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Abstract—Product lines are now an established framework for
software design. They are specified by special diagrams called
feature models. For formal analysis, the latter are usually encoded
by propositional theories with Boolean semantics. We discuss a
major deficiency of this semantics, and show that it can be fixed
by considering that a product is an instantiation process rather
than its final result. We call intermediate states of this process
partial products, and argue that what a feature model M really
defines is a poset of partial products called a partial product
line, PPL(M). We argue that such PPLs can be viewed as special
feature Kripke structures specifiable by a suitable version of CTL
(feature CTL or fCTL). We show that any feature model M is
representable by an fCTL theory Φ(M) such that for any feature
Kripke structure K, K |= Φ(M) iff K = PPL(M); hence, Φ(M)
is a sound and complete representation of the feature model.

I. INTRODUCTION

The Software Product Line approach is well-known in
the software industry. Products in a product line (PL) share
some common mandatory features, and differ by having some
optional features that allow the user (or developer) to configure
the product the user wants (e.g., MS Office, a Photoshop, or
the Linux kernel). Instead of producing a multitude of separate
products, the vendor designs a single PL encompassing a
variety of products, which results in a significant reduction
in development time and cost [16].

Industrial PLs may be based on thousands of features inter-
related in complex ways [14]. Methods of specifying PLs and
checking the validity of a PL against a specification is an
active research area. Elite software engineering conferences
like ICSE, ASE, and FM, readily accept papers on PL [2],
[17], [20]; there are conference series specially devoted to PL,
such as Generative Programming and Component Engineering
(GPCE) and the Software Product Line Conference (SPLC),
and several textbooks about PL have been written [7], [16].

The most common method for designing a PL is to build a
feature model (fm) of the products.1 A toy example is shown
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in the inset figure. Model M1 says that
a (root feature called) car must have
an engine and brakes (black bullets de-
note mandatory subfeatures), and brakes
can optionally (note the hollow bullet) be
equipped with an anti-skidding system. The model specifies

1We use small letters for this acronym (fms will abbreviate the plural form)
as below we will use FM to abbreviate feature modeling.

a PL consisting of two products: P = {car, eng, brakes}
and P ′ = P∪{abs}. fms of industrial size can be big
and complex, require tools for their management and anal-
ysis, and thus should be represented by formal objects pro-
cessable by tools. A common approach is to consider fea-
tures as atomic propositions, and view an fm as a the-
ory in the Boolean propositional logic (BL), whose valid
valuations are to be exactly the valid products defined
by the fm [3]. For example, model M1 represents BL
theory Φ(M1) = {eng→car, brakes→car, abs→brakes} ∪
{car→eng, car→brakes}: the first three implications encode
subfeature dependencies (a feature can appear in a product
only if its parent is in the product), and the last two impli-
cations encode the mandatory dependency between features.
This approach gave rise to a series of prominent applications
for analysis of industrial size PLs [9], [11], [18]. However, the
Boolean semantics for fms has an almost evident drawback of
misrepresenting fms’ hierarchial structure. Indeed, the second

eng 

car brakes abs 

M2 

inset figure shows an fm M2 that is
essentially different from M1 (and
is, in fact, pathological), but has the
same set of products, PL(M2) =
PL(M1) = {P, P ′} determined by
the same Boolean theory Φ(M2) =
{car→eng, brakes→eng, abs→eng}∪{eng→car, eng→brakes}
= Φ(M1): only grouping of implications has changed, but it
is immaterial for BL. The core of the problem is that two
different dependencies are encoded by the same construct
(implication), and hence are not semantically distinguished.

We are not the first to have noticed this drawback, e.g.,
it is explicitly mentioned in [18] (where fms’ semantics
not captured by BL is called ontological), and many other
researchers and practitioners in the field are probably aware of
the situation. Nevertheless, as far as we know, no alternative to
the Boolean logic of feature modeling (FM) has been proposed
in the literature, which we think is theoretically and conceptu-
ally unsatisfactory. Even more importantly, inadequate logical
foundations for FM hinder practical analyses: as important
information contained in fms is not captured by their BL-
encoding, this information is either missing from analyses, or
treated informally, or hacked in an ad hoc way. In a sense,
this is yet another instance of the known software engineering
problem, when semantics is hidden in the application code



rather than explicated in the specification, with all its negative
consequences for software testing, debugging, maintenance,
and communication between the stakeholders.

The main goal of the paper is to show that Kripke structures
and modal logic provide an adequate logical basis for FM. Our
main observation is that the key notion of FM—a product built
from features—should be considered an instantiation process
rather than its final result. We call intermediate states of this
process partial products, and argue that what an fm M really
specifies is a partially ordered set of products that we call
a partial product line, PPL(M); the commonly considered
products of M (we call them full or final) only form a subset
of PPL(M). We then show that any PPL can be viewed as an
instance of a special type of Kripke structure (KS), which we
axiomatically define and call a feature KS (fKS). The latter are
specifiable by a suitable version of modal logic, which we call
feature CTL (denoted by fCTL), as it is basically a fragment of
CTL enriched with a zero-ary modality that only holds in states
representing full products. We show that any fm M can be
represented by an fCTL theory ΦML(M) accurately specifying
M ’s intended semantics: the main result of the paper states
that for any fKS K, K |= ΦML(M) iff K = PPL(M), and
hence ΦML(M) is a sound and complete representation of the
fm. Then we can replace fms by the respective fCTL-theories,
which are highly amenable to formal analysis and automated
processing.

In a broader perspective, we want to show that mathematical
foundations of FM are mathematically interesting, and to
attract the attention of the Theoretical Computer Science com-
munity to the area. We will describe several problems that we
believe are mathematically interesting and practically useful.
Especially intriguing are connections of FM to concurrency
modeling. In fact, PLs can be seen as a special interpretation
of configuration structures [21]: features are events, partial
products are configurations, and PPLs are configuration struc-
tures; fms can then be seen as a far reaching generalization of
Winskel’s event structures and other formalisms for specifying
dependencies between events. It appears that the syntacti-
cal aspects of specifying concurrency (including transaction
mechanisms), i.e., having a convenient and suggestive notation
suitable for practitioners, have not received much attention
in concurrency modeling. This is where we believe FM can
make a non-trivial contribution. We will discuss some details
in Sect. VII. On the other hand, we would like to have the
paper readable by an FM researcher, and to convince her that
the logic of FM is modal rather than Boolean. Therefore, we
pay special attention to the motivation of our framework: we
want first to validate the mathematical model, and only then
explore it formally.

Our plan for the paper is as follows. The next section
motivates the formal framework developed in the paper: we
describe the basics of FM, and show how the deficiency of
the Boolean semantics can be fixed by introducing partial
products and transitions between them. In Sect. III, the notions
of fms and PPLs they generate are formalized. In Sect. IV,
we introduce the notion of fKSs as immediate abstraction
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Figure 1: An fm

of PPLs, and fCTL as a language to specify fKS properties.
We show, step-by-step, how to translate an fm into an fCTL-
theory, and prove our main result in Sect. V. In Sect. VI, we
discuss some practical applications of the modal logic view
of fms. We discuss the connection between fms and event
modelling of concurrent systems in Sect. VII. Other related
work is discussed in Sect. VIII. Conclusion of the paper and
several interesting open problems are discussed in Sect. IX.

II. FEATURE MODELS AND PARTIAL PRODUCT LINES

This section aims to motivate the formal framework we will
develop in the paper. In section A we discuss the basics of FM,
and in section B introduce partial products and PPLs. We will
begin with PPLs generated by simple fms, which can be read-
ily explained in lattice-theoretic terms. Then (section C) we
show that PPLs generated by complex fms are more naturally,
and even necessarily, considered as transition systems.

A. Basics of Feature Modeling

A feature model is a graphical structure presenting a hier-
archial decomposition of features with some possible cross-
cutting constraints (CCCs) between them. Figure 1 gives an
example. It is a tree of features, whose root names the product
(’car’ in this case), and edges relate a feature to its subfeatures.
Edges with black bullets denote mandatory subfeatures: every
car must have an eng (engine), a gear, and brakes. The hollow-
end edge says that brakes can optionally be equipped with
abs. Black angles denote so called OR-groups: an engine can
be either gas (gasoline), or ele (electric), or both. Hollow
angles denote XOR-groups (eXclusive OR): a gear is either
mnl (manual) or atm (automatic) but not both; it must be
supplied with oil as dictated by the black-bullet edge. The ×-
ended arc says that an electric engine cannot be combined
with a manual gear, and the arrow-headed arc says that an
automatic gear requires ABS. According to the model, the
set of features {car, eng,gas, gear,mnl,oil, brakes} is a valid
product, but replacing the gasoline engine by electric, or
removal of oil, would make the product invalid. In this way,
the model compactly specifies seven valid products amongst
the set of 29 possible combinations of 9 non-root features (the
root is always included), and exhibits dependencies between
choices.

