
Study of an API migration for two XML APIs

Thiago Tonelli Bartolomei1, Krzysztof Czarnecki1,
Ralf Lämmel2, and Tijs van der Storm3

1 Generative Software Development Lab
Department of Electrical and Computer Engineering

University of Waterloo, Canada
2 Software Languages Team

Universität Koblenz-Landau, Germany
3 Software Analysis and Transformation Team

Centrum Wiskunde & Informatica, The Netherlands

Abstract. API migration refers to adapting an application such that its depen-
dence on a given API (the source API) is eliminated in favor of depending on
an alternative API (the target API) with the source and target APIs serving the
same domain. One may attempt to automate API migration by code transforma-
tion or wrapping of some sort. API migration is relatively well understood for
the special case where source and target APIs are essentially different versions of
the same API. API migration is much less understood for the general case where
the two APIs have been developed more or less independently of each other. The
present paper exercises a simple instance of the general case and develops en-
gineering techniques towards the mastery of API migration. That is, we study
wrapper-based migration between two prominent XML APIs for the Java plat-
form. The migration follows an iterative and test-driven approach and allows us
to identify, classify, and measure various differences between the studied APIs in
a systematic way.

1 Introduction

APIs are both a blessing and a curse. They are a blessing because they enable domain-
specific reuse. They are a curse because they lock our software into concrete APIs.
Each API is quite specific, if not idiosyncratic, and accounts effectively for a form of
‘software asbestos’ [KLV05]. That is, it is difficult to adapt an application with regard
to the APIs it uses. We use the term API migration for the kind of software adaptation
where an application’s dependence on a given API (the source API) is eliminated in
favor of depending on an alternative API (the target API) with the source and target
APIs serving the same domain.

API migration may be automated, in principle, by (i) some form of source- or byte-
code transformation that directly replaces uses of the source API in the application by
corresponding uses of the target API or (ii) some sort of wrapping, i.e., objects of the
target API’s implementation are wrapped as objects that comply with the source API’s
interface. In the former case, the dependence on the source API is eliminated entirely.
In the latter case, the migrated application still depends on the source API but no longer
on its original implementation.

Incentives for API migration
One incentive for API migration is to replace an aged (less usable, less powerful) API
by a modern (more usable, more powerful) API. The modern API may in fact be a
more recent version of the aged API, or both APIs may be different developments.
For instance, a C# 3.0+ (or VB 9.0+) developer may be keen to replace the hard-to-
use DOM API for XML programming by the state-of-the-art API ‘LINQ to XML’.
The above-mentioned transformation option is needed in this particular example; the
wrapping option would not eradicate DOM style in the application code.

Another incentive is to replace an in-house or project-specific API by an API of
greater scope. For instance, the code bases of several versions of SQL Server and Mi-
crosoft Word contain a number of ‘clones’ of APIs that had to be snapshotted at some
point in time due to alignment conflicts between development and release schedules. As
the ‘live’ APIs grow away from the snapshots, maintenance efforts are doubled (think
of bug fixes). Hence one would want to migrate to the live APIs at some possible syn-
chronization point—either by transformation or by wrapping. The latter option may be
attractive if the application should be shielded against evolution of the live API.

Yet another incentive concerns the reduction of API diversity in a given project. For
instance, consider a project that uses a number of XML APIs. Such diversity implies
development costs (since developers need to master these different APIs). Also, it may
imply performance costs (when XML trees need to be converted back and forth between
the different object models of the APIs). Wrapping may mitigate the latter problem
whereas transformation mitigates both problems.

There are yet more incentives. For instance, API migration may also be triggered by
license, copyright and standardization issues. As an example, consider a project where
the license cost of a particular API must be saved. If the license is restricted to the
specific implementation, then a wrapper may be used to reimplement the API (possibly
on top of another similar API), and ideally, the application’s code will not be disturbed.

The ‘difficulty scale’ of API migration
Consider API evolution of the kind where the target API is a backwards-compatible up-
grade of the source API. In this case, API migration boils down to the plain replacement
of the API itself (e.g., its JAR in the case of Java projects); no code will be broken.

When an API evolves, one may want to obsolete some of its methods (or even entire
types). If the removal of obsolete methods should be enforced, then API migration must
replace calls to the obsoleted methods by suitable substitutes. In the case of obsoletion,
the transformation option of API migration boils down to a kind of inlining [Per05]. The
wrapping option would maintain the obsolete methods and implement them in terms of
the ‘thinner’ API.

Now consider API evolution of the kind where the target API can be derived from
the source API by refactorings that were accumulated on an ongoing basis or automat-
ically inferred or manually devised after the fact. The refactorings immediately feed
into the transformation option of API migration, whereby they are replayed on the ap-
plication [HD05,TDX07]. The refactorings may also be used to generate adapter layers
(wrappers) such that legacy applications may continue to use the source API’s interface
implemented in terms of the target API [ŞRGA08,DNMJ08].

Representing the evolution of an API as a proper refactoring may be hard or im-
possible, however. The available or conceivable refactoring operators may be insuffi-
cient. The involved adaptations may be too invasive, and they may violate semantics
preservation in borderline situations in a hard to understand manner. Still, there may
be a systematic way of co-adapting applications to match API evolution. For instance,
there is work [PLHM08,BDH+09] that uses control-flow analysis, temporal logic-based
matching, and rewriting in support of evolving Linux device drivers.

Ultimately, we may consider couples of APIs that have been developed more or
less independently of each other. Of course, the APIs still serve the same domain.
Also, the APIs may agree, more or less, on features and the overall semantic model at
some level of abstraction. The APIs will differ in many details however. We use the term
API mismatch to refer to the resulting API migration challenge—akin to the impedance
mismatch in object/relational/XML mapping [Amb06,Tho03,LM07]. Conceptually, an
API migration can indeed be thought of as a mapping problem with transformation or
wrapping as possible implementation strategies.

The ‘risk’ of API migration
The attempted transformations or wrappers for API migration may become prohibitively
complex and expensive (say in terms of code size and development effort)—compared
to, for example, the complexity and costs of reimplementing the source API from
scratch. Hence, API migration must balance complexity, costs, and generality of the
solution in a way that is driven by the actual needs of ‘applications under migration’.

