
Two Studies of Framework-Usage Templates
Extracted from Dynamic Traces

Abbas Heydarnoori, Krzysztof Czarnecki, Walter Binder, and Thiago Tonelli Bartolomei

Abstract—Object-oriented frameworks are widely used to develop new applications. They provide reusable concepts that are

instantiated in application code through potentially complex implementation steps such as subclassing, implementing interfaces, and

calling framework operations. Unfortunately, many modern frameworks are difficult to use because of their large and complex APIs and

frequently incomplete user documentation. To cope with these problems, developers often use existing framework applications as a

guide. However, locating concept implementations in those sample applications is typically challenging due to code tangling and

scattering. To address this challenge, we introduce the notion of concept-implementation templates, which summarize the necessary

concept-implementation steps and identify them in the sample application code, and a technique, named FUDA, to automatically

extract such templates from dynamic traces of sample applications. This paper further presents the results of two experiments

conducted to evaluate the quality and usefulness of FUDA templates. The experimental evaluation of FUDA with 14 concepts in five

widely used frameworks suggests that the technique is effective in producing templates with relatively few false positives and false

negatives for realistic concepts by using two sample applications. Moreover, we observed in a user study with 28 programmers that the

use of templates reduced the concept-implementation time compared to when documentation was used.

Index Terms—Object-oriented application frameworks, framework comprehension, framework documentation, concept-

implementation templates, application programming interface (API), dynamic analysis, concept location, feature identification.

Ç

1 INTRODUCTION

OBJECT-ORIENTED Application Frameworks have been
shown to be one of the most effective reuse technol-

ogies available today, enabling reuse of both design and
code [1]. Frameworks provide domain-specific concepts,
which are generic units of functionality. Framework-based
applications are constructed by writing application code,
which instantiates these concepts. For example, the Eclipse
framework offers concepts such as tree viewers and text
editors. Eclipse’s Ant View and Java Editor are instances of
these concepts. The instantiation of such concepts requires
following different implementation steps in the application
code, such as subclassing framework-provided classes,
implementing interfaces, and calling appropriate frame-
work methods. These steps are governed by the frame-
work’s application programming interface (API).

Unfortunately, many existing frameworks are difficult to
use because of their large and complex APIs and often
incomplete user documentation [2]. To ease these problems,
developers frequently use existing framework applications
as a guide to understand how to implement a desired
concept [1]. However, locating the concept implementation

in existing applications can be a challenge because its
implementation is often scattered across the source code
and tangled with the code implementing other concepts. To
cope with this challenge, feature location and identification
techniques such as PROMESIR [3], SNIAFL [4], and SITIR
[5] can be used to locate the parts of the application source
code implementing a functionality of interest, specified by
usage scenarios or domain terms. However, the difficulty
with these techniques is that they do not focus on frame-
work API usage and the code identified will still include
many application-specific programming elements that are
irrelevant from the viewpoint of framework usage.

Several categories of tools have been proposed in the
literature that focus on API understanding. Code assistants
such as XSnippet [6] and FrUiT [7] apply static analysis to
the source code of sample applications and allow retrieving
code snippets or usage rules for a particular API element in
the context of a programming task at hand. They require the
developer to know at least some names of the API elements
needed for the concept implementation; they are less
helpful if the developer has only a high-level idea of the
concept to be implemented or if the concept spans multiple
classes or both. API comprehension tools like Pattern Extractor
[8] and SpotWeb [9] extract API usage patterns from sample
applications to provide a general characterization of the
whole framework API rather than identifying the relevant
concept-implementation steps. Finally, framework evolution
comprehension tools such as AURA [10] and SemDiff [11]
analyze API changes over the framework evolution to help
adapt existing applications to the changes in the new
framework API release, but they do not aid implementing
concepts from scratch.

To help developers implement framework-provided
concepts, we introduced 1) the notion of concept

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012 1

. A. Heydarnoori is with the Department of Computer Engineering, Sharif
University of Technology, Azadi Ave., Tehran, Iran.
E-mail: heydarnoori@sharif.edu.

. K. Czarnecki and T.T. Bartolomei are with the Department of Electrical
and Computer Engineering, University of Waterloo, Waterloo,
ON N2L 3G1, Canada. E-mail: {kczarnec, ttonelli}@gsd.uwaterloo.ca.

. W. Binder is with the Faculty of Informatics, University of Lugano, Via
Giuseppe Buffi 13, 6904 Lugano, Switzerland.
E-mail: walter.binder@usi.ch.

Manuscript received 21 May 2010; revised 21 June 2011; accepted 16 July
2011; published online 27 July 2011.
Recommended for acceptance by H. Gall.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2010-05-0154.
Digital Object Identifier no. 10.1109/TSE.2011.77.

0098-5589/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

implementation templates, which explain framework usage,
and 2) Framework API Understanding through Dynamic
Analysis (FUDA), an approach for the automatic extraction
of such templates from traces of sample applications [12],
[13]. A concept implementation template is a piece of Java
pseudocode summarizing the implementation steps for
instantiating a given concept, such as which packages to
import, framework classes to subclass, interfaces to
implement, and operations to call. Although templates
can be used on their own, our user study has shown that
they are most effective when used as an entry point to
explore concept implementations in sample applications.

The template extraction approach works by invoking
instances of a concept of interest in two or more different
contexts, located in one or more sample applications, and
recording all runtime interactions between the application
code and the framework API. For example, given that the
context menu in an Eclipse view is the desired concept,
each trace could be collected by invoking a context menu in
a different Eclipse view. The collected traces then provide
the basis for automatically generating the template.
Because the selection of sample applications and collection
of traces represent manual effort and the installation and
execution of the applications can be challenging, we aim at
keeping the number of traces as small as possible—which
is two for FUDA.

We have implemented FUDA as a tool for Java and used
it in a study to generate templates for 14 concepts from five
widely used frameworks. The study shows that FUDA can
produce templates with relatively few false positives (i.e.,
incorrect implementation steps) and false negatives (i.e.,
missing implementation steps) for realistic concepts by
using two sample applications. We also conducted a user
experiment with 28 subjects comparing templates to frame-
work documentation as concept-implementation aids. For
the studied sample, we observed that the choice of
templates reduced the implementation time with statistical
significance. Moreover, the analysis of additional data and
feedback suggested that templates should be used together
with the sample applications from which they were
extracted rather than just by looking at the templates alone.

With respect to the earlier version of the work [12], the
contributions of this paper include:

1. comprehensive presentation of the experiments
evaluating the quality and usefulness of FUDA
templates;

2. extension of the FUDA tool to support frameworks
located in the standard Java class library, such as
Java Swing;

3. evaluation of the quality of the generated templates
for an additional framework and a set of concepts;
and

4. repeating the user study with additional subjects to
obtain statistically significant results.

The remainder of this paper is organized as follows: We
first provide a motivating example, used throughout this
paper (Section 2). We then introduce concept-implementa-
tion templates (Section 3) and describe the FUDA technique
(Section 4) and its implementation (Section 5). Next, we
evaluate the quality of FUDA templates (Section 6) and

describe the user experiment comparing the effectiveness of
templates versus framework documentation in aiding
application developers (Section 7). Finally, we discuss
several aspects of FUDA (Section 8), compare it with
related work (Section 9); and conclude (Section 10).

2 MOTIVATING EXAMPLE

We clarify the problem that FUDA aims to tackle using an
example. Consider the case of a developer creating a plug-
in for the Eclipse platform. During development, the
developer notices that many plug-ins already present in
the workbench implement a context menu. Interested in
creating something similar, the developer has basically
two choices. One is to search for help in documentation,
mailing lists, and newsgroups. The required steps for
implementing the concept might not be documented there,
however. The other option is to study the code of plug-ins
that implement menus to locate their relevant parts.
Unfortunately, even though the concept of a context menu
has a crisp manifestation in the graphical user interface
(GUI), its implementation code can be scattered and tangled
with the code implementing other concepts. As a result,
locating the relevant code can be challenging.

Fig. 1 represents the code implementing a context menu
using the JFace framework. This code was generated using
one of Eclipse’s wizards. The menu is located in Sample-

View, which is a visual component that displays trees
using a TreeViewer (l. 36). The lines implementing the
context menu are marked by �. The lines marked by �
implement a Welcome window and were manually added
as an example of code that is completely unrelated to the
context menu. The constituent parts of the view are created
in createPartControl() (l. 190). In particular, this
method calls makeActions() (l. 198) and hookCon-

textMenu() (l. 199), which together create the context
menu. In general, a context menu consists of one or more
actions (l. 220, 225) and potentially one or more separators
(l. 215, 217). It is constructed by a menu manager (l. 202,
208) and invoked by a menu listener (l. 204). The latter
implements the menuAboutToShow() (l. 205) callback
method, which is called by the framework, i.e., JFace, when
the user clicks to open the context menu.

The context menu example presents some of the
difficulties in locating the implementation of framework-
provided concepts in application code. As can be seen in
Fig. 1, the implementation of the menu is tangled with the
implementation of the view and it involves a sophisticated
interaction among several objects, namely, view, menu
manager, menu listener, menu, actions, and separators. To
complicate the matter, a concept implementation may also
be scattered across several classes, as in the case of Eclipse’s
drag&drop. Consequently, even though locating a concept
in the graphical user interface of a sample application may
be easy, locating its implementation in the application code
is challenging and time consuming. Concept-implementa-
tion templates aim to address this difficulty.

3 CONCEPT IMPLEMENTATION TEMPLATES

Fig. 2 shows a template for our context menu example. We
extracted the template from two traces collected by

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

invoking the context menu in two sample applications:
SampleView (Fig. 1) and Console, which is part of
Eclipse. The template is expressed in a Java-based
pseudocode, close to what the developer must write to
implement the concept.

Templates specify the following implementation steps:
packages to import (l. 1-8 in Fig. 2), framework classes to
subclass (l. 15), interfaces to implement (l. 9), methods to
implement (l. 10), objects to create (e.g., l. 11), and
methods to call (e.g., l. 12). The specified steps involve
only the elements of the framework API. For example, the
method calls fillContextMenu() and makeActions()

in Fig. 1 are specific to that particular implementation and
are not reflected in the template. The code elements
corresponding to these steps may be entirely framework-
defined, e.g., the implementation of Separator, instan-
tiated in line 11, resides in the framework code. Alter-
natively, the elements may also reside in the application

code, provided that they are framework-stipulated. In
particular, such elements are 1) application classes that
are subtypes of API-defined types, 2) application methods
that implement API-defined operations or override API-
defined methods, and 3) constructors of classes that are
subtypes of framework classes and interfaces. For exam-
ple, AppAction is both defined (l. 15) and instantiated
(l. 21) in the application code; however, JFace’s design
stipulates the creation of subclasses of the API-defined
class Action in the application code.

In addition to the basic implementation steps, the
template also reflects 1) call nesting, e.g., add() is called
directly or indirectly by menuAboutToShow() (l. 12), 2) call
order, e.g., the menu listener is added to the menu manager
(l. 27) before creating the menu (l. 28), and 3) parameter
passing patterns, e.g., the control object passed to the menu
creation method (l. 28) is obtained by a prior call to
getControl() (l. 20). The comments REPEAT and MAY

REPEAT indicate that the commented step appeared more
than once in every or some of the traces used to generate the
template, respectively.

Templates are rendered in ordinary Java with two main
exceptions. First, the code uses the notation “k” to show
that a method with a given name was called with
different argument types. For example, add(separator)
k (appAction) (l. 12 in Fig. 2) is due to multiple calls to
add() with different arguments (l. 213 and 215 in Fig. 1).
Second, what appears to be a local variable declaration,
such as appAction (l. 21), actually has global meaning in
the template. For that reason, appAction can be used as
a method argument in another method scope (l. 12).

A template extracted by FUDA is an approximation of the
required and sufficient implementation steps and, thus, it
can be incomplete, unsound, or both. In particular, steps can

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 3

Fig. 1. Implementation of a sample Eclipse view with a context menu (�).

Fig. 2. A sample implementation template extracted for the concept

context menu.

be missing (false negatives) or unrelated steps (false positives)
can be present. Given two traces, FUDA will filter out any
steps that are not common to both traces. If a necessary
implementation step, say component registration, can be
achieved in more than one way, e.g., by calling different
methods, it will get filtered out, resulting in a false negative
in the generated template. Furthermore, FUDA relies on the
assumption that input traces show the execution of the
concept of interest in different contexts; otherwise it may
introduce false positives. Finally, some implementation
details are still missing in a template. For example, although
the calls in lines 21-23 are marked as candidates to be
repeated, the template does not reflect that they should be
repeated as a block, rather than individually. Nevertheless,
the user can still extract the missing details from the actual
sample code. Traceability links between the steps in the
template and the corresponding steps in the application
code can support this task. We left the development of such
traceability links as future work in our FUDA implementa-
tion (cf. Section 5).

