
GSDLAB TECHNICAL REPORT

Towards Category Theory Foundations for
Model Management

Zinovy Diskin, Tom Maibaum, Krzysztof Czarnecki

GSDLAB–TR 2014-03-03 April 2014

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.

Towards Category Theory Foundations for
Model Management

Zinovy Diskin1,2, Tom Maibaum1, and Krzysztof Czarnecki2

1 NECSIS, McMaster University, Canada
{diskinz|maibaum}@mcmaster.ca
2 University of Waterloo, Canada

{zdiskin|kczarnec}@gsd.uwaterloo.ca

Abstract. The paper aims to demonstrate that category theory (CT)
methods are appropriate in the model management context. We show
that CT naturally appears on stage, when we model such basic constructs
as model merge and parallel composition accurately and consistently. We
present categorical constructs in a tutorial-like style by applying them
to simple labeled transition systems (LTSs), and reveal new technical
aspects of merging and composing LTSs.

1 Introduction

Model management (MMt) is suffering from the structural mismatches and un-
certainties about its methods and tools, often designed without proper seman-
tic support. An integrating semantic foundation is badly needed, but its devel-
opment is challenging. The extreme diversity of models, relationships between
them, and operations over them seems to resist attempts at discovering com-
mon mathematical patterns underlying various MMt scenarios. Category the-
ory (CT), well known for its unifying power as the comparative mathematics
of structure, is a good candidate for the job. It has already been applied in
the field for modeling basic MDE notions such as intermodeling, mega- and
meta-modeling, and model transformation and synchronization (references will
be provided shortly). However, categorical methods are often considered to be
excessively abstract and complicated, and categorical modeling is often thought
of as modeling for the sake of modeling rather than being really beneficial for
the subject matter.

We understand the roots of such an opinion, but believe it is not constructive
for building semantic foundations, and even for practical MMt. We see the role
of CT for MMt as being similar (perhaps, very similar, cf. [4,12]) to the role of
the relational theory for data management. The mathematical underpinning of
relational theory is also very non-trivial and requires multiple formal constructs
and details. Nevertheless, the database community has successfully developed
an engineering approximation of the theory, and built a whole industry based
on it. Relational thinking is now considered to be absolutely natural, and basic,
for data management, although it was not so at the time of record-based data
processing, when the relational model emerged and dramatically changed the

field. We believe that with a suitable approach, a similar path can be followed
for MMt.

We see two major directions to pursue. One is developing technical applica-
tions of CT for particular MMt tasks, as done in the papers cited in the next
section. The other is to explore the very foundations of the MMt-to-CT (and
back!) correspondence: what ideas and constructs can be seen as shared by the
two disciplines, and what aspects are private (a.k.a. implementation details and
formal hairsplitting). Seen in the human-centric perspective, these issues give
rise to several important questions. How much naturally can categorical models
be presented to an MMt practitioner? Are categorical diagrams doomed to be
perceived by him as an artificial mathematical imposition over his simple MMt
sketches on the whiteboard? Or as a formal dress for his pretty MMt code (good
for writing papers, but otherwise useless)? Usability issues are key for acceptance
of any mathemtical framework, and addressing them needs a wide range of ac-
tivities ranging from the development of practical approximations and interfaces
to fundamental theories (e.g., analogous to SQL), tool support, and empirical
studies, to vindicate (or not!) the proposed approaches, and last but not least,
effective education materials (e.g., tutorials and textbooks) are crucial.

The present paper is a small step within the large program above, and its
goals are two-fold. First, we explore how natural categorical modeling is for the
MMt field. A fundamental question we address is whether the peculiarities of
categorical models are foreign to the MMt scenarios they model (and imposed
by the modeling language, i.e., CT), or do these peculiarities reflect the corre-
sponding features of the scenario at hand. If the former is true, CT is not suitable
and the story is over. If the latter holds (which we hope to demonstrate), the
story goes on with the development of the theory and the usability issues identi-
fied above. We will show that categorical arrow encapsulation is a foundational
idea that can do the job. Second, we tried to write the paper as a mini-tutorial
on principles of CT-modeling, which an MMt practitioner could read and think
about, then, perhaps, take a look at the long version of the paper [13] and some
of the references, and try to apply some of the ideas in her everyday work.