Vision
API migration for more or less independently developed APIs is a hard problem. Con-
sider again the aforementioned API migration challenge of the .NET platform. The
‘LINQ to XML’ API is strategically meant to revamp the platform by drastically im-
proving the productivity of XML programmers. Microsoft has all reason to help devel-
opers with the transition from DOM to ‘LINQ to XML’, but no tool support for API
migration has ever been provided despite strong incentive. Our work is a call to arms
for making complex API migrations more manageable and amenable to tool support.

Contributions

1. We compile a diverse list of differences between several APIs in the XML domain.
This list should be instrumental in understanding the hardness of API migration
and sketching benchmarks for technical solutions.

2. We describe a study on wrapper-based API migration for two prominent XML APIs
of the Java platform. This migration is unique and scientifically relevant in so far
that the various differences between the chosen APIs are identified, classified, and
measured in a systematic way. The described process allows us to develop a reason-
ably compliant wrapper implementation in an incremental and test-driven manner.1

1 We provide access to some generally useful parts of the study on the paper’s website:
http://www.uni-koblenz.de/˜laemmel/xomjdom/

Limitations

We commit to the specifics of API migration by wrapping, without discussing several
complications of wrapping and hardly any specifics of transformation-based migration.
We commit to the specifics of XML, particular XML APIs, and Java. We only use
one application to validate the wrapper at hand. Much more research and validation
is needed to come up with a general process for API migration, including guarantees
for the correctness of migrated applications. Nevertheless, we are confident that our
insights and results are substantial enough to serve as a useful call to arms.

Road-map

§2 takes an inventory of illustrative API differences within the XML domain. §3 in-
troduces the two XML APIs of the paper’s study and limits the extent of the source
API to what has been covered by the reported study on API migration. §4 develops a
simple and systematic form of wrapper-based API migration. §5 discusses the compli-
ance between source API and wrapper-based reimplementation, and it provides some
engineering methods for understanding and improving compliance. §6 describes related
work, and §7 concludes the paper.

2 Illustrative differences between XML APIs

We identify various differences between three major APIs for in-memory XML pro-
cessing on the Java platform: DOM, JDOM and XOM. The list of differences is by
no means exhaustive, but it clarifies that APIs may differ considerably with regard to
sets of available features, interface and contracts for shared features, and design choices.
API migration requires different techniques for the listed differences; we allude to those
techniques in passing only.

In the following illustrations, we will be constructing, mutating and querying a sim-
ple XML tree for a (purchase) order such as this:

<order>
<product>4711</product>
<customer>1234</customer>
<!−− ... further children elided ... −−>

</order>

2.1 This-returning vs. void setters

Using the JDOM API, we can construct the XML tree for the order by a nested expres-
sion (following the nesting structure of the XML tree):
// JDOM −− nested construction by method chaining
Element order =

new Element("order").
addContent(new Element("product").

addContent("4711")).
addContent(new Element("customer").

addContent("1234"));

This is possible because setters of the JDOM API, e.g., the addContent method,
return this, and hence, one can engage in method chaining. Other XML APIs, e.g.,
XOM, use void setters instead, which rule out method chaining. As a result, the con-
struction of nested XML trees has to be rendered as a sequence of statements. Here is
the XOM counterpart for the above code.

// XOM −− sequential construction
Element order = new Element("order");
Element product = new Element("product");
product.appendChild("4711");
order.appendChild(product);
Element customer = new Element("customer");
customer.appendChild("1234");
order.appendChild(customer);

It is straightforward to transform XOM-based construction code to JDOM because
this-returning methods can be used wherever otherwise equivalent void methods were
used originally. In the inverse direction, the transformation would require a flattening
phase—including the declaration of auxiliary variables. A wrapper with JDOM as the
source API could easily mitigate XOM’s lack of returning this.

2.2 Constructors vs. factory methods

The previous section illustrated that the XOM and JDOM APIs provide ordinary con-
structor methods for XML-node construction. Alternatively, XML-node construction
may be based on factory methods. This is indeed the case for the DOM API. The doc-
ument object serves as factory. Here is the DOM counterpart for the above code; it
assumes that doc is bound to an instance of type Document.

// DOM −− sequential construction with factory methods
Element order = doc.createElement("order");
Element product = doc.createElement("product");
product.appendChild(doc.createTextNode("4711"));
order.appendChild(product);
Element customer = doc.createElement("customer");
customer.appendChild(doc.createTextNode("1234"));
order.appendChild(customer);

It is straightforward to transform factory-based code into constructor-based code
because the extra object for the factory could be simply omitted in the constructor calls.
In the inverse direction, the transformation would be challenged by the need to identify
a suitable factory object as such. A wrapper could not reasonably map constructor calls
to factory calls because the latter comprise an additional argument: the factory, i.e., the
document.

2.3 Identity-based vs. position-based replacement

All XML APIs have slightly differing features for data manipulation (setters, replace-
ment, removal, etc.). For instance, suppose we want to replace the product child of an
order. The XOM API provides the replaceChild method that directly takes the old and
the new product:

// XOM −− replace product of order
order.replaceChild(oldProduct, newProduct);

The JDOM API favors index-based replacement, and hence the above functionality
has to be composed by first looking up the index of the old product, and then setting the
content at this index to the new product. Thus:

// JDOM −− replace product of order
int index = order.indexOf(oldProduct);
order.setContent(index, newProduct);

It is not difficult to provide both styles of replacements with both APIs. (Hence, a
wrapper can easily serve both directions of API migration.) However, if we expect a
transformation to result in idiomatic code, then the direction of going from position-
oriented to identity-oriented code is nontrivial because we would need to match multi-
ple, possibly distant method calls simultaneously as opposed to single method calls.