In the Boolean view of feature modeling, an fm is a
representation of a propositional Boolean theory. For exam-
ple, the theory encoded by the model in Fig. 1 consists of
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Figure 2: From fms to PPLs: simple cases

a set of implications denoting subfeature dependencies and
unary mandatory dependencies, as explained in the introduc-
tion, plus three implications denoting grouped mandatoriness:
{eng→gas ∨ ele, gear→mnl ∨ atm, mnl ∧ atm→⊥} (with
⊥ denoting False), plus two implications encoding CCCs:
{gas ∧ ele→⊥, atm→abs}. However, as we have seen above,
a BL encoding is deficient, and in the next subsection we will
present a different view of FM semantics.

B. PPL semantics: Products as Processes.

What is lost in the BL-encoding is the dynamic nature
of the notion of product. An fm defines not just a set of
valid products but the very way these products are to be
(dis)assembled step by step from constituent features. Cor-
respondingly, a PL appears as a transition system initialized
at the root feature (say, car for model M1 in Fig. 2a) and
gradually progressing towards fuller products (say, {car} →
{car, eng} → {car, eng, brakes} or {car} → {car, brakes} →
{car, brakes, abs} → {car, brakes, abs, eng}); we will call
such sequences instantiation paths. The graph in Fig. 2(b1)
specifies all possible instantiation paths for M1 (c, e, b, a stand
for car, eng, brakes, abs, resp., to make the figure compact).
Nodes in the graph denote partial products, i.e., valid products
with, perhaps, some mandatory features missing: for example,
product {c,e} is missing feature b, and product {c,b} is miss-
ing feature e. In contrast, products {e} and {c,a} are invalid
as they contain a feature without its parent; such products
do not occur in the graph. As a rule, we will call partial
products just products. Product {c,e,b} is full (complete) as
it has all mandatory subfeatures of its member-features; nodes
denoting full products are framed. (Note that product {c,e,b}
is full but not terminal, whereas the bottom product is both full
and terminal.) Edges in the graph denote inclusions between
products. Each edge encodes adding a single feature to the
product at the source of the edge; in text, we will often denote
such edges by an arrow and write, e.g., {c} −→e {c, e}, where
the subscript denotes the added feature.

We call the instantiation graph described above the partial
product line determined by model M1, and write PPL(M1)
or PPL1. In a similar way, the PPL of the second fm,
PPL(M2), is built in Fig. 2(b2). We see that although both
fms have the same set of full products (i.e., are Boolean
semantics equivalent), their PPLs are essentially different both
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Figure 3: From fms to PPLs: Complex case

structurally (6 nodes and 7 edges in PPL1 versus 8 nodes
and 12 edges in PPL2), and in the content of products (e.g.,
products {c} and {c,b} present in PPL1 but absent in PPL2,
whereas {e} and {e,a} are present in PPL2 but absent from
PPL1) too. This essential difference between PPLs properly
reflects the essential difference between the fms.

C. PPL semantics: From lattices to transition systems

Generating partial product lines PPL1,2 from models M1,2

in Fig. 2 can be readily explained in lattice-theoretic terms.
Let us first forget about mandatory bullets, and consider all
features as optional. Then both models are just trees, and
hence are posets, even join semi-lattices (joins go up in feature
trees). Valid products of a model Mi are upward-closed sets
of features (filters), and form a lattice (consider Fig. 2(b1,b2)
as Hasse diagrams), whose join is set union, and meet is
intersection. If we freely add meets (go down) to posets M1,2

(eng ∧ brakes etc.), and thus freely generate lattices L(Mi),
i = 1, 2, over the respective posets, then lattices L(Mi) and
PPLi will be dually isomorphic (Birkhoff duality).

The forgotten mandatoriness of some features appears as
incompleteness of some objects; we call them proper partial
products. Partial products closed under mandatoriness are full
(sometimes we will say final). Thus, PPLs of simple fms such
as in Fig. 2(a) are their filter lattices with distinguished subsets
of full products. In the next section, we will discuss whether
this lattice-theoretic view works for more complex fms.

Figure 3 (left) shows a fragment of the FM in Fig. 1, in
which, for uniformity, we have presented the XOR-group as
an OR-group with a new CCC added to the tree (note the
×-ended arc between mnl and atm). To build the PPL, we
follow the idea described above, and first consider M3 as a
pure tree-based poset with all the extra-structure (denoted by
black bullets and black triangles) removed. Figure 3 (right)
describes a part of the filter lattice as a Hasse diagram (ignore
the difference between solid and dashed edges for a while);
to ease reading, the number of letters in the acronym for a
feature corresponds to its level in the tree, e.g., c stands for
car, en for eng etc.

Now let us consider how the additional structure embodied
in the fm influences the PPL. Two CCCs force us to exclude
the bottom central and right products from the PPL; they
are shown in brown-red and the respective edges are dashed.



Figure 4

To specify this lattice-theoretically, we add to the lattice of
features a universal bottom element ⊥ (a feature to be a
subfeature of any feature), and write two defining equations:
ele∧mnl = ⊥ and mnl∧atm = ⊥. Then, in the filter lattice, the
formal down-join of products {c,en,ele,ge} and {c,ge,mnl,en}
“blow up” and become equal to the set of all features (“False
implies everything”). The same happens with the other pair of
conflicting products.

Next we consider the mandatoriness structure of model
M3 (given by black bullets and triangles). This structure
determines a subset of the PPL consisting of full products
(not shown in Fig. 3) as we discussed above. In addition,
mandatoriness affects the set of valid partial products as
well. Consider the product P = {c, en, ge} at the center
of the diagram. The left instantiation path leading to this
product, {c} −→en {c, en} −→ge P is not good because gear
was added to engine before the latter is fully assembled (a
mandatory choice between being electric or gasoline, or both,
has still not been made). Jumping to another branch from
inside of the branch being processed is poor design practice
that should be prohibited, and the corresponding transition
is declared invalid. Similarly, transition {c, ge} −→en P is
also not valid as engine is added before gear instantiation
is completed. Hence, product P becomes unreachable, and
should be removed from the PPL. (In the diagram, invalid
edges are dashed (red with a color display), and the products
at the ends of such edges are invalid too).

Thus, a reasonable requirement for the instantiation process
is that processing a new branch of the feature tree should only
begin after processing of the current branch has reached a full
product. We call this requirement instantiate-to-completion
(I2C) by analogy with the run-to-completion transaction mech-
anism in behavior modeling (indeed, instantiating a branch of
a feature tree can be seen as a transaction).

Importantly, I2C prohibits transitions rather than products,
and it is possible to have a product with some instantiation
paths into it being legal (and hence the product is legal as
well), but some paths to the product being illegal. Figure 4
shows a simple example with model M4 and its PPL. In the
latter, the “diagonal” transition {c, ge}−→{c, en, ge} violates
I2C and must be removed. However, its target product is still
reachable from {car, eng} as the latter is a fully instantiated
product. Hence, the only element excluded by I2C is the

diagonal dashed transition.
It follows from this observation that a PPL can be richer than

its lattice of partial products (transition exclusion cannot be
explained lattice-theoretically), and transition systems/Kripke
structures and modal logic are needed. Moreover, even if
all inclusions are transitions, the Boolean logic is too poor
to express important semantic properties embodied in PPLs.
For example, we may want to say that every product can be
completed to a full product, and every full product is a result
of such a completion. Or, we may want to say that if a product
P has some feature f , then in some of its partial completions
P ′, a feature g should appear. Or, if a product P has a feature
f , then any full product completing P must have a feature g,
and so on.

Also, since modal logic is more expressive than Boolean
logic, it provides a more expressive language for CCCs over
fms. Later in Sect. VI, we will provide an example in which
some CCCs cannot be expressed by BL, but our modal logic.

Thus, the transition relation is an important (and indepen-
dent) component of the general PPL structure. As soon as tran-
sitions become first-class citizens, it makes sense to distinguish
full products by supplying them, and only them, with identity
loops. That is, each framed product in our figures describing
PPLs, should be assumed to have a loop transition to itself.
Such loops do not add (nor remove) any feature from the
product, and has a clear semantic meaning: the instantiation
process can stay in a full product state indefinitely.

In the next two sections, we make the constructs discussed
above formal.

III. FMS AND PPLS FORMALLY

Our plan for this section is as follows. In Sect. III-A, we
give a formal definition of a feature model, whose structure is
carefully chosen to support our work in the paper. Sect. III-B
defines a propositional logic encoding of an fm, and the cor-
responding notions of a full and a partial products. Sect. III-C
formally defines an fm’s PPL as a transition systems.