To achieve these goals, we will take classical behavior models — labeled
transition systems (LTSs) as sample models, consider their merge and parallel
composition as sample MMt scenarios, and build their categorical models paying
attention to the basic ideas and exploring the questions mentioned above. As a
byproduct, we present several technical details of LTSs and operations over them
that appear to be novel. In particular, we show several benefits of considering
LTSs as labeled categories rather than labeled graphs.

Our plan in the paper is as follows. In the next section we discuss the re-
lated work. In Section 3, we demonstrate principles of categorical modeling by
considering matching and merging of LTSs . Section 4 provides several formal
definitions, and argues that an LTS should be a labeled category. We also dis-
cuss how far the constructs we introduced with simple examples can be extended
beyond them. Section 5 presents the parallel composition of LTSs as a construct
dual to merge. In Section 6 we summarize our findings and conclude the paper.

2

2 Related work

A general call to employ CT in MDE was made by Don Batory in his invited
lecture for Models 2008 [3]. The categorical language was used informally, and
in a very general context: only the very basic categorical ingredient, the arrow
composition, was mentioned. Applying CT for formal modeling of several ba-
sic MDE constructs, intermodeling [6,14,8], mega-modeling [12], metamodeling
[26,24], and model transformation and synchronization [7,25,9,28] (this area is
especially amenable to a categorical treatment based on the triple graph gram-
mars (TGG) [20,18,1,22,21]), revealed a much richer structural landscape, and
required much more advanced categorical tools (institutions, sketches, monads,
Kleisli mappings, adhesive categories, fibrations). Results presented in these, and
many other papers not mentioned, can be seen as evidence of CT’s applicability
to building mathematical models for MDE. Our goals in the presents paper are
different (although related): we aim to show several basic principles of categorical
modeling and discuss them in the (meta)context outlined in the introduction.

Several remarks about our sample MMt scenarios with LTS: An LTS is a
classical behaviour model defined as a ternary transition relation T ⊂ S×L×S
with a set of states S and a set of labels L (a.k.a. an alphabet). Our chain of
definitions making an LTS a morphism λ: T → L of, consecutively, graphs, pre-
categories, and finally categories, seems to be novel. We are not aware of viewing
commutativity between sequences of transitions as a major behavior modeling
construct.

Using colimits for modeling various operations of “putting widgets together”
can be traced back to Goguen’s pioneering work [17], and has often been used
in computer science, databases, ontology engineering and software engineering;
several annotated references relevant to MDE can be found in [14]. Using lim-
its for synchronized parallel composition is less well known [19]; the closest to
ours setting is, probably, in [16], where they use limits for composition of alpha-
bets seen as (pointed) sets. But for us, an alphabet is a category, an LTS is a
functor into this category, and we compose both alphabets (as types) and their
“instances” (states and transitions).

3 Intermodeling, Model Merge, and Colimit

We say model merge to refer to the following MDE scenario. Several models
expressing local views of the system are first matched by linking elements of the
models that correspond to the same system element. Then models are integrated
into a single global model (either physically or logically), which includes all data
from the local models but without redundancy, in accordance with the match.

Our goal is to show that modeling model merge (an MDE task) by the colimit
operation (a mathematical construct) is an unexpectedly accurate mathematical
model of the phenomenon.

3.1 Simple Match and Merge

Two independent consultants, Ben and Bill, have designed two consumption
models. Ben’s model (M1 in Fig. 1) states that buying an apple is a wise way

3

of spending your dollar, but first you need to work and earn it. Bill agrees with
Ben about the necessity to work first, but suggests spending the dollar earned
on buying a cake (model M2).

Suppose Ben and Bill want to merge their models into an integrated model
U without data redundancy and loss. They specify correspondences between the
models by bidirectional links `x (x = 0, $, w) connecting (matching) elements
considered to be “the same”. Merge is easily performed “by hand” resulting in
model U in Fig. 1. What Ben and Bill did was, first, disjoint merging of the two
graphs and, then, gluing together matched elements.

0	

buyA

work

$	

buyA

U

M1

$	

0	

work

$	

buyC

l0

l$
lw

M2

0	

work

buyC

Ben’s	 model	 	 	

Ben	 +	 Bill	 	 	

Bill’s	 model	 	 	

Fig. 1. Model-
based merge
(case 1)

However, designing tools for automatic merge for models
with thousands of elements, and complex intermodel relation-
ships, would need a deeper, and formal, understanding of the
merge procedure. Let us see how the categorical analysis could
help.

