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Abstract. Product lines (PLs) are now an established framework for
software design. They are specified by special diagrams called feature
models (FMs). For formal analysis, FMs are usually encoded by propo-
sitional theories with Boolean semantics. We discuss a major deficiency
of this semantics, and show that it can be fixed by considering a product
an instantiation process rather than its final result. We call intermediate
states of this process partial products, and argue that what an feature
model M really defines is a partial product line, PPL(M). We argue that
such PPLs can be viewed as special Kripke structures (we say feature
KSs) specifiable by a suitable version of CTL (feature CTL). We show
that any feature model M can be represented by an fCTL theory Th(M),
and prove that for any fKS K, K |= Th(M) iff K = PPL(M).

Key words: Product Lines, Feature Models, Partial Product Lines,
Kripke Structures, Modal Logic, Propositional Logic

1 Introduction

The Software Product Line approach is well-known in the software industry.
Products in a product line (PL) share some common mandatory features, and
differ by optionally having some optional features that allow the user (or devel-
oper) to configure the product the user wants (e.g., an MS Office, a Photoshop,
or a Linux kernel). Instead of producing a multitude of separate products, the
vendor designs a single PL encompassing the variety of products, which results in
a significant reduction in development time and cost [21]. (An impatient reader
might look at the next section for a simple PL example.)

Industrial PLs may be based on thousands of features inter-related in com-
plex ways [19]. Methods of specifying PLs and checking the validity of a PL
against a specification is an active research area. The most common method



for modeling PLs is feature modeling. Elite software engineering conferences like
ICSE, ASE, and FM, readily accept papers on PL [1,24,28]; there are conference
series specially devoted to PL, such as Generative Programming and Component
Engineering (GPCE) and Software Product Line Conference (SPLC), which at-
tracts dozens of papers; and several textbooks have been written about PL and
FM, e.g., [7, 21].

To manage their design and analysis, feature models (FMs) should be repre-
sented as formal objects processable by tools. A common approach is to consider
features as atomic propositions, and view FMs as theories in Boolean proposi-
tional logic (BL), whose valid valuations are to be exactly the valid products
defined by the FM [3]. This approach gave rise to a series of prominent ap-
plications for analysis of industrial size PLs [13, 27]. However, in the paper we
discuss a major deficiency of this semantics, which limits the effectiveness of the
approach, and show that it can be fixed by considering a product as an instan-
tiation process rather than its final result. We call intermediate states of this
process partial products, and argue that what an feature model M really defines
is a partial product line, PPL(M). We then show that any PPL can be viewed as
an instance of a special type of Kripke structure (KS), which we axiomatically
define and call feature KS (fKS). The latter are specifiable by a suitable version
of modal logic, which we call feature CTL (fCTL), as it is basically a fragment
of CTL enriched with a zero-ary modality that only holds in states representing
final products. We show that any feature model M can be represented by an
fCTL theory Th(M) accurately specifying M ’s intended semantics: the main
result of the paper states that for any fKS K, K |= Th(M) iff K = PPL(M).
Then we can replace FMs by the respective fCTL-theories, which are normally
well amenable to formal analysis and automated processing.

In a broader perspective, the paper aims to show that mathematical founda-
tions of FM are mathematically interesting, and to attract the attention of the
ML community to the area. We will describe several problems that we believe are
mathematically interesting and practically useful. On the other hand, we would
like to have the paper readable by a PL researcher, and to convince her that the
logic of PL is modal rather than Boolean. Therefore, we pay special attention
to the motivation of our framework: we want first to validate the mathematical
model, and then explore it formally.

Our plan for the paper is as follows. The next section aims to motivate the
formal framework developed in the paper. In Sect. 2.1, we discuss the basics
of FM, and why its Boolean semantics is deficient. Then in Sect. 2.2 we intro-
duce partial products and PPLs. We will begin with PPLs generated by simple
FMs, which can be readily explained in lattice-theoretic terms (Sect. 2.2). Then
we show that PPLs generated by complex FMs are more naturally, and even
necessarily, best characterized as transition systems (Sect. 2.2). In Sect. 3, the
notions of FM and the PPL it generates are formalized. In Sect. 4, we introduce
the notion of fKS as an immediate abstraction of PPLs, and fCTL as a language
to specify fKS properties. We show, step-by-step, how to encode FMs into fCTL
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theories, and prove our main result. Related work is discussed in Sect. 5, and
Sect. 6 concludes.
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2 Feature Models and Partial Product Lines

2.1 Basics of Feature Modeling
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Fig. 1: An FM

A common method of specifying a PL is to build a fea-
ture model (FM): a graphical structure presenting a hi-
erarchial decomposition of features with cross-cutting
constraints (CCCs) between them. Figure 1 gives an
example. It is a tree of features, whose root names
the product (’car’ in this case), and edges relate a fea-
ture to its subfeatures. Edges with black bullets de-
note mandatory subfeatures: every car must have an
eng (engine), a gear, and brakes. The hollow-end edge
says that brakes can optionally be equipped with abs

(ABS). Black angles denote so called OR-groups: an engine can be either gas
(gasoline), or elec (electric), or both. Hollow angles denote XOR-groups (eX-
clusive OR): a gear is either mnl (manual) or atm (automatic) but not both;
it must be supplied with oil as dictated by the black-bullet edge. The ×-ended
arc says that an electric engine cannot be combined with a manual gear, and
the arrow-headed arc says that automatic gear requires ABS. According to the
model, the set of features {car,eng, gas, gear, mnl, oil, brakes} is a valid product,
but replacing the gasoline engine by electric, or removal of oil, would make the
product invalid. In this way, the model compactly specifies seven valid products
amongst the big set of 29 possible combination of 9 features (the root is always
included), and shows dependencies between choices.

Industrial FMs may have thousands of features, and their PLs can be quite
complex [19]. To manage their design and analysis, FMs should be represented as
formal objects processable by tools. A common approach is to consider features
as atomic propositions, and view FMs as theories in Boolean propositional logic
(BL), whose valid valuations are to be valid products defined by the FM [3]. This
approach gave rise to a series of prominent applications for analysis of industrial
size PLs [13,27].

eng 
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M2 

brakes 

M1 

car 

eng 

abs 

However, the BL encoding of FMs has an inherent draw-
back. The inset figure shows two essentially different FMs,
which nevertheless have the same valid products: P1 =
{car, eng, brakes} and P2 = P1 ∪ {abs} (and so will have the
same BL-encoding). Hence, either (a) FMs contain redundant
information, irrelevant for PLs, or (b) their Boolean seman-
tics is too poor to capture all relevant information contained
in FMs. The possibility (a) does not hold as model M2 is ev-
idently pathological wrt. the natural meaning of features, and
we do want to distinguish M1 and M2. Hence, it is the case (b)
that creates the discrepancy, and so the Boolean semantics, and
BL-encoding of FMs, should be corrected. In particular, loos-
ing the hierarchical structure of FMs in their BL-encoding can
invalidate some important automated analyses performed by BL-based tools,
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e.g., determining the least common ancestor of a given set of features (LCA) [4].
In general, the deficiency of BL is known [27], but, surprisingly, no logic has
been proposed to replace BL to fix the problem.
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Fig. 2: From FM to PPL: simple cases

2.2 PPL semantics for FM

Getting started What is lost in the BL-encoding is the dynamic nature of
the notion of product. An FM defines not just a set of valid products but the
very way these products are to be (dis)assembled step by step from constituent
features. Correspondingly, a PL appears as a transition system initialized at
the root feature (say, car for model M1 in Fig. 2a) and gradually progress-
ing towards fuller products (say, {car} → {car, eng} → {car, eng, brakes} or
{car} → {car, brakes} → {car, brakes, abs} → {car, brakes, abs, eng}); we will call
such sequences instantiation paths. The graph in Fig. 2(b1) specifies all possible
instantiation paths for M1 (c, e, b, a stand for car, eng, brakes, abs, resp., to
make the figure compact). Nodes in the graph denote partial products, i.e., valid
products with, perhaps, some mandatory features missing: for example, product
{c,e} is missing feature b, and product {c,b} is missing feature e. In contrast,
products {e} and {c,a} are invalid as they contain a feature without its parent;
such products do not occur in the graph. As a rule, we will call partial products
just products. Product {c,e,b} is full (complete) as it has all mandatory sub-
features of its member-features; nodes denoting full products are framed. (Note
that product {c,e,b} is full but not terminal, whereas the bottom product is
both full and terminal.) Edges in the graph denote inclusions between products.
Each edge encodes adding a single feature to the product at the source of the
edge; in text, we will often denote such edges by hooked arrows and write, e.g.,
{c} ↪→e {c, e} where the subscript denotes the added feature.

We call the instantiation graph described above the partial product line deter-
mined by model M1, and write PPL(M1) or PPL1. In a similar way the PPL of
the second feature model, PPL(M2), is built in Fig. 2(b2). We see that although
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both FMs have the same set of full products (i.e., are Boolean semantics equiv-
alent), their PPLs are essentially different and properly capture the difference
between the FMs.

Generations of PPL1,2 from models M1,2 in Fig. 2 can be readily explained in
lattice-theoretic terms. Let us first forget about mandatory bullets, and consider
all features as optional. Then both models are just trees, and hence are posets
(even up-join semi-lattices). Valid products are up-closed sets of features (filters),
and form distributive lattices (consider Fig. 2(b1,b2) as Hasse diagrams), whose
up-join is set intersection, and down-join (meet) is set union. If we freely add
meets to posets M1,2 (eng ∧ brakes etc.), and thus freely generate lattices Li,
i = 1, 2, over the respective posets, then lattices Li and PPLi will be dually
isomorphic (Birkhoff duality).

