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Abstract—Understanding how performance varies across a
large number of variants of a configurable software system is
important for helping stakeholders to choose a desirable variant.
Given a software system with n optional features, measuring all
its 2n possible configurations to determine their performances is
usually infeasible. Thus, various techniques have been proposed
to predict software performances based on a small sample of
measured configurations. We propose a novel algorithm based on
Fourier transform that is able to make predictions of any con-
figurable software system with theoretical guarantees of accuracy
and confidence level specified by the user, while using minimum
number of samples up to a constant factor. Empirical results on
the case studies constructed from real-world configurable systems
demonstrate the effectiveness of our algorithm.

I. INTRODUCTION

Many software systems allow users to customize the soft-
ware behavior with a finite set of configuration options, which
we refer to as features, that users may decide to select or
deselect. Each feature combination gives rise to a particular
variant or configuration of the system, which in turn has a
particular performance measure, such as execution time or
throughput.

In order for users to decide on an optimal configuration
for their particular purpose, they first need an understanding
of the relationship between feature selection and performance,
hence giving rise to the fundamental problem of performance
prediction of configurable software systems. Take execution
time as an example: since it is simply infeasible to run all 2n

configurations for a system with n features, the key challenge
is to accurately predict the performance of the system on all
configurations by measuring only a small number of sample
configurations, as is being actively studied in many recent
works [6], [13], [14], [15], [16], [17], [20], [4].

To address the challenge, we first formalize it as an equiv-
alent mathematical problem. The mapping from any particular
configuration of a system with n features to its performance
value can be formalized as a Boolean function:

f : {0, 1}n → R (1)

For example given n = 4, the statement f(0101) = 3.22s
means that the execution time of the system with its second
and fourth features selected is 3.22 seconds. Then for any
given system with n features, the performance value of all

its configurations can be solely and completely captured by
a particular function f , as in (1), that maps any of its
configurations c ∈ {0, 1}n to a value in R, which we will
hereafter refer to as the performance function. Therefore the
problem of predicting performance of a configurable system
reduces to the problem of learning the performance function
with a small number of its values given by the measurements,
i.e., producing an estimate of f(x) for every x ∈ {0, 1}n.

Although there are many established learning algo-
rithms [1], [5], [8], [9], [10], [19], it is well known that
arbitrary Boolean functions of this form simply cannot be
learned. Since the domain of such functions is a finite set,
with an arbitrary function f , knowing f(a) provides practically
no information about f(b) unless a = b. That is to say,
performance values cannot be predicted by merely taking
samples of configurations.

Fortunately, previous empirical results [6], [13] have shown
that performance functions of actual software systems are not
arbitrary, but rather structured, hence can be potentially learned
effectively. But what exactly the structures are, that actual
performance functions exhibit, was not made clear.

In this work, we have explored one explicit notion of
structure of actual performance functions of being close to
Fourier sparse functions, namely functions that have many 0’s
in their Fourier decompositions [11]. Furthermore, we have
proposed an algorithm that is able learn these Fourier sparse
functions to user specified accuracy and confidence level, by
taking only a small number of sample configurations, such that
we in turn achieve accurate predictions of the actual underlying
performance function of a configurable system.

In summary, the contributions of this work include:

• A theoretical model and formulation of configurable
software performance prediction in terms of Fourier
learning of Boolean functions.

• An algorithm for learning configurable software per-
formance functions via their Fourier decomposition.

• An implementation, analysis and evaluation of the
algorithm, with its strengths and relative weaknesses
compared to existing performance prediction methods.

The rest of the paper is organized as follows. Section
II introduces the mathematical background of Fourier trans-
form and formalizes the problem of performance prediction.



Sections III and IV presents the algorithm itself and its
implementation considerations. Sections V and VI discuss the
experimental results and evaluations of the algorithm. The
paper concludes after the related and future work in Section
VII.

II. PROBLEM FORMALIZATION

Having established software performance functions as
Boolean functions of the form f : {0, 1}n → R, in this section
we introduce the mathematical basis of Fourier transform of
Boolean functions and formalize the problem of software per-
formance prediction in terms of its mathematical equivalence.

A. Fourier Transform

Consider a function f of the form:

f : {0, 1}n → R (2)
f(x) = f(x1, x2, . . . , xn) = y ∈ R (3)

A natural representation of f is the truth table view shown
in Table I, where each xi, a Boolean value indicating if a
feature is selected, represents the ith coordinate of the input
vector x, and f(x) its function value.

