
GSDLAB TECHNICAL REPORT

Lax Lenses

Zinovy Diskin

GSDLAB–TR 2013–03–10 March 2013

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/



The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.



Lax Lenses

Zinovy Diskin

Generative Software Development Lab.,
Department of Electrical and Computer Engineering,

University of Waterloo, Canada
zdiskin@gsd.uwaterloo.ca

1 Introduction

This report aims to support the paper [1] with an accurate formal definition of a
new family of lens structures called lax lenses. Their main distinction from ordi-
nary lenses (either state-based or delta-based) is a weakened version of PutGet
law. Ordinary lenses require equality of the original view and the view pro-
vided by the updated source: A = get(put(A,B) for state-based lenses, and
similarly for delta lenses. However, in many applications we only have an in-
clusion A ⊂ get(put(A,B). Appendix provides an example (borrowed from the
paper). Such transitions from strict equality to inclusion (or, more generally, a
delta) have been studied in several contexts in category theory under the name
of ”laxity”: equality is relaxed and becomes a delta, particularly, inclusion. Cor-
respondingly, a construct X, whose definition requires equality, but the latter is
replaced by a delta, is called lax X. Hence, lax lenses.

2 Asymmetric Lenses

Let M be be a view schema, N a source schema, and get : Inst(M)← Inst(N) a
totally defined operation get-the-view (we direct the arrow backward to sync
the presentation with examples in Section 2). Below we will not directly use
metamodels as syntactical objects, and symbols M, N will denote the respective
model spaces Inst(M),Inst(N).

2.1 Non-incremental BX

Let M and N be two model spaces: the latter consists of source models, and
the former contains their views computed according to some view definition. We
thus have a total unary operation get : M← N get-the-view (we direct the arrow
backward to sync the presentation with examples in Section 2).

A bi-directional (BXed) view definition provides, in addition, another total
operation gen : M→ N (generate-the-source-), which is inverse to get in a certain
sense. For simple view definitions, invertibility means equality A = get(A.gen)
for any model A in M, where application of a function to an argument is denoted
by two ways: for get, the argument is written on the right of the function symbol



in brackets, and for gen, the argument is written on the left of the function
symbol separated by a dot; then direction of the operations in the example is
respected in the linear notation and makes it more suggestive.

The equality above is a basic law of the lens framework; in the lens jargon,
it should be phrased as the GenGet law. However, as the example in Appendix
shows, for views defined by complex queries like relational join, we may only
have subsetting A ⊆ A.gen.get. This is a general rule: due to some conditions on
the implementation side, the view to the generated source contains everything
specified in the original view plus, perhaps, something extra. Hence, we need a
generalization of lenses, in which GenGet law would be relaxed.

Definition 1 (Model spaces). A model space is a partially ordered set M =
(|M|,vM), whose elements are called models, and relationship A1 vM A2 is in-
terpreted as model A1 is contained in model A2. We will often skip bars and
subindex, if they are clear from the context.

Definition 2 (Non-incremental lenses). A non-incremental lax lens is a tu-
ple L = (M,N, get, gen) with M and N model spaces, and (get, gen) a pair of
monotonic (i.e., order-preserving) unary operations as above, which satisfy the
lax GenGet law:
(GenGet) A v get(A.gen) for all A ∈ M.

In addition, to prevent infinite loops of updating, we also require two weak
invertibility laws to hold:
(GetGenGet) get((get(B).gen) = get(B) for all B ∈ N
(GenGetGen) (get(A.gen)).gen = A.gen for all A ∈ M

It is convenient to denote a lens by a double arrow L≤ : M
 N (think of two op-
erations), and use the upper index to point to the view space. Then L≥ : M
 N
will be a lens with N being the view space. That is, the upper index points to
the direction of get.