The forgotten mandatoriness of some features appears as incompleteness of
some objects, which form a subset of proper partial products. Its complement is
the set of all full products. Thus, PPLs of simple FMs as in Fig. 2(a) are their
filter lattices with distinguished subsets of full products. In the next section we
will discuss whether this lattice-theoretic view works for more complex FMs.
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Fig. 3: From FMs to PPLs: Complex case

PPL: From lattices to transition systems Figure 3 (left) shows a fragment
of the FM in Fig. 1, in which, for uniformity, we have presented the XOR-group
as an OR-group with a new cross-cutting constraint (CCC) added to the tree
(note the ×-ended arc between mnl and atm). To build the PPL, we follow the
idea described above, and first consider M3 as a pure tree-based poset with
all the extra-structure (denoted by black bullets and black triangles) removed.
Figure 3 (right) describes a part of the filter lattice as a Hasse diagram (to ease
reading, the number of letters in the acronym for a feature corresponds to its
level in the tree, e.g., c stands for car, en for eng etc.).

Now let us consider how the additional structure embodied in the FM in-
fluences the PPL. Two CCCs force us to exclude the bottom central and right
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products from the PPL; they are shown in brown-red and the respective edges
are dashed. To specify this lattice-theoretically, we add to the lattice of features
the universal bottom element ⊥ (a constant to be a common subfeature of any
feature), and write two defining equations: ele ∧ mnl = ⊥ and mnl ∧ atm = ⊥.
(Then, in the filter lattice, the formal down-union of products {c,en,ele,ge} and
{c,ge,mnl,en} “blows up” and becomes equal to the set of all features includ-
ing ⊥ (“False implies everything”.) The same happens with the other pair of
conflicting products. (A detail discussion can be found in [22].)

Next we consider the mandatoriness structure of model M3 (given by black
bullets and triangles). Of course, this structure determines a full product subsect
in the PPL (not shown in Fig. 3) as before. However, now mandatoriness affects
the set of valid partial products as well. Consider the product P = {c, en, ge} at
the center of the diagram. The left instantiation path leading to this product,
{c} ↪→en {c, en} ↪→ge P is not good because gear was added to engine before the
latter is fully assembled (a mandatory choice between being electric or gasoline,
or both, has still not been made). Jumping to another branch from inside of the
branch being processed is poor design practice that should be prohibited, and the
corresponding transition is declared invalid. Similarly, transition {c, ge} ↪→en P
is also not valid as engine is added before gear instantiation is completed. Hence,
product P becomes unreachable, and should be removed from the PPL. (In the
diagram, invalid edges are dashed (red with a color display), and the products
at the ends of such edges are invalid too).

Thus, a reasonable requirement for the instantiation process is that process-
ing a new branch of the feature tree should only begin after processing of the
current branch has reached a full product. We call this requirement instantiate-
to-completion (I2C) by analogy with the run-to-completion transaction mecha-
nism in behavior modeling (indeed, instantiating a branch of a feature tree can
be seen as a transaction). Importantly, I2C prohibits transitions rather than
products, and it is possible to have a product with some instantiation paths into
it being legal (and hence the product is legal as well), but some paths to the
product being illegal. Figure 4 shows a simple example.

“Diagonal” transition {c, ge}−→{c, en, ge} violates I2C and must be re-
moved. However, its target product is still reachable from {car, eng} as the latter
is a fully instantiated product. Hence, the only element excluded by I2C is the
diagonal dashed transition.

It follows from this observation that a PPL can be richer than its lattice of
partial products; transition exclusion cannot be explained lattice-theoretically
with Boolean logic; transition systems/Kripke structures and modal logic are
needed. Moreover, even if all inclusions are transitions, the Boolean logic is too
poor to express important semantic properties embodied in PPLs. For example,
we may want to say that every product can be completed to a full product, and
every full product is a result of such a completion. Or, we may want to say that
if a product P has some feature f , then in some of its partial completions P ′, a
feature g should appear. Or, if a product P has a feature f , then any full product
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completing P must have a feature g, and so on. All in all, the transition relation
is an important (and independent) component of the general PPL structure.

car 
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Fig. 4

Finally, as soon as transitions become first-class citi-
zens, it makes sense to distinguish full products by sup-
plying them (and only them) with identity loops (see the
bottom product in PPL4 in Fig. 4). Such a loop does not
add (nor remove) any feature from the product, and has a
clear semantic meaning: the instantiation process can stay
in a full product state indefinitely.

In the next two sections, we will formalize the con-
structs discussed above, and prove several results about
them.

3 FMs and PPLs formally

3.1 Feature Trees and Models

Typical FMs are trees with an extra structure like in
Fig. 1. Non-root features are either solitary or grouped.
Solitary features are either mandatory (e.g., eng, gear,
brakes in Fig. 1) or optional (like abs). Feature groups are
usually either OR-groups (e.g., {gas,elec}) or XOR-groups
({mnl,atm}). An FM is a feature tree with a set of additional cross-cutting con-
straints (CCCs) on features in different branches of the tree. Typically, such
constraints are either exclusive (the x-ended arc in Fig. 1), or inclusive (the
dashed arrow arc in Fig. 1).

In our framework, mandatory features and XOR-groups are derived con-
structs. A mandatory feature can be seen as a singleton OR-group. An XOR-
group can be expressed by an OR-group with an additional exclusive constraint
as we did for model M3 in Fig. 3(a).

Definition 1. (Feature Trees). A feature tree (FT) is a pair TOR = (T,OR)
of the following components.

(i) T = (F, r, ↑) is a tree whose nodes are called features: F denotes the set
of all features, r ∈ F is the root, and function ↑ maps each non-root feature

f ∈ F−r
def
= F \ r to its parent f↑. The inverse function that assigns to each

feature the set of its children (we say subfeatures) is denoted by f↓; this set is
empty for leaves. The set of all ancestors and all descendants of a feature f are
denoted by f↑↑ and f↓↓, resp.

Features f, g are called incomparable, f#g, if neither of them is a descendant
of the other. We write #2F for the set {G ⊂ F : f#g for all f, g ∈ G} ⊂ 2F .

(ii) OR is a function that assigns to each feature f ∈ F a set OR(f) ⊂ 2f↓

(perhaps, empty) of disjoint subsets of f ’s children called OR-groups. If a group
G ∈ OR(f) is a singleton {f ′} for some f ′ ∈ f↓, we say that f ′ is a mandatory
subfeature of f . We write M(f) ⊆ f↓ for the set of all such subfeatures. For
example, in Fig. 1, OR(gear) = {{mnl, atm}, {oil}}, and OR(brakes) = ∅.
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Element in set O(f)
def
= f↓ \

⋃
OR(f) are called optional subfeatures. ut

Definition 2. (Feature Models). A feature model (FM) is a triple M =
(TOR, EX , IN ) with an FT TOR as defined above, and two additional compo-
nents defined below:
(i) EX ⊆ #2F is a set of exclusive dependencies between features. For example,
in Fig. 1, EX = {{elec,mnl}, {mnl, atm}}.
(ii) IN ⊂ #2FF is a set of inclusive dependencies between features. For FM in
Fig. 1, IN = {({atm}, abs)}.

Dependencies are also called cross-cutting constraints (CCCs).
Thus, an FM is a tree of features T endowed with three extra structures OR,

EX , and IN . We will sometimes write it as a quadruple M = (T,OR, EX , IN ).
If needed, we will subscript M ’s components with index M , e.g., write FM for
the set of features F .

The class of all FMs over the same feature set F is denoted by M(F ). ut

3.2 Full and Partial Products

A common approach for formalizing the full products of a given FM M is to
use propositional logic [3]. In this approach, the features are considered as
atomic propositions and a logical formula is generated by modeling relation-
ships between features. The relationships between features are into the follow-
ing kinds: subfeature relationship, OR groups, exclusive constraints, and inclu-
sive constraints. Accordingly, we give the propositional theories Φ(T ), Φ!(OR),
Φ(EX ), Φ(IN ), respectively. The theory of the full products, denoted by Φ!(M),
is the union of the above theories. What this logical translation is meant to
achieve is the following equivalence: P is a valid full product wrt. an FM M iff
P |=BL Th(M), where subscript BL refers to the Boolean logic validity.

In this section, we show that the propositional theory of FMs can be more
richer: we give a propositional theory for identifying the partial products of a
given FM. To this end, we give a propositional theory of I2C principle and also
use the theories Φ(T ), Φ(EX ).

Remark 1. As seen in Sect. 2.2, transition exclusion cannot be explained with
Boolean logic and modal logic is needed. Indeed, in Sect. 4.3, we will build several
ML theories of FMs analogous to their propositional theories and show how the
corresponding theories change in their ML versions.

Definition 3. (From FM to Propositional Theories). Let M = (TOR, EX
, IN ) be an FM. The upper part of Table 1 lists four propositional theories (1)
- (4) determined by M (> and ⊥ denote True and False, respectively.