TABLE I. TRUTH TABLE VIEW OF A BOOLEAN FUNCTION f

x1 x2 . . . xn f(x)
0 0 . . . 0 y1
1 0 . . . 0 y2
0 1 . . . 0 y3
...

...
...

... yi
1 1 . . . 1 y2n

We now explore an alternative view of the function f .

Given a function f : {0, 1}n → R, we can rewrite it in the
following form:

f(x) :=
∑

z∈{0,1}n
f̂(z)χz(x) (4)

where f̂(z) ∈ R are the Fourier coefficients, and χz(x) are
the character functions defined as:

χz(x) :=

{
+1 if

∑n
i=1 zixi = 0 mod 2

−1 if
∑n

i=1 zixi = 1 mod 2
(5)

Intuitively, this Fourier transform [11] of f simply decomposes
it into the sum of 2n ‘simpler’ functions with coefficients
indexed by all vectors z ∈ {0, 1}n. We say the function f
is t-sparse if at most t out of 2n of the Fourier coefficients are
non-zero.

With a given dimension n, since all 2n character functions
are fixed, the 2n Fourier coefficients then uniquely determine
the function f . In other words, knowing all the Fourier
coefficients is equivalent to knowing the function f itself, since
given the Fourier coefficients, one can exactly calculate any
function value f(x), and perhaps less-trivially, vice versa.

With the inner product defined on functions of interest f, g :
{0, 1}n → R:

〈f, g〉 :=
1

2n

∑
x∈{0,1}n

f(x)g(x), (6)

it can be easily checked that the set of functions

{χz : z ∈ {0, 1}n}

forms an orthonormal basis of the entire set of functions from
{0, 1}n to R. In other words, 〈χz1 , χz2〉 evaluates to 1 if and
only if z1 = z2 and 0 otherwise. Therefore we can derive the
following properties:

1) For any two vectors z1, z2 ∈ {0, 1}n, we have
χz1(x)χz2(x) = χz1⊕z2(x), where ⊕ is xor of the
two bit vectors, or equivalently, addition modulo 2.

2) To calculate any particular Fourier coefficient f̂(z∗),
we have:

〈f, χz∗〉 =

〈 ∑
z∈{0,1}n

f̂(z)χz, χz∗

〉
(7)

=
∑

z∈{0,1}n
f̂(z) 〈χz, χz∗〉 (8)

= f̂(z∗) 〈χz∗ , χz∗〉 (9)

= f̂(z∗) (10)

by orthonormality of the character functions.
3) Immediately we have Parseval’s identity:

〈f, f〉 =
∑

z∈{0,1}n
f̂2(z) (11)

4) With the inner product defined in (6) and combining
with (11), we define the usual notion of L2 norm of
functions and distance between them.

L2 norm: ‖f‖2 : =
√
〈f, f〉

Distance: dist(f, g) : = ‖f − g‖22
=

∑
z∈{0,1}n

(
f̂(z)− ĝ(z)

)2
From 2), it is now clear that Fourier coefficients are

uniquely determined by the function f , hence we have the
equivalence between a function f and its Fourier coefficients.

From 4), we define the distance between two functions f
and g to be the square of the L2 norm of their difference f−g,
which by (11) is the sum of all the differences in their squared
coefficients. Coincidentally, by (6) this distance is exactly the
mean square difference between f and g on all inputs.

B. Problem Formalization

Recall our goal is to predict the performance of software
systems based on their configurations. In this section we
formalize exactly what it means.

For a software system with n features, there are overall
2n possible configurations, each of which has a particular
performance measure. Therefore it is natural to think of the



process of mapping a configuration to its performance as a
Boolean function that can take any real number value:

f : {0, 1}n → R

where any input bit vector x ∈ {0, 1}n represents a particular
configuration, in which feature i is selected to be ‘on’ if and
only if xi = 1, and vice versa.

To make performance prediction is to estimate f(x) given
any configuration vector x. This is to say that we need to learn
what the function f that corresponds to the software system
produces at any given point. From the previous section, we
realize that learning a function f is equivalent to learning all
of its Fourier coefficients.