The first prescription of CT is to take relationships seri-
ously and explicitly specify them and their properties. We first
notice that three intermodel links `x (x = 0, $, w) respect the
structure of the modes: they relate states to states, transitions
to transition, and source and target of related transitions are
respected as well. To make this structure preservation explicit,
it is convenient to reify every bidirectional link `x : e1x ↔ e2x
as a special relationship object, `•x, and then combine these
into a model R endowed with mappings r1, r2 to restore the
end elements of the links (see the upper part of Fig. 2 where
object `•x is labeled by x). Model R is also an LTS, and map-
pings r1, r2 respect the LTS-structure as explained above.
We will say that the mappings are structure preserving, and call them LTS-
morphisms. A pair of mapings r = (r1, r2) with a common source R is called
a span, model R is its head, and mappings ri are the legs. We will often write
a span as a triple r = (r1, R, r2), in which the head is explicit, and sometimes
denote the entire span by R, if the legs are clear form the context.

Target and source multiplicities are important properties of mappings. By
default, we will assume all mapping to be totally-defined and single-valued, and
their target multiplicity [1] is not shown. The source multiplicity will vary, and
in the case we consider, it is [0..1] for both mappings ri (i.e., the mappings are
not surjective or not covering). So, each of the two models has a shared part (the
image of mapping ri), and a private part (the rest of the model).

Thus, matching results in a span, serving as the input data for an algebraic
operation of pure merge. In Fig. 2, the input models and mappings are shaded,
while the output ones are blank (and blue with a color display: the blue color
is meant to recall a mechanical computation). We begin our discussion of the
operation by specifying what exactly is produced by the merge.

First of all, note that each of models Mi (i = 1, 2) can be mapped to the
merged model via a totally defined and single-valued mapping ui, which is an
LTS-morphisms. Totality of ui ensures that the merge is lossless: no data of

4

the original models are lost. Single-valuedness says that merging does not split
elements, which is a reasonable requirement too.

In the case we consider, mappings ui are injective (no two elements are glued
together), but below we will see another merge case, in which gluing occurs and
is a desirable property. As model M1 has a private part, mapping u2 is not surjec-
tive, and similarly non-surjectivity of r2 implies non-surjectivity of u1. (Strong
connections between properties of mappings r−1 and u2, and r2 and u1 is prov-
able for the algebraic operation of colimit.)

work

M1
0	

$	

$	

0	

$	

M2

0	

0	

$	

R r1 r2

U=(M1+M2)/R

u1

buyA

buyA

work

buyC

work

buyC

work

[0..1]
[=]

[jointly-
cover]

u2

[0..1]

[0..1] [0..1]

Fig. 2. Map-based merge (case 1)

However, the pair of mappings (u1, u2)
is jointly surjective or jointly covering:
for each element e∈U there is either el-
ement e1∈M1 s.t. u1(e1) = e, or e2∈M2

s.t. e = u2(e2), or both. We will often
skip “jointly” and say that the cospan
(u1, u2) is covering. Thus, equality U =
u1(M1)∪ u2(M2) is yet another impor-
tant property of the merge operation of-
ten stated as the No-junk property: the
merge model contains nothing that is
not contained in the local models.

Finally, for any element e∈U of the
merge, e ∈ u1(M1)∩ u2(M2) iff there is
some `•e ∈ R such that `•e.r1.u1 = e =
`•e.r2.u2. Thus, r1;u1 = r2;u2 where ;
denotes mapping composition. We say
that the square formed by these four
mappings is commutative, and label the
diagram with symbol [=]. Note a direct
visual representation of commutativity: cycles formed by links constituting the
mappings are closed. Later we show that for a given span r = (r1, r2) between
models M1, M2, there is a unique (up to isomorphism) covering cospan u =
(u1, u2) that completes the span r up to a commutative square, as shown in
Fig. 2. We denote the head of this cospan by (M1 + M2)/R: indeed, the more
links are contained in mappings ri, the more elements in the disjoint union are
glued together, and the smaller is model U . This operation, and its result, are
called colimit; cospan U is the colimit of span R.

Note that the up-to-isomorphism nature of the definition of colimit, often
considered as an unnecessary complication imported by CT, is exactly adequate
for practice: object IDs of the merged model elements depend on the merge tool
(or even the state of the tool) rather than being uniquely defined by the input
data. Practical merge is defined up to isomorphism exactly like the colimit is.