A. Feature Trees and Feature Models

Typical fms are trees with some extra structure, like in
Fig. 1. Non-root features are either solitary or grouped. Soli-
tary features are either mandatory (e.g., eng, gear, brakes in
Fig. 1) or optional (like abs). Feature groups are either OR-
groups (e.g., {gas,ele}) or XOR-groups ({mnl,atm}). An fm is
a feature tree with a set of additional cross-cutting constraints
(CCCs) on features in different branches of the tree. Typically,
such constraints are either exclusive (the x-ended arc in Fig. 1),
or inclusive (the dashed arrow arc in Fig. 1).

In our framework, mandatory features and XOR-groups are
derived constructs. A mandatory feature can be seen as a
singleton OR-group. An XOR-group can be expressed by an
OR-group with an additional exclusive constraint, as we did
for model M3 in Fig. 3(a).

Definition 1: (Feature Trees). A feature tree is a pair
TOR = (T,OR) of the following components.



(i) T = (F, r, ↑) is a tree whose nodes are features: F
denotes the set of all features, r ∈ F is the root, and function
↑ maps each non-root feature f ∈ F−r

def
= F \ {r} to its

parent f↑. The inverse function that assigns to each feature
the set of its children (called subfeatures) is denoted by f↓;
this set is empty for leaves. It is easy to see that the set of f ’s
siblings is the set (f↑)↓ \ {f}. The set of all ancestors and all
descendants of a feature f are denoted by f↑↑ and f↓↓, resp.

Features f, g are called incomparable, f#g, if neither of
them is a descendant of the other. We write #2F for the set
{G ⊂ F : G 6= ∅ and f#g for all f, g ∈ G} ⊂ 2F .

(ii) OR is a function that assigns to each feature f ∈ F
a set OR(f) ⊂ 2f↓ (possibly empty) of disjoint subsets
of f ’s children called OR-groups. If a group G ∈ OR(f)
is a singleton {f ′} for some f ′ ∈ f↓, we say that f ′

is a mandatory subfeature of f . For example, in Fig. 1,
OR(gear) = {{mnl, atm}, {oil}}, and oil is a mandatory
subfeature of gear.

Elements in set O(f)
def
= f↓ \

⋃
OR(f) are called optional

subfeatures. For example, in Fig. 1, OR(brakes) = ∅, and
abs is optional.

Definition 2: (Feature Models). A feature model is a triple
M = (TOR, EX , IN ) with TOR a feature tree as defined
above, and two additional components defined below:
(i) EX ⊆ #2F is a set of exclusive dependencies between fea-
tures. For example, in Fig. 1, EX = {{ele,mnl}, {mnl, atm}}.
(ii) IN ⊂ #2F × #2F is a set of inclusive dependencies
between features. A member of this set is interpreted (and
written) as an implication (f1∧ . . .∧fm) → (g1∨ . . .∨gn).
For example, fm in Fig. 1 has IN = {atm→ abs}.

Exclusive and inclusive dependencies are also called cross-
cutting constraints (CCCs).

Thus, an fm is a tree of features T endowed with three
extra structures OR, EX , and IN . We will sometimes write
it as a quadruple M = (T,OR, EX , IN ). If needed, we will
subscript M ’s components with index M , e.g., write FM for
the set of features F . Note that an fm is a purely syntactic
object contrary to the common usage of term ’model’ in logic.

The class of all FMs over the same feature set F is denoted
by M(F ).

B. Full and Partial Products

A common approach to formalizing the PL (of full products)
of a given fm is to use Boolean propositional logic [3].
Features are considered as atomic propositions, and depen-
dencies between features are specified by logical formulas.
For example, if a feature f ′ is a subfeature of feature f , we
have an implication f ′ → f (if a product has feature f ′,
it must have feature f as well). If {g1, g2} is an OR-group
of f ’s subfeatures, we write f → (g1∨g2); if, in addition,
features g1, g2 are mutually exclusive, we write g1∧g2 → ⊥.
In this way, given an fm M = (T,OR, EX , IN ), each of
its four components gives rise to a respective propositional
theory as shown in the upper four rows of Table I: later
we will discuss the four theories in detail and explain the
!-superscripts; the subscript BL is needed because later we

Table I: Boolean theories extracted from a model M =
(TOR, EX , IN )

(1) ΦBL(T ) = {> → r} ∪ {f ′ → f : f ∈ F, f ′ ∈ f↓}
(2) ΦBL(EX ) = {

∧
G→ ⊥ : G ∈ EX}

(3!) Φ!
BL(OR) = {f →

∨
G : f ∈ F,G ∈ OR(f)}

(4!) Φ!
BL(IN ) = {

∧
G→

∨
G′ : (G,G′) ∈ IN}

(all!) Φ!
BL(M) = ΦBL(T ) ∪ ΦBL(EX ) ∪ Φ!

BL(OR) ∪ Φ!
BL(IN )

(3) ΦI2C(TOR) =
{
f ∧ g → (

∧
Φ!(T f

OR))∨
(
∧

Φ!
BL(T

g
OR)) : f, g ∈ F, f↑ = g↑

}
(all) ΦBL(M) = ΦBL(T ) ∪ ΦBL(EX ) ∪ ΦI2C

BL(TOR)

will also consider modal theories encoded by fms.2 Together
these theories constitute theory Φ!

BL(M), and a set of features
P is a legal full product for M iff P |= Φ!

BL(M) Since
publishing the seminal paper [14], this propositional view on
feature modeling became common and has been used in both
theoretical and practice-oriented work [3], [9], [18].

Below we revise the propositional encoding of fms based on
our discussion in Sect. II: we introduce two propositional the-
ories for, resp., partial and full products (subsection B.1) and
show how the I2C-principle can be propositionally encoded
(subsection B.2).

B.1) Enabling vs. Causality.
The encoding above has a drawback that we discussed

in the introduction: two different relationships between fea-
tures (being a subfeature, f ′ → f , and being a mandatory
subfeature, f → f ′) are similarly encoded. This implies
f ↔ f ′ for any mandatory subfeature f ′ of f , and leads
to misrepresentation of the hierarchial structure of an fm.
With a more refined approach, the two relationships should
be represented differently.

The subfeature relationship is fundamental, and any product
having a subfeature f ′ but missing its superfeature f should be
considered ill-formed; we can say that superfeature f enables
its subfeature f ′ and all reasonable products must respect
enabling. In contrast, if f ′ is a mandatory subfeature of f ,
a product having f but missing f ′ is just incomplete rather
than ill-formed. We can say that feature f causes f ′ so that
partial products violating causality are possible, and only full
product must respect it. 3

Thus, we have two Boolean theories for the same fm
M . One is its instantiation theory ΦBL(M) that encodes the
basic structural dependencies a well-formed product must
satisfy, and thus defines all partial products. This theory
consists of three componets as specified in row (all) in the
Table: ΦBL(T ) is the BL-encoding of subfeature dependen-

2∨G and
∧

G are conjunction and disjunction of all formulas in a set of
formulas G.

3Our choice of terms ’enabling’ and ’causal’ for the two types of structural
dependencies is somewhat arbitrary, and was partly motivated by similarities
between feature and event modeling discussed later in Sect. VII.



cies (row (1), ΦBL(EX ) is the BL-encoding of exclusive
dependencies (row (2)), and in section B.2 we will consider
yet another ingredient—the Boolean encoding of the I2C-
condition, ΦI2C

BL(TOR). The other propositional theory, M ’s full
product theory Φ!

BL(M) consists of four components: ΦBL(T )
and ΦBL(EX ) as above, plus BL-encoding Φ!

BL(OR) of the
mandatoriness dependencies embodied in the OR-structure
(row (3!), plus BL-encoding Φ!

BL(IN ) of the inclusive CCCs
(row(4!)), which we treat as mandatory for only full products
rather than affecting instantiation (i.e., as causal rather than
enabling). With a more refined approach to feature modeling,
a CCC should be labeled as either causal or enabling, but with
the current FM practice, CCCs are not labeled and we thus
consider them as causal, i.e., constraining full products only.

Definition 3: (Full Products). A full product over an fm
M = (TOR, EX , IN ) is a set of features P ⊆ F satisfying
theory Φ!

BL(M) defined in Table I.
The set of all full products is called M ’s full product set and

denoted by FPM . Thus, FPM =
{
P ⊆ F : P |= Φ!

BL(M)
}

.

The definition above is equivalent to the standard one, except
that we use the term full product rather than product. To intro-
duce partial products, we need to define one more ingredient
of the instantiation theory.

B.2) Instantiate to Completion via Propositional Logic.
Consider once again PPL3 in Fig. 3, from which product

{c, en, ge} is excluded as violating the I2C principle. Note
that in order to specify this exclusion propositionally, we
cannot declare that features en and ge are mutually exclusive
and write {en∧ge → ⊥} because down the lattice they
are combined in product {c, en, ele, ge} below {c, en}, and
in product {c, ge,mnl, en} below {c, ge} as well. In other
words, the conflict between features en and ge is transient
rather than permanent, and its propositional specification is
not trivial. We solve this problem by introducing the notion
of a feature subtree induced by a feature in Definition 4, and
then specifying theory ΦI2C

BL(TOR) shown in row (3) in Table I.
The theory formalizes the following idea: if a valid product
contains two incomparable features, then at least one of these
features must be fully instantiated within the product.