4 TEMPLATE CREATION USING FUDA

4.1 Overview

Before delving into the details of FUDA, we first provide an
overview of the technique. FUDA uses a dynamic analysis
to determine the portions of application code that are
relevant for implementing a concept of interest. From the
user’s perspective, FUDA has four steps, depicted in Fig. 3.
The first three steps are manual; the fourth one consists of
several automated substeps.

The first step is to determine the concept for which an
implementation template should be created. The second
step is to select one or more sample applications and
execution scenarios that invoke the desired concept in
different contexts. Two execution scenarios are typically
enough, as will be shown in Section 6. The third step is to
run each application under a tracer tool and exercise the
scenarios. The tool collects traces of all calls that occur at the
boundary between the application and the framework API.
For the purpose of pinpointing the location of the concept
execution in a trace, the user informs the tool of the
moments right before and after the concept invocation.
Finally, in the fourth step, an analyzer examines the collected
traces and generates the implementation template. We
describe each step in detail in the following sections.

4.2 Concept Definition

A prerequisite for applying FUDA is the ability to invoke
the concept of interest in sample applications from their
graphical or programmatic interfaces. FUDA can produce

implementation templates covering the entire life cycle of a
concept, which involves concept creation (creating and
setting up its implementation objects), concept invocations
(calling the objects), and concept destruction (tearing down
and disposing of the objects). For example, the following
concept-defining question asks for the entire life cycle of a
concept: “How does one implement a context menu in an Eclipse
view?” Alternatively, FUDA can also produce implementa-
tion templates covering individual concept invocations, as
exemplified by this question: “What events occur when a user
clicks on a figure?”

4.3 Selection of Sample Application(s) and
Execution Scenarios

The user must identify one or more sample applications
that execute the desired concept. Object-oriented frame-
works often come with sample applications from which
developers can learn frameworks’ APIs. Sample applica-
tions can also be found using open-source code repositories
(e.g., www.sourceforge.net) and code search engines (e.g.,
www.google.com/codesearch).

Further, the user needs to select two or more execution
scenarios, each invoking an instance of the concept.
Normally, two scenarios are needed, as shown in Section 6.
FUDA generates best results if one or more of the following
conditions are satisfied: 1) The scenarios are concept-
focused, i.e., the majority of the executed instructions are
part of the concept, 2) the scenarios execute the desired
concept together with other concepts, but the user can mark
the invocations of the desired concept at runtime, and 3) each
scenario invokes the desired concept in a different context,
i.e., the other executed concepts differ across the scenarios. A
single application may already satisfy the third condition.
For example, a single application implementing a context
menu in two different views, such as table and tree, would
suffice. Because FUDA works by intersecting traces of
different executions (cf. Section 4.5.3), the more the contexts
differ across the executions, the lower the possibility of false
positives. For the same reason, it is important to select
scenarios that contain a similar variant of the concept to
minimize false negatives. For example, if a context menu
with a separator is desired, scenarios that contain separators
should be selected.

4.4 Trace Collection and Marking

Fig. 4 illustrates the process of trace collection and marking.
In this step, the user executes the sample application(s)
under a tracer and invokes the concept of interest according
to the scenarios selected in the previous step. In order to
understand how an application is using a framework API,
the interactions between the application and the API need
to be analyzed. To define the framework boundary for the

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

Fig. 3. FUDA process.

Fig. 4. Trace collection and marking (Step 3 of the FUDA process.

tracer, the user needs to specify the package(s) in which the
framework resides—e.g., org.eclipse.jface.� for the
context menu—and the package(s) in which the application
resides. The tracer then logs all calls that occur at the
boundary between the application and the framework,
which results in a framework API interaction trace, or API trace
for short.

To pinpoint the location of the concept execution in the
trace, the user informs the tracer of the moments right before
and after the invocation of the concept (dotted rectangles in
Fig. 4). This technique is called marking [14] and will
improve the template extraction results (cf. Section 6). For
the context menu, marking amounts to instructing the tracer
right before opening the menu to mark subsequent events
and instructing it to stop marking right after the menu is
open. However, the marking step is optional: If the moments
before and after concept invocation cannot be pinpointed,
FUDA considers the whole trace as marked.

The API trace consists of API interaction events, which are
runtime events corresponding to method or constructor calls
executed at the boundary between the framework and
application code. From the viewpoint of application, each
event has one of two directions (Fig. 5): 1) An event is outgoing
if the call is made from within the application code and the
target is either implemented in the framework code or it is
framework-stipulated and implemented in the application
code, and 2) an event is incoming if the call is made from
within the framework code and the target is framework-
stipulated and is implemented in the application code.

The complete API trace produced by running Sample-

View from Fig. 1 and invoking its context menu is shown in
Fig. 6. Events are denoted as D O:n(P):R, where D

represents the direction of the event, with “! ” for
incoming and “ ” for outgoing events, O is the target
object’s ID or “null” for constructor and static method calls,
n represents the fully qualified name of the target method
or constructor, P is a list of IDs of objects passed as
parameters, and R is the ID of the returned object or “V” if
the return type is void. For brevity, the package prefix
org.eclipse was removed from n for all JFace events.

Most of the events in Fig. 6 can easily be traced back to
their corresponding code lines in Fig. 1, e.g., e1 corresponds
to line l. 191. The calls in lines l. 190, l. 209, and l. 210 are not
traced because they reside in eclipse.ui, which is not
part of JFace. Indentation denotes event nesting. For
example, events e11-e16 were generated in the control flow

of event e10. Anonymous classes are denoted by numbers
separated from their host classes by $, e.g., e17 constructs
action1 (l. 220). The events in bold face are those that
were marked by informing the tracer about the moments
just before and after the context menu was invoked. These
events were generated by the callback to menuAbout-

ToShow() (l. 205), which is called by JFace when a menu is
being opened. That method calls fillContextMenu()

(l. 212), which generates the nested events e32-e39.

4.5 Automated Trace Processing

The last step is to call an analyzer that takes the collected
traces as input and generates a template. The analyzer
performs four automatic substeps that are described below.

4.5.1 API Trace Slicing

The marked trace region (bold face) in Fig. 6 contains events
that implement the context menu and potentially some
other, irrelevant events. However, if the goal is to under-
stand the complete life cycle of the concept, we also need to
consider calls related to the initialization and clean up of the
objects implementing the concept. These calls may not be
part of the marked region. For example, the events e17-e22

create and initialize the context menu’s actions, but they are
not in the marked region. Likewise, the marked region may
miss cleanup events, such as object deregistration.

We apply API trace slicing to determine the relevant
unmarked calls in the input trace. The heuristic behind this
technique is that two calls are relevant if they share at least

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 5

Fig. 5. Incoming and outgoing calls.

Fig. 6. Framework API interaction trace.

one object as their target, parameter, or return objects. The
motivation behind this heuristic is further discussed in
Section 8.3. The precise definition of API trace slicing is
based on the object-connectedness of two events.

Definition (Object Connectedness). Two events ei ¼ DiOi:
niðPiÞ:Ri and ej ¼ DjOj:njðPjÞ:Rj are object-connected iff
they share any target, parameter, or returned objects, i.e.,
ðfOi;Rig [PiÞ \ ðfOj;Rjg [PjÞ n fnull;Vg 6¼ ;.

Based on this definition, we define object-relatedness as
the transitive closure of object-connectedness. Then, we
define a trace slice as the portion of the input trace consisting
of all the marked events and the unmarked events that are
object-related to the marked events. In Fig. 6, the unmarked
events that are object-related to the marked ones are
identified by . For example, e5 is object-connected to e7

through the object with ID 6, and e7 is object-connected to
e36 through object 8. Consequently, e5 is object-related to the
marked event e36 and thus part of the slice. Slicing
eliminates the steps implementing the Welcome window
(e2-e4, e42), which are unrelated to the context menu. API
trace slicing is an approximation of the actual data
dependencies between API calls. Nevertheless, the approx-
imation works well for real concepts and framework APIs,
as shown in our evaluations in Section 6.

4.5.2 Event Generalization

The next processing step attempts to find commonalities
among the sliced traces. To this end, we first abstract any
application-specific elements from the events. The abstrac-
tion is achieved using event generalization, a static analysis that
replaces application-specific names of events with appro-
priate framework API names, based on the application and
API type hierarchy. For example, the fully qualified name of
e8 in Fig. 6, i.e., SampleView$ViewLabelProvider.

<init>, is application-specific and event generalization
replaces it with jface.viewers.LabelProvider.

<init>. Event generalization treats calls to instance
methods, constructors, and static methods differently. We
will explain it using Fig. 7. The figure shows the menu-related
classes in JFace.

Instance methods. When generalizing an instance
method call, the procedure aims at maximum generality

and searches for the topmost types that declare the method.
For example, the method equals in Java is declared by
Object and although the method may be implemented in
many subclasses, it conceptually belongs to Object. A
method may have multiple topmost types. For example,
generalization of a call to AppMenuManager.isDirty()

identifies both IContributionManager and IContri-

butionItem as the topmost types because both interfaces
declare the method.

Constructors. An application class may specialize many
framework and application-specific types. For constructor
calls, the procedure aims at minimum generality and selects
all framework-defined supertypes of the target application
class that are located at the bottom framework borderline of
the type hierarchy (see Fig. 7). For example, for a call to the
constructor of AppMenuManager, the procedure identifies
MenuManager and IToolBarManager as the generalized
framework superclass and interface. The rationale behind
minimum generalization for constructors is that selecting
the topmost types, even if only the topmost framework types,
would lose too much information. For example, assuming
that all framework classes are derived from FWObject, the
latter approach would yield FWObject for every construc-
tor call to a subclass of a framework class.

Static methods. Although a static method cannot be
polymorphically called, it can be hidden by an equally
named static method in a subclass. For example, in Fig. 7,
both MenuManager and ContributionManager declare
the getOverrides() static method. Depending on which
class is used statically, a different method is really being
used. Thus, the procedure searches the type hierarchy of the
application class being instantiated and returns the first
type that declares the method.

4.5.3 Common Facts Extraction

The goal of this step is to identify the facts that are common
among all input generalized traces. First, this step extracts
three kinds of facts from each generalized trace: event
occurrence facts, event nesting facts, and event dependency facts.
The first kind of facts represents the occurrence of
interaction events in the generalized trace, while the other
two indicate the presence of certain relationships among
events. Common facts are then computed as intersections of
the extracted fact sets across all generalized traces. Fig. 8
illustrates these three kinds of common facts for the context
menu. These facts were extracted from two generalized
traces, one obtained from SampleView (Fig. 1) and the
other one obtained from the Console application.

Event occurrence facts. These facts, called event facts for
short, indicate the names of the methods and constructors
that were called at the application-framework boundary and
the corresponding call directions (Fig. 8a). They abstract away
the numbers of occurrences, object IDs, and parameter and
return types of the corresponding calls. The rationale is that
two methods with the same name but different parameter or
return types or numbers of parameters are likely to be
conceptually equivalent within an API. An event fact
Dt:n, where t is a type name, is extracted from a generalized
trace iff the trace contains one or more events
D Oi:½. . . ; t; . . .�:n:Ri, where Oi is any object ID or “null”
and Ri is any object ID or “V.” We say that the events match
such an event fact. For example, f2 is extracted from the
generalized trace because some of its events, e18 or e21 (see

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

Fig. 7. Boundaries of application, framework, and language-specific

types for menu-related classes.

Fig. 6), match it. All the events in Fig. 6 that match the
common event facts in Fig. 8a are marked by �. The
remaining events are effectively filtered out since they are
unique to this trace.

Event nesting facts. Nesting facts record the calling
context for outgoing calls (Fig. 8b). A nesting fact ,
where fi and fj are event facts, is produced whenever the
generalized trace contains two events ek and el such that
1) ek and el match fi and fj, respectively, 2) el is outgoing,
and 3) el is directly nested in ek in the trace.

Event dependency facts. This type of facts indicates call
sequence and object passing patterns. There are nine types
of dependency facts: target-target (TT), target-parameter
(TP), target-return (TR), parameter-target (PT), parameter-
parameter (PP), parameter-return (PR), return-target (RT),
return-parameter (RP), and return-return (RR). A target-
target dependency fact TTðfi; fjÞ, where fi and fj are event
facts, is produced whenever the generalized trace contains
two events ek and el such that 1) ek and el match fi and fj,
respectively, 2) ek precedes el in the trace, and 3) both ek and
el have the same object as target. We obtain analogous
definitions for the remaining dependency fact types by
modifying the third condition. For example, if the return
object ID of ek is used as a parameter in el, the resulting fact
type is RPðfi; fjÞ. Dependency facts indicate sharing of
objects and object passing, e.g., PR and TR may represent
the registration of an object with a framework and
subsequent retrieval.

4.5.4 Template Generation

The final automated substep is to generate the concept-
implementation template. The common facts extracted from
the generalized traces determine the overall structure of the
template. This section sketches the main steps of the
template generation algorithms; we refer the reader to [13]

for further details. The template generation procedure
includes the following steps.