2.4 Eager vs. lazy queries

Query execution returns some sort of collection that may differ—depending on the
API—with regard to typing and the assumed style of iteration. Another issue is whether
queries are eager or lazy. Consider the following XOM code that queries all children of
a given order element and detaches (i.e., removes) them one-by-one in a loop:

// XOM −− detach all children of the order element
Elements es = order.getChildElements();
for (int i=0; i<es.size(); i++)

es.get(i).detach();

The above XOM code is operational because XOM’s queries are eager, and hence
the query results are fully materialized before the corresponding collection can be pro-
cessed. Here is the apparent JDOM counterpart:

// JDOM −− illegal detachment loop
for (Object k : order.getChildren())

((Element)k).detach();

Alas, the execution of this code will throw an exception because getChildren re-
turns essentially a lazy iterator on the actual content list of order; changing that list
invalidates the iterator. Hence, an operational JDOM counterpart must explicitly ‘snap-
shot’ the query result, say, in an extra object array as follows:

// JDOM −− detachment loop with up−front snapshot
Object[] es = order.getChildren().toArray();
for (Object k : es)

((Element)k).detach();

Arguably, this difference can be mitigated both by a transformation or in a wrapper.
Of course, such semantic differences may go unnoticed for some time, and schemes of
snapshotting may lead to noteworthy performance penalties.

2.5 Un-/availability of API capabilities

When XML is used as a model in an MVC/GUI application, then an event system is
likely needed. For instance, the DOM API allows us to register event listeners with dif-
ferent kinds of events. The following code fragment registers a listener with the order

element, which invokes its handler for any sort of node insertion:
// DOM −− register a listener for node insertion
((EventTarget)order).addEventListener(

"DOMNodeInserted", // mutation type
new EventListener() {

public void handleEvent(Event evt) {
// ... handle event ...

} }, false);

Neither JDOM nor XOM provide an event system. More generally, we may face
API couples where the target API misses some (nontrivial) capability of the source API.
In some cases, the capability may be added by extension techniques (e.g., subclasses).
In other cases, conservative extension techniques may be insufficient. For instance, the
addition of an event system to an XML API would crosscut a considerable part of the
API.

2.6 Less vs. more strict pre-conditions

Typically, XML APIs make an effort to quietly handle exceptional situations as long
as well-formedness of XML trees is not jeopardized and no other blatant programming
error would go unnoticed. Still the APIs differ as to where to draw the line. Consider the
following JDOM code fragment, which attempts to remove the product child of order
twice:
// JDOM −− exercise borderline case for node removal
order.removeContent(product); // properly removes.
order.removeContent(product); // quietly completes.

The above code will execute quietly because JDOM’s pre-condition is weak here:
it does not insist that the argument node must be in the container on which removal is
performed. In contrast, the following XOM code throws an (unchecked) exception:
// XOM −− exercise borderline case for node removal
order.removeChild(product); // properly removes.
order.removeChild(product); // throws!

Such differences in pre-conditions (likewise for post-conditions) are challenging in
API migration. If these differences are simply addressed by defensive programming
techniques, then code bloat and inefficiency may be the result. In particular, in the case
of the transformation option of API migration, it is not straightforward to produce id-
iomatic (concise) code.

3 The API couple of the study

The reported study on API migration concerns the XOM and JDOM APIs, with the
goal of reimplementing XOM in terms of JDOM.2 That is, JDOM is wrapped as XOM,

2 We use the current versions of those APIs: XOM 1.2.1 and JDOM 1.1.

API package #Types #Throwable NCLOC
nu.xom 50 18 15783
nu.xom.canonical 1 1 716
nu.xom.converters 2 0 606
nu.xom.xinclude 3 11 1070
nu.xom.xslt 6 1 550

62 31 18725

API package #Types #Throwable NCLOC
org.jdom 21 6 3802
org.jdom.adapters 8 0 416
org.jdom.filter 7 0 328
org.jdom.input 6 1 1088
org.jdom.output 7 0 1915
org.jdom.transform 3 1 418
org.jdom.xpath 2 0 238

54 8 8205

Table 1. Packages of the XOM & JDOM APIs

meaning that types with the original XOM interfaces are implemented as wrappers
with JDOM objects as wrappees. XOM and JDOM are two prominent XML APIs for
the Java platform. They have been developed independently, say, by different software
architects, in different code bases, and based on different design rationales.3

The main reason why our study considers migrating from XOM to JDOM, rather
than v.v., is the availability of a comprehensive API test suite for XOM. Although wrap-
ping an older API (JDOM) as a newer one (XOM) might appear counter-intuitive at
first, such scenario is plausible in practice since migration drivers such as legal issues
do not necessarily follow technical criteria.

In the sequel, we present some basic metrics and architectural details about the two
APIs. We also describe the scope and some limitations of the migration and the available
means for test-driven development.

3.1 API package structure

Table 1 lists XOM’s and JDOM’s packages. For each package, the second column gives
the total number of declared types (i.e., classes and interfaces) except any descendants
of Throwable. The third column is concerned with the latter, i.e., it gives the number of
exception classes. The last column lists NCLOC (‘Non-Comment Lines of Code’) per
package as an indication of the size (code complexity) of the packages and the APIs.

Let us look at XOM’s packages first. The nu.xom package is XOM’s core pack-
age (the core API). All the other packages cover specialized feature themes: canonical
XML, DOM and SAX interoperability, XInclude support, and XSLT integration. Our
study only covers the core API; we omit the discussion of all other themes (packages)
in the present paper.

JDOM’s core resides in the org.jdom package; it matches roughly the types and
features of XOM’s core, but we will discuss the correspondence more precisely below.
The remaining packages cover, again, specialized feature themes: DOM interoperabil-
ity, content filters for query functionality, advanced de-/serialization support, and XSLT
and XPath integration.

3.2 Core API features

Table 2 lists all types of XOM’s core and the corresponding JDOM types that were
needed for XOM’s reimplementation. XOM’s core is mainly matched by JDOM’s core,

3 See http://www.artima.com/intv/jdom.html for background on the design rationales.

nu.xom #Implementations
Attribute 20
Attribute.Type 4
Builder 15
Comment 9
DocType 18
Document 15
Element 38
Elements 2
Namespace 9
Node 8
NodeFactory 11
Nodes 8
ParentNode 8
ProcessingInstruction 11
Serializer 35
Text 9
XPathContext 5
Core Total 225

org.jdom #Implementations
Attribute 29
CDATA 6
Comment 6
Content 9
Document 41
Element 76
JDOMFactory 25
Namespace 7
ProcessingInstruction 15
Text 12
input.SAXBuilder 39
output.XMLOutputter 47
Core Total 312

Table 2. Metrics on the core XOM/JDOM classes

but two additional types from the packages org.jdom.input andoutput are needed;
c.f., the right-hand side of Table 2. This is mainly because de-/serialization is part of
XOM’s core, whereas JDOM has designated packages for these functions. We omit
exception types as well as package-private types in the table entirely.