Definition 4: (Induced Subfeature Tree and I2C). Let
TOR = (T,OR) be a feature tree over a set of features
F , and f∈F . A feature subtree induced by f is a pair
T f
OR = (T f ,ORf ) with T f being the tree under f , i.e.,
T f def

= (f↓↓∪{f}, f, ↑), and mapping ORf is inherited from
OR, i.e., for any g ∈ f↓↓, ORf (g) = OR(g).

Definition 5: (Partial Products). A partial product over
feature model M = (TOR, EX , IN ) is a set of features P ⊆
F satisfying the instantiation theory ΦBL(M) specified in row
(all) in Table I. (Recall that a full product is a set of features
satisfying theory Φ!

BL(M).) We denote the set of all partial
products by PPM . Thus, PPM = {P ⊆ F : P |= ΦBL(M)}.

Below the term ’product’ will mean ’partial product’.
Proposition 1: For any feature model M , Φ!(M) |= Φ(M).

Hence, full products as defined in Definition 3 form a subset

of partial products, FP(M) ⊆ PP(M).
Proof: Note that Φ!(OR) |=

{
f →

∧
Φ!(T f

OR) : f∈F
}

and hence Φ!(OR) |= ΦI2C(OR).
Note that transition exclusion discussed in Sect. II-C cannot
be explained with Boolean logic and needs a modal logic; we
will give a suitable logic and show how it works in Sect. V.

C. PPLs as Transition Systems

In this section, we consider how products are related.
The problem we address is when a valid product P can be
augmented with a feature f /∈P so that product P ′ = P]{f}
is valid as well. We then write P −→ P ′ and call the pair
(P, P ′) a valid (elementary or step) transition.

Two necessary conditions are obvious: the parent f↑ must
be in P , and f should not be in conflict with features in P ,
that is, P ′ |=

(
ΦBL(T )∪ΦBL(EX )

)
. Compatibility with I2C is

more complicated.
Definition 6: (Relative fullness). Given a product P and

a feature f /∈P , the following theory (continuing the list in
Table I) is defined:

(3)P,f ΦI2C
BL(P, f)

def
=
⋃{

Φ!
BL(T

g
OR) : g ∈ P ∩ (f↑)↓

}
where T g

OR denotes the subtree induced by feature g as
described in Definition 4. (Note that set P ∩ (f↑)↓ may be
empty, and then theory ΦI2C

BL(P, f) is also empty.)
We say P is fully instantiated wrt. f if P |= ΦI2C

BL(P, f).
For example, it is easy to check that for model M4 in Fig. 4,
for product P1={car, eng} and feature f1 = gear, we have
P1 |= ΦI2C

BL(P1, f1) while for P2={car, gear} and f2 = eng,
P2 2 ΦI2C

BL(P2, f2) because Φ!
BL(T

gear
OR ) = {gear → oil} and

P2 2 {gear→ oil}.
Definition 7: (Valid transitions). Let P be a product. Pair

(P, P ′) is a valid transition, we write P −→ P ′, iff one of
the following two possibilities (a), (b) holds.

(a) P ′ = P ] {f} for some feature f /∈P such that the
following three conditions hold: (a1) P ′ |= ΦBL(T ), (a2) P ′ |=
ΦBL(EX ), and (a3) P |= ΦI2C

BL(P, f).
(b) P ′ = P and P is a full product.
That is, P −→ P ′ iff

(
(a1) ∧ (a2) ∧ (a3)

)
∨ (b)

The following result is important.
Proposition 2: If P is a valid product and P −→ P ′, then

P ′ is also a valid product.
Proof: If P ′ = P , the proposition is obvious. Consider

now the case of P ′ = P ] {f} with P ′ |= ΦBL(T )∪ΦBL(EX )
and P |= ΦI2C

BL(P, f). We need to prove that P ′ |= ΦI2C
BL(TOR).

Let g∈P be an arbitrary feature with g↑=f↑, i.e., g ∈
P ∩ (f↑)↓. By definition of relative fullness, if P |=
ΦI2C

BL(P, f), then definitely P |= Φ!
BL(T

g
OR) (one of the union’s

components). This implies P ′ |= Φ!
BL(T

g
OR), and hence

P ′ |=
⋃{

Φ!
BL(T

g
OR): g∈P, g↑=f↑)

}
. The above statement,

along with P |= ΦI2C
BL(TOR), imply that P ′ |=

{
f∧g →

(
∧

Φ!
BL(T

f
OR))∨(

∧
Φ!

BL(T
g
OR)): f, g ∈F, f↑=g↑

}
.

Definition 8: (Partial Product Line). Let M =
(TOR, EX , IN ) be an fm. The partial product line determined
by M is a triple P(M) = (PPM ,−→M , IM ) with the set
PPM of partial products given by Definition 5, transition



relations −→M given by Definition 7 (so that full products,
and only them, are equipped with self-loops), and the initial
product IM = {r} consisting of the root feature.

IV. FEATURE KRIPKE STRUCTURES AND THEIR LOGIC

In this section, we introduce Feature Kripke Structures
(fKS), which are an immediate abstraction of PPLs generated
by fms. Then we introduce a modal logic called feature CTL
(fCTL), which is tailored for specifying fKSs’s properties.

A. Feature Kripke Structures

We deal with a special type of Kripke structure, in which
possible worlds (called partial products) are identified with
sets of atomic propositions (features), and hence a labelling
function is not needed.

Definition 9: (Feature Kripke Structure). Let F be a finite
set (of features). A feature Kripke structure (fKS) over F is a
triple K = (PP,−→, I) with PP ⊂ 2F a set of non-empty
(partial) products, I ∈ PP the initial singleton product (i.e.,
I = {r} for some r ∈ F ), and −→⊆ PP×PP a binary
left-total transition relation. In addition, the following three
conditions hold (−→+ denotes the transitive closure of −→):
(Singletonicity) For all P, P ′ ∈ PP , if P −→ P ′ and P 6= P ′,
then P ′=P∪{f} for some f /∈ P .
(Reachability) For all P ∈ PP , I −→+ P , i.e., P is reachable
from I .
(Self-Loops Only) For all P, P ′ ∈ PP , if (P −→+ P ′ −→+

P ), then P = P ′, i.e., every loop is a self-loop.
A product P with P −→ P is called full. The set of full

products is denoted by FP .
The components of an fKS K are subscripted with K if

needed, e.g., PPK . We denote the class of all fKSs built over
a set of features F by K(F ). Note that any product in an fKS
eventually evolves into a full product because F is finite, −→
is left-total, and all loops are self-loops. Hence, an fKS enjoys
the following:
(Finality) For all P ∈ PP , there exists a full product P ′ such
that P −→+ P ′.

We will also need the notion of a sub-fKS of an fKS.
Definition 10: (Sub-fKS). Let K, K ′ be two fKSs. We say

K is a sub-fKS of K ′, denoted by K v K ′, iff IK = IK′ ,
PPK ⊆ PPK′ , and −→K⊆−→K′ .

The following proposition is an obvious corollary of Defi-
nition 8.

Proposition 3: Let M∈M(F ) be an fm. Its PPL is an fKS,
i.e., P(M) ∈ K(F ).

The proposition above is not very interesting: there is a rich
structure in P(M) that is not captured by the fact that P(M)
is an fKS—the class K(F ) is too big. We want to characterize
P(M) in a more precise way by defining as small as possible a
class of fKSs to which P(M) would provably belong. Hence,
we need a logic for defining classes of fKSs by specifying a
fKS’s properties.

Table II: Rules of satisfiability

P |= f iff f ∈ P (for f ∈ F )
P |= > always holds
P |= ¬φ iff P 6|= φ
P |= φ ∨ ψ iff (P |= φ) or (P |= ψ)
P |= AXφ iff ∀〈P −→ P ′〉. P ′ |= φ
P |= AFφ iff ∀〈P=P1 −→ P2 −→ . . .〉 ∃i ≥ 1. Pi |= φ
P |= AGφ iff ∀〈P=P1 −→ P2 −→ . . .〉 ∀i ≥ 1. Pi |= φ
P |= ! iff P −→ P

B. Feature Computation Tree Logic

We define Feature Computation Tree Logic (fCTL), which
is a fragment of the Computation Tree Logic (CTL) enriched
with a constant (zero-ary) modality ! to capture full products.

Definition 11: (feature CTL). fCTL formulas are defined
using a finite set of propositional letters F , an ordinary signa-
ture of propositional connectives: constant (zero-ary) > (truth),
unary ¬ (negation) and binary ∨ (disjunction) connectives,
and a modal signature consisting of modal operators: constant
(zero-ary) modality !, and three unary modalities AX, AF,
and AG. The well-formed fCTL-formulas φ are given by the
following grammar:

φ ::= f | > | ¬φ | φ∨φ | AXφ | AFφ | AGφ | ! , where f ∈ F.