In particular, as we will discuss in Section III, functions
constructed from real software systems are typically close
to Fourier sparse, in which case, predicting its performances
becomes equivalent to estimating only the large Fourier coef-
ficients of its corresponding function f . This is exactly what
our algorithm does.

The problem of learning a performance function can thus
be formalized as follows.

Fix a target function f , the learning algorithm takes two
inputs γ and δ, and outputs an estimate h of f such that:

dist(f, h) ≤ γ

with probability 1− δ.

III. THE FOURIER LEARNING ALGORITHM

A. Overview

Given a target function f , a high-level summary of the
Fourier learning algorithm can be described as follows:

1) Take a random sample of configurations and their
performance values of the system.

2) Use the sample to learn the Fourier coefficients of f ,
hence reconstructing an estimate h of f .

3) Estimate dist(f, h), if it is larger than γ, increase the
sample size and repeat.

With a clear definition of the problem at hand and the tool
of Fourier transform introduced in the previous section, we
are now ready to discuss each step of the learning algorithm
in more detail.

B. Normalization

In order to aid error analysis of the algorithm, we normalize
the original function:

f : {0, 1}n → R

to
f ′ : {0, 1}n → [−1, 1].

such that new function f ′ has a finite range.

In practice, it is often feasible to establish, perhaps with
some domain knowledge, the upper and lower bounds on the

performance values of a particular system, e.g. between 0 and
max. Then f can be normalized by subtracting max/2 from
each f(x) and then dividing the result by max/2.

From this point on, we will then use f as the function after
normalization.

C. Learning Fourier Coefficients

In this section, we describe how Fourier coefficients of a
function f : {0, 1}n → [−1, 1] can be learned.

From (10), the Fourier coefficient corresponding to each
vector z ∈ {0, 1}n can be calculated as:

f̂(z) = 〈f, χz〉 (12)

=
1

2n

∑
x∈{0,1}n

f(x)χz(x) (13)

This is essentially an average of the function values over
the {0, 1}n domain weighted by the particular character func-
tion corresponding to the Fourier coefficient that we are trying
to estimated.

Now when a sample S is taken such that f(x) is known
for all x ∈ S, the same formula can be used to estimate all
the Fourier coefficients. For each z ∈ {0, 1}n, f̂(z) can be
estimated as:

f̂(z) = 〈f, χz〉 (14)

≈ 1

|S|
∑
x∈S

f(x)χz(x) (15)

Obviously, the more samples we take, i.e., the closer
our sample set S is to the entire domain, the more accurate
our estimations of f̂(z) will be. The Hoeffding’s inequality
formalizes this result.

Theorem III.1 (Hoeffding’s inequality). [7]
Let X1, X2, . . . , Xm be independent and identically dis-
tributed random variables with range [a, b]. Let the theoretical
expected value of Xi be:

E(Xi) = p ∀i = 1 . . .m

and let the sum random variable be:

Y :=

m∑
i=1

Xi

Then we have:

Pr[|Y
m
− p| ≥ ε] ≤ 2 exp

[
− 2mε2

(b− a)2

]
(16)

Intuitively, the theorem states that the probability of the
sample average, i.e. Y/m drifting distance ε apart from the
theoretical average p is exponentially small in the number of
samples m and the distance squared ε2.

To apply the theorem to our estimations of Fourier coeffi-
cients, we realize the following:



1) For each Fourier coefficient f̂(z), the random vari-
ables are Xi = f(xi)χz(xi) and the expectation
for each Xi is the actual value of the coefficient,
therefore we have:

E(Xi) = f̂(z)

according to (13).
2) We normalized the function values to be all between

−1 and 1, therefore by Parseval’s identity (11), we
have all Fourier coefficients in the range [−1, 1].

3) We demand each estimations of our Fourier co-
efficients to be accurate within ε with probability
1 − δ/2n, such that the probability of all Fourier
coefficients are accurate within ε will be at least:

1− 2n · δ
2n

= 1− δ

Then we can rewrite the inequality as:

Pr[|f̂ ′(z)− f̂(z)| > ε] ≤ 2 exp

[
−2mε2

4

]
=

δ

2n
(17)

where f̂ ′(z) is the approximation of f̂(z).

Rearrange and solve for m, we have:

m =
2

ε2
((log 2)(n+ 1) + log(1/δ)) (18)

To summarize, the relationship between the number of
samples and the accuracy is as follows:

Theorem III.2. Given any function f : {0, 1}n → [−1, 1],
with 1− δ probability, all 2n Fourier coefficients of f can be
learned with at most ε additive error, using

2

ε2
((log 2)(n+ 1) + log(1/δ)) (19)

number of samples.