For each type (row), we show the number of methods that the type explicitly im-
plements. This metric can be seen as a proxy for the effort needed in API migration. In
our study, for example, each such implementation required roughly one corresponding
method implementation in the wrapper.

In some situations, we may want to consider additional metrics, however. One such
example is an interface complexity metric, defined as the number of methods a type un-
derstands (possibly including inherited or abstract methods). The inclusion of abstract
methods is of particular interest to framework APIs, which may declare operations with
no framework-provided implementations.

Yet other metrics could take into account the fact that polymorphic implementations
of the source API may need to be migrated differently depending on the specific receiver
type. For instance, a given method implementation of the source API may have different
pre- and post-conditions for different receiver types. Also, a given method declaration
of the source API may be implemented on a base type, whereas the target API’s class
hierarchy requires implementations on derived types. Such issues break the regularity
of a wrapper’s implementation. In the study, the impact of these issues was limited.

The #Implementations numbers of Table 2 give an idea of the feature complexity of
the core API and the relative contribution of the different API types. It is immediately
obvious that XOM has fewer methods than JDOM. In fact, JDOM is known to provide
many ‘convenience methods’, which explains this difference. Interestingly, the NCLOC
numbers of the core packages in Table 1 clarify that XOM is substantially more complex
than JDOM (in terms of code size). This difference involves several factors—also in-

TestCase #Tests #Assertions
AttributeTest 38 137
AttributeTypeTest 3 70
BaseURITest 76 98
BuilderTest 152 364
CommentTest 17 52
DocTypeTest 46 103
DocumentTest 23 98
ElementTest 68 233
LeafNodeTest 3 2
NamespacesTest 53 110
NodeFactoryTest 43 95
NodesTest 10 33
ParentNodeTest 15 79
ProcessingInstructionTest 19 85
SerializerTest 135 194
TextTest 18 50
Total: 719 1803

The list of test classes maps roughly to the
core API classes. There are 685 additional test
cases for the omitted themes of the XOM API.
The TestCases are JUnit test classes with the
shown number of test methods. Each test method
tends to involve a small number of tests as evi-
dent from the number of assertions. Finally, we
should mention that XOM also comes with a
separate harness of basic benchmarks to test the
speed and memory footprint of XOM programs.
We have not used these benchmarks in any man-
ner, but it would be interesting to systematically
compare XOM’s performance with the one of a
wrapper-based reimplementation.

Table 3. Metrics on XOM’s test suite

cluding incidental ones such as programming style. Most importantly, however, XOM
is known to make a considerable effort to guarantee XML well-formedness. It pursues
this goal by means of heavy checking, which directly affects the NCLOC metric.

3.3 XOM’s test suite

The study uses test-driven development to push for compliance of the wrapper-based
reimplementation of XOM with the original XOM API. We use the excellent XOM
test suite to this end. JDOM’s test suite does not have any role in this effort. Table 3
describes XOM’s test suite in more detail.

4 Wrapper-based API migration

We will describe a simple and systematic form of wrapper-based API migration. In
particular, we reimplement XOM in terms of JDOM. Hence, application code can be
completely preserved because it may continue to depend on the interface of XOM.

4.1 API mapping

We begin a wrapper-based API migration by mapping each source type and method to a
suitable target type and method. Such mapping requires domain knowledge; types and
methods are compared at the level of domain concepts and their operations.

When mapping source types, we distinguish regular vs. irregular types. We say that
a type is regular if it corresponds to a single target type; otherwise, the type is irregular.
Indeed, some source types may need to be associated with multiple target types; yet
other source types may lack a counterpart.

nu.xom org.jdom
#regular
methods

#irregular
methods

Attribute Attribute 23 5
Attribute.Type java.lang.Integer 1 3
Builder input.SAXBuilder 11 4
Comment Comment 11 2
DocType DocType 20 2
Document Document 23 4
Element Element 39 12
Elements java.util.List 2 0
Node 0 2
NodeFactory JDOMFactory 0 11
Nodes java.util.List 8 1
ParentNode 0 0
ProcessingInstruction ProcessingInstruction 16 1
Serializer output.XMLOutputter 12 4
Text Text; CDATA 11 2
XPathContext 0 5

177 58

The table misses one core type;
see Table 2 for the full list. That
is, Namespace is omitted be-
cause it is only used by the orig-
inal XOM implementation.

Table 4. Metrics on the XOM/JDOM mapping

When mapping source methods, again, we distinguish regular vs. irregular methods.
We say that a method is regular if it corresponds to a single target method provided by
(one of) the target type(s); otherwise, the method is irregular.

Table 4 summarizes the API mapping for the XOM/JDOM study. We obtained the
mapping posteriori by inspecting the wrapper types and methods. 75% of all source
methods provided by the wraper are regular. There are 4 irregular source types. For
instance, JDOM does not provide a common base class like XOM’s Node; some of its
polymorphic methods have their counterparts implemented in multiple JDOM types
instead. Please note that the number of source methods per type in Table 4 slightly de-
viates from Table 2 because the wrapper places some of the method implementations at
different levels in the class hierarchy when compared to the original XOM implemen-
tation.

4.2 Wrapper implementation

We begin with an ‘empty’ reimplementation of the source API as follows. Each inter-
face of the source API is reused as is by the reimplementation. Each class of the source
API is reimplemented with the same interface, but with ‘empty’ (exception-throwing)
method implementations. This empty reimplementation is compilable by construction,
and any application of the API’s original implementation remains compilable. Applica-
tions can be redirected to the new implementation by replacement of the API’s JAR, by
aspect-oriented programming, or by (manually) changing package references.