Other propositional and modal connectives are defined du-
ally via negation usual: ⊥, ∧, EX, EF, EG are the duals of >,
∨, AX, AG, AF, respectively. Also, we define a unary modality
2!φ as a shorthand for AG(!→ φ). Let fCTL(F ) denotes the
set of all fCTL-formulas over F .

The semantics of fCTL-formulas is given by the class K(F )
of fKSs built over the same set of features F . Let K ∈ K(F )
be an fKS (PP,−→, I). We first define a satisfaction relation
|= between a product P ∈ PP and a formula φ ∈ fCTL(F )
by structural induction on φ. This is done in Table II.

We define K |= φ iff P |= φ for all P ∈ PPK

(equivalently, iff IK |= AGφ).
For instance, consider Group Example (Fig. 5 in Sect. ??),

with self-loops at full (framed) products. The following state-
ments φ hold in K, i.e., K |= φ, for φ = g, φ =!→ w ∨m,
φ = {g,w} → AX(w1∨w2), φ = (w1∧m∧¬m1)→ AX¬m1,
φ = (m2∧w∧¬w1)→ AX¬w1. The last two formulas encode
CCCs C1 and C2 resp., described in the Example.

V. fCTL-THEORY OF FEATURE MODELS

In this section we prove our main results. Given an fm M
over a finite set of features F , we build two fCTL theories
from M ’s data, ΦML⊆(M) and ΦML(M) (index ML refers to
Modal Logic), such that the former theory is a subset of the
latter, and the following holds for any fKS K∈K(F ):

Theorem 1 (Soundness): P(M) |= ΦML(M).
Theorem 2 (Semi-completeness):

K |= ΦML⊆(M) implies K v P(M).
Theorem 3 (Completeness): K |= ΦML(M) iff K = P(M).



We have discussed the value of Completeness in the intro-
duction. Semi-completeness is useful (as an auxiliary inter-
mediate step to completeness, but also) for some important
practical problems in FM such as specialization [19] (M is
a specialization of another fm M ′ if FPM ⊂ FPM ′ ), and
some other analysis operations [4] over fms. These operations
are normally considered for full product lines (FPLs) only, but
can be redefined for PPLs as well.

We will build theories ΦML⊆(M) and ΦML(M) from small
component theories, which specify the respective properties
of M ’s PPL in terms of fCTL. Before we proceed to defining
these theories and proofs, in order to provide some guidance
through the proofs, in Section A we discuss the structure of
the entire component family, and explain how the compound
theories, ΦML⊆(M), ΦML(M), and ΦML+(M)

def
= ΦML(M) \

ΦML⊆(M) are built from them. Then, in Section B, we
zoom into component theories and explain how they are built.
Section C presents the proofs.

A. Structure of the component family

All component theories we will need are referenced in
Table III. Its bottom row consists of the three compound
theories mentioned above; the last (rightmost) column theory
is the union of the theories in its row—this is a general rule
for the entire table. Another general rule is that each theory in
the bottom row is the union of all components above it in its
column(s) (and ΦML⊆(M) is the union of all components in
two columns). For further references, we call theories in the
bottom row and the last column external; all other theories are
internal.

Rows of the table are indexed by structural concerns to be
logically encoded; columns are named by the goals of these
encodings: to provide semi-completeness wrt. FPL and PPL
(split into Boolean and modal components), and to provide
completeness wrt. FPL and PPL: a theory in the last column is
the union of all theories in its row, and thus ensures complete-
ness wrt. the concern corresponding to the row. Each internal
theory is an encoding of the corresponding concern for the
corresponding goal. For example, theory Φ!

ML⊆(OR) modally
specifies the OR structure to provide semi-completeness wrt.
FPL (note the ! superindex). For another example, ΦI2C

BL(TOR)
is a Boolean encoding of the I2C-principle, and its neighbor
on the right is the additional modal constraint for the same
concern—it is needed to ensure semi-completeness. The empty
neighbor on the right means that nothing should be added
(for this concern) to ensure completeness. We do not intend
to make the table strictly logical: its goal is to reference
component theories and explain their intentions.

B. The content of component theories

Now we specify the internal theories, and explain their
meaning. Boolean theories are specified in Table I. Modal
theories are defined in Table IV based on the following
motivation.

The theory Φ↓ML+(T ) states that if a feature f is visited
in a current state (partial product) without visiting any of its

Table IV: Definitions of (basic) fCTL theories

Φ↓ML+(T ) =
{
f ∧ ¬

∨
f↓ → EXg : f, g ∈ F, g↑ = f

}
Φ!

ML⊆(OR) =
{
f → 2!

∨
G : f ∈ F,G ∈ OR(f)

}
Φ!

ML⊆(IN ) =
{∧

G→ 2!
∨
G′ : (G,G′) ∈ IN

}
Φ!

ML⊆(M) = {!→
∧

Φ!
BL(M)}

Φ!
ML+(M) = {

∧
Φ!

BL(M)→ !}

ΦI2C9
ML⊆ (TOR) =

{
f ∧ ¬

∧
Φ!(T f

OR) → ¬EXg : f, g ∈
F, f↑ = g↑

}
Φ↔ML+(TOR, EX ) =

{∧
ΦI2C(f) ∧ ¬f ∧ ¬

∨
ΦEX (f) →

EXf : f ∈ F
}

, where
ΦI2C(f) = {g → Φ!(T g

OR) : g, f ∈ F, g↑ = f↑, g 6= f}
ΦEX (f) =

{∧
(G \ {f}) : G ∈ EX , f ∈ G

}

children, say g, then there must be another state immediately
accessible from the current state visiting g. The union of this
theory and ΦBL(T ) generates a completeness theory ΦML(T ).
An fKS K satisfying ΦML(T ) is guaranteed to capture the tree
structure T .

Since exclusive constraints in an fm talk only about semi-
completeness of partial products, the corresponding ML+ the-
ory is empty. Thus, ΦML(EX ) = ΦBL(EX ).

The theories corresponding to OR and IN have the same
nature: both deal with full products (states with self-loop
transitions). The theory Φ!

ML⊆(OR) is the modal version of
the Boolean theory Φ!

BL(OR) (Table I). Consider an OR group
G. The theory Φ!

ML⊆(OR) states that if the G’s parent is
visited in a current state, then at least one of the elements
involved in G must be visited in any final products accessible
from the current state. The theory Φ!

ML⊆(IN ) is the modal
version of Boolean theory Φ!

BL(IN ). Let (G,G′) be an inclu-
sive constraint. The theory Φ!

ML⊆(IN ) states that if all the
elements involved in G are visited in a current state, then at
least one of the elements in G′ must be visited in any final
products accessible from the current state. Obviously, these
two theories are derivable from the theory Φ!

ML⊆(M).
The theories Φ!

ML⊆(M) and Φ!
ML+(M) are clear (see Ta-

ble IV). Φ!
ML⊆(M) holding in an fKS guarantees that any

full product in the fKS is a full product of M . On the other
hand, any fKS satisfying the theory Φ!

ML(M) (= Φ!
ML⊆(M)∪

Φ!
ML+(M)) must include all full products of M and only them.
Recall that the theory ΦI2C

BL(TOR) (Table I) guarantees that
the partial products of the PPL of M respect the I2C principle.
However, as discussed in Sect. II-C, transitions also have to
respect this principle. The modal theory ΦI2C9

ML⊆ (TOR) excludes
the invalid transitions due to the I2C principle (see Table IV).
This theory states that if a feature is visited in a current state
without being completely instantiated, then there must not
be any states immediately accessible from the current state
including one of the feature’s siblings. Then, the completeness
theory relating to I2C, ΦI2C

ML(TOR), would be the union of



Table III: Component and Compound Theories

M Semi-completeness To Ensure Completeness Completeness
BL ML

T ΦBL(T ) ∅ Φ↓ML+(T ) ΦML(T )

EX ΦBL(EX ) ∅ ∅ ΦML(EX )

OR ∅ Φ!
ML⊆(OR) ∅ Φ!

ML(OR)

IN ∅ Φ!
ML⊆(IN ) ∅ Φ!

ML(IN )

I2C ΦI2C
BL(TOR) ΦI2C9

ML⊆ (TOR) ∅ ΦI2C
ML(TOR)

FPM ∅ Φ!
ML⊆(M) Φ!