∨
G and∧

G are conjunction and disjunction of all formulas in a set of formulas G).1

We call these theories basic.
Theories (12), (13!) and (123!4) are unions of the respective basic theories;

they are introduced to ease writing and reading technicalities. ut
1 Theory (3!) is superscripted by ! because later we will introduce another theory

determined by the OR-structure.
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Table 1: Boolean theories extracted from a model M = (TOR, EX , IN )

(1) Φ(T ) = {> → r} ∪ {f ′ → f : f ∈ F, f ′ ∈ f↓}
(2) Φ(EX ) = {

∧
G→ ⊥ : G ∈ EX}

(3!) Φ!(OR) = {f →
∨
G : f ∈ F,G ∈ OR(f)}

(4) Φ(IN ) = {
∧
G→ f : (G, f) ∈ IN}

(12) Φ(TEX ) = Φ(T ) ∪ Φ(EX )

(13!) Φ!(TOR) = Φ(T ) ∪ Φ!(OR)

(123!4) Φ!(M) = Φ!(TOR) ∪ Φ(EX ) ∪ Φ(IN )

(3∗) ΦI2C(OR) =
{
f ∧ g → (

∧
Φ!(T f

OR)) ∨ (
∧
Φ!(T g

OR)) : f, g ∈ F, f↑ = g↑
}

(123∗) Φ(M) = Φ(TEX ) ∪ ΦI2C(OR)

Definition 4. (Full Products). A full product over feature model M = (TOR,
EX , IN ) is a set of features P ⊆ F satisfying the theory

∧
Φ!(M) defined in

Table 1 as theory (123!4).
The set of all full products is called the full product set over M and denoted

by FPM . Thus, FPM =
{
P ⊆ F : P |=BL

∧
Φ!(M)

}
. ut

Remark 2. The definition above is equivalent to the standard one, except that
we use the term full product rather than product (see below).

Our next goal is to formalize the notion of partial product as described in
Sect. 2. We need to define compliance of a product with the I2C-principle.

Definition 5. (From FM to Propositional Theories Cont’d). Let TOR =
(T,OR) be an FT. We first define the notion of a feature subtree induced by

feature f ∈ F : it is a pair T f
OR = (T f ,ORf ) with T f being the tree under f ,

i.e., T f def
= (f↓↓ ∪ {f}, f, ↑), and mapping ORf is inherited from OR, i.e., for

any g ∈ f↓↓, ORf (g) = OR(g). ut
Next we define propsitional theory ΦI2C(OR) as specified in Table 1 in row (3∗).
Theory ΦI2C(OR) formalizes the following idea. If a valid product contains
two incomparable features, then at least one of these features must be fully
instantiated within the product.

Definition 6. (Partial Products). A partial product over feature model M =
(TOR, EX , IN ) is a set of features P ⊆ F satisfying the theory

∧
Φ(M) specified

in Table 1 row (123∗). We denote the set of all partial products by PPM . Thus,
PPM = {P ⊆ F : P |=BL

∧
Φ(M)}.

Below the term ’product’ will mean ’partial product’. ut
Note that theory Φ(M) defining the set of partial products does not contain

inclusive and OR constraints in contrast to theory Φ!(M). Thus, the OR and
IN components of an FM only affect the set of full products, but do not influence
partial product formation.
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Proposition 1. For any FM M , Φ!(M) |= Φ(M). Hence, full products as de-
fined in Definition 4 form a subset of partial products, FP(M) ⊆ PP(M). ut

Proof. Obviously, Φ!(OR) |=
{
f →

∧
Φ!(T f

OR) : f∈ F
}

.
⇒ Φ!(OR) |= ΦI2C(OR).
⇒ Φ(T ) ∪ Φ!(OR) ∪ Φ(EX ) ∪ Φ(IN ) |= Φ(T ) ∪ Φ(EX ) ∪ ΦI2C(OR).
⇒ Φ!(M) |= Φ(M).

3.3 PPLs as Transition Systems

In this section, we consider how products are related. The problem we address is
when a valid product P can be augmented with a feature f /∈P so that product
P ′ = P]{f} is valid as well. We then write P −→ P ′ and call the pair (P, P ′) a
valid (elementary) transition.

Two necessary conditions are obvious: the parent f↑ must be in P , and f
should not be in conflict with features in P , that is, P ′ |= Φ(TEX ). Compatibility
with I2C is more complicated.

Definition 7. (Relative fullness). Given a product P and a feature f /∈P , the
following theory (continuing the list in Table 1) is defined:

(6)P,f ΦI2C(P, f)
def
=
⋃{

Φ!(T g
OR) : g ∈ P ∩ (f↑)↓

}
where T g

OR denotes the subtree induced by feature g as described in Definition 5.
(Note that set P∩(f↑)↓ may be empty, and then theory ΦI2C(P, f) is also empty.)

We say that P is fully instantiated wrt. feature f if P |= ΦI2C(P, f) ut

For example, it is easy to check that for FMM4 in Fig. 4, for product P1={car, eng}
and feature f1 = gear, we have P1 |= ΦI2C(P1, f1) while for P2={car, gear} and
f2 = eng, P2 2 ΦI2C(P2, f2) because Φ!(T gear

OR ) = {gear → oil} and P2 2 {gear →
oil}.

Definition 8. (Valid transitions). Let P be a product. Pair (P, P ′) is a valid
transition, we write P −→ P ′, iff one of the following two possibilities (a,b)
holds.

(a) P ′ = P ]{f} for some feature f /∈P such that the following two conditions
hold: (a1) P ′ |= Φ(TEX ), and (a2) P |= ΦI2C(P, f).

(b) P ′ = P and then P is full. ut

Proposition 2. If P is a valid product and P −→ P ′, then P ′ is also a valid
product. ut

Proof. Let P be a valid product and P −→ P ′ be a valid transition.
According to Definition 8, there are two choices: (a) P = P ′ or (b) P ′ = P ]{f}
s.t. P ′ |= Φ(TEX ) and P |= ΦI2C(P, f).
Since the proposition is proven immediately in the former case, we consider the
later case.
Let g ∈ P be an arbitrary feature with g↑ = f↑, i.e., g ∈ P ∩ (f↑)↓. Since
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P |= ΦI2C(P, f), P |= Φ!(T g
OR). This implies that P ′ |= Φ!(T g

OR).
Therefore, P ′ |=

⋃{
Φ!(T g

OR) : (g ∈ P ) ∧ (g↑ = f↑)
}

.
The above statement, along with P |= ΦI2C(OR), imply that

P ′ |=
{
f ∧ g → (

∧
Φ!(T f

OR)) ∨ (
∧
Φ!(T g

OR)) : f, g ∈ F, f↑ = g↑
}
,

i.e., P ′ |= ΦI2C(OR).
Thus P ′ satisfies both Φ(TEX ) and ΦI2C(OR), which means P ′ |= Φ(M). The
proposition is proven.

Definition 9. (Partial Product Line). Let M = (TOR, EX , IN ) be an FM.
The partial product line determined by M , P(M), is a tuple (PPM ,−→M , IM ),
with the set PPM of partial products equipped with all valid transitions −→M as
defined above (so that full products, and only they, are equipped with self-loops),
and the initial product IM = {rM} consisting of the root feature. ut

4 Feature Kripke Structures and Modal Logic

In this section, we introduce Feature Kripke Structures (fKS): an immediate
abstraction of PPLs generated by FMs in terms of Kripke structures. Then (in
section 4.2), we introduce a modal logic called feature CTL (fCTL), which is
tailored for specifying fKSs’ properties. Section 4.3 presents the main results: we
translate an FM into an fCTL theory specifying the intended PPL.

4.1 Feature Kripke Structures

We deal with a special type of Kripke structures, in which possible worlds (called
partial products) are identified with sets of atomic propositions (features), and
hence the labeling function is not needed.

Definition 10. (Feature Kripke Structure (fKS)). Let F be a finite set (of
features). An fKS over F is a tuple K = (PP,−→, I) with PP⊂2F a set of
(partial) products, I∈PP the initial singleton product (i.e., I = {f} for some
f ∈ F ), and −→⊆ PP×PP a binary totally defined (we say left-total) transition
relation. In addition, we require the following three conditions to hold.
(Singletonity) ∀P, P ′∈PP 〈if P −→ P ′ and P 6= P ′, then P ′=P∪{f} for some
f /∈ P 〉.
(Reachability) For all P ∈ PP, P is reachable from I.
(Self-Loops Only) For all P, P ′∈PP, if (P −→+ P ′ −→+ P ), then P = P ′

(where −→+ is the transitive closure of −→). Thus, every loop is a self-loop.
A product P ∈ PP with P −→ P is called full. The set of full products is

denoted by FP. Ingredients of an fKS K are subscripted with K if needed (PPK ,
−→k etc.). We denote the class of all fKSs built over set F by K(F ). ut

Note that any product in an fKS eventually evolves into a full product because set
F is finite, −→ is left-total, and all loops are self-loops. The following proposition
follows obviously.

12



Proposition 3. Let M∈M(F ) be an FM. Its PPL is an fKS, i.e., P(M) ∈
K(F ). ut

The proposition above is not very interesting: there is a rich structure in P(M)
that is not captured by the fact that P(M) is an fKS—the class K(F ) is too
big. We want to characterize P(M) in a more precise way by defining as small
as possible class of fKSs to which P(M) would provably belong. Hence, we need
a logic for defining classes of fKSs by specifying fKS’s properties.

4.2 Feature Computation Tree Logic

We define fCTL, which is a fragment of the Computation Tree Logic (CTL)
enriched with a constant (zero-ary) modality ! to denote full products.