D. Error Analysis

In this section, we describe how the algorithm guarantees
the accuracy of its estimate h, by constructing a series of
estimates of f and bounding their distances from f .

Step 1: Given a function f , let g be the function obtained
from f by only keeping its t largest Fourier coefficients and set
the rest to 0, such that dist(f, g) ≤ d. Then by construction,
g is t-sparse.

Step 2: Let h1 be the function obtained from g by replacing
all its Fourier coefficients smaller than d/t by 0, namely:

h1(x) =
∑

z:ĝ(z)≥d/t

ĝ(z)χz(x)

Notice h1 is also at most t-sparse.

Theorem III.3. Let f, g and h1 be defined as above, then [8]:

dist(f, h1) ≤ d+ d2/t

Step 3: Let h2 be an estimate of h1 with each of its non-
zero coefficients accurate to d/4t, i.e.

∀ĥ1(z) > 0
∣∣∣ĥ1(z)− ĥ2(z)

∣∣∣ ≤ d

4t

Then obviously:

dist(h1, h2) ≤
∑

z∈{0,1}n

(
ĥ1(z)− ĥ2(z)

)2
(20)

≤ t
(
d

4t

)2

=
d2

16t
(21)

Step 4: Let h be our estimation of f , obtained by learning
each of f ’s Fourier coefficients to accuracy d/4t with prob-
ability 1 − δ, as described in Section III-C. If the estimation
of any coefficient is less than 3d/4t, we set it to 0. Notice
according to Theorem III.2, this can be done with:

32t2

d2
((log 2)(n+ 1) + log(1/δ)) (22)

number of samples.

In this case, for any z such that the original Fourier
coefficient f̂(z) ≥ d/t, we have an estimate of it ĥ(z), accurate
to d/4t. On the other hand, for all z such that f̂(z) < d/2t,
ĥ(z) = 0. Then we realize that dist(h, f) ≤ dist(h2, f), since
ĥ2(z) is set to 0 whenever f̂(z) < d/t, which is a coarser cut.

Now we can establish:

dist(h, f) ≤ dist(h2, f) = ‖h2 − f‖22
≤ (‖h2 − h1‖2 + ‖h1 − f‖2)

2

= dist(h2, h1) + dist(h1, f)

+ 2 ‖h2 − h1‖2 · ‖h2 − h1‖2

≤ d2

16t
+ d+

d2

t
+ 2 · d

4
√
t
·
√
d+

d2

t

= d+O(d2/t)

Since d, as distance between f and g, is bounded, as t gets
large, dist(h, f) is bounded above by O(d). In this case, we
have dist(h, f) ≤ 4d/3 as soon as t > 30, which is a very
small sparsity number.

To summarize this step, we realize that as long as there
exists a t-sparse function g that is within d-close to f , we
could take the number of samples specified in (22) to construct
an estimate h such that dist(h, f) ≤ 4d/3.

Step 5: Now we would like to estimate dist(h, f) by
drawing a sample S from f and calculate:

1

|S|
∑
x∈S

(f(x)− h(x))2 (23)

Again by Theorem III.1, using

9

2d2
log (2/δ)

samples is sufficient to estimate dist(h, f) within d/3 accuracy
with probability 1− δ.



If dist(f, h) ≥ 4d/3, our estimate will be larger than d.
Therefore we are confident that the original function f is not
sufficiently close to any t-sparse function. In this case, we need
to increase t and draw more samples to guarantee dist(f, h) ≤
γ.

We have found that typical performance functions of soft-
ware systems are sufficiently close to t-sparse functions with
small t, hence having a relatively small sample size. However
the algorithm works with functions with generic sparsity, since
it is determined implicitly within the algorithm.

To conclude, the learning algorithm is written out in full
in Algorithm 1. It applies to any generic function f , and with
only a linear sample dependency on the dimension n, it outputs
an estimation h such that dist(h, f) ≤ γ with probability 1−δ.

Algorithm 1 The Fourier Learning Algorithm
1: Input: n: dimension of f .
2: γ: target estimate error.
3: δ: confidence level parameter.
4: t0: starting sparsity (Optional).
5: inc: multiplicative increment of t (Optional).
6: Output: h as an estimate of f .