ML+(M) Φ!
ML(M)

PPM ΦBL(M) ∅ Φ↓ML+(T ) ∪ Φ↔ML+(TOR, EX ) Φ◦ML(M)

P(M) ΦML⊆(M) ΦML+(M) ΦML(M)

ΦI2C
BL(TOR) and ΦI2C9

ML⊆ (TOR).
Recall that, according to Definition 5, a set of features

is a valid partial product iff it satisfies the Boolean theory
ΦBL(M). However, any fKS satisfying this theory does not
necessarily include all valid partial products. To ensure that
the fKS includes all partial products, we add modal theories
Φ↓ML+(T ) and Φ↔ML+(TOR, EX ). Consider a state P and a
feature f such that f 6∈ P . The theory Φ↔ML+(TOR, EX )
states that if adding f to P does not violate the exclusive
constraints and I2C principle, then there must be an immedi-
ately accessible state from P including f . The corresponding
completeness theory is denoted by Φ◦ML(M) and is equal to
ΦBL(M) ∪ Φ↓ML+(T ) ∪ Φ↔ML+(TOR, EX ).

Any fKS satisfying the semi-completeness theory
ΦML⊆(M) would be a substructure of P(M). On the
other hand, the theory ΦML(M), which is the union of
ΦML⊆(M) and ΦML+(M), guarantees completeness, i.e., any
fKS K satisfying ΦML(M) is equal to the PPL of M .

C. Proofs

Our plan is as follows. We first prove soundness, then
semi-completeness. The completeness theorem will be a direct
corollary of Lemma 1 and Lemma 2.

Soundness: P(M) |= ΦML(M).
Proof: To prove this theorem, we need to show that P(M)

satisfies any components of the theory ΦML(M).
(a) P(M) |= ΦBL(M) is obvious by to Definition 5. Thus,

all the Boolean theories from Table III are satisfied by P(M).
(b) P(M) |= Φ↓ML+(T ):
Let P ∈ PPM and P |= f ∧ ¬

∨
f↓ and g ∈ f↓. We

want to show that P |= EXg. Let P ′ = P ∪ {g}. According
to (a), P |= ΦBL(T ) ∪ ΦBL(EX ). Since the g’s parent is
already in P ′, adding g to P does not violate ΦBL(T ). Since
exclusive constraints are defined on incomparable features,
adding g to P also does not violate ΦBL(EX ). Therefore,
P ′ |= ΦBL(T ) ∪ ΦBL(EX ). Since all subfeatures of f are
absent in P , ΦI2C

BL(P, f) = ∅ (note Definition 6) and hence

P |= ΦI2C
BL(P, f). Since P ′ |= ΦBL(T ) ∪ ΦBL(EX ) and

P |= ΦI2C
BL(P, f), according to Definition 7, there is a transition

P −→M P ′. Therefore, P |= EXg.
(c) P(M) |= Φ!

ML(M) follows obviously, since the set of
states with self-loops in P(M) is equal to the set of all full
products of M . Note that this also implies that P(M) satisfies
both theories Φ!

ML⊆(OR) and Φ!
ML⊆(IN ), since these two

theories are derivable from the theory Φ!
ML⊆(M).

(d) P(M) |= ΦI2C9
ML⊆ (TOR) follows obviously. Indeed, this

theory guarantees that there would not be an invalid transition
due to I2C principle.

(e) P(M) |= Φ↔ML+(TOR, EX ):
Let f and P be a feature and a partial product of M ,

respectively, such that f 6∈ P , P |= ΦI2C(f), and P 6|=∨
ΦEX (f). Thus, according to Definition 7, there exists a

transition P −→M P ∪ {f}, which implies P |= EX f . This
results in P(M) |= Φ↔ML+(TOR, EX ).

Note that any other theory is the union of some of the above
theories. The theorem is proven.

Semi-completeness: K |= ΦML⊆(M) implies K v P(M).
Proof: Let K |= ΦML⊆(M). IK = IM , since, due to

K |= ΦBL(T ), K |= r (r is the root feature of M ).
Since K |= ΦBL(M), according to Definition 5, PPK ⊆

PPM .
Now, we are going to show that −→K⊆−→M .
Due to K |= Φ!

ML⊆(M) and PPK ⊆ PPM , any self-loop
transitions P −→K P in K is a self-loop transition P −→M

P in P(M).
Consider a transition P −→K P ′, where P ′ = P ∪{f} for

a feature f /∈ P . We want to show that there is a transition
P −→M P ′ in P(M). Again, note that any state in K is a
partial product of M . To prove this statement, according to
Definition 7, we need to show that (a1) P ′ |= ΦBL(T ), (a2)
P ′ |= ΦBL(EX ), and (a3) P |= ΦI2C

BL(P, f). (a1) and (a2) is an
immediate corollary of K |= ΦBL(M). To prove (a3), we need
to show that for any siblings g with g ∈ P , P |= Φ!

BL(T
g
OR)

(see Definition 6). Assume by a way of contradiction that



P 6|= Φ!
BL(T

g
OR), i.e., g is not completely instantiated in P .

Since K |= ΦI2C9
ML⊆ (TOR), g ∈ P , and P 6|= Φ!

BL(T
g
OR), there

must not be a transition P −→K P ′. This leads us to a
contradiction. Thus, (a3) holds.

Based on the above reasonings, −→K⊆−→M .
Completeness: K |= ΦML(M) iff K = P(M)
Lemma 1: K |= Φ◦ML(M) implies PPK = PPM .

Proof: Let K |= Φ◦ML(M). By Theorem 2, PPK ⊆
PPM . Now we need to show that PPM ⊆ PPK :

Let P ∈ PPM and r be the root feature of T . The features
included in P represent a subtree of T , denoted by TP ,
whose root is r. For an example, consider the partial product
{car, eng, gear,mnl, oil} in the FM in Fig. 1. We do have
the following formulas corresponding to Φ(T ): eng → car,
gear → car, mnl → gear, and oil → gear, which clearly
represent the subtree (eng)→ car← (mnl→ gear← oil).

We do a pre-order depth-first traversal of TP of a special
kind complying I2C-priniciple: in each level of the tree, all
the nodes that are completely instantiated must be visited
before the other nodes. In the running example, gear must
be visited before eng, since it is completely disassembled in
{car, eng, gear,mnl, oil}. In this example, the traversal would
result in the sequence 〈car, gear,mnl, oil, eng〉.

Let SP = 〈f1, . . . , fn〉 with f1 = r be the traversal of TP .
The following condition (R) holds:
(R): for all i < n either

(R-1) fi = f↑i+1 or
(R-2) ∃〈j < i〉 : fj = f↑i+1 & ∀g ∈ {f1, . . . , fi} :

(
g↑ =

f↑i+1

)
⇒
(
{f1, . . . , fi} |= Φ!

BL(T
g
OR)

)
, i.e., g is completely

instantiated in {f1, . . . , fi}.
We prove that any prefix subsequence of SP is a partial

product of K and so P itself. To this end, we use the following
inductive reasoning:

(base case): K |= r implies that IK = {r} = {f1}.
(hypothesis): Assume that, for some 1 ≤ i < n, any

prefix of the sequence 〈f1, . . . , fi〉 is a state in K and
there exists a path {f1} −→K · · · −→K {f1, . . . , fi}. Let
P ′ = {f1, . . . , fi}.

(inductive step): We want to prove that any prefix of the
sequence 〈f1, . . . fi, fi+1〉 is a state in K and there exists the
path {f1} −→K · · · −→K P ′ −→K P ′∪{fi+1}. To this end,
we need to show that P ′ ∪ {fi+1} ∈ PPK and there exists a
transition P ′ −→K P ′ ∪ {fi+1}. We will prove this for both
cases (R-1) and (R-2) introduced above:

(R-1). As fi is freshly added to state P ′, and fi+1 is a
subfeature of fi (f↑i+1 = fi) due to K |= Φ↓ML+(T ), there is
a transition P ′ −→K P ′ ∪ {fi+1}. Hence, {f1, . . . , fi+1} ∈
PPK .

(R-2). As ∀g ∈ P ′ : (g↑ = f↑i+1) ⇒ (P ′ |= Φ!
BL(T

g
OR))

(note (R-2) above), P ′ |= ΦI2C(fi+1).
P |= ΦBL(TEX ) implies that any subset of P satisfies

ΦBL(TEX ). Since P ′∪{fi+1} ⊆ P , P ′∪{fi+1} |= ΦBL(TEX ),
which means P ′ 6|=

∨
ΦEX (fi+1).

Since P ′ |= ΦI2C(fi+1)∧¬
∨

ΦEX (fi+1)∧¬fi+1, and K |=
Φ↔ML+(TOR, EX ), there is a state {f1, . . . , fi+1} ∈ PPK such
that P ′ −→K P ′ ∪ {fi+1}. Hence, P ∈ PPK .

Lemma 2: K |= ΦML(M) implies −→K= −→M .
Proof: Let K |= ΦML(M). There are two types of

transitions in a fKS: self-loop transitions and others. Note that
self-loop transitions denote full products. We show that (1) full
products of both P(M) and K are the same, i.e., the set of
their self-loops are the same, (2) Non-loop transitions in K and
P(M) are the same. (1) is obvious, since K |= Φ!

ML(M) (note
Table IV). In the following we also show that the statement
(2) holds.