The next step is to turn the empty types into proper wrapper types. Here we sys-
tematically apply the design pattern for object adapters, where we implement the API
mapping (c.f., §4.1) as follows. Each wrapper class (i.e., each class of the reimplemen-
tation of the source API) is set up, if possible, as an object adapter with an object of the

target API as the adaptee (also called the wrappee). For instance, the different Element
types of XOM and JDOM would engage in a corresponding wrapper class as follows:

package nu.xom;
public class Element {

private org.jdom.Element wrappee;
// implement interface of wrapper in terms of wrappee

}

A few special cases should be mentioned in passing. First, abstract wrapper types
may not need any wrappee type. Second, when we implement the wrapper class for
a source type with multiple associated target types, the wrappee type might need to
be an imprecise upper bound, such as Object, and methods may need to perform type
dispatch (e.g., via instanceof) to invoke methods on the wrappee.

We speak of a minor wrapping disorder if a single wrappee object per wrapper
object is fundamentally insufficient for reimplementation. This could happen, for ex-
ample, if the source API intrinsically assumes a richer state than the target API. For
instance, a reimplementation of DOM in terms of XOM or JDOM would need to main-
tain extra state in order to provide an event system; c.f., §2.5. Such disorders may be
encountered late during implementation efforts, and they may trigger amendments of
the API mapping; c.f., §4.1.

We speak of a major wrapping disorder if method invocations on the source API
(handled by the wrapper) may need to be deferred or even rejected because there is
yet state missing for the corresponding invocations on the target API. For instance, a
reimplementation of XOM or JDOM in terms of DOM is challenging because XOM/J-
DOM’s constructors are not implementable in terms of DOM’s factory methods; c.f.,
§2.2.

The XOM/JDOM study involves only one minor wrapping disorder. The type
nu.xom.Serializer receives a writer through a constructor argument, whereas the
associated type org.jdom.output.XMLOutputter receives the writer through method
calls. Hence, the XOM type must store the writer throughout.

4.3 Levels of adaptation

Ir-/regularity of a source method is based solely on the number of its associated target
methods. There is a richer scale of adaptation levels that usefully classifies reimple-
mented methods, however. In the following, we define the different adaptation levels
for a given source method m.

Adaptation level 1 m is a regular method with m′ as the associated target method. The reimple-
mentation of m only performs basic delegation of m to m′ on the wrappee (including wrapping
and unwrapping). Argument positions may also be filled in by defaults. this-returning may be
turned into void methods and v.v.; c.f., §2.1.

Adaptation level 2 Additional adaptations are involved in comparison to level 1. That is, argu-
ments may be pre-processed (converted or checked); results may be post-processed (c.f., §2.4);
exceptions may be translated; error codes may be converted into exceptions and v.v.; the delega-
tion may also be conditional, subject to simple tests of the arguments; c.f., §2.6.

nu.xom 1 2 3 4 other
Attribute 16 7 1 4 0
Attribute.Type 2 2 0 0 0
Builder 0 14 0 1 0
Comment 7 2 3 1 0
DocType 12 8 1 1 0
Document 15 8 2 2 0
Element 23 16 10 2 0
Elements 2 0 0 0 0
Node 0 0 0 2 0
NodeFactory 0 0 0 11 0
Nodes 6 0 3 0 0
ParentNode 0 0 0 0 0
ProcessingInstruction 14 1 2 0 0
Serializer 2 1 8 1 4
Text 4 7 1 1 0
XPathContext 4 0 0 1 0

107 66 31 27 4

Basic delegation (level 1) suffices for a bit less
than half of all methods; more than a quar-
ter requires some pre-/post-processing (level 2);
the remainder needs to be composed from other
methods (level 3) or developed from scratch
(level 4). It turns out, however, that all level 4
methods were not at all complex and could be
implemented without problems. There are a few
methods of the Serializer class that are not
associated with an adaptation level. These meth-
ods were not implemented because there was no
straightforward way of doing so, and the sam-
ple application used in the study did not exercise
these methods.

Table 5. Adaptations per level for XOM/JDOM

Adaptation level 3 m is an irregular method. Its implementation may invoke any number of
target methods, but without reimplementing any functionality of the target API. In informal terms,
a level 3 method is one that is effectively missing in the target API but which can be recomposed
from other methods of the target API.

Adaptation level 4 The level 3 condition of ‘not reimplementing any methods of the target API’
must be violated. In informal terms, level 4 methods violate the ‘intention of reuse’ for reimple-
menting the source API in terms of the target API.

Table 5 shows the methods per type and adaptation level for the study. We have
assigned these levels manually (by categorizing the implementation) and recorded them
through method annotations on the wrapper types. The shown numbers depend on a
‘judgement call’ for the required compliance of the wrapper as discussed in the next
section. The more one pushes for full compliance, the more methods would be pushed
upwards on the level scale; also, the more complex some method implementations
would get. We would like to generally avoid method implementations at the adaptation
level 4. That is, any substantial violation of the ‘intention of reusing’ the target API
runs fundamentally counter the motivation of API migration. Likewise, we would like
to avoid complicated or inefficient method implementations at the adaptation levels 2–3.

5 API compliance

In simple terms, the wrapper-based reimplementation of the source API should be ‘fully
compliant’ with the original (implementation of the) source API. Compliance could
be interpreted in the sense of contract-based equivalence for the original implementa-
tion and the wrapper. In practice, APIs often lack comprehensive contracts (pre-/post-
conditions and invariants). Hence, test-based methods are needed. Using such test-based
methods, ‘compliance issues’ are gradually discovered, and possibly resolved.

In the following, we clarify the process for discovering compliance issues; we cat-
egorize these issues; and we defend the idea that some issues may remain unresolved.
The XOM/JDOM study continues to serve as the running example.

5.1 Test suite-based compliance

A strong test suite for the source API appears to be a reasonable tool in establishing
compliance of the original API and the wrapper-based reimplementation. However, an
important insight of our work is that it may be prohibitively expensive to achieve full
compliance with regard to such a test suite (because it may approximate contract-based
compliance at a very detailed, idiosyncratic level). Indeed, in the study, we have ulti-
mately accepted partial compliance with approx. 40 % of all test cases not producing
the expected result with the wrapper:

– # XOM test suite – all test cases: 697
– # XOM test suite – compliant test cases: 417
– # XOM test suite – non-compliant test cases: 280

In general, a strong test suite for the source API may be the initial driver in pushing
the wrapper towards some basic compliance. Such a test suite is even more useful if it
clearly identifies mainstream API-usage scenarios that must not be disturbed by non-
compliance. To limit effort, one would initially concentrate on a smaller core API and
important API-usage scenarios, indeed.