Now compare Fig. 1 and Fig. 2. The latter specifies several important prop-
erties of merge via properties of the mappings involved. The former is a loose
specification with all these properties left implicit. This looseness quickly accu-
mulates when we merge several models interrelated by a complex system of spans.
Consider, for examples, two new models M3, M4 at the left top corner of Fig. 3,

5

which together with the match span R34 specify the convergence of eating an
apple or a cake to a happiness state. (Here we used a bidirectional block-arrow
containing a single bidirectional link as a shorthand for the respective span,
whose head has an only object.) If we want to merge all models without redun-
dancy, we also need to match apples in M1 and M3, and cakes in M2 and M4.

R24 R12 R13 R34

R34

J	

$	
buyA buyC

eatA eatC

0	
 work

0	

$	

work

M2 M1 M3

J	

M4

(M1+M2+M3+M4)/R

[=]

[jointly-cover]

[=] [=] [=]

u4 u1

eatA

J	

M3

J	

M4

eatC

Fig. 3. Multimerge

The entire system of models
and matches is shown in the up-
per half of Fig. 3, and the result
of merge is in the lower half.
Note four commutativity con-
ditions respected by the merge
(corresponding to the four in-
put spans). More complex ex-
amples can be found in [27,14].

In the simple case we con-
sider, merge can be easily done
by hand, but for industrial size
models and matches, removal
of mappings and their proper-
ties from the specification, es-
pecially multiple commutativ-
ity requirements, would make coding very error-prone. And if even a merge tool
conforming to a loose specification without mappings works properly, important
requirements would be hidden in code, which would then be difficult to analyse,
test, and maintain.

Our next goal is to analyse whether simple patterns considered above work
for more complex cases of inter-model relationships.

3.2 Complex Match and Merge, I: Pseudo-one-to-many Links

In MDE practice, intermodel relationships are often more complex than the
one-to-one matches considered so far. A simple one-to-many match is shown in
Fig. 4(a). Model M1 says you can convert a dollar into a smile by either buying
and eating an apple, or by buying and eating a cake.

ha
pp

yL
ife

he
al

ty
Li

fe

b)	 Merge	

$	

buyA buyC

eatA eatC
J	

M1

E	

J	

$	

buyA buyC

eatA eatC

U

E	

a)	 Match	

M2 $	

J	

ha
pp

yL
ife

he
al

th
yL

ife

Fig. 4. Model-based merge (case 2)

Model M2 is more abstract and says
you can convert a dollar into a smile
by either healthyLife or happyLife,
but is not specific about details of
what should really be done. Sup-
pose we know that by healthyLife
model M2 actually means buying and
eating an apple, so that transition
healthyLife matches two transitions
in M1.

Also, the pair of matching links is
labeled by an expression E:: healthyLife = buyA; eatA specifying details of the

6

one-to-many relationship. The merge can easily be produced by hand Fig. 4(b),
but building a general algorithm in this case is even more complicated than
for one-to-one matching. Indeed, now the merge algorithm needs to manage
expressions of, generally speaking, different kinds. Expression management was
declared as one of the big problems of model management in [5].

ha
pp

yL
ife

he
al

th
yL

ife

J	

$	

buyA buyC

eatA eatC
J	

$	
buyA buyC

eatA
eatC

M1 (r1,R,r2)
M2

u1 u2

[0..1] [0..1]

$	

J	
[=]

U = (M1+M2)/R

[;]

[0..1] [0..1] [jointly cover]

[;]

ha
pp

yL
ife

Fig. 5. Map-based merge (case 2)

Let us see how the case is treated
categorically. A key observation is
that a one-to-many relationship is re-
placed by a one-to-one relationship
to a derived transition buyA; eatA, as
shown in Fig. 5, in which the bidirec-
tional horizontal arrow is again used
as a shorthand for the respective
span — this syntactic sugar is intu-
itive and makes diagrams more com-
pact. The derived transition in model
M1 is shown by a dashed arrow (blue
with a color display), and the respec-
tive triangle diagram is marked with
symbol [;] specifying the operation of
arrow composition.

Use of derived transitions allows us to reduce one-to-many to one-to-one
matching, then the simple merge algorithm described above can be directly ap-
plied and produces the result shown in the lower part of the figure. The main
merge principle of copying all data from original models into the merge is di-
rectly realized, and the operation label [;] is copied to U as well and declares the
dashed transition as derived by the arrow composition exactly as it was in model
M1. Note we do not need to copy transition healthyLife from M2 to the merge
model because it can be derived, and mapping u2 is still total. In contrast, the
naive merge in Fig. 4(b) is corrupted by inclusion of this transition.