According to Theorem 2, −→K⊆−→M . Now what we need
is to prove that any non-loop transition in P(M) is also a
transition in K. Note that, according to Lemma 1, PPK =
PPM . Consider a transition P −→M P ′, where P ′ = P∪{f}
for a feature f /∈ P . We want to show that there is a transition
P −→K P ′ in K. According to Definition 7, P ′ |= ΦBL(T )∪
ΦBL(EX ), and P |= ΦI2C

BL(P, f). Thus, there are two choices:
(i) ΦI2C(P, f) = ∅
(ii) ΦI2C(P, f) 6= ∅

(i): This implies that the parent of f is freshly added through
a transition ingoing to P . Hence, due to K |= Φ↓ML+(T ), there
exists a transition P −→K P ′.
(ii): Since P ′ |= ΦBL(EX ), P |= ¬

∨
ΦEX (f). Also, P |=

ΦI2C
BL(P, f) implies that P |= Φ!

BL(T
g
OR) for any g ∈ P ∩(f↑)↓,

which means P |= ΦI2C(f). Hence, due to Φ↔ML+(TOR, EX ),
there exists a transition P −→K P ′.

(i) and (ii) implies that any non-loop transition in P(M) is
also a transition in K. Hence, −→M⊆−→K .

VI. PRACTICAL APPLICATIONS

In this section, we discuss some concrete tasks in FM, which
would be improved by the use of modal logic view of fms.
These tasks are grouped into (a) fm analysis, (b) PL-builder
vs. PL-client view, and (c) reverse engineering of fms.

A. Automated Analysis of Feature Models

Due to some practical applications, several analysis prob-
lems over fms arise in practice. Some operations deal with
only one given fm. For example, for a given fm, we may want
to determine: the core features, i.e., those features that are in
all full products of the fm; the least common ancestor (LCA)
of a given set of features; all subfeatures of a given feature.
Some other operations are given two fms and investigate their
relationships. For example, given two fms M and M ′, we may
want to decide whether: they are refactoring or not, i.e., they
are semantically equivalent; M is a specialization of M ′ or
not, i.e., M subsume M ′ in the semantics sense.

We could group analysis operations into two types: syntactic
and semantic. Syntactic analysis operations rely on fms’ struc-
tures, i.e., they are ask some questions about the hierarchical
structure of a given fm. For example, the LCA and subfeatures
operations (see above) are in this type. On the other hand,
semantic analysis operations, as the name suggests, rely on
fms’ semantics. For example, the refactoring and specialization
operations are in this kind.

Clearly, semantic analysis based on the Boolean semantics
can be erroneous, e.g., the two fms in the introduction are



semantically equivalent (refactoring) in the Boolean view, but
not in the modal view!.

Normally, practitioners use both types of analysis and
thus deal with pairs (M,Sem(M)). Sem(M) denotes the
semantics of M . In the Boolean view, they must keep both
components, which complicates maintenance: you change M ,
but forget to change Sem(M), or the other way round.
Moreover, industrial fms may have thousands of features and
many dependencies between them [18]. As industrial fms may
be huge, practitioners sometimes use off-the-shelf tools (e.g.,
SAT-solvers) to perform even syntactic analysis on Sem(M)
rather than M , and thus are prone to errors. In the modal view,
these problems disappear as the Modal semantics of M , i.e.,
P(M), keeps all information we need.

B. PL-builder vs. PL-client View

Modal properties of PLs may be not so important for the
user, for whom an fm is just a structure of check-boxes to
guide his choices. However, modal properties can be very
important for the vendor, who should plan and provide a
reasonable production of all products in the product line. For
example, consider the following scenario.

A manager wants to organize a group featuring a woman
and/or a man. A man can be either m1 or m2. A woman can
be either w1 or w2. Figure 5(a) shows the corresponding fm,
M , and Fig. 5(b) represents its PPL, in which we abbreviate
features man and woman by m and w (ignore the difference
between dashed and other transitions for a while). The PPL
consists of fifteen partial products, amongst which eight are
full products (they are framed). In particular, the four bottom
final products present all possible pairs (mi,wj) with i, j =
1, 2.

13#

group#

man# woman#

m1# m2# w1# w2#

g#

g,#m" g,#w"

g,w,#w1" g,w,w2"g,m,m1" g,m,m2"

g,m,m1,w"
g,m,m2,w" g,w,w1,m"g,w,w2,m"

g,m,w,#
m1,w1"

g,m,w,#
m1,w2"

g,m,w,#
m2,w1"

g,m,w,##
m2,w2"

(a)##
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figures/groupExample#

✕ ✕ ✕ ✕ 

Figure 5: Feature model M (a), and its PPL (b)

Now suppose that the manager wants to respect preferences
of the first selected member for the selection of her/his
coworkers. Suppose that the man m1 and the woman w2 do
not have any concerns, but the man m2 wants to work with
the woman w2, and the woman w1 prefers to work with the
man m2. To address these concerns, the following two CCCs
are to be added: (C1) If the woman w1 is selected, and a man
is needed, then it must be m2; (C2) If the man m2 is selected,

and a woman is needed, then it must be w2. Obviously, these
constraints rely on the order of making feature selection.

Let us see how the above constraints influence the PPL. C1
excludes the transition {g,w,w1,m} −→ {g,m,w,m1,w1},
since w1 in the source does not allow the manager to pick
m1 as her colleague. In a similar way, C2 excludes the
transition {g,m,m2,w} −→ {g,m,w,m2,w1}. The excluded
transitions are represented by dashed arrows in Fig. 5. Note
that the above CCCs do not make any partial product from
the PPL illegal. They only exclude some transitions. This is
why they cannot be expressed using Boolean logic: encoding
these constraints by Boolean implications gives us w1 → m2

and m2 → w2, which implies w1 → w2 and contradicts the
exclusion constraint w1 ∧ w2 → ⊥.

Consider the Group Example, with self-loops at full
(framed) products. The following statements φ hold in K,
i.e., K |= φ, for φ = g, φ =! → w ∨ m, φ =
{g,w} → AX(w1 ∨ w2), φ = (w1 ∧ m ∧ ¬m1) → AX¬m1,
φ = (m2∧w∧¬w1)→ AX¬w1. The last two formulas encode
CCCs C1 and C2 resp., described in the Example.

C. Reverse Engineering of fms

Reverse engineering of fms is an active research area in
FM. The problem statement is as follow: given a PL, we want
to build an appropriate fm representing the PL. Depending on
the representation of the given PL, the current approaches are
grouped into two kinds: reverse engineering of fms from BL
formulas [9], reverse engineering of fms from textual descrip-
tions of features [?], [?]. She et al. in [18] argue that non of
these approaches are complete. Indeed, the main challenge of
this task is to determine an appropriate hierarchical structure
of features. The BL approach is incomplete, since, as already
discussed, the BL semantics cannot capture the hierarchical
structure of the features. The textual approach is also not
desirable for two reasons: it is an informal approach, and also
“it suggests only a single hierarchy that is unlikely the desired
one” [18]. To relieve the deficiencies of these approaches, the
current stat-of-the-art approach [18] proposes a heuristic based
approach in which both types of inputs are given as input.
However, if we take the given input to be the fCTL theory
of the PL (in other words, its PPL), reverse engineering of
fms becomes simpler and better manageable. This is because
the given fCTL theory contains everything needed to build the
corresponding fm. Also, our careful decomposition of fms’
structure and theories into small blocks is because it would
allow better tuning of the reverse engineering process.

VII. FEATURE MODELING VS. EVENT-BASED
CONCURRENCY MODELING

In this section, we summarize similarities and differences
between FM and event-based concurrency modeling. (We will
use the following abbreviations: EM for Event Modeling, and
em for an event model.) We will also point to several possi-
bilities of fruitful interactions between the two disciplines.

Following the survey in [21], we distinguish three ap-
proaches in EM. The first is based on a topological notion of



Table V: Event vs. feature modeling

Approach Event
Models

Feature Models
Boolean Modal

Topological (E, C) (F,PP,FP) (F,PP,→, I)
Structural (E,DDD) (F,M)
Logical (E,Φ) (F,ΦM ,Φ

!
M ) (F,ΦML

M )

a configuration structure (CS) (E, C) with E a set (possibly
infinite) of events, and C⊂2E a family of subsets (usually
finite) of events, which satisfy some closure conditions (e.g.,
under intersection and directed union). Sets from C are called
configurations and understood as states of the system: X∈C
denotes a state in which all events from X have already
occurred. In the second approach, valid configurations are
specified indirectly by some structure DDD of dependencies
between events, which make some configurations invalid.
Formally, some notion of validity of a set X⊂E wrt. DDD is
specified so that an event structure (ES) (E,DDD) determines
a CS {X⊂E : X is valid wrt. DDD}. Typical representatives of
this approach are Winskel’s prime and general event struc-
tures. The third approach is an ordinary encoding of sets of
propositions by Boolean logical formulas. Then an em is just a
Boolean theory, i.e., a pair (E,Φ) with Φ a set of propositional
formulas over set E of propositions. The left half of Table V
summarizes the rough mini-survey above.