2.2 Incremental BX

Discrete incrementality To save private changes on the B-side and generate
B-models incrementally, we need to enrich the computational framework with
a binary operation put : M×N→ N (called put (the view update back to source)
in the lens jargon), whose second argument is to be thought of as the original
source whose private data is to be preserved. As the first step towards an al-
gebraic model of incrementality, we consider the discrete case, when an update
from model A to model A′ is just a pair (A,A′) rather than delta ∆AA′ really
specifying the update.

Definition 3 (Discrete lax lenses). A discretely-incremental or just a dis-

crete lax lens is a pair L≤ = (L≤0 , put) with L≤0 = (M,N, get, gen) a non-
incremental lens as above, and put a binary operation as above, which is mono-
tonic in the following sense:

Avget(B)⇒ (A,B).putvB and Awget(B)⇒ (A,B).putwB.
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That is, an insertion (deletion) on the A-side is propagated to an insertion (dele-
tion) on the B-side.

Below we will often write A.putB for (A,B).put.
These data must satisfy three laws:

(GetPut) (get(B)).putB = B for all B∈N
(PutGet) A v get(A.putB) for all A∈M
(PutGetPut) A.putB = (get(A.putB)).putB for all A∈M

We can consider source generation operation gen as a special case of put. Assume
that every model space M has some fixed minimal model 0M contained in any
M-model A, 0MvA. We then require 0M = get(0N), and define for any model

A ∈ M, gen(A)
def
= put0N(A). Thus, a discretely incremental lens can be defined

as a tuple L = (M,N, get, put), where model spaces are assumed to have minimal
models.

Delta-incrementality: Updates are deltas between models To model
delta-incremental transformations, we make model spaces M, N directed graphs
rather than sets. Arrows in these graphs are embeddings of one model into
another. By the abuse of notation, we will denote the states of a model A before
and after update by A and A′ resp. (thus, A denotes both the model and its initial

state). The diagram A
u−→ A′ shows that A′ is bigger than A and the update is

an addition. Dually, the diagram A
u←− A′ specifies a deletion. Finally, diagram

A
u1←− K u2−→ A′ specifies a modification, i.e., a deletion followed by insertion

with K denoting the part of the model kept unchanged. We will call all such
diagrams deltas.

As arrow-updates can be composed, and there is an idle (do-nothing) arrow
for every model, it’s reasonable to assume model spaces to be categories, and
functional mappings between them to be functors (precise definitions can be
found in [5]). If M is a category, M• denotes its set of nodes (models), and M∆ is
its set of arrows (model embeddings). Correspondingly, the node and the arrow
parts of a functor f : M→ N are denoted by f• : M• → N• and f∆ : M∆ → N∆
resp.

We also assume that a categorical model space M has a minimal (categori-
cians say initial) object 0M such that for any object A ∈ M• there is a unique
delta oA : 0M → A. Now propagation operation become functorial and act over
both models and deltas.

Definition 4 (a sketch). A delta lens is a tuple L≤ = (M,N, get, put) with M
and N categories, get : M← N a functor, and put : M∆×N• → N∆ an operation,
which takes a view delta a : A→ A′ and an original source B such that A =
get(B), and produce a source delta b : B → B′ such that a = get(b) by the
PutGet law, particularly, A′ = get(B′). Precise definitions and details can be
found in [5].

For lax delta lenses, equality is to be relaxed, i.e., replaced by embedding e : A′ → get(B′),
which is, in fact, the second component of the propagation’s output
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Definition 5 (Lax delta lenses). A lax delta lens is a pair L≤ = (L≤1 , put∆)
where L1 = (M,N, get, put) is a delta lens as above, and put∆ : M∆×N• → M∆

is an operation, which takes a view delta a : A→ A′ and an original source B
such that A = get(B) exactly like operation put above, but produces a view

delta a′
def
= a.put∆B : A′ → get(B′), which matches the updated view A′ with its

implementation B′. We can merge put and put∆ in one two-valued operation
Put : M∆×N• → N∆×M∆

The PutGet law now states that delta a′ is a monic arrow, which is the
categorical way to say that this arrow is an injection.