In the study, initially, we used a considerably smaller core of XOM. For instance,
we left out Serializer because XOM has already a serialization capability through its
toXml method. Also, we left out DocType (i.e., DTD) support because it seemed difficult
to provide such support in the view of JDOM’s lack of comprehensive DocType support.

Ultimately, API migration is driven by the actual ‘application under migration’. The
application may call for an extension of the initially covered API and for the inclusion
of more API-usage scenarios. In the study, we picked an application under migration by
searching the SourceForge repository for an application that both makes substantial use
of XOM and references XOM in (say, JUnit-based) test cases. The best fit was CDK.4

In general, one needs to push the wrapper towards full compliance with the applica-
tion’s test suite—potentially balancing the wrapper development effort and the degree
of automation of migration. In the study, we reached full compliance without any need
for manual adaptations of the application except for 3 test cases whose dependence
on the order of XML attributes had to be relaxed. The following numbers only cover
CDK’s test cases that use XOM.

– # CDK test suite – all test cases: 752
– # CDK test suite – compliant test cases: 752
– # CDK test suite – non-compliant test cases: 0

4 Chemistry Development Kit (CDK) is a Java library for structural chemo- and bioinformatics; c.f., http:
//sourceforge.net/apps/mediawiki/cdk/. The used checkout of CDK does not pass all of
its test suite even with the original XOM implementation. We have only looked into compliance for test
cases that passed with the original XOM implementation.

nu.xom #always #sometimes #never #unused
Attribute 13 / 3 [,11] 4 [1, 3] - 11 / 25
Attribute.Type 3 [,3] - - 1 / 4
Builder 1 / 2 [,1] 7 [2, 5] - 7 / 13
Comment 7 [,7] 2 [0, 2] - 4 / 13
DocType 8 [,8] 5 [0, 5] - 9 / 22
Document 7 / 1 [,7] 12 [1, 11] - 8 / 26
Element 15 / 21 [,9] 28 [13, 15] - 8 / 30 [2,]
Elements 0 / 2 [,0] 2 [2, 0] - -
Node - - - 2 / 2
NodeFactory - 4 [0, 4] 1 [0, 1] 6 / 11
Nodes 2 / 2 [,2] 3 [2, 1] - 4 / 7
ParentNode - - - -
ProcessingInstruction 9 [,9] 1 [0, 1] - 7 / 17
Serializer 3 / 3 [,3] 8 [3, 5] 3 [0, 3] 2 / 13
Text 7 [,7] 1 [0, 1] - 5 / 13
XPathContext 0 / 1 [,0] - - 5 / 4 [1,]
Total 75 / 35 [,67] 77 [24, 53] 4 [0, 4] 79 / 200 [3,]

XOM/CDK: The first number in each cell
shows the compliance level for XOM’s test
suite. The number after the slash (if any)
shows the compliance level for CDK’s test
suite. Note that all CDK test cases suc-
ceed; hence there are no methods at levels
#sometimes or #never.

[moves to #always, moves to #unused]:
The numbers in square brackets (if any)
describe the moves between the levels with
the ‘initial’ position defined by XOM’s test
suite and the ‘final’ position defined by
CDK’s test suite. For example, Attribute
had 11 methods moved from #always to
#unused, 1 from #sometimes to #always,
and 3 from #sometimes to #unused.

Table 6. Compliance levels in the XOM/JDOM study

One of the reasons of compliance with the application’s test suite vs. non-compliance
with the API’s test suite is of course that any given application will exercise the source
API only in a limited manner. However, this may be even true for a reasonable test suite
of an API. Consider the following numbers that we determined in the study:

– # all implementations of the wrapper: 277
– # XOM test suite – exercised method implementations: 156
– # CDK test suite – exercised method implementations: 35

Hence, about 3/5 of all method implementations where exercised by the API’s test suite,
and only about 1/10 were exercised by the application’ test suite. Inspection reveals that
the API’s test suite specifically misses many of the more trivial methods (such as getters
and setters and diversely overloaded constructors).

5.2 Compliance levels

It is now a central question whether or not the application runs into any of the compli-
ance issues manifested by the API’s test suite. The following method can be applied in
this context. Each API method can be associated with a compliance level relative to any
test suite as follows:

– always: it is exercised in compliant test cases only.
– sometimes: it is exercised in both compliant and non-compliant test cases.
– never: it was exercised but never in compliant test cases.
– unused: it is not exercised at all in any test cases.

The status of each method with regard to the application’s test suite can now be com-
pared with its status with regard to the API’s test suite. This comparison is visualized
for the study in Table 6. The table illustrates that several methods with compliance is-
sues with regard to the API’s test suite are used without problems in the application.

Type Methods Issue type Domain Status Comment
Attribute toXML() Post Serialization resolved JDOM’s escaping is different from

XOM’s
Attribute Attribute(String,String) Pre resolved XOM allows colonized names in the

first argument whereas JDOM does
not

Element detach() Invariant resolved A root element must always remain
attached.

Element addAttribute(Attribute) Throws resolved XOM throws MultipleParentExcep-
tion if argument is parented whereas
JDOM throws IllegalAddException

Element setBaseURI(String) Pre BaseURI unresolved XOM agressively checks URI for
well-formedness and throws accord-
ingly

Element getBaseURI() Post BaseURI unresolved In XOM the result is absolutized and
converted from IRI to URI if needed

Table 7. Samples of compliance issues in the XOM/JDOM study

Incidentally, there are even implementations that were not exercised by the API’s test
suite but are exercised (and found compliant) by the application’s test suite. (See the
numbers in bold face in the table for both of these effects.)

5.3 Discovery of compliance issues

In the test-driven process of pushing the wrapper towards compliance, one could sim-
ply focus on the number of compliant test cases. However, such plain focus would
provide little insight into the underlying causes for failing test cases and the actual
API mismatch. Also, it would provide no guidance with regard to the prioritization of
non-compliant test cases. Instead, test-driven development is to be refined such that
non-compliant test cases are incrementally examined and some API method is to be
‘blamed’ to have a compliance issue.

Table 7 shows a few samples of documented compliance issues in the study. The
format of these entries will be clarified gradually. All discovered issues are recorded by
means of method annotations on the wrapper types.