Notably, for a typical CS, transitions between states are a
derived notion; e.g., in [12], any set inclusion is a transition; in
[21], special conditions are to hold in order for a set inclusion
to be a valid transition. In contrast, event automata (EA) by
Pinna and Poigné [15] are tuples (E, C,→, I) with → a given
transition relation over configurations (states), and I∈C an
initial state.

FM is quite directly related to EM, and actually can be
seen as a special interpretation of EM. Indeed, features can
be considered as events, (partial) products as configurations,
and fms as special ESs (see the middle row in the table,
where M = (TOR, EX , IN )). An important distinction of the
Boolean FM is the presence of a special subset of final states
(products), so that FM’s topological and logical counterparts
are triples rather than pairs (see the Boolean column in the
table, where we slightly changed notation to save space and
fit the table into one text column: the subindex BL is replaced
by reference to the model M ). Pinna and Poigné [15] mention
final states (they call them quiescent) but do not actually use
them, whereas for FM, final products are a crucial ingredient.
The last column of the table describes FM’s basic topological
and logical structures in the modal logic view: the upper row
is our fKS, and the bottom one is the theory specified in
Sect. V. Our fKS is exactly an EA with quiescent states (= full
products or self-looped states), which, additionally, satisfies
two conditions: left-totality of transitions and Self-loop Only
(Singletonicity is satisfied in EAs), but Pinna and Poigné do
not apply modal logic for specifying EA’s properties (and do

not even mention it), and do not consider the I2C-principle.
The comparison above shows enough similarities and differ-

ences to hope for a fruitful interaction between the two fields.
We are currently investigating what FM can usefully bring to
EM; and can mention several simple findings. The presence of
two separate Boolean theories allows us to formally distinguish
between enabling and causality (Sect. III-B); we are also not
aware of a propositional specification of transient conflicts
such as our Boolean and modal encoding of I2C. Moreover,
such encoding is nothing but a compact formal specification
of a transaction mechanism, which is usually considered to be
non-trivial. Overall, we have shown that a simple formalism of
fms is capable of encoding very complex modal theories with
a wealth of information. Using this formalism and notation for
EM is, perhaps, the most exciting possible application of FM
to concurrency modeling.

VIII. RELATED AND FUTURE WORK

A. Staged Configuration

Czarnecki et al. [8] introduced the concept of staged con-
figuration in which a product instantiation of a given fm
M is performed in a sequence of stages. In each stage a
specialization of M is generated by making some choices.

car$

eng$ pow$

mnl$ atm$
✕$ ✕$

car$

eng$ pow$
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car$

eng$ pow$
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Stage$2$

M"

Figure 6: Staged Configuration

This process, called the product derivation process (PDP),
is continued until a fully specialized fm denoting only one
configuration is obtained. Fig. 6 shows an fm M (pow stands
for power lock) and a PDP for the full product {car, eng} of
this model. It includes two stages: in the first stage, the choice
between manual and automated power lock is made, and in the
second stage, the power lock is eliminated. The corresponding
sequence of stages is called a configuration path [6].

Fig. 7 shows the PPL of M . We call a path starting
at the initial and ending at a full product an instantiation
path. Although both instantiation and configuration paths
show how to instantiate full products, they are essentially
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different. Firstly, configuration paths are sequences of fms,
while instantiation paths are sequences of products. Secondly,
in staged configuration, one can make choices irrespective
of any conditions other than exclusive constraints, while an
instantiation path shows how to reach a full product by
including the features step by step in a top-down fashion not
violating the I2C-principle. For example, consider also Fig. 6:
in the first stage, we make choices between mnl and atm
before making the decision whether the car is equipped with a
power locker or not. Such a decision is not allowed in PPLs:
a feature cannot occur into a product without its parent.

B. Algebraic Modeling of Feature Modeling

Höfner et al. developed an algebra, called product family
algebra, for product lines whose basis is the structure of
idempotent semirings [13]. A product family algebra over a
set of features F is 5-tuple A = (A,+,∅,×, {∅}) where
A = 22

F

(power set of power set of features), ∅ represents the
empty product line, {∅} is a dummy/pseudo product line with
only one product: nothing, and +,× are defined as follows:
for all P, P ′ ∈ A : P × P ′ = {p ∪ p′ : p ∈ P, p′ ∈ P ′}
and P + P ′ = P ∪ P ′. In this way, + and × can be
seen as a choice between product lines and their mandatory
presence, respectively. It is proven that A forms a semiring
where (A,+, 0) and (A,×, 1) are the commutative monoid
and monoid parts, respectively, such that + is idempotent and
× is commutative. Therefore, a product line is seen as a term
generated in this algebra.

The PL of a given fmM is encoded as a term in the PL alge-
bra generated over the basic features of M ; the latter are leaves
in the feature diagram. This is an important (meta)feature in
the approach, which is in contrast to a common FM practice.
As an example, consider the following feature diagram, which
is adopted from [13]. The encoded term corresponding to
this fm is as follows: car = (manual + automatic) ×
horsepower × (1 + aircondition).

To find a precise relation to semirings, we need to algebrai-
cize our approach along the usual lines of algebraic logic —
we must leave this for future work. We believe that using KS
and modal logic is simpler and easier for a PL engineer than
dealing with abstract semiring algebra.
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Figure 8: adopted from [13]

C. Use of FM in behavior modeling.

In a known paper [5], Classen et al. study model checking
of a family of transition systems. Such a family is modeled by
what they call a Feature Transition System, which describes the
combined behavior of the entire system. Thus, they consider
a PL of behavior models (features are transition systems),
whereas we study the behavior pertinent to any PL irrespective
of what features are. Applying their technique to our FKS
semantics for FD would result in some sort of meta-Kripke
structures, which seems to be an interesting object of study.

IX. CONCLUSION AND OPEN PROBLEMS

Conclusion. We have presented a novel view on fms, in
which a product is an instantiation process rather than its
final result. We called such products partial, and showed that
the set of partial products together with a set of (carefully
defined) valid transitions between them can be considered as
a special Kripke structure, whose properties are specifiable by
a special fragment of CTL enriched with a constant modality.
We called the logic fCTL. Our main result shows that an fm
can be considered as a compact representation of a rather
complex fCTL-theory. Thus, the logic of FM is modal rather
than Boolean. We have discussed several concrete tasks in
feature modeling, which would be improved by the use of
modal logic view of fms. These tasks include analysis of fms,
reverse engineering of fms, and the developer vs. client view.

Open Problems. There exist several interesting open prob-
lems in the modal logic view of fms, which would be math-
ematically and practically important. We briefly discuss some
of these problems in the following:

(i) Complete Axiomatic System for fCTL. Finding a com-
plete axiomatic system for fCTL is theoretically interesting. It
would be also important in practice (see (b) below).

(ii) Automated Analysis of fms. To implement analysis
operations over a given fm M , one could apply either a model
checker or theorem prover. To apply a model checker, we
would need to transform M to its PPL P(M ) and express
given analysis problems into fCTL. We plan to implement the
analysis operations over some realistic examples using some
existing model checking tools. To take advantage of theorem
provers, we first need to have a complete axiomatic system
for our logic. There exist some theorem provers such as CTL-
RP [22] and MLSolver [10], which can be used for reasoning
about the CTL formulae.



(iii) Characterization of the class of fKSs produced by the
class of fms. One of the questions that have been left open in
the paper, is to axiomatically definition of the class of fKSs
produced by the class of fms. We plan to address this problem.

(iv) Process Algebras for fKSs and fms. Industrial systems
are usually very complex and the companies design their
systems by utilizing smaller systems, which themselves are
produced by other companies [1]. Therefore, their correspond-
ing fms could be seen as a compound of several smaller fms.
In this sense, proper process algebras for defining complex
fms and their corresponding fKSs become fundamental and
essential.

(v) Strong version of I2C. Recall that the current version
of the I2C principle says that two incompariable features can
be included together in a partial product if at least one of them
has been already completely instantiated. The current version
of this principle is unavoidable, if we would like to realize
the step-by-step computation. Note that this is why fKSs are
enforced to satisfy the singletonicity condition (see Defini-
tion 9). However, in some contexts, it also makes sense to
consider a stronger version of I2C principle: two incomparable
features can be included together in a partial product if both
of them have been already completely instantiated. Indeed, we
plan to specify such a stronger version of the I2C-principle,
in which a full product instantiation is always a transaction
(which corresponds to replacing disjunction by conjunction in
the definition of theory ΦI2C

BL(TOR), row (3) in Table I).
(vi) A New Modal Logic view of Event-based modeling.

We have discussed the intriguing similarities between EM and
FM in Sect. VII. We consider investigating a new ML view
of ever-based models as one of our future tasks.
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