7: Initialization:
8: t := t0 or 1; d := 3

4 · γ

9: δ1 := δ2 := 1−
√

1− δ

10: m1 :=
32t2

d2
((log 2)(n+ 1) + log(1/δ1))

11: m2 :=
9

2d2
log (2/δ2)

12: Learn:
13: if m1 +m2 > 2n then
14: f is computed exactly.
15: else
16: Draw m1 random samples to estimate all 2n Fourier

coefficients of f using (15). These are the coefficients of
the estimation h.

17: For each ĥ(z) < 3d/4t, let ĥ(z) = 0.
18: Draw m2 more samples and calculate d′ ≈ dist(f, h)

using (23).
19: end if
20:
21: if d′ ≤ d then
22: return h
23: else
24: t := inc · t or t := 2 · t
25: go to line 10.
26: end if

IV. IMPLEMENTATION

To evaluate the algorithm, we have implemented it in
Java and run it against data constructed from real-world
software systems across different domains. The experimental
details will be presented in Section V, here we discuss a few
implementation considerations of the algorithm.

A. Feature Selection

Before the algorithm is run, we do a preliminary feature
selection. In a software system, if a particular set of features
must be on or must be off, then they have effectively no
discriminant power with respect to the software performances
across configurations, therefore they are simply ignored, and
the number of features can be thus reduced.

B. Partially Defined Functions

So far the algorithm we have described has only dealt with
functions defined on the entire domain of {0, 1}n, i.e., software
systems that every possible configuration is valid and has a
performance value.

However this is often not the case in reality. Actual
software systems often have features interacting with each
other that may result in some combinations of them being
invalid. A simple example could be that turning the debug
mode on will force the log to file option being on as
well. Therefore any configuration of the software with debug
being 1 and log to file being 0 would not be valid.

Our learning algorithm deals with this neatly.

Let D ⊂ {0, 1}n the set of bit vectors representing all valid
configurations. Notice the size of D satisfies |D| ≤ 2n.

In this case, since the uniformly random samples are taken
from the set D instead of the entire set of {0, 1}n, all estimated
Fourier coefficients simply needs to be rescaled by a factor of
|D|/2n. Alternatively, scaling the estimated function values
constructed from the Fourier coefficients by the same factor
yields the same results.

In practice, valid configurations are often defined in terms
of Boolean constraints. Therefore obtaining the number of
valid configurations may require solving non-trivial #SAT
instances expressed in the feature model, namely counting the
number of satisfiable assignments of a Boolean satisfiability
(SAT) problem, which is outside the scope of discussion of
this work. Empirical results from both exact solver [18] and
approximate solver [3] have suggested that this is usually
feasible up to a relatively large number of features, so it is
not a primary concern here.

V. EVALUATION

A. Subject Systems

For evaluation of our algorithm, we used the public data
sets of five software systems used in [6] and [13]. They are
software systems in different domains and written in different
languages. A brief summary of the subject software systems
is shown in Table II:

As briefly mentioned in Section III, the number of samples
the algorithm requires is O(n) for a given set of accuracy
parameters. Although this dependency on n is very good for
large systems, for the small data sets we have, the required
number of samples is more than the entire valid domain for
any reasonable accuracy parameters due to the constant hidden
in the O(n) notation.



TABLE II. SUMMARY OF ORIGINAL SOFTWARE SYSTEMS

System Domain Lang. |D| n
Apache Web Server C 192 8

x264 Encoder C 1,152 13
LLVM Compiler C++ 1,024 10

Berkeley DB Database C 2,560 16
Berkeley DB Database Java 180 17

Lang. = Language of the software system.
|D| = Number of valid configurations.

n = Number of features after trivial selection.

To still use the data sets for meaningful empirical evalua-
tions of the algorithm, we constructed four hybrid-systems by
combining some of the original systems together in a natural
way.

Let f : {0, 1}m → R and g : {0, 1}n → R be the
performance functions of two systems, we simply construct:

f ⊕ g : {0, 1}m+n → R (24)
f ⊕ g(x) := f ⊕ g(x1, . . . , xm+n) (25)

= f(x1, x2, . . . , xm) + g(xm+1, . . . , xm+n) (26)

to be the function of total performance of the combined
configurations in f , and g.