Create classes. The first step in generating a template is
to identify its constituent classes. The classes are identified
using the common incoming method calls and outgoing
constructor calls, as indicated by the set of common event
facts. An incoming method call implies that the method
should be implemented in an application class. An out-
going constructor call happens when an application class
extends or implements one of the framework classes or
interfaces. If two incoming method calls have the same
target, then it means that they belong to the same class.
Thus, a class is created for each group of incoming method
calls that are related by TT dependencies in the set of
common dependency facts. The corresponding constructor
calls are assigned using RT dependencies. For example, the
class in l. 9 (Fig. 2) is created for the fact f10, which does not
participate in any TT dependencies and thus forms its own
group. The corresponding constructor call is f6, due to
RTðf6; f10Þ. The remaining unassigned constructor calls for
abstract classes or interfaces, which occur when instantiat-
ing anonymous classes, are grouped through RR depen-
dencies and a class is created for each such group. For
example, the class in l. 9 is created for f1, a call to the
constructor of the abstract class Action.

Create methods and constructors. For each incoming
method call assigned to a class in the previous step, a
method is created in that class. For example, the method in
l. 10 is created for f10. A constructor is created in a class if
nesting facts whose source is any of the constructor calls
assigned to that class are present.

Create statements. Outgoing calls are placed in method
bodies based on the common nesting facts. For example,
the nesting fact f10 ! f12 (Fig. 8b) places the call in l. 12
(Fig. 2). Moreover, a class named SomeClass (l. 17),
containing a method named someMethod (l. 18), is created
to host the outgoing calls for which the nesting facts do not
specify any calling contexts. For example, the set of nesting
facts in Fig. 8b does not specify any calling contexts for the
outgoing event facts f1-f9 and, thus, all of them are placed
in SomeClass.someMethod().

After specifying the calls that should go into the body of
each method, the generalized traces are consulted to see
whether the calls are repeated in a given calling context in
all or some of the input traces. The calls are then
commented with the terms REPEAT or MAY REPEAT,
respectively. For example, the call to f12 is marked as
REPEAT because f12 was called multiple times in every trace
within the control flow of menuAboutToShow(). Finally,
within each method, calls are sorted in an order determined
by the dependency facts. In particular, the call order is
obtained as a topological sort on the graph with event facts
as nodes and the dependency facts as directed edges. As
multiple calls to a given method are collapsed in a single
event fact, dependency facts may form cycles, in which case
only a subset of the calls can be sorted. The calls that cannot
be sorted according to the dependencies are listed in an
arbitrary order and the user is warned by a comment in the
generated template.

Identify supertypes. Superclass and interfaces for each
class (except SomeClass) are determined by constructing a

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 7

Fig. 8. Common facts extracted from generalized traces for Sample-

View and Console example applications.

type hierarchy of target types of incoming method and
constructor calls assigned to that class. The leaves of this
type hierarchy identify the supertypes for that class.

Generate class and variable names. Each newly created
class (except SomeClass) is named by prepending App to
its superclass name or one of its interface names if no
superclass is present. The method signature declared in the
framework API is used to identify the return type and
parameters of each method (except someMethod()). If
there are several signatures for the same method name (e.g.,
different parameters), alternatives are shown using the “k”
notation, as described in Section 3. Finally, constructor calls
and method calls whose return types are not void are made
initializers of variable declarations. Variables are then given
names that are the same as their types, but in lower case,
e.g., appAction in l. 21 and menu in l. 28.

Propagate variables. This step aims at showing how
objects are passed among the program statements in the
template. Using a graph in which program statements are
nodes and the dependency facts (except RR) are directed
edges among them, the variables defined in the statements
in the previous step are propagated to their successor
nodes. For example, appAction is passed as a parameter
to add in l. 12 because of RPðf1; f12Þ. The notation “k” is
used to illustrate different argument types passed to a
method or constructor call, e.g., in l. 12. Parameter objects of
framework-stipulated types that were not returned by any
other calls are provided by dummy declarations as in l. 19.

Identify imports. This last step removes package names
from the fully qualified names of types and creates the list
of package imports.

5 FUDA IMPLEMENTATION

We implemented FUDA as a tool for Java consisting of two
parts: FUDA Tracer and FUDA Analyzer. The FUDA Tracer
is responsible for assisting the developer in collecting and
marking the traces (Step 3 in Fig. 3). The FUDA Analyzer
implements the automated trace analysis and template
generation (Step 4). A demonstration of these tools is
available online [15].

FUDA Tracer. The current implementation of FUDA
Tracer instruments applications using aspects written in
AspectJ [16], an aspect-oriented programming language. The
aspects intercept both 1) calls from application methods to
framework methods and 2) callbacks from framework
methods to application methods. To identify the boundary
between the application and the framework API, the user
must specify the packages in which the framework of
interest and the sample application reside. The tracer also
provides a GUI allowing users to instruct the tool—by a
push of a button—to start and to stop marking the events
that the tool records.

The FUDA Tracer uses two alternative aspect weavers:
AJEER1 and MAJOR [17]. The AJEER plug-in is used to
instrument code inside the Eclipse platform; however, this
weaver cannot be used for frameworks that are part of the
standard Java class library, such as Java Swing. On the other
hand, the aspect weaver MAJOR is designed to weave

aspects into the standard Java class library, but not into the
Eclipse plug-ins. Thus, we use MAJOR for frameworks that
are part of the standard Java class library.

FUDA Analyzer. FUDA Analyzer implements the trace
analysis and template generation process (Section 4.5) as an
Eclipse plug-in. The analyzer accepts the traces collected by
the FUDA Tracer for a given concept and outputs the
resulting template.

6 QUALITY OF FUDA TEMPLATES

This section presents the first study, which assesses the
quality of FUDA-generated templates for realistic frame-
work-provided concepts.

6.1 Experiment Objectives

We designed the first experiment to answer the following
research questions:

1. What is the quality of FUDA-generated templates in
terms of precision and recall?

2. Would using more than two traces significantly
increase precision and recall?

3. What is the impact of slicing on precision and recall?

To make FUDA more practical, we aim at keeping the
number of traces per concept as small as possible. There-
fore, the experiment gives results for using one, two, and
three traces, each collected from a different application.

6.2 Experimental Setup

6.2.1 Selection of Frameworks

The evaluation uses five GUI frameworks (Tables 1 and 2):
Eclipse,2 JFace,3 Graphical Editing Framework,4 (GEF) Java2D,5

and Java Swing.6 These frameworks are widely used and
sample applications for them are readily available in open
source repositories.

6.2.2 Selection of Concepts

Tables 1 and 2 present the concepts used for this evaluation.
We selected the Eclipse and JFace concepts, except Focus,
based on our prior familiarity with the frameworks. We
sampled the other concept-defining queries from developer
forums of the respective frameworks [18], [19], [20], [21]. We
selected 14 concepts in total and applied FUDA to them.
After the application, we were able to characterize the
concepts as follows:

. Slicing. Slicing is applicable to only some concepts.
We do not use slicing if the invoking scenarios
involve only the desired concept and span its entire
lifecycle, e.g., opening and closing a view. Tree
Viewer and Table Viewer in Table 1 and Text Editor
in Table 2 are examples of such concepts. Template
generation uses the full traces for these concepts.
Further, the user may be interested only in the
events that occurred when the concept was invoked.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

1. http://ajeer.sourceforge.net/.

2. http://www.eclipse.org/.
3. http://wiki.eclipse.org/index.php/JFace.
4. http://www.eclipse.org/gef/.
5. http://java.sun.com/products/java-media/2D/.
6. http://java.sun.com/javase/6/docs/technotes/guides/swing/.

In this case, we use the marked region. Focus and

Select in Table 1 are examples of such concept

invocations. The life cycles of the remaining concepts

span beyond the marked trace region and we apply

slicing to them (see the concepts with “X” in the

Slicing column).

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 9

TABLE 1
Template Quality Evaluation for JFace, Eclipse, and GEF Concepts (* Indicates Concepts from Developer Forums)

. Frequency. A concept is either frequent or rare among
the existing applications of the framework. FUDA is
readily applicable to frequent concepts as finding
sample applications for them is likely easy; however,
it is also applicable to rare concepts, provided that
the user has already identified one or two applica-
tions with appropriate execution scenarios. Concepts
that may seem rare at first might not be rare after all.
For example, the particular choice of red and black
in Circle Drawing may be rare, but setting back-
ground and figure colors is not.

. Complexity. A concept is either simple or complex in
terms of implementation complexity measured as
template size, i.e., the number of implementation
steps. We used 20 as the upper bound for the number
of steps for simple concepts. In our experiment,
simple concepts have between 4 and 20 steps;
complex concepts have between 32 and 76 steps.

. Variability. A concept is either variable, if it has
optional implementation steps, or fixed, if it has only
a fixed set of steps. The majority of the considered
concepts are variable. For example, a context menu
may or may not include a separator. When applying
FUDA, the user must be aware that optional steps
will be lost if they are not present in both traces.
Thus, if the user is interested in context menus with
separators, both traces must involve such menus.

6.2.3 Selection of Sample Applications and Execution

Scenarios

We chose three sample applications implementing the

desired concept in three different contexts and, for each of

those applications, we designed one execution scenario.

Some execution scenarios were already specified by the
defining questions—e.g., “How does one draw a figure in a
GEF editor?” In other cases, we designed the scenarios
relying on documentation or prior familiarity with the
concept or by playing with sample applications.

Tables 1 and 2 present the sample applications and their
sources.

Selection of the applications involved the following
strategies:

1. reliance on prior familiarity with a given application
(mostly for Eclipse and JFace concepts, which were
part of a larger familiar environment such as Java
Development Tools (JDT) or Eclipse Web Tools
Platform (WTP) or were generated by Eclipse
wizards),

2. browsing and running the standard examples of the
framework (mostly for GEF concepts),

3. searching or browsing in online application reposi-
tories (e.g., GTEditor for the concept Moving Shapes
was identified on Google Code by the search
keyword “shape” and seeing a screenshot of a
drawing editor), or

4. tips by others (e.g., Eclipse WTP for the concept
Content Assist was suggested by a colleague).

Selecting the applications for each concept took anywhere
from no time for Eclipse JDT or wizards thanks to the
authors’ prior familiarity to up to an hour of searching and
browsing on eclipse-plugins.org or SourceForge.net.

6.2.4 Trace Collection

We used the FUDA Tracer (cf. Section 5) to collect the API
traces. API tracing is efficient because only the calls at the

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

TABLE 2
Template Quality Evaluation for Java2D and Java Swing Concepts (* Indicates Concepts from Developer Forums)

application-framework boundary are traced, which are
significantly fewer than all the calls involved in the
implementation of a concept. For example, tracing bound-
ary calls for GEF was almost unnoticeable when using GEF
applications. However, the applications ran two to three
times slower when boundary calls of Eclipse were traced for
Eclipse concepts. Collecting a single trace took anywhere
from several seconds to a few minutes on a laptop with a
single-core Pentium M 1.6 MHz processor, 1 GB of RAM,
and Windows XP.

6.2.5 Template Generation

We used the FUDA Analyzer (cf. Section 5) to generate the
implementation templates. The running time for this step
was anywhere from a few seconds up to six minutes. The
main bottleneck of the process was the number of
dependency facts generated. The largest number of depen-
dency facts generated was about 3.7 million for Content
Assist in HTML Editor, which resulted in the longest
processing time of six minutes. However, performance
optimization has not been a goal in our implementation.

6.3 Analysis Procedure

The analysis procedure includes both quantitative and
qualitative analyses. The quantitative data are the main
source for answering the research questions formulated in
Section 6.1, while qualitative analysis provides a deeper
insight into the quantitative results.

6.3.1 Quantitative Analysis Procedure

A reference is required to calculate the precisions and
recalls of the generated templates. For this purpose, we
created a mandatory and an optional reference template for
each concept. Mandatory reference templates represent the
set of mandatory implementation steps, i.e., the ones that
are necessary to the instantiation of a concept: If the step is
removed, the concept does not work as expected. For
example, a context menu cannot be realized without calling
the method createContextMenu() (l. 28 in Fig. 2).
Optional reference templates additionally include steps
that are not required but that are relevant to the concept and
were present in the sample applications. For example,
Context Menu’s optional reference template includes calls
to create and register separators.

We created the reference templates carefully to minimize
threats to the validity of the results. To ensure their
correctness, we consulted online documentation (third-
party articles and solutions posted in forums), manually
inspected the sample applications, and also used the
templates to develop sample implementations of the
concepts. The determination of mandatory steps was mostly
obvious with the help of framework documentation;
dubious cases were verified by removing the step from the
sample implementation and testing. We also compared the
reference templates against the generated ones to identify
optional features present in the sample applications. Each
nonmandatory step found in the generated template was
examined and classified as optional, if it was relevant to the
concept, or irrelevant, otherwise. If not clear, we were
conservative and the step was considered irrelevant.