Definition 11. (feature CTL). fCTL formulas are defined using a finite set
of propositional letters F , an ordinary signature of propositional connectives:
zero-arity > (truth), unary ¬ (negation) and binary ∨ (disjunction), plus a modal
signature consisting of the constant modality !, and three unary modalities AX,
AF, and AG. The well-formed fCTL-formulas φ are given by the grammar:

φ ::= f | > | ¬φ | φ ∨ φ | AXφ | AFφ | AGφ | ! . where f ∈ F.

Other propositional and modal connectives are defined via duality as usual:
⊥, ∧, EX, EF, EG are the duals of >, ∨, AX, AG, AF, resp. Also, we define a
unary modality 2!φ as a shorthand for AG(! → φ). Let fCTL(F ) denotes the
set of all fCTL-formulas over F . ut

Table 2: Rules of satisfiability

P |= f iff f ∈ P (for f ∈ F )
P |= > always holds
P |= ¬φ iff P 6|= φ
P |= φ ∨ ψ iff (P |= φ) or (P |= ψ)
P |= AXφ iff ∀〈P −→ P ′〉. P ′ |= φ
P |= AFφ iff ∀〈P=P1 −→ P2 −→ . . .〉 ∃i ≥ 1. Pi |= φ
P |= AGφ iff ∀〈P=P1 −→ P2 −→ . . .〉 ∀i ≥ 1. Pi |= φ
P |= ! iff P −→ P

The semantics of fCTL-formulas is given by the class K(F ) of fKSs built
over the same set of features F . Let K ∈ K(F ) be an fKS (PP,−→, I). We
first define a satisfaction relation |= between a product P ∈ PP and a formula
φ ∈ fCTL(F ) by structural induction on φ. This is done in Table 2.

Then we set K |= φ iff IK |= φ. Also, we say a class K of fKSs satisfies a
given formula φ, and write K |= φ, iff K |= φ for all K ∈ K.

13



4.3 fCTL-theory of Feature Models

Given an arbitrary model M , we aim to build an fCTL-theory Th(M) implicitly
encoded by M . The goal is achieved if for an arbitrary fKS K we have K |=
Th(M ) iff K = P(M). Then we can replace FMs by the respective fCTL-
theories, which are normally well amenable to formal analysis and automated
processing.

Table 3: Definitions of (basic) fCTL theories extracted from model M =
(TOR, EX , IN )

(1) Φ↓ML(T ) =
{
f ∧ ¬

∨
f↓ → EXg : f, g ∈ F, g↑ = f

}
(2) ∅
(3!) Φ!

ML(OR) =
{
f → 2!

∨
G : f ∈ F,G ∈ OR(f)

}
(3∗) ΦI2C→

ML (OR) =
{
f ∧ ¬

∧
Φ!(T f

OR)→ ¬EXg : f, g ∈ F, f↑ = g↑
}

(23) Φ↔ML(TOR, EX ) =
{∧

ΦI2C(f) ∧ ¬f ∧ ¬
∨
ΦEX (f) → EXf : f ∈ F

}
,

where
ΦI2C(f) = {g → Φ!(T g

OR) : g, f ∈ F, g↑ = f↑, g 6= f} and
ΦEX (f) =

{∧
(G \ {f}) : G ∈ EX , f ∈ G

}
(4) ΦML(IN ) =

{∧
G→ 2!f : (G, f) ∈ IN

}
We will build a required theory by composing multiple small elemetary or ba-

sic fCTL-theories, each of which specifies a fragment of M ’s structure. Roughly,
this process is analogous to how we build Boolean theories encoded by FMs (Ta-
ble 1), but, of course, the modal setting makes it much more complex and richer.
Table 3 defines several basic fCTL-theories; their indexes are chosen to establish
some loose parallelism with Table 1. Table 4 specifies the necessary composed
theories, which gradually provide the necessary fKS-structure.

We can summarize the results of this section in the following way:

“An fKS K satisfies the theory Th(M) iff it is equal to the PPL of M .”

To prove this statement, we need to show that the following statements hold:
(i) “The PPL of M satisfies the theory Th(M)” (Lemma 5).
(ii) “The set of p-products of K and M are the same” (Lemma 6).
(iii) “The set of transitions of K and P(M) are the same” (Lemma 8).
Several interesting propositions and lemmas are proven in turn to support the

above lemmas. Some of them address directly some practical analysis operation
regarding to relations between FMs including specialization and refactoring.

Proposition 4. Let K and M be an fKS and an FM over the same set of
features, respectively. K |= AG

∧
Φ(M) iff PPK ⊆ PPM . ut

Proof. Proof of
(
K |= AG

∧
Φ(M)

)
⇒
(
PPK ⊆ PPM

)
:

K |= AG Φ(M) implies that for any product P in K, P satisfies Φ(M). According
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Table 4: Definitions of composed fCTL theories extracted from model M =
(TOR, EX , IN )

BL Theories
(see Table 1)

fCTL Theories (see Table 3)

Φ(T ) ΦML(T ) = Φ(T ) ∪ Φ↓ML(T )

Φ(TEX ) ΦML(TEX ) = ΦML(T ) ∪ Φ(EX )

Φ(M) ΦML(M) = ΦML(TEX ) ∪ Φ↔ML(TOR, EX ) ∪ ΦI2C(OR)

Φ!(TOR) Φ!
ML(TOR) = ΦML(T ) ∪ Φ!

ML(OR)

Φ!(M) Φ!
ML(M) = Φ!

ML(TOR) ∪ ΦML(IN ) ∪ {
∧
Φ!(M)→ !}

ΦI2C(OR) ΦI2C
ML (OR) = ΦI2C(OR) ∪ ΦI2C→

ML (OR)

N/A Th(M) = ΦML(M) ∪ ΦI2C
ML (OR) ∪ Φ!

ML(M)

to Definition 6, this means that any product in K is a partial product of M , i.e.,
∀P ∈ PPK : P ∈ PPM .

Proof of
(
PPK ⊆ PPM

)
⇒
(
K |= AG

∧
Φ(M)

)
:

Let PPK ⊆ PPM and P ∈ PPK . Since P ∈ PPM , according to Definition 6,
P satisfies

∧
Φ(M). Since any state in K is reachable from the initial state,

IK |= AG
∧
Φ(M), which means K |= AG

∧
Φ(M).

The following is an immediate corollary of the above proposition:

Corollary 1. Given an FM M , P(M) |= AG
∧
Φ(M).

Lemma 1. Given an FM M , P(M) |= AG
∧
Φ↓ML(T ). ut

Proof. Recall that Φ↓ML(T ) =
{
f ∧ ¬

∨
f↓ → EXg : f, g ∈ F, g↑ = f

}
.

Let f be a feature and P ∈ PPM a partial product of M such that f ∈ P
and for any feature g ∈ f↓ (g is a subfeature of f), g 6∈ P . In other words,
P |= f ∧¬

∨
f↓. We want to show that for any subfeature of f , say g, P |= EXg,

i.e., there is a partial product P ′ such that P −→M P ′ and g ∈ P ′:
Since P is a partial product of M , according to Definition 6, P |= Φ(EX ) ∧

Φ(T ). Let P ′ = P ∪ {g}.
Since exclusive constraints are defined on incomparable features (Definition 2

- recall that two features h, i are comparable if h ∈ i↓↓ or i ∈ h↓↓), adding g to
P does not violate Φ(EX ). Therefore, P ′ |= Φ(EX ). It is also clear that adding g
to P does not violate Φ(T ): P |= Φ(T ) and g↑ ∈ P and so P ′ |= Φ(T ). Satisfying
both Φ(EX ) and Φ(T ), P ′ |= Φ(TEX ).

Since P ∩ (g↑)↓ = ∅ (note that g↑ = f and all children/subfeatures of f are
absent in P ), ΦI2C(P ′, g) = ∅ (note Definition 7). Therefore, P |= ΦI2C(P, f).

We showed above that P ′ |= Φ(TEX ) and P |= ΦI2C(P, f). According to
Definition 8, there is a transition P −→M P ′. Hence, according to Proposition 2,
P ′ is a partial product of M , i.e., P ′ ∈ PPM . The lemma is proven.
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Lemma 2. Given an FM M , P(M) |= AG
∧
Φ↔ML(TOR, EX ). ut

Proof. Recall that Φ↔ML(TOR, EX ) =
{∧

ΦI2C(f) ∧ ¬f ∧ ¬
∨
ΦEX (f) → EXf :

f ∈ F
}

, where ΦI2C(f) = {g → Φ!(T g
OR) : g, f ∈ F, g↑ = f↑, g 6= f} and

ΦEX (f) =
{∧

(G \ {f}) : G ∈ EX , f ∈ G
}

.
Let f and P be a feature and a partial product of M , respectively, such that

P 6|= f , P |=
∧
ΦI2C(f), and P 6|=

∨
ΦEX (f), i.e.,

(a) f 6∈ P ,
(b) for any feature g with g↑ = f↑, if g∈ P , then P |= Φ!(T g

OR), and
(c) P ∪ {f} does not violate any exclusive constraints.

(b) implies that P ∪ {f} does not violate the I2C principle, i.e., P |=
ΦI2C(P, f), and (c) implies that P ∪ {f} does not violate the exclusive con-
straints, i.e., P ∪ {f} |= Φ(TEX ). Thus, according to Definition 8, there exists a
transition P −→M P ∪ {f}, which implies P |= EX f .