And the hybrid systems, corresponding to the performance
of running sequentially each of the two involved systems once,
assuming no interactions between them are, summarized in
Table III.

TABLE III. SUMMARY OF CONSTRUCTED HYBRID-SYSTEMS

System Component |D| n
A Apache + x264 221184 21
B LLVM + x264 1179648 23
C x264 + x264 1327104 26
D LLVM + LLVM 1048576 20

B. Experimental Setup

Recall the algorithm essentially establishes a relationship
between the number of samples it takes and its prediction
accuracy and confidence level.

For our experiments, we will fix the confidence level at
80%, i.e. δ = 0.2 and vary the desired accuracy parameters γ
on each system to attempt to verify the theoretical error bounds
of the algorithm. Our initial sparsity parameter was set to be
t0 = 1 and the multiplicative increase between iterations was
set to be a conservative 1.2. Each experiment will be repeated
10 times and the results are presented in Section V-C.

The experiments are run on a single Ubuntu 14.04 machine
with Intel Core i7 CPU 2.2 GHz and 8 GB of RAM.

C. Experimental Results

Here we present the results of our experiments on the data
sets described in Section V-A.

A high-level summary of the experimental results in terms
of the desired error, the actual error and the number of samples
taken for each system is presented in Table IV.

TABLE IV. SUMMARY OF EXPERIMENTAL RESULTS

System n γ Samples mean max

A 21
0.2 24236 (11%) 0.083 0.084

0.15 43307 (20%) 0.081 0.081
0.1 97440 (44%) 0.074 0.074

B 23
0.2 26332 (2.2%) 0.035 0.036

0.15 46812 (4.0%) 0.026 0.026
0.1 105326 (8.9%) 0.0068 0.0069

C 26
0.2 29289 (2.2%) 0.084 0.085

0.15 52070 (3.9%) 0.084 0.084
0.1 117156 (8.8%) 0.080 0.082

D 20
0.2 23375 (2.2%) 0.074 0.080

0.15 41555 (4.0%) 0.034 0.037
0.1 93497 (8.9%) 0.024 0.024

n = Number of features of system.
γ = User specified maximum error.

Samples = Number & proportion of samples used.
mean = Average actual error from the 10 runs.
max = Maximum actual error from the 10 runs.

As shown, the actual prediction errors of the algorithm
has fallen within the specified bound on all instances. The
small difference between the maximum error over the 10 runs
and the mean error on all systems also suggests a very small
variance that the algorithm produces on a given system, hence
promoting its stability and reliability.

On the other hand, the prediction errors across different
systems may vary widely, even with the same specified level
of accuracy, principally due to the different intrinsic structures
of systems. For example system B has an average error of
0.0068 when the user desires an error of 0.1, whereas that of
system C is only 0.080.

Furthermore, although the maximum error for all these
systems have fallen within 0.1 even when γ is set to be 0.2,
the algorithm still decides to increase the number of samples
when γ is decreased. This is because the number of samples is
derived primarily from γ to guarantee the error and confidence
interval for all systems of given size. Again, better-than-
guaranteed errors on these systems show their further structure,
but the algorithm is designed to work with full generality.

Notice the number of samples the algorithm used across
different systems and accuracy parameters: it is evident that
the sample complexity of the algorithm is O(1/γ2) and only
linear in n. Therefore, in much larger systems, the sample
complexity of the algorithm would have great benefits in
making performance predictions within bounded errors.

Systems B, C and D are all consistent in achieving the
desired accuracies with less than 9% of all samples. However
for system A, the number of valid configurations is a smaller
subset of the entire domain, hence giving rise to the number
of required samples occupying a larger proportion of the space
of all valid configurations.



VI. DISCUSSION

A. Performance Measure

As briefly mentioned in Section II-A, we have used the
notion of distance between two functions defined as:

dist(f, g) := ‖f − g‖22 (27)

:=
1

2n

∑
x∈{0,1}n

(f(x)− g(x))
2 (28)

to be the error of our learning algorithm throughout.

Notice this definition coincides exactly with the standard
mean square error as a common performance measure for
machine learning algorithms.

Some previous studies [6], [13] have adopted the average
relative error defined as:

1

2n

∑
x∈{0,1}n

f(x)− g(x)

f(x)
(29)

as the performance measure, which is known to produce
disproportionately large value of errors when f(x) is close
to 0. Since our algorithm normalized all function values to be
around 0, using this performance metric here clearly does not
make much sense.