As an issue is discovered, a decision must be made whether or not effort is to be
spent (immediately) on its resolution. If the issue was discovered through an ambitious
test suite for an API, then it may be reasonable to refuse resolution—because the issue
is considered either a) less relevant for actual applications, or b) too complicated for an
automated approach, calling for a case-by-case migration instead. Table 8 summarizes
all resolved and unresolved issues in the study. This relatively small number of issues
was indeed discovered incrementally, and about half of the issues remained unresolved,
while the ‘application under migration’ is still fully compliant.

5.4 Generic compliance issues

Compliance issues can be caused by differences in pre-/post-conditions, invariants, and
throwing behavior. We call these issues generic in the sense that they are meaningful for
APIs of any domain. The following definitions assume two APIs α and α′ with identical
interface. In the wrapping context, α is the original implementation of the source API,
whereas α′ is the wrapper (at a given stage of development).

(a) #resolved

Type #Pre #Post #Inv #Throws
Attribute 3 1 - 4
Attribute.Type - - - -
Builder - - - -
Comment 2 - - -
DocType - - 1 -
Document 6 - - 4
Element 5 - 1 8
Elements - - - -
Node - - - -
NodeFactory - - - -
Nodes - - - -
ParentNode - - - -
ProcessingInstruction - - - -
Serializer - - - -
Text - - - 2
XPathContext - - - -

16 1 2 18

(b) #unresolved

Type #Pre #Post #Inv #Throws
Attribute - - - -
Attribute.Type - - - -
Builder 5 1 - 7
Comment - 1 - -
DocType 7 1 - 1
Document - 1 - -
Element 3 4 - -
Elements - - - -
Node - - - -
NodeFactory - - 1 -
Nodes - - - -
ParentNode - - - -
ProcessingInstruction - - - -
Serializer - - - -
Text - 1 - -
XPathContext - 1 - -

15 10 1 8

Table 8. Number of resolved and unresolved XOM/JDOM issues

We say that method m has a PRE issue if its pre-condition is stronger in α′ than
in α. If we think of α′ as the intended replacement of α, then such an issue violates
design-by-contract rules. The opposite situation also needs to be considered: we also
say that m has a PRE issue if its pre-condition is weaker in α′ than in α. In this case, no
violation of design-by-contract rules is present, but α′ is more (too) permissive than α.

In the latter case, the issue can be addressed by adding extra checked assertions to
the too permissive implementation. In the former case, a more complex implementation
may be needed. Table 7 shows two examples of PRE issues in the study. In fact, the
one on Attribute is about a too strong pre-condition (because JDOM rejects colonized
names where XOM does not); the one on Element is about a too weak pre-condition
(because JDOM checks less for well-formedness than XOM). As it is clear from the
table, one of the issues was not resolved—well-formedness checking is particularly
difficult to add to JDOM without leading to code bloat and possibly adaption level 4.

Likewise, we say that m has a POST issue if its post-condition in α′ is weaker than
the one in α. Further, we say that class c has an INV issue if the invariant of c in α′ does
not imply the one in α. Both kinds of issues violate design-by-contract rules.

Yet another kind of generic compliance issue concerns exceptions. We say that m
has a THROWS issue if for the case that the implementations α and α′ agree on whether
or not to throw, the thrown exceptions are different (in terms of their types or observable
content). This kind of issue happens when source and target APIs use API-specific
exception types or differ in the use of reusable exception types.

5.5 Domain-specific compliance issues

The generic categories are designed to fully cover all possible compliance issues. In any
given API migration project, one may be able to categorize the nature of an issue at the
domain level. This categorization might help in stating arguments in favor of or against

resolving certain issues, based on the given category’s relevance to the application being
migrated. In the sequel, we sketch two of the categories of domain-specific issues that
we discovered in the study; c.f., Table 7 for illustrations.

Serialization XML can be serialized in different, semantically equivalent ways. In par-
ticular, XOM and JDOM may produce serialization results that are equivalent under
XML’s infoset semantics but different in terms of string-based comparison. These dif-
ferences in serialization behavior are hard to neutralize by a wrapper or a transforma-
tion, but it is often easy to make applications (and their test cases) robust to such details
by applying a sort of canonicalization or refraining from string-based comparison.

BaseURI XOM’s ‘base URI’ handling is considerably more advanced than JDOM’s
handling. A full reproduction of XOM’s semantics on top of JDOM would account for
complex method implementations. However, base URI handling is rarely used in XML
processing code.5

6 Related work

Wrapping is an established technique, in software re-engineering in particular [SM98];
legacy software is often wrapped for use in a new architecture, such as SOA [CFFT08].
We make a contribution to wrapping in so far that we leverage an API-type mapping
and classification schemes for method implementations and compliance issues.

In the introduction, we already referred to related work on API migration, and our
discussion was meant to reveal that all such previous work focused on API evolution in
the sense of migrating from one version of an API to the next version. There has been ef-
fort to facilitate refactoring in API evolution [HD05,Per05,TDX07,ŞRGA08,DNMJ08].
Some of these approaches use wrapping (adapters) as an implementation tech-
nique [ŞRGA08,DNMJ08]. Those wrappers are straightforwardly derived from refac-
torings; in contrast, our wrappers are the actual representations of relatively heteroge-
neous API mappings.

Several approaches go beyond the limits of refactoring by providing some general
means of transformation [CN96,KH98,BTF05,PLHM08]. Again, the showcases for all
these approaches concern API evolution or migration between very much similar APIs.
For instance, [BTF05] describes a rewriting-based approach for API migration that has
been applied to the types Vector and ArrayList of the Java Core API, where the latter
type is essentially a ‘careful redesign’ of the former. Nevertheless, the transformation
techniques from such previous work are important ingredients of a general approach to
API migration.

Our efforts to gather metadata about APIs, such as API-type mappings or compli-
ance issues, are well in line with other recent efforts on understanding APIs at an on-
tology level [RJ08]. We are also inspired by other related uses of metadata in program
comprehension, reverse engineering and re-engineering [BCPS05,BGGN08].

5 Among all of the 43 SourceForge projects that use Subversion as repository and that use XOM, there is
apparently only a single project that performs nontrivial base URI handling.