The calculation of precision and recall was based on
counting the implementation steps contained in a template

and comparing them against the reference templates. The
considered steps were superclass declarations, implement
declarations (i.e., declaring that a class implements an
interface), method implementations, method calls, and
constructor calls. These steps are the main elements of a
template. Call sequence and parameter passing patterns
were considered supplementary information that make
templates more readable and were not used in the
evaluation. The calculation of precision and recall involved
these three numbers:

. G: The number of all implementation steps in the
generated template.

. I: The number of steps that are incorrectly present in
the generated template, but absent in the reference
template (i.e., false positives).

. M: The number of steps that are present in the
reference template but missing in the generated
template (i.e., false negatives).

Precision (P) was calculated as P ¼ ðG� IÞ=G, and recall
(R) is calculated as R ¼ ðG� IÞ=ðG� I þMÞ. To reduce
bias, we calculated the ranges of values possible for the
precisions and recalls of generated templates. Their lower
bounds were determined by using the mandatory reference
templates, i.e., the optional steps in the generated templates
were considered false positives. The upper bounds were
calculated with the help of optional reference templates, i.e.,
the optional steps in the generated templates were not
counted as false positives.

6.3.2 Qualitative Analysis Procedure

We inspected the generated templates, the sample applica-
tions used to generate them, and various intermediate
results (e.g., collected traces, sliced traces, and common
facts) to gain insights into the causes of false positives and
false negatives.

6.4 Analysis Results

6.4.1 Quantitative Results

Tables 1 and 2 illustrate the results of the quantitative
analysis for when one, two, and three sample applications
are used. Given three applications per concept, we
randomly selected one to determine the result for one
application. For example, Context Menu has three sample
applications: Console, Tree View, and ANT View. The row
with “Numbers of Samples” of 1 gives the results for one
application, which is Console. We then randomly selected
the second application form the remaining two and
computed the results for the first and second application.
In our example, the row with “Numbers of Samples” of 2
gives the results for two applications, namely, Console and
Tree View. Finally, we computed the results for all three
applications (the row with “Numbers of Samples” of 3).

Tables 1 and 2 give I, M, P , and R numbers with respect
to both mandatory and optional reference templates. The
numbers with respect to mandatory reference templates are
given in parentheses. They represent lower bounds, as
optional steps may or may not have been desired by the
user. Concepts to which no slicing applies have only one set
of numbers under “No Slicing.” For concepts to which
slicing does apply, we give both the numbers for full traces

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 11

(“No Slicing”) and the numbers “With Slicing” in order to
show the impact of slicing. The precision and recall
numbers produced by the complete application of FUDA
(i.e., with slicing, when applicable) are marked in bold.

The precision of the generated templates is much less
with respect to mandatory reference templates than op-
tional reference templates because these templates do not
include any of the optional implementation steps, and thus
we count all these optional steps in the generated templates
as false positives. For example, the code in the mandatory
reference template for Toolbar Button would produce an
empty button, i.e., one without any icon, caption, and tool-
tip text; however, in practice, hardly any user is interested
in the concept of an “empty toolbar button” as opposed to a
“toolbar button with some caption and icon.” Because the
optional steps present in the generated templates were also
present in sample applications, the precision and recall
results for optional reference templates are more likely to
adequately reflect the template quality as it will be
experienced by most users. However, if a user had not
been interested in some of the optional steps, the precision
from that user’s viewpoint would lie somewhere between
the precision values for the mandatory reference templates
and the values for the optional reference templates.

When only a single sample application is used, the sizes
of the templates are larger than when two or three sample
applications are used because FUDA uses the intersection
among the traces. However, they are polluted with many
false positives such that the precision for most of the
concepts is around 50 percent or less. The recall is high, in
the range of 92-100 percent, as no events are removed from
the traces due to intersection. For the concepts Text Editor
and Drag-n-Drop, because the sample application was
simple and focused on the concept of interest, even a single
application was enough to produce good results.

As we use the second sample application, the precisions
of the templates significantly improve such that, except for
the precision for Content Assist (59 percent) and Navigate
(79 percent), all other precision and recall values are
80 percent or higher. However, when the third sample
application is used, we often see that a few optional steps
are being removed from the templates. Consequently, the
resulting templates concentrate more on the set of
mandatory implementation steps, without much improve-
ment in precision and recall. For example, for the concepts
Context Menu and Moving Shapes, no changes were
observed in the results, while for the rest of the concepts
there were only some slight changes. At the same time, the
use of more sample applications increases the chance of
false negatives, as different applications may use different
instructions to implement the same functionality. For
example, adding the second sample application for
Moving Shapes and adding the third sample application
for Content Assist and Circle Drawing introduced new
false negatives.

The results show that slicing, where applicable, signifi-
cantly improved the precision. Specifically, slicing elimi-
nated between 7-42 percent, 13-80 percent, and 13-75 percent
of false positives for one, two, and three sample applications,
respectively—except for Context Menu and Drag-n-Drop,

for which the applications were different enough, so that
slicing had almost no effect.

These quantitative results answer our research questions
(Section 6.1) as follows:

1. FUDA can generate templates with relatively few
false positive and negatives. In particular, all but one
generated templates achieved precision of at least
78 percent and recall of at least 89 percent. Further,
more than half of the templates had precision of
90 percent or better and recall of 100 percent.

2. Using three traces instead of two did not bring any
substantial improvements; in fact, it had even
negative impact on recall in some cases. Thus,
FUDA seems to perform best for two traces,
collected in different contexts.

6.4.2 Qualitative Results

In general, false positives were more frequent than false
negatives, particularly when just one trace was used. False
positives were mainly due to similarities among the sample
applications that extend beyond the concept of interest. For
example, the single false positive for Toolbar Button with two

sample applications was due to calls to IShellProvider.
getShell(), a method frequently used in Eclipse views.
False negatives resulted mainly from 1) necessary imple-
mentation steps that resided in packages other than the
framework packages specified to the FUDA Tracer during
the trace collection, or 2) the possibility of implementing the

same concept in multiple ways. As an example of 1, the
template generated for Context Menu was missing a
mandatory call to setMenu() because the method was in
the Eclipse framework, not in JFace. As an example of 2, the
template generated for Moving Shapes with two and three

sample applications had some false negatives because the
applications used different instructions of the Java class
library to change the location of a shape.

Our investigations revealed that slicing had a particu-
larly positive impact on reducing false positives when the
traces exercised more concepts in common than the desired

one. For example, the example applications for the GEF
Figure also shared other concepts such as Palette and
Toolbar, and thus slicing was highly beneficial. Slicing is
also likely to be useful for traces generated using a single
application, as such traces will likely have more common

calls that are unrelated to the concept of interest. Never-
theless, slicing is not beneficial when 1) sample applications
share only the desired concept (e.g., for Menu and Drag-n-
Drop, slicing had almost no impact when two and three
sample applications were used), and 2) the user is interested

in the whole trace (e.g., Table Viewer) or just the events in
the marked region (e.g., Focus).

6.5 Threats to Validity

This section discusses the potential threats that may impact
the validity of the experimental results.

6.5.1 Internal Validity

Internal validity relates to the extent to which the design
and analysis may have been compromised by the existence

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

of confounding variables and other unexpected sources of
bias [22].

The main threat to internal validity is incorrect reference
templates, which would impact the calculations of preci-
sions and recalls. This threat was minimized by 1) using
three sources of knowledge for all concepts: manual
inspection of sample applications, consulting existing
documentation, and testing the implementation steps in
sample implementations; 2) having two of the authors
independently check, in several iterations, the correctness of
all the reference templates and the values calculated for
precisions and recalls; and 3) reporting the ranges of values
possible for precisions and recalls based on mandatory and
optional reference templates.

Another threat to internal validity is related to problems
that might have occurred during the process of trace
collection, such as not triggering the marking at appropriate
times. This issue was addressed by carefully designing and
applying the execution scenarios.

Finally, the procedure of selecting one or two sample
applications from three (cf. Section 6.4.1) can influence the
results for one and two applications, creating the possibility
of bias. We minimized this threat by selecting the first and
the second application randomly.

6.5.2 External Validity

External validity relates to the extent to which the research
questions capture the objectives of the research and the
extent to which any conclusions can be generalized [22].

One potential threat to external validity is that the
selection of frameworks for the evaluation might not have
been representative of those used in realistic development.
This threat is addressed by selecting five popular frame-
works that are widely used in practice. However, because
the selected frameworks are all GUI frameworks, it is still
necessary to experiment with other kinds of frameworks.

Further, the concepts selected for the evaluation might
not have been representative of those used in real-world
development. We addressed this threat by including
concepts from developer forums [18], [19], [20], [21].

The precisions and recalls are highly dependent on how
the given concept is implemented in sample applications,
and consequently, the way we selected the sample applica-
tions directly influences the results. We minimized this
threat by following the same identification strategies that
would be applied in practice (cf. Section 6.2.3).

6.5.3 Construct Validity

The test of construct validity questions whether the
theoretical constructs are interpreted and measured cor-
rectly [22]. For this experiment, the main threat to construct
validity is related to measuring the quality of generated
templates by counting the number of false positives and
false negatives. In particular, false positives and negatives
depend on user’s definition of the concept and thus are
subjective to some extent. We minimized this threat by
reporting numbers with respect to both the optional and
mandatory reference templates.

6.5.4 Replicability

We provided the setup of this experiment in detail,
including the data collection and data analysis procedures.

The sample applications used in this study are open source.
Moreover, the generated templates and reference templates
are available online [15]. Consequently, it should be
possible to replicate the experiment.

7 USAGE OF FUDA TEMPLATES

This section presents the results of a user experiment in
which subjects used templates to implement framework-
provided concepts.

7.1 Experiment Objectives

The goal of this experiment is to see whether FUDA
templates are useful in practice. We ask skilled Java
developers to implement framework-provided concepts
with the aid of either templates or documentation and
compare the effectiveness of the two aids. The rationale
behind this experiment is that if templates are at least as effective
as documentation then they can serve as a substitute when no
documentation is available. This experiment attempts to
answer the following research questions.

1. Are templates at least as effective as documentation
in aiding the developers in concept implementa-
tions? We measure effectiveness in terms of imple-
mentation time and resulting code correctness.

2. What is the influence of a template’s quality and its
usage strategies on the quality of resulting imple-
mentations?

The only independent variable in this experiment is
documentation aid with two values: framework documentation
(D) and implementation template (T). Moreover, the two
dependent variables that we study in this experiment are
1) the time to complete the assigned concept implementa-
tion task, and 2) the functional correctness of the implemen-
tation code. We measure correctness as a factor with three
levels: success if the resulting implementation behaved as
specified, buggy if the implementation did not perform as
specified, and failure if the developer did not finish the
implementation. For the first research question, we for-
mulate the following null hypothesis:

H0: There is no difference in time when implementing a concept
with the help of templates or documentation.

We claim that templates are more effective than
documentation as concept-implementation aids. Thus, we
formulate the following alternative hypothesis:

H1: Use of templates reduces the time developers take to implement
a concept compared to when they use documentation.

To answer the second research question, we qualitatively
analyzed developer feedback and the concept implementa-
tions, as explained in Section 7.4.

7.2 Experiment Setup

The experiment targets a context representative of situa-
tions where skilled Java programmers perform realistic
concept implementation tasks for the first time on top of a
nontrivial framework such as Eclipse.

Frameworks. We select Eclipse and JFace as the target
frameworks because they are complex and widely used. We
apply balancing to control for any differences between

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 13

them; that is, for each framework, the number of tasks with
treatment T is the same as the number of tasks with
treatment D.

Concepts. Among the four concept characteristics men-
tioned in Section 6.2.2, frequency and complexity are most
relevant for this experiment. We use frequency to classify
subjects’ experience with the target framework: Subjects are
experienced if they have implemented the frequent concepts
before and moderate otherwise. Complexity matters as it
influences the implementation difficulty. Thus, we select
four concepts from Section 6.2.2, each representing a
different combination of complexity and frequency: Context
Menu, Table Viewer, a simplified Navigate, and Content
Assist, (see Table 3, the entire table will be explained
shortly). The simplified Navigate does not require devel-
opers to implement a tree viewer (cf. Table 1).

While slicing and variability characteristics of concepts
mainly influence the quality of the generated templates, we
use in this experiment the templates that have been already
generated in the previous study. Thus, the effects of these
characteristics are limited in this experiment.

Target applications. Each concept has a target application,
that is an Eclipse project in which the subjects are asked to
implement that concept. For example, the target application
for Content Assist is a simple text box without a content
assistant. We keep the sizes of these projects minimal to
help developers focus on implementing the assigned
concepts instead of spending their time on investigating
the target applications. Their sizes range between 10 (for
Content Assist) and 186 lines of code (LOC) (for Navigate).

Implementation templates and sample applications.

For each concept, we give subjects the template generated
with the help of two sample applications in the previous
study (cf. Section 6). We also give them these two sample
applications as examples of actual implementations of the
concept. The sizes of the sample applications varied
between 1 KLOC (EditorList for Table Viewer) and 66 KLOC
(Subclipse for Navigate).