The above result in P(M) |= AG
∧
Φ↔ML(TOR, EX ).

Lemma 3. Given an FM M , P(M) |= AG
∧
Φ!
ML(OR). ut

Proof. Recall that Φ!
ML(OR) =

{
f → 2!

∨
G : f ∈ F,G ∈ OR(f)

}
.

Let f , G, and P be a feature, a subset of features, and a partial product,
respectively, such that G ∈ OR(f) and f ∈ P .

Since P(M) is an fKS (Proposition 3), −→M is left-total and the Singletonity
and Self-Loops Only conditions hold in P(M). According to left-totality of −→M

and the Self-Loops Only condition, there exists a partial product P ′ with P −→∗M
P ′ and P ′ −→M P ′ (P ′ is a full product accessible from P ).

According to Singletonity condition, f ∈ P ′. Since any full product including
f must include also some of the features in G, the statement G ∩ P ′ 6= ∅ holds.
This implies P(M) |= AG

∧
Φ!
ML(OR)

Lemma 4. Given an FM M , P(M) |= AG
∧
ΦML(IN ). ut

Proof. Recall that ΦML(IN ) =
{∧

G→ 2!f : (G, f) ∈ IN
}

.
Let f , G, and P be a feature, a subset of features, and a partial product,

respectively, such that (G, f) ∈ IN and P |=
∧
G.

Consider a partial product P ′ with P −→∗M P ′ and P ′ −→M P ′ (P ′ is a full
product accessible from P ).

According to Singletonity condition, G ⊂ P ′. Since any full product superset
of G must include f , P ′ |= f . This implies that P(M) |= AG

∧
ΦML(IN ).

Proposition 5. Given an FM M , P(M) |= AG
∧
ΦI2C→
ML (OR). ut

Proof. Recall that ΦI2C→
ML (OR) =

{
f ∧ ¬

∧
Φ!(T f

OR) → ¬EXg : f, g ∈ F, f↑ =

g↑
}

.
Assume by way of contradiction that P(M) 6|= AG

∧
ΦI2C→
ML (OR). Then

there are two features f, g, and two partial products P, P ′ such that f ∈ P ,
P 6|=

∧
Φ!(T f

OR) (the feature f in not completely disassembled in P ), P −→M P ′,
g↑ = f↑, and g ∈ P ′.
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Thus, P ′ violates the I2C principle, i.e., P ′ 6|= ΦI2C(OR). This leads us to
a contradiction.

Now, we can prove one of our main lemmas, called the satisfaction lemma, stating
that the partial product of a given FM M satisfies its corresponding fCTL-
theory:

Lemma 5 (The Satisfaction Lemma). For any FM M , P(M) |= AG
∧

Th(M).

Proof. (a) P(M) |= AG
∧
ΦML(T ) is an immediate corollary of Lemma 1 and

Corollary 1.
(b) P(M) |= AG

∧
ΦML(TEX ) is an immediate corollary of (a) and Corol-

lary 1.
(c) P(M) |= AG

∧
ΦML(M) is an immediate corollary of (b), Lemma 2, and

Corollary 1.
(d) P(M) |= AG

∧
Φ!
ML(TOR) is an immediate corollary of (a) and Lemma 3.

(e) It is clear that any product satisfying
∧
Φ!(M) is a full product, i.e.,

P(M) |= AG (
∧
Φ!(M) →!). This, along with Lemma 3 and Lemma 4, result in

P(M) |= AG
∧
Φ!
ML(M).

(f) P(M) |= AG
∧
ΦI2C
ML (OR) is an immediate corollary of Proposition 5 and

Corollary 1.
P(M) |= AG

∧
Th(M) is an immediate corollary of (c), (e), and (f).

Working in the opposite direction is much more difficult; it is given by a sequence
of lemmas proven in the following, and culminates with the main theorem. In
the following, F is a set of features, M ∈M(F ) and K ∈ K(F ).

Lemma 6 (The Products Lemma). K |= AG
∧
ΦML(M) implies PPK =

PPM .

Proof. Since K |= AG Φ(M), according to Proposition 4, PPK ⊆ PPM . Now,
we need to show that PPM ⊆ PPK :

Let P ∈ PPM and r be the root feature of T . The features included in
P represent a subtree of T , denoted by TP , whose root is r. For an example,
consider the partial product {car, eng, gear,mnl, oil} in the FM in Fig. 1. We
do have the following formulas corresponding to Φ(T ): eng → car, gear → car,
mnl → gear, and oil → gear, which clearly represent the subtree (eng) → car ←
(mnl→ gear← oil).

We do a pre-order depth-first traversal of TP of a special kind comply-
ing I2C-priniciple: in each level of the tree, all the nodes that are completely
disassembled must be visited before the other nodes. In the running exam-
ple, gear must be visited before eng, since it is completely disassembled in
{car, eng, gear,mnl, oil}. In this example, the output of the traversal would be
the sequence 〈car, gear,mnl, oil, eng〉. Let SP = 〈f1, . . . , fn〉, where f1 = r, be the
result of the traversal of TP .

The following condition (R) holds:
(R): for all i < n either
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(R-1) fi = f↑i+1 or

(R-2) ∃〈j < i〉 : fj = f↑i+1 &

∀g ∈ {f1, . . . , fi} :
(
g↑ = f↑i+1

)
⇒
(
{f1, . . . , fi} |= Φ!(T g

OR)
)
,

i.e., g is completely disassembled in {f1, . . . , fi}.

We prove that any prefix subsequence of SP is a partial product of K and so
P itself. To this end, we use an inductive reasoning as follows:

(base case): K |= AG r implies that IK |= r (IK denotes the initial state of
K). Since IK is a singleton set, IK = {r} = {f1}.

(hypothesis): Assume that, for some 1 ≤ i < n, any prefix of the sequence
〈f1, . . . , fi〉 is a partial product of K and there exists the path {f1} −→K

· · · −→K {f1, . . . , fi}. Let P ′ = {f1, . . . , fi}.
(inductive step): We want to prove that any prefix of the sequence 〈f1, . . . fi,

fi+1〉 is a partial product of K and there exists the path {f1} −→K · · · −→K

P ′ −→K P ′ ∪ {fi+1}. To this end, we need to show that P ′ ∪ {fi+1} ∈ PPK

and there exists a transition P ′ −→K P ′ ∪ {fi+1}. We prove this for both cases
(R-1) and (R-2), as introduced above:

(R-1):

Since fi is freshly added to the state P ′ and fi+1 is a subfeature of fi (f↑i+1 =

fi), due to K |= AG
∧
Φ↓ML(T ), there is a transition P ′ −→K P ′ ∪ {fi+1}.

Therefore, {f1, . . . , fi+1} ∈ PPK .
(R-2):

Since ∀g ∈ P ′ : (g↑ = f↑i+1) ⇒ (P ′ |= Φ!(T g
OR)) (note (R-2) above), P ′ |=

ΦI2C(fi+1).
P |=

∧
Φ(TEX ) implies that any subset of P satisfies

∧
Φ(TEX ). Since P ′ ∪

{fi+1} ⊆ P , P ′ ∪ {fi+1} |=
∧
Φ(TEX ), which means P ′ 6|=

∨
ΦEX (fi+1).

Since P ′ |= ΦI2C(fi+1) ∧ ¬
∨
ΦEX (fi+1) ∧ ¬fi+1, and K |= Φ↔ML(TOR, EX ),

there is a partial product {f1, . . . , fi+1} ∈ PPK such that P ′ −→K P ′ ∪ {fi+1}.

Therefore, P ∈ PPK , which means that PPM ⊆ PPK . The lemma is proven.

Lemma 7. Given an FM M and an fKS K, K |= AG
∧

(Φ!
ML(M) ∪ ΦML(M))

implies
(i) ∀P ∈ PPM . (P −→M P )⇒ (P −→K P ).
(ii) ∀P ∈ PPK . (P −→K P )⇒ (P −→M P ). ut

Proof. Recall that Φ!
ML(M) = Φ!

ML(TOR) ∪ ΦML(IN ) ∪ {
∧
Φ!(M) → !}. Since

K |= AG
∧
ΦML(M), according to Lemma 6, PPK = PPM .

(i):
K |= AG

(∧
Φ!(M) → !

)
and PPK = PPM together imply that for any

partial product P ∈ PPM with P −→M P (P is a full product of M), there is
a self-loop on P in K, i.e., P −→K P (P is a full product in K).

(ii):
Let P ∈ PPK such that P −→K P . To show that P −→M P (P is a full product
of M), we need to prove P |= Φ!(M). Recall that Φ!(M) = Φ!(OR) ∪ Φ(T ) ∪
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Φ(EX )∪Φ(IN ). From K |= ΦML(M) we can infer that K |= Φ(T )∪Φ(EX ) (note
Table 4). In the following, we show that P |= Φ!(OR) ∪ Φ(IN ):

Recall that Φ!(OR) = {f →
∨
G : f ∈ F,G ∈ OR(f)}. Let f be a feature,

and G ∈ OR(f), and f ∈ P . P |=
∧
Φ!
ML(OR) implies P |= (f → 2!

∨
G) (note

Table 3). Since f ∈ P and P −→K P , P |=
∨
G. Therefore, P |= Φ!(OR).

Recall that Φ(IN ) = {
∧
G→ f : (G, f) ∈ IN}. Let f be a feature and G ⊂ P

such that (G, f) ∈ IN . Note that P |= ΦML(IN ) implies P |=
∧
G −→ 2!f .