B. Comparative Analysis

There has been two studies by Guo et al. [6] and Siegmund
et al. [13] on software performance prediction that have used
the same data sets for evaluating their algorithms. We give
a brief comparative analysis between our algorithm and the
previous ones in this section.

1) Algorithms: SPLCONQUEROR [13] is a deterministic
sampling method that focuses on predicting software perfor-
mances by measuring specific samples according to some
heuristics and understanding the interactions between different
features, in particular pairwise feature interactions.

CART [6] on the other hand utilizes statistical methods and
random sampling techniques in order to categorize unknown
configurations into groups of known configurations according
to their containment of certain features and hence predict their
performance.

Both these methods employ a ‘top-down’ work flow where
a number of samples are taken from the system, then the
performance values of each configuration are predicted before
they are compared to actual values for their accuracy.

The Fourier learning algorithm, on the other hand, attempts
to determine the number of samples necessary for any desired
accuracy in an adaptive, progressive sampling manner, which
may be especially beneficial when the costs of sampling or
measurements are high and prediction accuracy critical.

Given the different natures and work flows of the al-
gorithms, it is not immediately obvious how they could be
directly comparable to each other, hence the rest of the section
will only attempt to give a qualitative account of several
aspects of their relative strengths and weaknesses.

2) Sample Complexity & Requirements: SPLCONQUEROR
requires at least Ω(n2) designated samples just to cover the
feature-wise and pairwise measurements, where n again is the
number of features.

CART does not have explicit sample complexity con-
straints, therefore [6] employs a progressive sampling scheme
to double the number of random samples until the prediction
accuarcy becomes satisfactory.

With an implicit progressive random sampling scheme sim-
ilar to CART used in [6], but with the theoretical underpinnings
of Fourier learning – in contrast to CART – we can explicitly
bound our sample complexity to O(n, 1/γ2, log(1/δ)) to be
1− δ confident in achieving an error within γ.

3) Parameter Tuning: Although all three algorithms seem
to be fully automated, CART seems to have the largest number
of parameters to consider such that the algorithm does not
over-fit the sample. The Fourier learning algorithm has two
optional parameters t0 and inc to control the initial and
incremental number of samples respectively. Smaller t0 and an
inc closer to 1 represents more conservative approaches, which
is more suitable if measurements are costly. SPLCONQUEROR
on the other hand relies more on heuristics rather than explicit
parameters.

4) Execution Time: For performance prediction purposes,
execution time of a learning algorithm is typically not an
important concern. Since the process of gathering the data
of software performances is typically much more costly in
terms of time and effort, the minimum number of necessary
measurements, namely the sample complexity therefore is of
greater importance here.

SPLCONQUEROR and CART are both fairly fast. The
Fourier learning algorithm, having to approximate all 2n

Fourier coefficients, potentially more than once, can be rel-
atively slow.

However some basic knowledge of the specific data sets
may allow us to infer properties of their Fourier spectrum and
hence dramatically speed up its execution time. For instance
for the four hybrid systems we constructed, we know they
consist of two independent components with no interactions
between them. This saves the algorithm the effort of estimating
many coefficients that we know are 0.

Furthermore, we used the most naive method for estimating
‘large’ coefficients in the algorithm for conceptual simplicity.
More sophisticated and much faster methods, such as [8], [9]
do exist and can be readily substituted as a subroutine into our
algorithm with minimal alteration.

5) Summary: All three proposed algorithms have their
distinct features and characteristics. For larger systems with
many features and a relatively full set of valid configurations
where measurement costs are potentially high and accuracy
critical, the Fourier learning algorithm is a suitable choice. On
the other hand, for smaller systems (e.g. n < 20), or systems
with known low degree feature interactions, then CART and
SPLCONQUEROR respectively might be more appropriate in



terms their trade-off between accuracy and measurement ef-
forts.

The main characteristics of the methods are summarized
in Table V.

TABLE V. MAIN CHARACTERISTICS OF THE LEARNING ALGORITHMS

SPLCONQUEROR CART Fourier
Accuracy ∼ 95% ∼ 94% Any

Sample Size O(n2) Any O(n, 1/γ2)
Sampling Specific Random Random

Error Control No No Yes

C. Threats to Validity

Potential threats to the validity of our results primarily
comes from two angles: the model and the datasets.