Documentation. We use standard framework documenta-
tion sourced from the Eclipse Help, Eclipse Corner Articles,7

or third-party Eclipse articles (web search). The documen-
tation for each concept contained the code snippets required
for the concept implementation. Whereas templates give the
complete code in one piece, these snippets are distributed
over multiple sections in the documentation. For example,
for Context Menu, one section discusses how to create

menu items and another section describes how to put those
items together to create the menu. The length of these
documents ranges between 5 pages (for Navigate) and
28 pages (for Content Assist). For each concept except
Context Menu, we provide a second document with
additional background information on the concept. The
original document for Context Menu already has enough
such information.

7.3 Experiment Procedure

We followed the procedure shown in Fig. 9.
Recruiting subjects. We sent an initial package to

potential subjects. The package included 1) an overview

document with a brief introduction to the experiment and
the process that a subject would go through and 2) a
background questionnaire that captured the subject’s back-
ground and experience. We used the questionnaire to select
suitable subjects. The recruiting criteria were Java profi-
ciency. All recruited subjects had at least three years of Java
programming experience and self-rated their Java program-
ming skills at least 4 on a scale 1-5. Participation was
voluntary and unpaid.

We recruited 28 subjects; we label them S1-S28. The
subjects included three professionals (S14-S15, S27) from
three different software companies, 24 graduate students
(S1-S13, S16-S26), and one senior undergraduate student
(S28). A total of 21 subjects had industry experience, ranging
between 1 and 10 years.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

7. http://www.eclipse.org/articles/.

TABLE 3
Assignment of Concept Implementation Tasks to Subjects (�1 and �2 Represent the Order of Task Performance)

Fig. 9. Procedure of template usage evaluation.

Since the subjects had varying experience with the target
frameworks (JFace and Eclipse), we blocked them into two
groups: 1) experienced subjects (S1-S14) had previous experi-
ence with developing both frequent concepts (Context
Menu and Table Viewer), but had not implemented the
rare ones (Navigate and Content Assist), and 2) moderate
subjects (S15-S28) had not previously implemented any of the
four concepts of the experiment. We used the blocking to
control for the experience with the target framework by
balancing the assignment of treatments over the blocks (cf.
Table 3).

Training based on background. We sent up to three
different tutorials to each subject based on his responses to
the background questionnaire. These tutorials included: 1) a
brief document describing the syntax and the semantics of
FUDA templates, 2) a short document introducing the ideas of
object-oriented software frameworks, and 3) a short tutorial
about how to use the Eclipse IDE.

In addition to above tutorials, each subject was given a
personalized training session. During these sessions, we
questioned subjects to become confident that they under-
stood the tutorial contents. For example, we asked them to
describe to us how a framework is used, how to compile
and run projects in the Eclipse environment, or the meaning
of special notations (e.g., “k”) in a FUDA template.

Task assignment. To obtain more data points with fewer
subjects, we assigned two concept implementation tasks to
each subject (see Table 3). The assignment was random
modulo the following constraints. First, we made sure that
each subject was to implement the assigned concept for the
first time. Second, the assignment had to balance treatments
over the simple and complex concepts within each subject
block. Further, as each subjects had to use a template for
one concept and documentation for the other concept, we
also balanced the treatment sequence within each block and
within all subjects, i.e., half of the subjects first used
documentation and then templates and the other half first
used templates and then documentation.

Sending the task package. After task assignments, we
sent a task package per concept to its corresponding subject.
The task package contained the following items:

1. a concept instance specification with a description of
the concept to be implemented,

2. the target application in which the subject was
supposed to implement the given concept (cf.
Section 7.2),

3. the two sample applications from which the template
had been generated (cf. Section 7.2) to just provide
subjects examples of actual implementations of the
concepts,

4. either the implementation template or the documenta-
tion of the given concept,

5. a document representing a set of instructions that the
subject must follow before and during the task
performance, and

6. an experiment questionnaire that was used by the
subject after the task completion to provide us
feedback on the experiment such as implementation
time, whether the provided documentation aid was
useful, and how the templates could be improved.

Before the task performance, the subjects were instructed
to read the tutorials and investigate the provided target
applications. The intent of this rule was to ensure that the
time recorded for task performance was the time spent on
implementing the concept rather than investigating the
target application. The subjects were not allowed to read the
provided template or documentation and investigate the
provided two sample applications before the task perfor-
mance, however.

Task performance. Subjects performed the assigned tasks
at their regular work place according to the instructions in
the task package. In particular, we asked them to do the
assigned tasks without interruptions and to record the actual
time used for each task. During the implementation, the
subjects were asked to use only the provided documentation
aid (T or D), the two sample applications, and the frame-
work-provided Javadoc documentation. In particular, they
could not use Eclipse Help, Eclipse wizards, or search the
web. The Javadoc documentation does not explain how to
implement concepts, but only how to use a given framework-
provided API element, such as an interface or a method.

Results submission. Immediately after performing each
task, the subjects were instructed to fill the experiment
questionnaire provided in the task package and return it,
together with their concept implementation code, via e-mail.

Debriefing Interview. Upon submitting the results for
both assigned tasks, each subject participated in a short
debriefing interview. The main question in this interview
was to understand the template usage strategy that the
subject followed.

Results analysis. The quantitative assessment of the
impact of the independent variable documentation aid on the
dependent variable implementation time involved applying
the parametric, one-tailed Student’s t-test at a confidence
level of 95 percent (� ¼ 0:05). To validate that the t-test can
be used, we first applied the Kolmogorov-Smirnov test to
verify normal distribution of samples. We also applied
Levene’s test to check for equality of variance in the samples.
A p-value > � means that samples have equal variances.

In addition to confirming an effect as statistically
significant, we also wanted to know its size. We computed
the effect size by using the Cohen’s d, which is defined as the
difference between two means divided by the pooled
standard deviation for those means. Since we used the
difference between the T and the D groups, a negative value
of Cohen’s d corresponded to the T aid being more beneficial
than the D aid. To interpret the Cohen’s d values, Cohen
suggested that the effect size is small for d around 0.2,
medium for d around 0.5, and large for d of 0.8 and larger.

For the dependent variable functional correctness of the

implementation code, we provide the outcomes (success,
buggy, or fail) for the T and D groups. Since we had only six
unsuccessful implementations, it did not make sense to
perform statistical analyses.

The qualitative analyses involved careful examination
of questionnaires and debriefing interviews and executing
the submitted implementations to see if they had the
correct functionality as described in the concept instance
specification.

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 15

7.4 Analysis Results

Quantitative analysis results. Fig. 10 gives a boxplot of the
time spent for each implementation as a function of the
documentation aid (T or D) and concept complexity. The
boxplot considers complexity to give an idea of how this
factor impacts time.

Table 4 gives the descriptive statistics and the results of
statistical analyses. The first row in Table 4 gives the main
analysis with documentation aid as the single independent
variable and how it impacts implementation time. For
comparison, rows two and three also analyze the impact of
concept complexity and subject experience. The mean,
standard deviation, minimum, median, and maximum
values are given in minutes.

The analysis in row one indicates that the T group had
better times than the D group. Cohen’s d of 0.46 points to a
medium effect size. We also successfully applied the
Kolmogorov-Smirnov test and the Levene’s test. Thus, we
were able to apply the Student’s t-test to evaluate the null
hypothesis H0. Because the observed t is smaller than the
critical t and the p-value is lower than � ¼ 0:05, the
application of the t-test allows us to reject the null
hypothesis and instead accept the alternative hypothesis,
which means that the implementation time is reduced
statistically significantly by using templates instead of
framework documentation. Our qualitative analyses suggest
some likely reasons for why the T group performed better
than the D group. We will discuss these reasons later in this
section. Finally, the analyses in rows two and three indicate

that the effect sizes for concept complexity and subject
experience were larger than that for documentation aid.

Results of running code. Running and testing the code
for all concept implementations revealed 1) three buggy
implementations and one failure for the D group and
2) only two buggy implementations for the T group. In the
D group, subjects S10 and S11 did not implement Content
Assist as described in the concept instance specification,
and subject S25 implemented a List Viewer instead of a
Table Viewer. Furthermore, subject S23 decided to give up
the implementation of Table Viewer after 90 minutes. In the
T group, subject S8 implemented Navigate with an
additional button and S19 did not implement a toolbar for
his Table Viewer as requested.

Subjects’ comments on templates. All subjects except S7

and S23 declared in their experiment questionnaires that the
templates provided them with useful information. For
example, S1 stated: “Yes, the templates were useful. The
templates helped to limit the scope in which I needed to analyze
the provided sample framework application. I only had to refer to a
set of approx. three classes in each application. In addition, the
template provided useful boiler-plate code which I could use as a
starting point.” As many as 24 out of 28 subjects used the
sample applications in addition to a template. All of these
24 subjects used the traceability links between implementa-
tion steps in the templates and their corresponding
instructions in sample applications’ code, which were
provided as searchable labels. For example, subject S3

stated: “Navigation to example applications is critical and a
frequently performed step.” Interestingly, even S7 and S23

mentioned in their debriefing interviews that they both
used templates as the starting point to find the relevant
code in the sample applications and, in this regard,
templates were useful to them as well. Subjects also liked
the syntactic resemblance between templates and Java code.
For example, S16 stated: “I like the format. In my opinion, being
close to Java language is one of the best characteristics of the
template format.” Further, S8 said: “I like that the code can be
pasted directly into the Java program and be close to workable.”

Subjects also identified areas for improvement. Many
suggested augmenting templates with 1) clickable trace-
ability links instead of the searchable labels and 2) addi-
tional information from sample applications, API, or
Javadoc. For example, S14 and S17 suggested including a
brief description of each method and parameter in the
template to avoid the context switch when delving into the
sample code or Javadoc documentation. Further, several
subjects noted that they mostly glanced over special

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

Fig. 10. Boxplot of concept implementation times.

TABLE 4
Statistical Analysis of the Impact of Different Variables on the Subjects’ Concept Implementation Times

notations (e.g., “k” or REPEATED), finding them not useful.
For example, subject S22 remarked that less choice would be
preferred. On the other hand, subject S28 found that,
whenever he saw “k”, he wanted to consult Javadoc
documentation to see what the alternative choices meant.
Subject S7 complained that the use of global variables in the
templates made them too unstructured. Subject S17 would
prefer starting from an executable example rather than a
template that is not compilable. Subject S10 complained
about false positives in the template which required him to
study the sample applications. Some subjects remarked that
they lacked prescribed strategies for using templates.

Subjects’ comments on documentation. All 28 subjects
confirmed that the provided documentation offered some
useful information. Nineteen declared that the documenta-
tion contained enough information required for implement-
ing the assigned concepts. The remaining nine said that
information was missing and they had to extract it from the
sample applications. Interestingly, 9 out of the 19 subjects
for whom the documentation was sufficient still referred to
the sample applications to gain additional confidence. For
example, subject S27 stated: “The documentation was enough.
[...] I looked into the sample applications source code to become
confident that my implementation is okay.”

Analysis of experiment questionnaires and debriefing
interviews revealed that several subjects, e.g., S8-S9, S16, S17,
S22, mainly liked the presence of code snippets and
examples in the documentation. Further, subjects S8 and
S9 liked the correspondence between code snippets in the
documentation for Content Assist and the provided sample
applications, which allowed them to use the documentation
as a mean to investigate the sample applications.

However, most subjects raised points against the
provided documentation. In particular, subjects S1, S4, S6,
S16, S19, S22, S26, and S28 complained that they needed to
filter out a lot of irrelevant material in the documentation in
order to learn how to implement the assigned concepts. For
example, subject S26 stated: “Too much reading, I skipped most
of the description to the example. I read the text only when certain
things were not clear in the examples in the documentation.”
Although most subjects liked the presence of code snippets
in the documentation, subjects S11, S13-S14, and S18 pointed
out that the given documentation lacked a complete code
example and they needed to find and assemble different
code snippets to realize the assigned concept. Subjects
S4-S6, S8, S11, S18, and S23 mentioned that the documenta-
tion was missing some important information and they
needed to investigate the sample applications to find it.
Finally, subject S26 complained that the descriptions for
some API elements were outdated in the documentation.

From these comments, we learned that subjects mainly
like focused documentation that provides complete code
examples for the desired concept instead of different code
segments in different parts of the documentation and
requiring the developer to find and assemble those parts
to realize the concept.

We can summarize the likely reasons for why the
T group outperformed the D group as follows: 1) The
syntactic resemblance between templates and Java code was
important for understanding and copying template code

into the target application; 2) while the documentation was
often incomplete, templates helped subjects to easily find
the portions of sample application code and the API that
were relevant to their task; and 3) with templates they
avoided reading unnecessary text in the documentation.

