004.

[49] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni,
J. Tibble, and M. Verbaere, “Semantics of static pointcuts in
aspectj,” SIGPLAN Not., vol. 42, pp. 11–23, 2007.

[50] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble,
“Adding trace matching with free variables to AspectJ,” in
OOPSLA, 2005, pp. 345–364.

[51] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: feature model-
ing plug-in for eclipse,” in Eclipse Technology eXchange Workshop,
2004, pp. 67–72.

[52] K. Czarnecki and P. Kim, “Cardinality-based feature modeling
and constraints: A progress report,” in Proceedings of the Interna-
tional Workshop on Software Factories, OOPSLA, 2005.

TRANSACTIONS ON SOFTWARE ENGINEERING, SPECIAL ISSUE ON SOFTWARE LANGUAGE ENGINEERING, 2009 32

[53] K. Czarnecki and A. Wasowski, “Feature diagrams and logics:
there and back again,” in SPLC, 2007, pp. 23–34.

[54] D. Roberts and R. Johnson, “Evolving frameworks: A pattern
language for developing object-oriented frameworks,” in PLoP,
1996.

[55] M. Mernik, J. Heering, and A. M. Sloane, “When and how to
develop domain-specific languages,” ACM Comput. Surv., vol. 37,
no. 4, pp. 316–344, 2005.

[56] M. Bravenboer and E. Visser, “Concrete syntax for objects:
domain-specific language embedding and assimilation without
restrictions,” in OOPSLA, 2004, pp. 365–383.

[57] T. Stahl and M. Voelter, Model-Driven Software Development,
1st ed. Wiley, May 2006.

[58] T. Clark, P. Sammut, and J. Willans, Applied Metamodeling. A
Foundation for language driven development, 2nd ed. Ceteva, 2008.

[59] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and
Tools. Wiley, 2004.

[60] “Meta object facility (mof) core specification v. 2.0,” Object Man-
agement Group, Inc., January 2008, http://www.omg.org/mof/.

[61] F. Budinsky, S. A. Brodsky, and E. Merks, Eclipse Modeling
Framework. Pearson Education, 2003.

[62] S. Cook, G. Jones, S. Kent, and A. C. Wills, Domain-Specific
Development with Visual Studio DSL Tools. Addison-Wesley
Professional, 2007.

[63] K. Smolander, “GOPRR: a proposal for a meta level model,”
1993, University of Jyväskylä, Finland.

[64] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling
Full Code Generation. Wiley-IEEE Computer Society Press, 2008.

[65] D. L. Moody, “Theoretical and practical issues in evaluating the
quality of conceptual models: current state and future direc-
tions,” Data Knowl. Eng., vol. 55, no. 3, pp. 243–276, 2005.

[66] M. Kutar, C. Britton, and T. Barker, “A comparison of empirical
study and cognitive dimensions analysis in the evaluation of
UML diagrams,” in Workshop of the Psychology of Programming
Interest Group, 2002, pp. 1–14.

[67] C. A. Austin, “Renaissance: a functional shading language,”
Master’s thesis, Iowa State University, 2005.

[68] A. F. Blackwell, C. Britton, A. L. Cox, T. R. G. Green, C. A.
Gurr, G. F. Kadoda, M. Kutar, M. Loomes, C. L. Nehaniv,
M. Petre, C. Roast, C. Roe, A. Wong, and R. M. Young, “Cognitive
dimensions of notations: Design tools for cognitive technology,”
in CT, 2001, pp. 325–341.

[69] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in
ECOOP, 1997, pp. 220–242.

[70] S. Apel and D. Batory, “When to use features and aspects?: a
case study,” in GPCE, 2006, pp. 59–68.

[71] C. H. P. Kim, K. Czarnecki, and D. Batory, “On-demand mate-
rialization of aspects for application development,” in SPLAT,
2008, pp. 1–6.

[72] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” in ICSE, 2003, pp. 187–197.

[73] J. Liu, D. Batory, and C. Lengauer, “Feature oriented refactoring
of legacy applications,” in ICSE, 2006, pp. 112–121.

[74] G. E. Krasner and S. T. Pope, “A cookbook for using the model-
view controller user interface paradigm in Smalltalk-80,” J. Object
Oriented Program., vol. 1, no. 3, pp. 26–49, 1988.