Since G ⊂ P and P −→ P , f ∈ P . Therefore, P |= Φ(IN ).
Based on the above, P −→M P .

Lemma 8 (The Transition Lemma). K |= AG
∧
Th(M) implies −→K=

−→M .

Proof. According to Lemma 6, K |= AG
∧
ΦML(M) implies PPM = PPK .

Consider a transition P −→M P ′, where P ′ = P ∪ {f} for a feature f /∈ P . We
want to show that there is a transition P −→K P ′ in K.

According to Definition 8, P ′ |= Φ(TEX ), and P |=
∧
ΦI2C(P, f). Thus, there

are two choices:
(i) ΦI2C(P, f) = ∅
(ii) ΦI2C(P, f) 6= ∅

(i): This implies that the parent of f is freshly added through a transition ingoing

to P . Hence, due to K |= AG Φ↓ML(T ), there exists a transition P −→K P ′.
(ii): Since P ′ |= Φ(EX ), P |= ¬

∨
ΦEX (f). Also, P |=

∧
ΦI2C(P, f) implies that

P |= Φ!(T g
OR) for any g ∈ P ∩ (f↑)↓, which means P |=

∧
ΦI2C(f). Hence, due

to Φ↔ML(TOR, EX ), there exists a transition P −→K P ′.
(i) and (ii) implies that any non-loop transition in P(M) is also a transition

in K. Due to Lemma 7, any loop transition in P(M) is also a loop transition in
K. Thus, −→M⊆−→K . Indeed, there may be some illegal transitions in K due
to I2C principle.
The theory ΦI2C→

ML (OR) excludes all illegal transitions due to I2C. Hence,
−→M=−→K .

The following theorem, the main theorem, shows how to characterize the par-
tial product line of a given FM using an fCTL-theory. Indeed, it is an immediate
corollary of the lemmas 5, 6 and 8.

Theorem 4.15 [The Main Theorem] K |= AG
∧
Th(M) iff K = P(M).

5 Related Work

5.1 Feature Modeling Languages

There are many feature modelling languages. Some of them, including the classi-
cal FODA [17], are tree-based, e.g., [8,12], others are DAG-based such as [18,23].
In this paper, we have restricted our attention to feature trees, and do not con-
sider cardinality-based feature modeling [10], in which the same feature can occur
in the product multiple times. To see how we deal with cardinality-based FMs,
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please refer to [25]. In the current section, we survey different FM languages and
compare them with our own definition of FMs discussed in Sect. 3.1.

Feature Oriented Domain Analysis (FODA: 1990) [17] is a tree-based lan-
guage where there exists only an XOR type for grouped edges. In this language,
cross-cutting constraints (CCCs) are expressed textually. Fig. 5 gives an exam-
ple. Note in the figure that mandatory edges are represented by ordinary edges.
FORM [18] is the DAG version of FODA.

7feature the car will have, as it is not possible to have both.

Car

Transmission Horsepower Air conditioning

Optional
feature

Mandatory
features

Alternative
features

Manual Automatic
Air conditioning requires Horsepower > 100
Composition rule:

Manual more fuel efficient
Rationale:

Fig. 5: FODA: adopted from [17]

Feature Reuse-Driven Software Engineering Business (FeatuRSEB: 1998) [14]
is a DAG-based language and, in addition to XOR, it supports OR grouped
edges. CCCs in this language are presented graphically. Note that graphical
representations for CCCs make them less expressive, since CCCs can involve
only two features. Fig. 6 provides an example.
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switch. Likewise, some common and variant services
described by use cases are also known early.  Thus a
rudimentary requirements model or initial use case model
might exist even before serious domain engineering has
begun. Both of the models provide concepts and
terminology for describing, analyzing and structuring the
other sources of information as domain engineering
proceeds.

The feature model is represented in UML as a linked
set of feature elements containing data describing attributes
of the features, such as name, kind, etc. These feature
elements are linked together by a set of relationships
(typically UML dependencies or refinements), used to build
up trees or networks of features. Some of the feature
elements may also have relationships (typically a trace) to
elements in other models, such as use cases, variation points
or objects. We find it useful to display the feature model at
several levels of detail (or views): one view is the simple
feature tree or graph, showing feature names, major
relationships, and a few attributes, as illustrated in Figure 2.
This view may itself be filtered to show more or less detail.
Thus, we have embraced the multiple-view approach for
working with the feature model itself.

The set of features shown in Figure 2 can be specified
and structured using the notation summarized in the legend:

• the composed_of relationship. A feature can be
modeled as composed of several sub-features,
following a decomposition/ aggregation abstraction
mechanism. In the example, the feature "Phone
Service" is composed of "exchange", "type", "billing",
"line quality" and "dialing mode." The relationship is
represented by a line from the super-features to each of
its components.

• the existence attribute. A feature can be mandatory or
optional. A mandatory feature must be selected in all
the configurations of the feature model, while an
optional feature may be disregarded in some
configurations. An optional feature is represented with
a circle above the feature name. A mandatory feature
composed exclusively of optional features requires at
least one of them to be selected in all the
configurations.

• the alternative relationship: variation and variant
features. A feature can act as a variation point (called
variation point feature or vp-feature) in the model,
while other features play the role of its possible variants
(called variant features). In the example, the feature
"exchange" is a vp-feature with "PBX" and
"individual" as variants. From an inheritance point of
view "exchange" is a more abstract feature with "PBX"

and "individual" as two
possible refinements. A
feature which defines a
variation point is
represented with a
diamond under its
name. A line is drawn
to each available
variant from the
diamond. In the textual
notation a particular
variant v of a variation
point vp is vp.v (e.g.
"exchange.PBX" or
"exchange.individual").
• the binding time
attribute of vp-features.
Vp-features can be
bound at reuse time, i.e.
when the reuser
accesses the domain
infrastructure to
configure reusable
assets for his
development. In such a
case, from the reuser
point of view, vp-
features are an XORed
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switch. Likewise, some common and variant services
described by use cases are also known early.  Thus a
rudimentary requirements model or initial use case model
might exist even before serious domain engineering has
begun. Both of the models provide concepts and
terminology for describing, analyzing and structuring the
other sources of information as domain engineering
proceeds.

The feature model is represented in UML as a linked
set of feature elements containing data describing attributes
of the features, such as name, kind, etc. These feature
elements are linked together by a set of relationships
(typically UML dependencies or refinements), used to build
up trees or networks of features. Some of the feature
elements may also have relationships (typically a trace) to
elements in other models, such as use cases, variation points
or objects. We find it useful to display the feature model at
several levels of detail (or views): one view is the simple
feature tree or graph, showing feature names, major
relationships, and a few attributes, as illustrated in Figure 2.
This view may itself be filtered to show more or less detail.
Thus, we have embraced the multiple-view approach for
working with the feature model itself.

The set of features shown in Figure 2 can be specified
and structured using the notation summarized in the legend:

• the composed_of relationship. A feature can be
modeled as composed of several sub-features,
following a decomposition/ aggregation abstraction
mechanism. In the example, the feature "Phone
Service" is composed of "exchange", "type", "billing",
"line quality" and "dialing mode." The relationship is
represented by a line from the super-features to each of
its components.

• the existence attribute. A feature can be mandatory or
optional. A mandatory feature must be selected in all
the configurations of the feature model, while an
optional feature may be disregarded in some
configurations. An optional feature is represented with
a circle above the feature name. A mandatory feature
composed exclusively of optional features requires at
least one of them to be selected in all the
configurations.

• the alternative relationship: variation and variant
features. A feature can act as a variation point (called
variation point feature or vp-feature) in the model,
while other features play the role of its possible variants
(called variant features). In the example, the feature
"exchange" is a vp-feature with "PBX" and
"individual" as variants. From an inheritance point of
view "exchange" is a more abstract feature with "PBX"

and "individual" as two
possible refinements. A
feature which defines a
variation point is
represented with a
diamond under its
name. A line is drawn
to each available
variant from the
diamond. In the textual
notation a particular
variant v of a variation
point vp is vp.v (e.g.
"exchange.PBX" or
"exchange.individual").
• the binding time
attribute of vp-features.
Vp-features can be
bound at reuse time, i.e.
when the reuser
accesses the domain
infrastructure to
configure reusable
assets for his
development. In such a
case, from the reuser
point of view, vp-
features are an XORed

Fig. 6: FeatuRSEB: adopted from [14]

Generative Programming (GP: 2000) [8] adapts FMs in the context of gen-
erative programming. Their FDs are simply FODA with the addition of OR
grouped edges.

Van Gurp et al. (2001) [32] extend FeatuRSEB to deal with binding times,
indicating when features can be selected, and external features, which are tech-
nical possibilities of the system. Binding times are used to annotate relationships
between features and external features are represented in dashed boxes. These
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4

2.3  Notation
The way features interact, can be modelled by specifying the relations between them. In [Griss et al. 1998] a
UML based notation is introduced for creating feature graphs. We use an extended notation (see example in Fig-
ure 2) that supports the following constructs:

• Composition. This construct is used to group related features.
• Optional feature. This construct is used to indicate that a particular feature is optional.
• Feature specialization (OR and XOR).
• External feature (not in the notation of [Griss et al. 1998]).