Template usage strategies. By analyzing the experiment
questionnaires and debriefing interviews, we identified five
main different strategies of how subjects used templates:

1. Subjects S8, S12-S13, and S19 copied the code from the
template into the target application without further
investigating the sample applications. They mostly
relied on compiler errors to detect errors.

2. Subjects S3, S5-S6, S21, and S26-S28 copied the code
from the template, then, after encountering some
issues at compile time or runtime, they inspected the
template code and sample applications to find out
the reasons for these issues.

3. Subjects S1, S4, S11, S15-S16, S18, and S24 copied the
code from the template into the target application,
then they investigated the sample applications to
refine that code.

4. Subjects S2, S7, S22-S23, and S25 used the template
just as an entry to sample applications, then they
copied the code snippets from the sample applica-
tions into the target application.

5. Subjects S9-S10, S14, S17, and S20 used the template
just as an entry to sample applications, then they
investigated the sample applications to learn their
code; next, they wrote the code in the target
application from scratch.

Thus, all except four subjects used templates together
with sample applications. Interestingly, three out of these
four subjects were in the experienced block. However,
18 subjects followed strategies 1-3, which means that they
were able to directly use the code from templates. Ten
subjects, who followed strategies 4-5, used templates only
as a starting point to investigate sample applications. These
observations confirm that templates can help users to focus
only on the relevant parts of the sample applications code
instead of investigating the whole applications.

Impact of false positives and false negatives. Table 5
indicates the numbers of false positives and false negatives
and their impacts on each concept’s implementation code. In
general, false negatives prevented the full instantiation of a
concept, as in the case of Context Menu and Table Viewer.
False positives caused either compiler errors or runtime

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 17

TABLE 5
Impact of False Positives and False Negatives

on the Concept Implementation Code

errors (as in Content Assist) or polluted the concept
instantiation with unnecessary code (as in Navigate). Inter-
estingly, both of the subjects who had buggy implementa-
tions with templates, i.e., subjects S8 and S19, did not refer to
sample applications during their tasks. In particular, the false
positives in Navigate ended up in S8’s implementation.

Thus, our experiment reveals that subjects applying
strategy 1 must be careful about false positives and false
negatives. Further, it also shows that using templates
together with sample applications helps detect code that
is missing or unneeded.

7.5 Threats to Validity

There are several factors that may potentially affect the
validity of the results of this experiment. This section
provides a description of these factors.

7.5.1 Internal Validity

The main threat to internal validity concerns the distribu-
tion of subjects over the concept implementation tasks. We
addressed this threat by randomizing the assignment of
subjects to tasks within the experience blocks. We also
balanced the number of D and T treatments per block to
avoid bias.

Because all subjects performed two concept implementa-
tions, this may have introduced learning effects from one
task to the next. We minimized this threat by balancing the
sequence of using the documentation aids and balancing
the sequence of concept complexity. Another source of
interference could be the subjects’ prior knowledge and
proficiency with the development environment. To reduce
this threat, we provided them with basic tutorials and
personalized training to bring each of them to the same
level. We also banned the use of powerful features of
Eclipse (e.g., debugger—which could have been used to
understand sample applications). Further, none of the
subjects had knowledge of FUDA templates prior to taking
the tutorials. Finally, the subjects might have not followed
our instructions; we reduced this risk by confirming in the
debriefing interviews that they actually did follow the
instructions provided in their task packages.

7.5.2 External Validity

All the concepts selected for this study were GUI concepts
in Eclipse. Hence, the results cannot be necessarily general-
ized to other types of concepts and frameworks. Eclipse is a
mature and complex framework that can be considered as a
representative of many modern object-oriented software
frameworks, however.

The size and the complexity of concept instances used in
this experiment is another source of threat to external
validity. We selected concepts that could be implemented
in a relatively short period of time (less than two hours);
thus, the results are not representative of large, composite
concepts. We assume that the task of implementing such
concepts must be broken into smaller tasks of implement-
ing smaller concepts handled by FUDA. Helping decom-
pose large composite concepts into their components is
future work.

Sample applications play a major role in the experiment.
We assumed that template usage scenarios are likely to

involve sample applications, especially to address false
positives and negatives in the templates. To allow for a
balanced comparison, we provided sample applications to
both the T and D groups. Interestingly, the majority of
subjects in both the T and D groups referred to the sample
applications. The sample applications may not be repre-
sentative; however, they were real applications obtained
from open source using the same strategies developers use
to obtain sample applications.

Another threat to external validity concerns the general-
ization from students to professionals. We minimized this
threat by recruiting skilled Java programmers with at least
three years of experience. Additionally, 21 subjects had one
year or more of industry experience.

7.5.3 Construct Validity

To meaningfully compare templates and documentation,
we should first make sure that all subjects used the
prescribed aid (template or documentation) when creating
their solutions. All subjects confirmed in their experiment
questionnaires that this was the case.

Further, we need a clear definition of documentation. As
described in Section 7.2, we used the standard framework
documentation and made sure that the documentation was
complete.

The use of sample applications in the experiment
allowed us to obtain valuable qualitative data on template
and documentation usage strategies. By using them, we
were able to compare the use of templates with sample
applications to the use of documentation with sample
applications. We believe that the use of sample applications
is more representative of real-world use of both documen-
tation aids. Templates offer traceability links into the
sample applications, which makes them more effective for
exploring the sample applications. The documentation used
did not have such links—a situation representative of real-
world use of documentation.

The target applications could also influence the task
completion time. In order to minimize this time, we kept
these applications very small, less than 200 LOC, and asked
subjects to familiarize themselves with them before per-
forming the tasks. Further, the selection of the target
applications should not introduce bias since both the T
and D groups used the same target applications.

Finally, we need well-defined measures to compare the
effectiveness of templates and documentation. We used the
standard measures of implementation time and the func-
tional correctness of the resulting code. Although the
resulting implementations differed in qualities such as
modularity and clarity, we did not take such differences
into account to reduce subjectivity.

7.5.4 Replicability

We documented the methodology of this experiment,
including the data collection and data analysis procedures.
The complete experimental material, including the subjects’
background questionnaires, experiment questionnaires,
concept implementation templates, and the documentation
used, is available online [15]. The target applications and
the sample applications used in this study are open source
and are also available online [15]. Thus, it should be
possible to replicate the experiment.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

8 DISCUSSION

8.1 FUDA’s Strengths and Weaknesses

The results of evaluating the template quality (cf. Section 6)
indicate that FUDA can extract concept implementation
templates with relatively high precision and recall from
only two sample applications and execution scenarios.
Furthermore, while collection of traces is manual, the
processing of the traces is fully automatic. The instrumenta-
tion does not impose significant overhead on the applica-
tion execution because only the API interactions rather than
full traces are recorded. Given a set of applications and
execution scenarios, the time needed to retrieve templates is
mainly determined by the time needed to execute the
scenarios on the applications. Thus, FUDA is particularly
useful when the developer has some sample applications at
hand and wants to see how they implement the desired
concept. Furthermore, dynamic analysis detects the API
elements that are actually being invoked. This characteristic
of dynamic analysis is important because frameworks often
use polymorphism and reflection, which can render the
results of static analyses unusable. Finally, the second
experiment (Section 7) revealed that using templates
together with sample applications can reduce development
time compared to when documentation is used. This result
suggests that templates can be used instead of documenta-
tion, especially when no documentation is available.

Nevertheless, the approach has some drawbacks. Most
importantly, it relies on the ability to find appropriate
sample applications to generate templates. The template
quality depends on the selection of the applications and
concept invocation scenarios. In particular, creating the
scenarios requires careful design to isolate the API instruc-
tions of interest in the context of multiple concepts. The
approach is mainly applicable to GUI frameworks, where
the desired concept can be identified visually and invoked
interactively from the GUI. The approach may also be
applicable to nongraphical frameworks, provided the con-
cept of interest can be explicitly invoked from the sample
applications’ graphical or programmatic user interface;
however, the effectiveness of the approach in these cases
needs to be evaluated in future studies. Further, dynamic
approaches require the setup of the runtime environment,
which can be difficult in some situations. Finally, the results
of dynamic approaches depend on input data. FUDA will
retrieve the set of API instructions that are invoked in each
execution, but may fail to retrieve optional API instructions.
We discuss this issue in the following section.

8.2 Scenario Design Considerations

The nature of the concept of interest and the ways in which
it is implemented by sample applications influence the
results. Ideally, the concept’s implementation is fixed, its
invocation is easily delimitable by marking, and the sample
applications have only this concept in common. In this case,
FUDA will yield the best precision and recall results. In
general, concepts contain variability (e.g., optional instruc-
tions), the invocation of a concept might not be easily
demarcated, and the sample applications may have several
concepts in common. For a variable concept, developers
should select applications that differ in components that

should be eliminated. If the concept of interest is part of a
composite concept, developers should be able to demarcate
the boundaries of the concept execution. For example, most
Eclipse views implementing context menus also implement
actions, toolbars, and other Eclipse concepts, but the menu
execution can be marked. In some cases, however, even
marking cannot isolate the concept of interest. For example,
for the concept GEF Figure, all figure drawing scenarios
involved the palette and, hence, the extracted template
contained some palette-related steps (cf. Section 6.4.2).
Nonetheless, developers can deal with such issues by
studying the actual sample application code that corre-
sponds to template’s implementation steps.

8.3 API Trace Slicing

The API trace slicing that is used in FUDA is significantly
different from traditional dynamic program slicing techni-
ques [23]. First, while program slicing is defined in terms of
data and control dependencies, API trace slicing is defined in
terms of object-relatedness between API calls. Furthermore,
while traditional dynamic slicing is defined with respect to a
trace containing all program instructions that were executed,
API trace slicing operates on API interaction traces.

Object-relatedness is motivated by common API usage
patterns. For example, two method invocations sharing the
same target object could be related by the fact that one call
initializes the target for the second call or that the second
call cleans up the object that was used in the first one.
Similarly, a call that returns an object that is later used as a
target or parameter in a subsequent call may be an
invocation to a factory method. Clearly, identifying relevant
events based on object relatedness may lead both to false
positives and false negatives. For example, false positives
may occur if the same object is used in two calls for
unrelated uses. False negatives can happen if invocations
are related by side effects, such as accessing some objects in
some framework registry. Nevertheless, as shown in the
template quality evaluations, API slicing produced very
good results in practice.

9 RELATED WORK

Table 6 summarizes the related work discussed in this
section and compares them with FUDA.

9.1 Framework Documentation Approaches

Cookbooks. Krasner and Pope [24] suggested organizing
framework documentation as cookbooks. Each entry in the
cookbook is a recipe that explains a typical usage scenario
and provides stepwise guidance for its implementation.
Pree et al. [25] introduced the concept of active cookbooks
which include interactive elements to provide information
on demand and to perform certain programming tasks
semiautomatically. Cookbook recipes often focus on the
extension points of a framework, also known as hot-spots
(e.g., see the work by Froehlich et al. [66]).

Patterns. Johnson [26] proposed documenting frame-
works using patterns. In his work, a pattern describes a
situation that commonly occurs in the problem domain of
the framework and discusses tradeoffs of possible solutions.

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 19

Subsequent work on design patterns [28] focused on creating
and documenting framework designs.

Hakala et al. [29] proposed specialization patterns to define
the specialization interface, i.e., the hot-spots, of a frame-
work. Their approach is supported by a tool called
FRamework EDitor (Fred). Framework developers can use
Fred to define specialization patterns for a given frame-
work, whereas application developers instantiate patterns
for their applications. The tool provides a step-by-step task
list derived from the specialization patterns and checks that
the constraints of the framework are not violated.

Fairbanks et al. [30] introduced design fragments: im-
plementation patterns encoding typical uses of a framework
API to accomplish a given goal. Application developers can
browse the catalog of available design fragments, select the
ones that fit the application requirements and then bind the
selected fragment to application code. A tool then checks if
the application conforms to the fragment specification.

Specific approaches. Hou et al. [31] use the Framework
Constraint Language (FCL) to specify all legal uses of a
framework API. The semantics of FCL is based on first-
order logic extended with set and sequence operations.

Antkiewicz et al. [32] propose Framework Specific Model-
ing Languages (FSMLs) to specify the concepts provided by a
framework and how they relate to source code. The abstract
syntax of an FSML decomposes a concept into a hierarchy
of mandatory and optional features, represented as a feature
model [67]. FSMLs can be used to describe how applications
use the modeled concepts and to check for violations of
framework rules.

Framework documentation approaches can be very
effective in supporting application developers. In particu-
lar, documentation can provide insights on the rationale for

design decisions and framework architecture, and specifi-
cations can support the automated verification of client
applications. However, they require manual effort, are
usually incomplete, and often become outdated as the
framework evolves [2]. FUDA complements these ap-
proaches by providing specific guidance to concepts that
may be missing from the documentation, provided sample
applications are available. Further, templates can be
automatically generated as the framework evolves.

9.2 Supporting Framework Usage

Several techniques have been proposed to address the
problem of inadequate framework documentation. In
particular, we discuss work that leverages framework
and application source code to provide support for
framework usage.