[75] W. Pree, G. Pomberger, A. Schappert, and P. Sommerlad, “Active
guidance of framework development,” Software - Concepts and
Tools, vol. 3, no. 16, 1995.

[76] A. Ortigosa and M. Campo, “Smartbooks: A step beyond active-
cookbooks to aid in framework instantiation,” in TOOLS, 1999,
p. 131.

[77] R. E. Johnson, “Documenting frameworks using patterns,” in
OOPSLA, 1992, pp. 63–76.

[78] M. Fontoura, W. Pree, and B. Rumpe, “UML-F: A modeling
language for object-oriented frameworks,” in ECOOP, 2000, pp.
63–82.

[79] M. Hakala, J. Hautamäki, K. Koskimies, J. Paakki, A. Viljamaa,
and J. Viljamaa, “Generating application development environ-
ments for java frameworks,” ser. LNCS, vol. 2186, 2001, pp. 163–
176.

[80] T. Tourwé, “Automated support for framework-based software
evolution,” Ph.D. dissertation, Vrije Universiteit Brussel, 2002.

[81] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,”
in POPL, 2002, pp. 4–16.

[82] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
Mining temporal API rules from imperfect traces,” in ICSE, 2006,
pp. 282–291.

[83] D. Lo, S.-C. Khoo, and C. Liu, “Efficient mining of iterative
patterns for software specification discovery,” in KDD, 2007, pp.
460–469.

[84] S. Sankaranarayanan, F. Ivanči, and A. Gupta, “Mining library
specifications using inductive logic programming,” in ICSE,
2008, pp. 131–140.

[85] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object
usage anomalies,” in FSE, 2007.

[86] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns
as partial orders from source code: From usage scenarios to
specifications,” in FSE, 2007.

[87] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-
sensitive inference of function precedence protocols,” in ICSE,
2007, pp. 240–250.

[88] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid
mining: Helping to navigate the API jungle,” in PLDI, 2005, pp.
48–61.

[89] S. Thummalapenta and T. Xie, “PARSEWeb: A programmer
assistant for reusing open source code on the web,” in ASE, 2007,
pp. 204–213.

[90] N. Sahavechaphan and K. Claypool, “XSnippet: Mining for
sample code,” in OOPSLA, 2006, pp. 413–430.

[91] R. Holmes and G. C. Murphy, “Using structural context to
recommend source code examples,” in ICSE, 2005, pp. 117–125.

[92] M. Bruch, T. Schafer, and M. Mezini, “FrUiT: IDE support for
framework understanding,” in ETX, 2006, pp. 55–59.

[93] A. Michail, “Data mining library reuse patterns using general-
ized association rules,” in ICSE, 2000, pp. 167–176.

[94] A. Heydarnoori, “Supporting framework use via automatically
extracted concept-implementation templates,” Ph.D. disserta-
tion, University of Waterloo, Canada, 2009.

[95] A. Heydarnoori, K. Czarnecki, and T. Tonelli Bartolomei, “Sup-
porting framework use via automatically extracted concept-
implementation templates,” in ECOOP, 2009, submitted for re-
view.

[96] K. Czarnecki, S. She, and A. Wasowski, “Sample spaces and
feature models: There and back again,” in SPLC, 2008, pp. 22–31.

[97] D. Hou and H. Hoover, “Using SCL to specify and check design
intent in source code,” IEEE Tran. Soft. Eng., vol. 32, no. 6, pp.
404–423, June 2006.

[98] D. Hou, “FCL: Automatically detecting structural errors in
framework-based development,” Ph.D. dissertation, University
of Alberta, 2004.

[99] D. Dig and R. Johnson, “The role of refactorings in API evolu-
tion,” in ICSM, 2005, pp. 389–398.

[100] Z. Xing and E. Stroulia, “API-evolution support with Diff-
CatchUp,” IEEE Tran. Soft. Eng., vol. 33, pp. 818–836, 2007.

[101] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage
changes from instantiation code,” in ICSE, 2008, pp. 471–480.

[102] A. Mesbah and A. van Deursen, “Migrating multi-page web
applications to single-page AJAX interfaces,” CSMR, pp. 181–
190, 2007.

Michał Antkiewicz is a Postdoctoral Fellow at the University of Water-
loo.

Krzysztof Czarnecki is an Associate Professor at the University of
Waterloo.

Matthew Stephan is a MASc. Candidate at the University of Waterloo.