Apart from the novel external feature construct, we have added an indication of the moment of binding the vari-
ability point to a specific variant (also see Section 3.1). E.g. the mail client supports two run-time platforms (an
external feature). The decision as to which platform is going to be used has to be made at compile-time. In the
case of the signature file option, the indication is very relevant. Here the developer has the option of either com-
piling this feature into the product or use a runtime plugin mechanism. The indication runtime on this feature
indicates that the latter mechanism should be used.

In Figure 2 we have provided an example of how this notation can be used to model a fictive mail client. Even in
this high level description it is clear where variability is needed. We believe a notation like this is useful for rec-
ognizing and modelling variability in a system. 

3  Variability in Software Product Lines
In this section we introduce the concepts of software product lines and variability in more detail. Related work
(e.g. [Griss 2000]) suggests that modelling variability in software product lines is essential for building a flexible
architecture. Yet, the concept of variability is generally not defined in great detail. We aim to address this by pro-
viding a conceptual framework for reasoning about variability.

3.1  Variability
Variability is the ability to change or customize a system. Improving variability in a system implies making it
easier to do certain kinds of changes. It is possible to anticipate some types of variability and construct a system
in such a way that it facilitates this type of variability. Unfortunately there always is a certain amount of variabil-
ity that cannot be anticipated.

Reusability and flexibility have been the driving forces behind the development of such techniques as object ori-
entation, object oriented frameworks and software product lines. Consequently these techniques allow us to delay
certain design decisions to a later point in the development. With software product lines, the architecture of a sys-
tem is fixed early but the details of an actual product implementation are delayed until product implementation.
We refer to these delayed design decisions as variability points. 

Variability points can be introduced at various levels of abstraction:

FIGURE 2. Example feature graph

Mail Client

Type Message Send MessageReceive Message

Pop3 IMAP

Internal Editor

EditSignature file

runtime

runtime

VI Emacs

TCP Connection

anExternalFeature

aFeature

or specialization
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composition

optional feature

runtime

Runtime platform

Linuxwin32

compiletime

Fig. 7: van Grup et al: adopted from [32]

changes mainly concern concrete syntax, and certainly have no influence on fea-
ture combinations. Fig. 7 gives an example.
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Fig 9: Common features of all library systems in the family 
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Fig 10: Optional features in the library system family 

!"#$%$&

!'()*#++,- .%(%/'*#++,- 0'1"()*

+2'$)3'*
#++,-

.%(%/'*$'%)'$-

45"1'*
6"1"78

97'1 9)'(7":";%7"+(

5"1' 6"1"7 <*=

>++,

?+3$(%6

@3)"+#++, AB"C;%$) >"+1'7$";*
-'(-+$

DE1%"6*

%))$'--
F'() #&

'E1%"6

0'G3"$')*
$'%)'$*)%7%

H%1'

>"$7B)%&

@))$'--
FFH

.+7B'$I-*

1%")'(*(%1'

J$'G3"$'-K

LMMN L

OMMN

 
Fig 11: Feature diagram of the case study with sets of features Fig. 8: PLUSS: adopted from [23]

Riebisch et al. (2002) in [23] propose a DAG-based language where grouped
edges are replaced by UML-like multiplicities. In their work, CCCs are presented
graphically. Fig. 8 provides an example.
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PLUSS. This feature type is similar to FODA’s alternative features, but instead of 

representing the “exactly-one-out-of-many” relationship, it captures the missing 

relationship. Its name follows the naming scheme proposed by Mannion et al. for the 

equivalent relation in their work on reusable requirements [14]. We have also chosen 

to rename alternative features to “Single Adaptor” features following the same 

naming scheme. The feature modeling notation used in PLUSS is based on the FODA 

notation but it has been slightly modified to better suit our modeling needs as shown 

in Fig. 1. A filled black circle represents a mandatory feature and, as in the original 

notation, a non-filled circle represents an optional feature. Single and multiple adaptor 

features are represented by the letters ‘S’ and ‘M’ surrounded by a circle.  
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Fig. 1: An example feature model in the PLUSS notation. 

To further clarify the PLUSS notation, we have created a mapping between 

PLUSS feature constructs and multiplicities [19] as shown in Fig. 2. As shown in Fig. 

2 we have also identified a feature construct that should be avoided. Our experience 

has shown that this construct, a set containing only optional feature leaf nodes, 

encourages misuse of the refinement relation used for building the feature tree. This 

construct typically appear when a set of multiple adaptor features is mistaken for a set 

of optional features. 

0..1 10..* 1..*Multiplicity:

Feature
construct:

Constructs to be avoided:

S S... MM ... S S... MM ... ...... ...

S M

...

0..1 10..* 1..*Multiplicity:

Feature
construct:

Constructs to be avoided:

S S...S S... MM ... MM ... S S...S S... MM ... MM ... ......... ...

S M

...
 

Fig. 2: Feature constructs vs. multiplicities, and constructs to be avoided in PLUSS. 

One shortcoming of the PLUSS feature modeling notation, compared to for 

example Czarnecki et al. more expressive Cardinality-based notation [2], is the 

inability to model n..m multiplicity. Our experience has however shown that such 

constructs are not needed to capture the different types of variability the can exist in 

product family use case models. We therefore exclude cardinalities from our notation 

for the purpose of improved readability. 

3 Use Case Modeling 

As we described in [4], we have chosen to adopt the so called “Black Box Flow of 

Events” notation described in the Rational Unified Process for Systems Engineering 

Fig. 9: PLUSS: from [12]

The Product Line Use case modelling for System and Software engineering
(PLUSS: 2005) method [12] combines FMs and use case diagrams to depict a
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high level view of a product line. It is a tree-based language where the usual FM
representation conventions are changed: single nodes with a circled ’S’ represent
an XOR-decomposition of their parent while multiple nodes with a circled ’M’
represent OR-decomposition. They use graphical notations for CCCs. Fig. 9
gives an example.

f gears'

mnl' atm'g h

As mentioned above, many languages have been introduced
for modeling PLs. However, they never received a formal seman-
tics until Schobbens et al. in 2007 released their work “generic
semantics of feature diagrams” [26]. This lack of formality makes
some problems such as ambiguity: “combinations of mandatory
and optional features with OR and XOR relations could lead to
ambiguities” [23]. As an example, consider the inset figure. This FM requires the
choice in two steps. Based on the OR-relation a non-empty subset of {g, h} needs
to be chosen. Then, we can choose again due to optionality on g, contrary to the
original intention of the OR-relation. Note that in our syntactical definition of
feature trees, Definition 1, an FD is a pair (T,OR) in which optional nodes are
derivable: a node is optional if and only if it is in the set F−{f ∈ F : f 6∈

⋃
OR}.

In this way, optional nodes and grouped nodes are strictly distinct, which makes
feature diagrams semantically unambiguous.

Schobbens et al. introduced a generic definition of the syntax and semantics of
feature diagrams. The new language is called free feature models (FFMs). Indeed,
they separate concrete syntax (what the user sees), abstract syntax (ignores the
visual stuffs in feature diagrams that are useless to assign a formal semantics),
and semantics.

Definition 12 (Free Feature Diagrams - adopted from [26]). An FFM is
a tuple (N,P, r, λ,DE,Φ) where N is a set of nodes, P ⊆ N is its set of primitive
nodes, r ∈ N is the root, λ is a total function assigning a decomposition operation
on a given node, DE ⊆ N ×N representing the edges, Φ represents textually the
cross-cutting constraints (this can be seen a boolean formula). 2

Primitive nodes are those that convey the features that are included in at least
one the products and the non-primitive ones are the nodes that are included in
non of the products. Let us call non-primitive nodes dummy features. A node can-
not be assigned to more than one decomposition operations, since λ is defined
as a function. This is why dummy features are included in the above defini-
tion. Fig. 10 illustrates this: to convert the FM M to an FFM M ′, we need
a dummy feature f . Although this definition formalizes all FM languages in
only one abstract syntax, using dummy features makes it critical in the sense of
computational complexity and succinctness.

In [26], the set {{A}, {B}, {A,B}}, where A and B are features, is used
as a counterexample to show that classical tree-based languages are not fully
expressive. If we return to the original intuition of what a product line is, we

2 in the original definition there is another element denoted by CE representing graph-
ical CCCs. Since textual constraints subsume graphical ones we deliberately ignored
this element.
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find that this statement is not correct: “products in a product line must share
some features”. Given this assumption about product lines, all classical languages
have the same expressiveness.

5.2 Feature Modeling vs. Concurrency Modeling

We will begin with a short primer on event-based models for concurrency. Then
we discuss striking similarities between feature models and event based models,
and what the differences are.

The event-based view of concurrency is well-established. A vast family of
mathematical structures was developed, encompassing, amongst others, event
structures (ES) by Winskel [33], gates (or event Kripke structures, EKS) by
Gupta and Pratt [15], event automata (EA) by Pinna and Poigné [20], and
configuration structures (CS) by van Glabbeek and Plotkin [30]. The inset table
below-left summarizes abbreviations. Note that in event-based models each event
is labeled with an action represents an occurrence of that action during a possible
run of the system.

ES Event Structure
EA Event Automata
EKS Event Kripke Structure
CS Configuration Structure
EAQ EA with Quiescent

states

At the core of the framework is a topo-
logical notion of a configuration system C =
(E, C) with E a set of events (perhaps, infi-
nite), and C ⊆ 2E a set of subsets of events
called configurations 3. A configuration X∈C
is understood as a state of the system, in
which all events from X have already oc-
curred. Various closure conditions (e.g., un-
der intersection, directed union) are required

from C to comply with the respective semantic interpretation. We can relate an
FM M ∈ M(F ) to a CS C(M) = (E, C) where E = F and C = PPM . Note
that C(M) would be a connected CS. A CS is connected if all of its configu-
rations are reachable. A configuration X is reachable if ∃e1, . . . , en such that
X = {e1, . . . , en} and ∀i ≤ n : {e1, . . . , ei} is also a configuration.