Code assistants. A number of approaches use existing
framework applications to guide application developers
during programming. Examples include Prospector [33],
PARSEWeb [34], XSnippet [6], Strathcona [35], and FrUiT [7].
Given two API types �in and �out as a query, both Prospector
and PARSEWeb mine for a sequence of calls that transform
an object of type �in into another object of type �out. XSnippet
and Strathcona are context-sensitive code assistants that
maintain a repository of code snippets. During application
development, they compare the context of the program-
ming task at hand with the code snippets in their
repositories and recommend relevant coding examples.
FrUiT mines for frequent API usage patterns as association
rules (e.g., subclass A) call m). Rules are then used to
suggest relevant implementation steps.

Code assistants provide high quality, fine grained
guidance in a given context. Additionally, their predomi-
nant use of static analyses allows them to cope with large

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

TABLE 6
Summary of Related Work Compared to FUDA

bodies of (often incomplete) framework and application
code. FUDA templates are orthogonal in that they describe
the whole implementation of a concept, which can span
multiple methods and classes. Dynamic analysis also
enables handling the highly polymorphic and reflective
code of modern frameworks, but require the potentially
cumbersome installation of sample applications.

Framework API comprehension tools. Several ap-
proaches extract API usage patterns from sample applica-
tions so that developers can understand how the framework
API is to be used. Pattern Extractor [8] uses formal concept
analysis [68] to extract Fred specialization patterns (cf.
Section 9.1) from the source code of a framework and its
sample applications. SpotWeb [9] gathers sample applica-
tions from open-source repositories and mines them to
determine the hot-spots and cold-spots of a framework. Hot-
spots are defined as frequently used API classes and
methods, while cold-spots are those that are rarely used
in sample applications. Schäfer et al. [36] exploit framework
usage data to cluster elements of an API into building
blocks that are typically used together. Finally, Bruch et al.
[37] present an automated framework documentation
approach that mines sample applications for subclassing
directives, short descriptions of how to subclass a framework
class or override its methods.

These approaches are similar to FUDA in their usage of
sample applications to help developers understand an API.
Nevertheless, while their goal is to present a general
characterization of the whole framework API, FUDA targets
the specific concept a user is interested in understanding.

Framework evolution comprehension tools. Framework
APIs may evolve to address new requirements and to fix
bugs [10]. Changes can break client applications and, thus,
applications must evolve together with the framework.
Several approaches have been proposed to automate this
task, such as [38], [39], [11], [40], [41], [10].

CatchUp! [38] is a tool that records API refactorings
applied when a developer evolves an API, and then replays
the refactorings on the application code to be updated. Diff-
CatchUp [39] uses a UML class model difference technique
to recognize API changes. It also supports update by
proposing plausible replacements for obsolete API elements
based on framework examples. SemDiff [11] is a tool that
analyzes how the framework itself was adapted to its
changes and recommends similar adaptations for client
applications. Schäfer et al. [40] infer framework usage
change rules by observing how subsequent versions of
framework applications and test cases use the framework.
Kim et al. [41] use similarity in program element names to
detect changes across versions. Finally, AURA [10] is a
hybrid approach that combines call-dependency and text
similarity analyses to infer change rules.

Framework evolution comprehension tools focus on
describing and automating changes across versions. FUDA
generates usage templates for a single version and does not
help understanding how existing features changed. How-
ever, FUDA can help describe features that were newly
introduced in a framework version, as long as sample
applications are available.

Search-Based Tools. Another class of approaches is
those supporting search of sample API usage in application

code. For example, Assieme [42] is a special purpose web
search engine with which users can search for specific API
elements for a problem to get more information about them
or to get sample usage. XFinder [43] is an extension of
Mismar, a concept-oriented documentation toolset that
focuses on code artifacts and their relationships. Given a
Mismar concept implementation template, XFinder
searches for instances of this template in its code base.
Exemplar [44] is a tool that combines information retrieval
and program analysis techniques. It uses a natural language
query from the user and the API calls executed by an
application to identify concepts.

Search-based approaches can locate additional informa-
tion about an API element, but require that developers
know about the element. FUDA extracts templates for a
concept which can be located dynamically, without prior
knowledge about the framework API.

9.3 Specification Mining

The term specification mining was first introduced by
Ammons et al. [50] as an approach to discover protocols
that clients should follow when interacting with an API.
The large body of work on specification mining can be
broadly classified into static and dynamic approaches.

Static specification mining. Static specification miners
analyze the source code of sample applications and extract
specifications of API protocols [45], [46], [48]. For example,
MAPO [45] is a tool that searches open source repositories
using a user-defined query characterizing an API by a
method, class, or package, and applies data mining
techniques to extract patterns of sequential method calls.

Some approaches, such as CHRONICLER [46] and
JADET [47], not only determine protocols of method calls
but also detect violations of those protocols in client
applications. CHRONICLER infers function precedence pro-
tocols in the form of “a call to procedure q must always be
preceded by a call to procedure p.” Deviations from these
protocols are reported as potential sources of bugs. Finally,
other approaches like Permissive Interfaces [48] and JIST [49]
accept an API type as input and generate a temporal
specification as an automaton that encodes legal sequences
of calls to that type.

Dynamic specification mining. Ammons et al. [50]
pioneered dynamic specification mining. Their approach
uses machine learning to mine temporal and data depen-
dency specifications from dynamic traces of applications
interacting with an API. Perracotta [51] and Javert [52] also
mine for temporal specifications. Sankaranarayanan et al.
[53] infer declarative specifications of the API behavior,
such as raising exceptions, for user-defined concepts. A tool
runs unit tests on the API and an inductive learner is used
to obtain specifications expressed in Datalog/Prolog.

In contrast to specification mining, FUDA does not
explicitly recover API protocol specifications, which are
implicit in the templates. Specification mining is more
important for libraries that require applications to follow
protocols. Frameworks typically implement inversion of
control, enforcing the protocol directly in framework code.
Additionally, miners usually require a large number of runs
to achieve good results. FUDA uses only two traces to make
the technique attractive in practice.

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 21

9.4 Concept Location

Concept (or feature) location approaches aim to identify
relevant portions of application source code with respect to
some desired functionality or requirement. These ap-
proaches can be classified into static, dynamic, and hybrid.

Static concept location. These techniques extract data
directly from application source code. We identify three
main categories:

. Exploratory approaches, like FEAT [54], JQuery [55],
Active Models [56], and Sextant [57], provide tools
with which users can interactively explore or query
application source code. The main assumption is
that users have some knowledge about the concept
implementation and the tools support exploration to
build upon this initial understanding [4].

. Lexical code searchers, like AspectBrowser [58] and
Find-Concept [59], allow users to lexically search
application source code using regular expressions to
locate concepts. For example, AspectBrowser
searches programs using grep-like regular expres-
sions and visually represents the results. The
effectiveness of lexical code searches depends on
good queries or strict naming conventions.

. IR-based approaches, like [4] and [60], apply informa-
tion retrieval techniques to identify relevant parts of
source code based on information available in
identifiers and comments. For example, Marcus
et al. [60] use natural language queries and Latent
Semantic Indexing (LSI) to locate relevant source code
elements. IR tools also rely on naming conventions,
but are usually less sensitive to the quality of queries
compared to lexical code searchers.

Dynamic concept location. These techniques analyze
execution traces of use cases and map information back to
source code. The major difficulty of dynamic approaches is
that traces can be large and contain irrelevant events.
Additional traces are often used to remove noise [5]. For
example, in the Software Reconnaissance technique [61] users
identify which traces contain and which traces do not

contain the concept. Events in traces without the concept
are used to filter out events in traces with the concept.

Dynamic Feature Traces (DFT) [62] follows a similar
approach but additionally uses heuristics to rank program
elements with respect to their relevance to a concept.
Scenario-based Probabilistic Ranking (SPR) [63] targets concept
location in large, multithreaded, object-oriented software
systems. It uses processor emulation, knowledge-based
filtering, and probabilistic event ranking.

Hybrid concept location. Hybrid approaches combine
static and dynamic analyses and typically achieve better
results than purely static or dynamic approaches [3].
Hybrid concept location was pioneered by Eisenbarth
et al. [64]. In their work, traces of the invocation of concepts
are used to generate a concept lattice [68] which is further
refined using a manual static analysis based on the program
dependency graph. Poshyvanyk et al. in PROMESIR [3]
combine techniques presented earlier, the static LSI-based
approach [60] and the dynamic approach based on
probabilistic ranking of events SPR [63]. SITIR [5] tries to

minimize the number of traces. It uses a single trace marked
with the concept invocation and applies LSI to rank
methods relative to a user-provided keyword query.
Finally, Asadi et al. [65] locate concepts by splitting traces
into cohesive segments representing concepts, using search-
based optimization, LSI-based textual analysis of source
code, and trace compression techniques.

The concept location techniques discussed focus on
retrieving general concepts in application code rather than
framework-provided concepts. Consequently, the results
may contain application-specific content, which is irrelevant
from the viewpoint of framework usage. FUDA removes
application-specific information with event generalization,
and focuses on API interaction traces instead of full
application traces. API tracing also has the advantage of
being more efficient since traces become much shorter.
Additionally, the application of API trace slicing is unique
to FUDA. In particular, although SITIR [5] uses trace
marking to reduce the trace length, it does not apply slicing
or any other techniques to identify relevant events that
appear before or after the marked events.

10 CONCLUSIONS AND FUTURE WORK

This paper presented FUDA, an approach for extracting
templates from traces obtained by invoking concepts of
interest in sample applications. FUDA was tested on
14 concepts with different characteristics, sourced from five
widely used frameworks. Moreover, eight of the concepts
corresponded to questions found on developer forums,
representing real development issues. The experimental
evaluation shows that, for the concepts considered, FUDA
can extract templates with few false positives and negatives
from only two sample applications per concept. Addition-
ally, we reported on a user experiment with 28 program-
mers in which we compared templates with framework
documentation in aiding the developers in performing
concept-implementation tasks. The experiment revealed
that the choice of templates versus documentation im-
proved the implementation time. This result suggests that
templates could be used instead of framework documenta-
tion, especially when no appropriate documentation is
available. Templates can also be used by developers to
narrow their focus to only relevant parts of the framework
API or sample applications source code rather than
investigating the whole framework API or sample applica-
tions to learn how to implement a concept of interest.

In the future, we plan to assess the quality of FUDA-
generated templates for non-GUI frameworks and concepts.
We also intend to compare the use of templates with sample
applications against just sample applications. Finally, we
want to explore combinations of static and dynamic
analyses to extract templates with variants.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their thoughtful comments for improving this submis-
sion. They would also like to thank all 28 subjects who
participated in the user study experiment.

22 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

REFERENCES

[1] E. Gamma and K. Beck, Contributing to Eclipse: Principles, Patterns,
and Plug-Ins. Addison-Wesley, 2003.

[2] M.P. Robillard, “What Makes APIs Hard to Learn? Answers from
Developers,” IEEE Software, vol. 26, no. 6, pp. 26-34, Nov./Dec.
2009.

[3] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and V.
Rajlich, “Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval,” IEEE
Trans. Software Eng., vol. 33, no. 6, pp. 420-432, June 2007.

[4] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL: Towards
a Static Noninteractive Approach to Feature Location,” ACM
Trans. Software Eng. and Methodology, vol. 15, no. 2, pp. 195-226,
2006.

[5] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature
Location via Information Retrieval Based Filtering of a Single
Scenario Execution Trace,” Proc. IEEE/ACM 22nd Int’l Conf.
Automated Software Eng., pp. 234-243, 2007.

[6] N. Sahavechaphan and K. Claypool, “XSnippet: Mining for
Sample Code,” Proc. Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pp. 413-430, 2006.

[7] M. Bruch, T. Schäfer, and M. Mezini, “FrUiT: IDE Support for
Framework Understanding,” Proc. OOPSLA Workshop Eclipse
Technology Exchange, pp. 55-59, 2006.

[8] J. Viljamaa, “Reverse Engineering Framework Reuse Interfaces,”
Proc. Int’l Symp. Foundations of Software Eng., pp. 217-226, 2003.

[9] S. Thummalapenta and T. Xie, “SpotWeb: Detecting Frame-
work Hotspots and Coldspots via Mining Open Source Code
on the Web,” Proc. IEEE/ACM 23rd Conf. Automated Software
Eng., pp. 327-336, 2008.

[10] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “AURA: A
Hybrid Approach to Identify Framework Evolution,” Proc. Int’l
Conf. Software Eng., pp. 325-334, 2010.

[11] B. Dagenais and M.P. Robillard, “Recommending Adaptive
Changes for Framework Evolution,” Proc. Int’l Conf. Software
Eng., pp. 481-490, 2008.

[12] A. Heydarnoori, K. Czarnecki, and T.T. Bartolomei, “Supporting
Framework Use via Automatically Extracted Concept-Implemen-
tation Templates,” Proc. European Conf. Object-Oriented Program-
ming, pp. 344-368, 2009.