7 Conclusion

We have researched API migration with specific interest in couples of source and target
APIs that were developed independently of each other. We have engineered the process
of API migration in this context and reported on one study concerning two popular
XML APIs of the Java platform. The various differences between the chosen APIs were
identified, classified, and measured in a systematic way.

Our work shows that API migration for independently developed APIs may be man-
ageable. Despite the many semantical and contractual differences, despite different fea-
tures and designs, one can construct a reasonably compliant wrapper for API migration
in a systematic, incremental, and test-driven manner. The use of a strong test suite for
the API and a useful test suite for the application under migration are indeed critical.
Our experiments substantiate that a wrapper-based reimplementation of an API may
lack full compliance with the API’s test suite, while it can be still fully compliant with
the test suite of the application under migration.

One area of future work concerns the provision of a more general wrapping tech-
nique that can deal with all forms of subtyping, callbacks, and extensions points in APIs
(and frameworks). We also need to generalize the described approach by applying it to
other domains such as GUI or database programming.

Further, we would like to abstract from the low-level approach of specifying API
migrations as metadata-annotated wrapper implementations. That is, we seek an ap-
propriate transformation language that can perhaps even be executed in two manners:
either as a source-code transformation or as a wrapper generator.

Finally, any resolved issue, say for a given method m, adds complexity to the API
migration. A wrapper seems to hide that complexity ‘inside’, except perhaps for the
implied performance penalty. Worse, the transformation option of API migration incurs
the added complexity for every call to m. Hence, it is important to find an effective way
of deciding on whether or not a given compliance issue needs to be dealt with for a
given source location that calls m.

Acknowledgements This work is partially supported by IBM Centers for Advanced Studies,
Toronto.

References

[Amb06] Scott W. Ambler. The Object-Relational Impedance Mismatch, 2006. http://
www.agiledata.org/essays/impedanceMismatch.html.

[BCPS05] Marcello Bruno, Gerardo Canfora, Massimiliano Di Penta, and Rita Scognamiglio.
An Approach to support Web Service Classification and Annotation. In 2005 IEEE
International Conference on e-Technology, e-Commerce, and e-Services (EEE 2005),
Proceedings, pages 138–143. IEEE Computer Society, 2005.

[BDH+09] Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia L. Lawall, and Gilles
Muller. A foundation for flow-based program matching: using temporal logic and
model checking. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2009, pages 114–126. ACM, 2009.

[BGGN08] Andrea Brühlmann, Tudor Gı̂rba, Orla Greevy, and Oscar Nierstrasz. Enriching
Reverse Engineering with Annotations. In Model Driven Engineering Languages

and Systems, 11th International Conference, MoDELS 2008, Proceedings, volume
5301 of LNCS, pages 660–674. Springer, 2008.

[BTF05] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for class library
migration. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN confer-
ence on Object oriented programming, systems, languages, and applications, pages
265–279. ACM, 2005.

[CFFT08] Gerardo Canfora, Anna Rita Fasolino, Gianni Frattolillo, and Porfirio Tramontana. A
wrapping approach for migrating legacy system interactive functionalities to Service
Oriented Architectures. Journal of Systems and Software, 81(4):463–480, 2008.

[CN96] Kingsum Chow and David Notkin. Semi-automatic update of applications in response
to library changes. In ICSM ’96: Proceedings of the 1996 International Conference
on Software Maintenance, page 359. IEEE Computer Society, 1996.

[DNMJ08] Danny Dig, Stas Negara, Vibhu Mohindra, and Ralph Johnson. Reba: refactoring-
aware binary adaptation of evolving libraries. In ICSE ’08: Proceedings of the 30th
International Conference on Software Engineering, pages 441–450. ACM, 2008.

[HD05] Johannes Henkel and Amer Diwan. CatchUp!: capturing and replaying refactorings to
support API evolution. In ICSE ’05: Proceedings of the 27th International Conference
on Software Engineering, pages 274–283. ACM, 2005.

[KH98] Ralph Keller and Urs Hölzle. Binary component adaptation. In ECCOP ’98: Pro-
ceedings of the 12th European Conference on Object-Oriented Programming, pages
307–329. Springer, 1998.

[KLV05] A. S. Klusener, Ralf Lämmel, and Chris Verhoef. Architectural modifications to de-
ployed software. Science of Computer Programming, 54(2-3):143–211, 2005.

[LM07] R. Lämmel and E. Meijer. Revealing the X/O impedance mismatch (Changing lead
into gold). In Spring School on Datatype-Generic Programming, Lecture Notes, vol-
ume 4719 of LNCS, pages 285–367. Springer, 2007.

[Per05] Jeff H. Perkins. Automatically generating refactorings to support API evolution. In
PASTE ’05: Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program
Analysis for Software Tools and Engineering, pages 111–114. ACM, 2005.

[PLHM08] Yoann Padioleau, Julia L. Lawall, René Rydhof Hansen, and Gilles Muller. Docu-
menting and automating collateral evolutions in linux device drivers. In Proceedings
of the 2008 EuroSys Conference, pages 247–260. ACM, 2008.

[RJ08] Daniel Ratiu and Jan Juerjens. Evaluating the Reference and Representation of Do-
main Concepts in APIs. In 16th International Conference on Program Comprehen-
sion (ICPC 2008), pages 242–247. IEEE Computer Society, 2008.

[SM98] Harry M. Sneed and R. Majnar. A case study in software wrapping. In International
Conference on Software Maintenance (ICSM 1998), Proceedings, pages 86–93. IEEE
Computer Society, 1998.

[ŞRGA08] Ilie Şavga, Michael Rudolf, Sebastian Götz, and Uwe Aßmann. Practical refactoring-
based framework upgrade. In GPCE ’08: Proceedings of the 7th international con-
ference on Generative Programming and Component Engineering, pages 171–180.
ACM, 2008.

[TDX07] Kunal Taneja, Danny Dig, and Tao Xie. Automated detection of API refactorings
in libraries. In ASE ’07: Proceedings of the twenty-second IEEE/ACM international
conference on Automated Software Engineering, pages 377–380. ACM, 2007.

[Tho03] Dave Thomas. The Impedance Imperative: Tuples + Objects + Infosets = Too Much
Stuff! Journal of Object Technology, 2(5):7–12, September–October 2003.