Our model for configurable software performance predic-
tion is based on a fundamental abstraction of a performance
function f : {0, 1}n → R for any given software system,
which maps a (valid) configuration to a real number, repre-
senting the performance value of our interest. Although this
abstraction is obviously valid for simple performance measures
such as software execution time with fixed workload, it might
require adjustments for more sophisticated software feature
structures or performance objectives.

For systems with non-Boolean features, our approach can
not be used directly. However Siegmund et al. [13] has shown
that non-Boolean features can be easily expressed in terms of
Boolean features in higher dimensions. For example a feature
having options A, B and C could be expanded to 3 features,
namely ‘isA?’, ‘isB?’ and ‘isC?’. Then our approach can be
readily employed.

Similarly, with multiple performance objectives, the perfor-
mance function can be viewed as a multi-dimensional function
f : {0, 1}n → Rm, where m is the number of performance
measures. Then each performance measure can be dealt with
simultaneously and separately.

Since our approach is a black box method that operates on a
high level of abstraction, more software specific concerns such
as varying workload and multi-user scenarios might pose more
unexpected threats to our model. However one might be able
to see how these variations can be feasibly incorporated into
the modelling of features or performance objectives via some
transformation such as the ones outlined above, and hence
assume these threats are minimal.

As for the datasets, we used the openly available software
system measurements originally generated by Siegmund et
al. [13] for our experiments as off-the-shelf datasets. We are
aware that using the combined hybrid systems as constructed
in Section V-A may lose some representativeness of the
systems, however the theoretical analysis of our algorithm
should provide sufficient confidence that it is applicable to
any general function that fits the abstraction regardless of its
system structures, and the experiments should merely serve as
empirical evidence confirming the correctness of the analysis.

VII. RELATED AND FUTURE WORK

One of the first established techniques for solving the prob-
lem, as we have described in Section VI-B1 was SPLCON-
QUEROR due to Siegmund et al. [13], which employs various
heuristics and considers particular feature combinations and
interactions to achieve performance prediction.

Guo et al. [6], Thereska et al. [17], Westermann et al. [20]
and Sarkar et al. [12] have all utilized statistical sampling
and machine learning approaches, in particular CART, for
configurable software performance prediction.

There are two related Fourier learning algorithms that can
be viewed as more advanced versions of our algorithm. The
first one due to [8] uses better searching techniques, hence
reducing the time complexity of estimating the large Fourier
coefficients to only polynomial time in the number of features
n. However it essentially requires the function to be defined
on the entire {0, 1}n domain. How it could be modified to be
able to deal with partially defined functions is not immediately
clear, hence can be explored in future work.

Another direction of adjustment of our algorithm is pro-
posed by [9], where not only the magnitudes of estimated
Fourier coefficients are restricted, but also their indices, giving
even tighter probabilities of potential over-fitting. However it is
not clear that some of the assumptions it makes fit well in the
domain of software systems. For example it assumes that the
indices of large Fourier coefficients are mostly of small weight,
which, in software terms, means that most significant feature
interactions only involve a small number of features. This
method therefore would completely ignore potential feature
interactions involving more than a certain number of features.
Future work should investigate whether this assumption would
hold in practice.

One further future work is related to Batory’s [2] proposal
of quantifying feature interactions in software systems. We
believe that Batory’s [2] notion of feature interaction can
be formalized as derivatives of Boolean functions, therefore
feature interaction detection can be reduced to estimating
derivatives of Boolean functions, which is in turn closely
related to estimating their Fourier coefficients [11]. Therefore
an interesting future work would involve using the tools we
proposed so far in estimating Fourier coefficients and translat-
ing them into a formal model of detecting feature interactions
of configurable software systems with minimal extra cost.

VIII. CONCLUSION

Software performance prediction is a fundamental problem
in software engineering that deserves much attention.

In this work, we formalized the model of configurable
software performance prediction in terms of learning Boolean
functions, explicitly explored the Fourier sparsity property of
performance functions of real software systems, and proposed
and implemented the Fourier learning algorithm that is able to
make performance predictions with guaranteed accuracy and
confidence level.



To conclude, we have introduced a new perspective on
treating the problem of predicting software performance. With
increasingly large software systems, desires of guarantees
on prediction accuracy and more precise understanding of
measurement efforts, more formal approaches such as this one
may prove beneficial in the long term.
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