[13] A. Heydarnoori, “Supporting Framework Use via Automatically
Extracted Concept-Implementation Templates,” PhD dissertation,
Univ. of Waterloo, Canada, 2009.

[14] M.M. Salah, “An Environment for Comprehending the Behavior
of Software Systems,” PhD dissertation, Drexel Univ., 2005.

[15] Generative Software Development Lab, “FUDA Supporting
Material,” http://gsd.uwaterloo.ca/tse-fuda, 2011.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G.
Griswold, “An Overview of AspectJ,” Proc. European Conf. Object-
Oriented Programming, pp. 327-353, 2001.

[17] A. Villazón, W. Binder, and P. Moret, “Aspect Weaving in
Standard Java Class Libraries,” Proc. Int’l Symp. Principles and
Practice of Programming in Java, pp. 159-167, 2008.

[18] “Eclipse Platform Community Forum,” http://www.eclipse.org/
forums/index.php?t=thread&frm_id=11, 2012.

[19] “GEF Community Forum,” http://www.eclipse.org/forums/
index.php?t=thread&frm_id=81, 2012.

[20] “Java 2D forum,” http://forums.oracle.com/forums/forum.
jspa?forumID=938, 2012.

[21] “Java Swing forum,” http://forums.oracle.com/forums/forum.
jspa?forumID=950, 2012.

[22] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
Empirical Methods for Software Engineering Research,” Proc.
Guide to Advanced Empirical Software Eng., pp. 285-311, 2007.

[23] H. Agrawal and J.R. Horgan, “Dynamic Program Slicing,” Proc.
Conf. Programming Language Design and Implementation, pp. 246-
256, 1990.

[24] G.E. Krasner and S.T. Pope, “A Cookbook for Using the Model-
View Controller User Interface Paradigm in Smalltalk-80,”
J. Object-Oriented Programming, vol. 1, no. 3, pp. 26-49, 1988.

[25] W. Pree, G. Pomberger, A. Schappert, and P. Sommerlad, “Active
Guidance of Framework Development,” Software—Concepts and
Tools, vol. 16, no. 3, pp. 136-145, 1995.

[26] R.E. Johnson, “Documenting Frameworks using Patterns,” Proc.
Conf. Object-Oriented Programming, Systems, Languages, and Appli-
cations, pp. 63-76, 1992.

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[28] R.E. Johnson, “Patterns and Frameworks,” The Patterns Handbooks:
Techniques, Strategies, and Applications, pp. 375-382, Cambridge
Univ. Press, 1998.

[29] M. Hakala, J. Hautamäki, K. Koskimies, J. Paakki, A. Viljamaa,
and J. Viljamaa, “Annotating Reusable Software Architectures
with Specialization Patterns,” Proc. IEEE/IFIP Working Conf.
Software Architecture, pp. 171-180, 2001.

[30] G. Fairbanks, D. Garlan, and W. Scherlis, “Design Fragments
Make Using Frameworks Easier,” Proc. Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pp. 75-88, 2006.

[31] D. Hou, H.J. Hoover, and P. Rudnicki, “Specifying Framework
Constraints with FCL,” Proc. IBM Centre for Advanced Studies Conf.,
pp. 96-110, 2004.

[32] M. Antkiewicz, K. Czarnecki, and M. Stephan, “Engineering of
Framework-Specific Modeling Languages,” IEEE Trans. Software
Eng., vol. 35, no. 6, pp. 795-824, Nov./Dec. 2009.

[33] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid
Mining: Helping to Navigate the API Jungle,” Proc. Conf.
Programming Language Design and Implementation, pp. 48-61, 2005.

[34] S. Thummalapenta and T. Xie, “PARSEWeb: A Programmer
Assistant for Reusing Open Source Code on the Web,” Proc. Conf.
Automated Software Eng., pp. 204-213, 2007.

[35] R. Holmes and G.C. Murphy, “Using Structural Context to
Recommend Source Code Examples,” Proc. 27th Int’l Conf. Software
Eng., pp. 117-125, 2005.

[36] T. Schäfer, I. Aracic, M. Merz, M. Mezini, and K. Ostermann,
“Clustering for Generating Framework Top-Level Views,” Proc.
14th Working Conf. Reverse Eng., pp. 239-248, 2007.

[37] M. Bruch, M. Mezini, and M. Monperrus, “Mining Subclassing
Directives to Improve Framework Reuse,” Proc. Working Conf.
Mining Software Repositories, pp. 141-150, 2010.

[38] J. Henkel and A. Diwan, “CatchUp!: Capturing and Replaying
Refactorings to Support API Evolution,” Proc. Int’l Conf. Software
Eng., pp. 274-283, 2005.

[39] Z. Xing and E. Stroulia, “API-Evolution Support with Diff-
CatchUp,” IEEE Trans. Software Eng., vol. 33, no. 12, pp. 818-836,
Dec. 2007.

[40] T. Schäfer, J. Jonas, and M. Mezini, “Mining Framework Usage
Changes from Instantiation Code,” Proc. ACM/IEEE 30th Int’l Conf.
Software Eng., pp. 471-480, 2008.

[41] M. Kim, D. Notkin, and D. Grossman, “Automatic Inference of
Structural Changes for Matching across Program Versions,” Proc.
29th Int’l Conf. Software Eng., pp. 333-343, 2007.

[42] R. Hoffmann, J. Fogarty, and D.S. Weld, “Assieme: Finding and
Leveraging Implicit References in a Web Search Interface for
Programmers,” Proc. Int’l Symp. User Interface Software and
Technology, pp. 13-22, 2007.

[43] B. Dagenais and H. Ossher, “Automatically Locating Framework
Extension Examples,” Proc. 16th ACM SIGSOFT Int’l Symp.
Foundations of Software Eng., pp. 203-213, 2008.

[44] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C.
Cumby, “A Search Engine for Finding Highly Relevant Applica-
tions,” Proc. ACM/IEEE 32nd Int’l Conf. Software Eng., pp. 475-484,
2010.

[45] T. Xie and J. Pei, “MAPO: Mining API Usages from Open Source
Repositories,” Proc. ICSE Workshop Mining Software Repositories,
pp. 54-57, 2006.

[46] M.K. Ramanathan, A. Grama, and S. Jagannathan, “Path-Sensitive
Inference of Function Precedence Protocols,” Proc. 29th Int’l Conf.
Software Eng., pp. 240-250, 2007.

[47] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting Object
Usage Anomalies,” Proc. Int’l Symp. Foundations of Software Eng.,
pp. 35-44, 2007.

[48] T.A. Henzinger, R. Jhala, and R. Majumdar, “Permissive Inter-
faces,” Proc. Int’l Symp. Foundations of Software Eng., pp. 31-40,
2005.

[49] R. Alur, P. �Cern�y, P. Madhusudan, and W. Nam, “Synthesis of
Interface Specifications for Java Classes,” Proc. Symp. Principles of
Programming Languages, pp. 98-109, 2005.

[50] G. Ammons, R. Bodı́k, and J.R. Larus, “Mining Specifications,”
Proc. Symp. Principles of Programming Languages, pp. 4-16, 2002.

[51] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
Mining Temporal API Rules from Imperfect Traces,” Proc. Int’l
Conf. Software Eng., pp. 282-291, 2006.

HEYDARNOORI ET AL.: TWO STUDIES OF FRAMEWORK-USAGE TEMPLATES EXTRACTED FROM DYNAMIC TRACES 23

[52] M. Gabel and Z. Su, “Javert: Fully Automatic Mining of General
Temporal Properties from Dynamic Traces,” Proc. Int’l Symp.
Foundations of Software Eng., pp. 339-349, 2008.

[53] S. Sankaranarayanan, F. Ivan�ci, and A. Gupta, “Mining Library
Specifications Using Inductive Logic Programming,” Proc. Int’l
Conf. Software Eng., pp. 131-140, 2008.

[54] M.P. Robillard and G.C. Murphy, “Representing Concerns in
Source Code,” ACM Trans. Software Eng. and Methodology, vol. 16,
no. 1, pp. 3-38, 2007.

[55] D. Janzen and K.D. Volder, “Navigating and Querying Code
Without Getting Lost,” Proc. Conf. Aspect-Oriented Software Devel-
opment, pp. 178-187, 2003.

[56] W. Coelho and G.C. Murphy, “Presenting Crosscutting Structure
with Active Models,” Proc. Conf. Aspect-Oriented Software Develop-
ment, pp. 158-168, 2006.

[57] T. Schäfer, M. Eichberg, M. Haupt, and M. Mezini, “The
SEXTANT Software Exploration Tool,” IEEE Trans. Software
Eng., vol. 32, no. 9, pp. 753-768, Sept. 2006.

[58] W.G. Griswold, J.J. Yuan, and Y. Kato, “Exploiting the Map
Metaphor in a Tool for Software Evolution,” Proc. Int’l Conf.
Software Eng., pp. 265-274, 2001.

[59] D. Shepherd, Z.P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker,
“Using Natural Language Program Analysis to Locate and
Understand Action-Oriented Concerns,” Proc. Conf. Aspect-
Oriented Software Development, pp. 212-224, 2007.

[60] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic, “An
Information Retrieval Approach to Concept Location in Source
Code,” Proc. 11th Working Conf. Reverse Eng., pp. 214-223, 2004.

[61] N. Wilde and M.C. Scully, “Software Reconnaissance: Mapping
Program Features to Code,” J. Software Maintenance: Research and
Practice, vol. 7, no. 1, pp. 49-62, 1995.

[62] A.D. Eisenberg and K.D. Volder, “Dynamic Feature Traces:
Finding Features in Unfamiliar Code,” Proc. Int’l Conf. Software
Maintenance, pp. 337-346, 2005.

[63] G. Antoniol and Y.-G. Guéhéneuc, “Feature Identification: An
Epidemiological Metaphor,” IEEE Trans. Software Eng., vol. 32,
no. 9, pp. 627-641, Sept. 2006.

[64] T. Eisenbarth, R. Koschke, and D. Simon, “Locating Features in
Source Code,” IEEE Trans. Software Eng., vol. 29, no. 3, pp. 210-224,
Mar. 2003.

[65] F. Asadi, M.D. Penta, G. Antoniol, and Y.-G. Guéhéneuc, “A
Heuristic-Based Approach to Identify Concepts in Execution
Traces,” Proc. 14th European Conf. Software Maintenance and Reeng.,
pp. 31-40, 2010.

[66] G. Froehlich, H.J. Hoover, L. Liu, and P. Sorenson, “Hooking into
Object-Oriented Application Frameworks,” Proc. Int’l Conf. Soft-
ware Eng., pp. 491-501, 1997.

[67] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[68] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations. Springer, 1999.

Abbas Heydarnoori received the PhD degree
from the University of Waterloo, Canada, in
2009, and the MSc and BSc degrees from the
Sharif University of Technology, Iran, in 2001
and 1999, respectively. After his PhD, he joined
the Dynamic Analysis Group at the University of
Lugano, Switzerland, as a postdoctoral re-
searcher. He is currently an assistant professor
in the Department of Computer Engineering at
the Sharif University of Technology. His re-

search interests include software reverse engineering and reengineer-
ing, dynamic program analysis, and component-based software
development.

Krzysztof Czarnecki received the MSc degree
in computer science at the California State
University at Sacramento in 1994, and the Dipl-
Inf and the PhD degree in computer science from
Ilmenau University of Technology, Germany, in
1995 and 1999, respectively. He worked as a
researcher at Daimler-Benz Research and Tech-
nology in Germany from 1995 to 2003. He is
currently an associate professor in the Depart-
ment of Electrical and Computer Engineering at

the University of Waterloo and NSERC/Bank of Nova Scotia Industrial
Research Chair in Requirements Engineering of Service-Oriented
Software Systems. His research interests include domain-specific
modeling, software product lines, and model synchronization.

Walter Binder received the MSc and PhD
degrees and a venia docendi from the Vienna
University of Technology, Austria. He is an
associate professor on the Faculty of Infor-
matics, University of Lugano, Switzerland. Be-
fore joining the University of Lugano, he was a
postdoctoral researcher at the Artificial Intelli-
gence Laboratory, Ecole Polytechnique Fédér-
ale de Lausanne (EPFL), Switzerland. His main
research interests are in the areas of dynamic

program analysis, virtual execution environments, aspect-oriented
programming, resource management, and service-oriented computing.

Thiago Tonelli Bartolomei received the BEng
degree from the State University of Campinas,
Brazil (2003), and the MSc degree from the
University of Applied Sciences Kiel, Germany
(2006). He is currently working toward the PhD
degree with the Generative Software Develop-
ment Lab at the University of Waterloo, Canada.
He held an IBM Centers for Advanced Studies
PhD Fellowship with Toronto Labs from 2007-
2009. His research interests include software

reengineering and program analysis, with special focus on the role
played by application programming interfaces in the software life cycle.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

24 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 38, NO. X, XXXXXXX 2012