In addition, weak invertibility holds:
(GetPutGet) get(get(b).putB) = get(b) for any b : B → B′

(PutGetPut) (a; a′).putB = a.putB for any a : A→ A′ and B, a′ as defined above.

To have a unified notation for the three types of lenses we introduced, we
will denote them by symbols L≤incr, where incr is incrementality index set to 0,
1/2, or 1 for non-incremental, discrete or delta lax lenses resp.

3 Symmetric lenses via asymmetric ones

We do not strive for maximal generality to define symmetric lenses abstractly
as in [6,2,4]. Instead, we consider a bit less general but covering the majority of
practically interesting cases setting, when symmetric lenses are built on top of
asymmetric ones.

Definition 6. A symmetric lax lens of incremental type incr ∈ {0, 12 , 1} is a pair

of lenses, the left one, L≥incr : M
 S, and the right one, R≤incr : S
 N, working over

a shared view space S. We denote such a pair by S≥≤incr : M
 N.
The operations of forward, from M to N and backward, from N to M, up-

date propagation are defined by composing the corresponding gets and puts. For
example, for the discrete case, we have binary operations fPpg : M×N→ N and

bPpg : M← N×M defined for any A ∈ M and B ∈ N as follows: (A,B).fPpg
def
=

(A.getL, B).putR and bPpg(B,A)
def
= putL(getR(B), A).

The same idea works for the delta-case, but now we compose operations via
deltas as shown in Fig.22 of paper [3] (the reader may ignore the middle tile).

The following result is straightforward.

Proposition 1. Operations fPpg and bPpg are monotonic, and propagate iden-
tity to identity. Particularly, for the discrete case, if A.getL = getR(B), then
(A,B).fPpg = B and A = bPpg(B,A).

Remark 1. For incrementality index incr=1/2, very mild conditions for equiva-

lence of an abstract definition of symmetric lenses and ours S≥≤1/2 are given in [7].

Stating such an equivalence for richer delta settings is an open question.
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A Symmetrization via Examples

We will consider several examples of synchronization scenarios to illustrate what
we mean by symmetrization.

A.1 Getting Started: ”Fly with comfort!”

Fig. 1: Model B and mapping r implement model A

A Canadian air carrier is
anticipating a significant
increase in the passenger
flow from Toronto to Mi-
ami due to the Models’13
conference. The company
decides to organize sev-
eral charter one-stop flights.
Two teams are created to
work on the project. The

first is responsible for the marketing: the number of flights to be added, their
time (morning or evening), and prices. Model A in Fig. 1 (left) is a sample
model the marketing team developed. The second team is technical: it works
on implementation of marketing decisions, and deals with an optimal choice
of intermediate airports and airplanes to use. Having data about airports and
planes, the team can compute a crucial flight parameter: cost-per-passenger, or
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just cost. An example of technical model implementing model A is also shown in
Fig. 1. The model consists of a base table B of short-distance flights (sd-flights)1,
and a derived table of one-stop flights (os-flights), obtained by joining sd-Flight
with themselves: an os-Flight flight self is a pair of sd-flights (self.fst, self.scd)
satisfying two conditions:

(Q) self.fst.to = self.snd.from and self.fst.time ≤ self.snd.time.

The first one defines relational join, and the second one assumes ordering mor<
eve. We also define self.time=self.fst.time. Computing self.cost is done by some
procedure using airport and airplane data. We thus have a function get (read
”get the view”) that computes derived table OsFlight from base table SdFlight.

Two ’by’-links relate Ld-flights to their one-stop implementations. Together
they form an inter-table (sub)mapping by: LdFlight→ OsFlight, which constitutes
a model-correspondence mapping r : A→ get(B) (mapping r could contain more
submappings like by, if model A would have more tables/classes). Note that
implementation is a pair (B, r), but we will often say ‘implementation’ B, leaving
the correspondence mapping implicit. We consider implementation (B, r) to be
correct, if for each ld-flight self we have:

(C) self.time = self.by.time and self.price ≥ self.by.cost + 100.