CSs can be specified either directly as above, or indirectly by adding some
additional structure to set E. For example, a prime event structure is a triple
E = (E,≤,#) with ≤ a partial order on E specifying a binary causality relation
between events, and # a binary conflict relation (irreflexive and symmetric)

3 Note that CSs first was introduced in [29]. The original CSs were required to be
non-empty, connected and closed under union.
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between events, such that the principles of finite causes (∀e ∈ E : {e′ ∈ E : e′ ≤
e} is finite) and conflict heredity (∀e, e′, e′′ ∈ E : e ≤ e′ ∧ e#e′′ ⇒ e′#e′′) hold.
A set of events X is called a configuration of E, X |= E, if it is left-closed wrt.
causality: (e≤e′ ∧ e′∈X)⇒ e′∈X, and is conflict-free: (e#e′ ∧ e∈X)⇒ e′ /∈X. In
a more general ES, called follow event structure, the casualty relation does not
need to be transitive nor acyclic and also the conflict relation is not assumed to
be symmetric, which means we may have inconsistent events. Thus in such ESs
the notion of a configuration is respectively generalized (In the most general ES,
introduced in [30], both relations ≤ and # are defined on the power set of E
instead of E). In this way, an ES determines a CS C(E) = {X ⊆ E : X |= E}. We
may understand E as a “logic” over E, and the validity relation as “satisfiability”.
Then, if C = C(E) for a given C, we may say that E “axiomatizes” C.

CSs can also be axiomatized directly with (infinitary) Boolean propositional
logic by considering events as atomic propositions (e∈E states that the event e
is happend); according to [30], this idea is attributed to Pratt [15]. We explained
it in detail in Sect. 2.2 for product lines. Indeed, the framework described above
makes perfect sense if we rename events as features (or feature occurrences),
configurations as products. (Warning: Subfeature relation in FT is opposed to
causality in ES, so that p-products are right- rather than left-closed.). FTs with
exclusion constraints then appear as sorts of ESs, while full FMs (FTs + CCCs)
as ESs enriched with Boolean constraints. Interestingly, in early work FM [17],
axiomatization of FMs was developing along the ES lines, but later the Boolean
logic view prevailed; in this sense, Batory’s paper [3] played the role of Pratt’s
paper in concurrency modeling.

The dynamic behaviour (computational interpretation) of a CS (E, C) is usu-
ally defined by a transition relation between the configurations. There are two
common alternatives: asynchronous interpretation from Glabbeek based on the
assumption that only finitely many events can happen in a finite time [31], and
the interpretation of Chu spaces from Gupta & Pratt (eKSs/Gates) [15]. In both
systems, it is an unavoidable requirement that a transition from X to Y im-
plies X ⊂ Y . For eKSs/Gates, no other restrictions are imposed and transition
relation is inclusion relation. For asynchronous interpretation, valid transitions
must satisfy an additional condition: for any Z⊂E, if X⊂Z⊂Y , then Z∈C. It
says that “a number of events can be performed concurrently only if they can
be performed in any order” [31].

EAs give an asynchronous interpretation of concurrent systems. An EA is a
4-tuple E = (E,St,−→, I), where E is a set of events, St ⊆ Fin(E) a set of
states (Fin(E) denotes the finite subsets of E), −→ a transition relation with
(S −→ S′) ⇒ (S′ = S ] {e}) for some e ∈ E, and I is an initial state. It is
proved in [20] that EAs subsume other event-based structures such as prime ESs
and follow ESs. An even richer notion is an EA with quiescent states [20], and
we come to our fKS. In fact, an fKS is syntactic exactly an EA with quiescent
states (= full products or self-looped states), which, additionally, satisfies two
conditions: (DAG) and (coReach). Note that any EKS can be seen as an EA but
not vice versa.
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Now we discuss essential distinctions between the two frameworks. In the
feature modeling context, we are especially interested in ways of defining EAs
syntactically, and in a logic that would allow us to specify EA’s properties.
Pinna and Poigné [20] only consider a very simple “event logic”. In contrast,
FMs provide a compact notation for a very rich event logic, in which even modal
properties of EAs are implicitly encoded. We can increase expressiveness even
more by adding to FMs modal cross-cutting formulas.

Importantly, fKSs generated by FMs, i.e., PPLs, implicitly carry a richer
structure inherited from FTs, to wit: a PPL has the notion of an accomplished
branch (sub-FKS), and satisfies the I2C-constraint. Pinna and Poigné [20] briefly
mention such types of constraints as transactions.

5.3 Staged Configuration

Czarnecki et al. [9] introduced the concept of staged configuration in which the
process of specifying a product is performed in stages, such that in each stage
a specialization of the given FM is generated by making some choices defined in
the FM. This process, called product derivation process (PDP), is continued until
a fully specialized feature diagram denoting only one configuration is obtained.
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Fig. 11: Staged Configurationcar$
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Fig. 12: PPL

Fig. 11 shows an FMM (pow stands for power
locks) and a PDP for the full product {car, eng}
of this model. It includes two sages: in the first
stage, the choice between manual and automated
power locks is made and in the second stage, the
power locks is eliminated. The corresponding se-
quence of FMs is called a configuration path [6].

Fig. 12 shows the PPL ofM . Let us call a path
from the initial state to a full product assembling
path. Although both assembling and configura-
tion paths show how to instantiate the full prod-
uct, the difference between their approaches are
very profound. Firstly, configuration paths are se-
quences of FMs, while assembling paths are se-

quences of partial products. Secondly, in staged configuration, one can make
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choices regardless to any condition other than exclusive constraints, while an
assembling path shows how to reach the full product by (dis)assembling the
features step by step in a top-down fashion considering also the I2C-principle.
For example, take a look at Fig. 11: in the first stage, we made choices between
mnl and atm before making decision whether the car is equipped with a power
lockers or not (seems so strange!). Such a decision is not allowed in PPLs: we
cannot include a feature into a product without including its parent.

5.4 Algebraic Modeling of Feature Modeling

Höfner et al. developed an algebra, called product family algebra, for product
lines whose basis is the structure of idempotent semirings [16]. A product family

algebra over a set of features F is 5-tuple A = (A,+,∅,×, {∅}) where A = 22
F

(power set of power set of features), ∅ represents the empty product line, {∅}
is a dummy/pseudo product line with only one product: nothing, and +,× are
defined as follows: for all P, P ′ ∈ A : P × P ′ = {p ∪ p′ : p ∈ P, p′ ∈ P ′} and
P + P ′ = P ∪ P ′. In this way, + and × can be seen as choice between product
lines and their mandatory presence, respectively. It is proven that A forms a
semiring where (A,+, 0) and (A,×, 1) are the commutative monoid and monoid
parts, respectively, such that + is idempotent and × is commutative. Therefore,
a product line is seen as a term generated in this algebra.

The product line of a given FM M is encoded as a term in the product line
algebra generated over the basic features of M . Basic features are those that are
labeled to leaves in the feature diagram and this is an important practice in this
work, which is in contrast with a common feature modeling practice. Note that
we follow the common practice, in which all features in the tree are considered
as the basic features. As an example, consider the following feature diagram,
which is adopted from [16]. The encoded term corresponding to this FM is as
follows: car = (manual + automatic)× horsepower × (1 + aircondition).

car$

transmission$ horsepower$

manual$ automated$

aircondi2on$

Fig. 13: an FM - adopted from [16] (page 7 , Fig. 1)

To find a precise relation to semirings, we need to algebraicize our approach
along the usual lines of algebraic logic — we must leave this for future work. We
believe that using KS and modal logic is simpler and easier for a PL engineer
than dealing with abstract semiring algebra.

A series of algebraic models for FD and PL has been developed in the con-
text of FOSD [2,11]. Their setting is much more concrete than ours: features are
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blocks of code, or other components, whose composition makes a product. This
work focuses on the operation of feature/delta composition and delta manage-
ment.

5.5 Use of FM in behavior modeling.

In a known paper [5], Classen et al. study model checking of a family of transition
systems. Such a family is modeled by what they call a Feature Transition System,
which describes the combined behavior of the entire system. Thus, they consider
a PL of behavior models (features are transition systems), whereas we study the
behavior pertinent to any PL irrespective of what features are. Applying their
technique to our FKS semantics for FD would result in some sort of meta-Kripke
structures, which seems to be an interesting object of research.

6 Conclusion

We have presented a dynamic view of feature modeling, in which a product
configuration, or instantiation, is seen as a process progressing from partial to
full products. Three basic constraints regulating this process are (a) closedness
under superfeatures, (b) instantiate-to-completion, and (c) respecting feature
mutual exclusion declared in the model. We have shown that PLs encompassing
partial products satisfying the constraints are Kripke structures of a special kind
that we called feature KS. We have also demonstrated that properties of such
KSs, and hence PPLs, can be described by a suitable version of modal logic,
namely, a fragment of CTL enriched with a constant modality designating full
products (final states). We call this logic feature CTL. These results establish
close connections between feature modeling and modal logic, which we believe
can be fruitful for both fields.
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