Many different correct implementations of the same model A are possible.
For example, Fig. 2 shows a variant with JFK serving as a hub for several
flights. It implies that the relational join table OsFlight has extra flights, and
thus mapping r is not surjective. This is a typical situation: an implementation
platform normally provides many possibilities, not all of which are used in a
concrete implementation.

Fig. 2: Another Implementation

Also, to be pre-
cise, what is imple-
mented is not the en-
tire model A but its
projection get∗(A) on
the ’time’ and ’price’
columns. Indeed, at-
tribute ’fnum’ does
not play any role in

creation of model B. Figure 3 refines Fig. 2 and makes mapping ’by’ totally de-
fined. View get∗(A) can be more complex if there are other attributes affecting
the price (wholesales, promotions, etc) but not relevant for side B.

Since model A∗ = get∗(A) is fully determined by model A, we say that A
informationally dominates A∗ and write A≥infA

∗. We will also say that model
A has its private information invisible to A∗. Similarly, get(B)≤infB. However,
neither of models A and B fully dominates the other as they both have their
own private information. We term this as informational symmetry, A≥≤infB.

1 We use standard airport codes: YYZ – for Pearson Int., Toronto, JFK – John F.
Kennedy, New York, MIA – Miami, Florida, and ORD — Chicago O’Hare
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A.2 A tour of synchronization symmetries and asymmetries.

Fig. 3: Model B and mapping r implement model get∗(A)

There may be several
ways of approaching
the intended exten-
sion of the sched-
ule, and finding its
best implementation.
We will distinguish
five basic patterns
amongst them, which

are consecutively considered in the next five subsections.

A.2.1 Any implementation is good enough, and the user does not care
which one is chosen. For example, either of the two possibilities shown in Fig. 1,
2, or yet another one, would suit the user. This is an unlikely scenario for flight
implementation, but it can be often encountered in code generation, when the
user does not have an access to code. We will refer to this situation by saying
that model A strongly dominates B organizationally, and write A�orgB (or,
equivalently, B�orgA).

A.2.2 Implementation is an asset. Now suppose that the technical team
works intensively with model B, tries different variants, analyzes them, and
strives to find an optimal solution. Discarding results of these efforts with every
change in model A would be discouraging for side B. A much better solution is
to implement changes on side A incrementally as shown in Fig. 4: the change,
or delta, on side A, ∆A, is propagated to a delta on side B, ∆B , which together
with the original implementation B provides an updated implementation. In
the figure, solid lines and shaded tables refer to given data, and dashed lines
and blank tables denote data produced by the operation of delta propagation.
In more detail, ∆A makes explicit that flight #11 is preserved and flight #22
is added. Correspondingly, delta ∆B keeps flights #1 and #2, and adds two
Sd-flights implementing the required one-stop flight. The range of possible im-
plementations is captured by placing labeled nulls ?i into the table: nulls with
the same label must be substituted with the same value (unknown so far), nulls
with different labels are independent, but may be also substituted with the same
value. In this way, uncertain model B′ captures the implementation in Fig. 1 with
?1=ORD, and that one in Fig. 2 with ?1=JFK, and others possibilities as well.
Correspondingly, the derived OsFlight table is also uncertain: the cost value is
given by applying some known procedure say, F , to unknown argument values
?i, i = 1, 2, 3.

Incremental propagation as described above gives model B more indepen-
dence than in case A.2.1. Suppose that model B is the result of customizing
some previous model B−, i.e., the update delta ∆− leading to B was indepen-
dently produced on side B rather than propagated. We assume some policy that
does allow such changes on side B if they do not affect side A, that is, original
model A−=A (consistent with B−) and updated model B are still consistent.
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Then customization on side B will be saved if A changes and the change is
propagated incrementally as described by Fig. 4. However, the policy may be
prohibitive towards B, if updated B− (i.e., B) and A− are inconsistent: then to
restore consistency, the policy would require to roll back ∆−. In other words,
while update propagation from A to B is allowed, update propagation from B
to A is prohibited. We will refer to this situation by saying that model A domi-
nates B organizationally (but not strongly), and write A>orgB or B<orgA. We
will also term the case as organizational asymmetry ; then we may call the case
in A.2.1 strong organizational asymmetry.

Fig. 4: Incremental implementation

A.2.3 Implementation
is as important as
specification: Round-
tripping. Consider a dif-
ferent business context,
in which the technical
team gains a greater au-
thority and administra-
tive weight than before.
Now, if while working
with the B-model origi-
nated from model A, the
team would find a good
modification B′, e.g., new
profitable os-flights, but

B′ is inconsistent with A, then the B-team may require to modify model A
to a state A′ consistent with B′. In other words, updates now can be propagated
in both directions. We will refer to the case as organizational symmetry of A
and B and write A≥≤orgB.

A.2.4 Concurrent updates. For ap-symmetric synchronization, it is natural
to allow concurrent (simultaneous) updates on the two sides. It brings two new
challenges. First, independently updated models are to be matched (aligned) for
specifying the mapping r. For example, if several new ld-flights appeared on side
SA and, independently, several new os-flights are added on side B, we need to
establish correspondences between them. In simple cases, a one hour meeting
of the teams would be enough. In more complex cases (big industrial models
comprising thousands of elements, teams with different background, each one
working on several projects etc), matching should be done automatically with use
of various heuristics and AI algorithms. Second, after mapping r is discovered,
we may find that the two concurrent updates are in conflict (i.e., condition (C)
on p.A.1 in violated). To resolve the conflict, we need to change either model A
or B, or both. We will write AforgB for this case; the symbol f is meant to
recall divergence.

8



A.2.5 In-between organizational asymmetry and symmetry. Assume
that model B is a database of SdFlights, and A is its materialized view compris-
ing all OsFlights. Of course, the attribute ’fnum’ is to be skipped, and mapping
’by’ is bijective: A ∼= get(B).

In our previous examples, view A was prescriptive in the sense that model
B was thought of as an implementation of A. Now we consider view A as an
ordinary descriptive view on the data source B as is typical for databases. Yet
we still want to allow the user to update the view, say, to state A′, and propagate
the update back to the source. The problem is that there are many states B′

such that get(B′) = A′, but we cannot arbitrarily choose one of them: updated
state A′ reflects an updated state of the world, which is, in turn, reflected in the
unique updated source B′ (recall that B is a view of the real world data). In
other words, choosing an arbitrary update policy does not work anymore.

If the view update is insertion, we can manage the uniqueness problem by
filling unknown slots with labeled nulls (Section 2.2.2). Suppose, however, that
the view update is a deletion, for example, ld-flight #11 in Fig. 4 is deleted. This
deletion can be caused by a real world deletion of sd-flight #11.by.fst: YYZ–JFK,
or #11.by.scd: JFK–MIA, or both. We cannot arbitrarily choose one of them,
because objects of class SdFlight must represent actual flights existing in the
schedule. Hence, deletions in the view A must be prohibited.

Thus, some of view updates are propagatable, and some are not; however, any
view update is reachable from the source side B. The case is thus more symmetric
than organizational asymmetry in 2.2.2, but less symmetric than roundtripping
in 2.2.3 We will term the situation as organizational semi-symmetry (or partial
round-tripping) and write A≤orgB.

A dual semi-symmetry case, A≥,orgB is also possible. It means that all view
updates are propagatable, but only some of the source updates are allowed. For
example, we can imagine a propagation policy when sd-flight updates changing
costs, and hence possibly affecting prices, are propagatable, whereas updates
that imply deletions or additions of ld-flights are prohibited.
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