The same idea is applicable for other operations on transitions, e.g., their par-
allel composition, or, in general, any operation over a model’s elements. Hence,
we consider the same merge operation, but in different categories: of graphs,
of graphs with sequential arrow composition, graphs with parallel arrow com-
position, etc. (a precise categorical framework for this approach is based on
the notion of Kleisli category discussed in the MDE context in [8], and in the
database context in [11]).

3.3 Complex Match and Merge, II: Real One-to-many links.

Now consider yet another case of model overlap in Fig. 6. Suppose that the
happyLife-transition in model M2 can mean either buying and eating an apple,
or, perhaps, buying and eating a cake. The respective overlap is specified by span
R (note that r2 maps two transition to the same target) , and the merge according
to the colimit algorithm is given by cospan (u1, U, u2). The inset figure below
shows the merge model with derived transitions omitted (they can be always
computed if needed), but the commutativity constraint made explicit as it is not

7

M2
M1

ha
pp

y L
ife

J	

$	

buyA buyC

eatA eatC
J	

$	

buyA buyC

eatA
eatC

u1 u2

[0..1]

$	

J	
[=]

U = (M1+M2)/R

[;]

[1..2]

[0..1]

$	

J	

R
r1 r2

[1..2]

[jointly cover]

[;]

[;]
[;]

Fig. 6. Map-based merge (case 3)

At first sight it may seem that
the colimit-based merge is incor-
rect as two different transitions in
model M1 are glued together in
the merge U , and hence the [=]-
constraint is to be declared. Let us
consider the case in more detail.
The match says that transition hap-
pyLife is “equal” to buyA;eatA and
to buyC;eatC as well. It implies that
buyA;eatA=buyC;eatC, which is ex-
actly the commutativity constraint
declared in U . Thus, a constraint to
model M1 was actually declared externally by the match rather than by the
model itself. This is a typically categorical phenomenon, when some properties
of an object are only revealed when this object is related to other objects. As
model merge should preserve all input information, the constraint about M1

stated by the input span is to be respected in the merge model U , and this
is exactly what the colimit does. Note how accurately this situation is treated
categorically: neither of the original models is changed, but everything needed
is captured by a properly specified intermodel span.

4 LTSs as mappings: From graphs to categories

J	

$	

buyA buyC

eatA eatC

[=]

U

In this section we make the constructions described above pre-
cise. We will consecutively define LTSs as labeled graphs, la-
beled pre-categories, and finally, labeled categories, and moti-
vate why graphs and even precategories are not good enough.
We define colimit for labeled categories, thus providing formal
support for our MMt activity in Section 3. Some details are
omitted to save space, but can be found in the long version

[13]; yet we have kept enough formalities to give the reader a feeling of what
equation chasing is (and appreciate the power and beauty of CT, which frees its
users from tedious transformations).

4.1 LTSs as graph morphisms

We give a precise definition of graphs and morphisms to fix our notation.
Definition 1 (Graphs). A (directed) graph G comprises a set G• of nodes,

a set
−→
G of arrows, and two functions, so:

−→
G → G• and ta:

−→
G → G•. We write

a: N1 → N2 if N1 = so(a) and ta(a) = N2. We will often write e ∈ G to day that

e ∈ G•∪
−→
G is an element of graph G.

A graph morphism f : G→ G′ is a pair of functions, f•: G• → G′
•

and
−→
f :
−→
G →

−→
G′,

such that the incidence between nodes and arrows is preserved: for any arrow

a: N1 → N2 in G, we have so′(
−→
f (a)) = f•(so(a)) and ta′(

−→
f (a)) = f•(ta(a)). ut

8

A classical LTS is a graph T whose nodes are called states and arrows are

transitions; the latter are labeled via a function λ:
−→
T → L into a predefined set

L of (action) labels. Thinking categorically, mapping a graph to a set is not a
natural construct. To fix it, we assume that both transitions and states have
labels, which form a graph L. Indeed, as a rule, applying a transition to a state
requires the latter to satisfy some pre-conditions, and the result of transition
execution satisfies some post-conditions. These pre- and post-conditions can be
encoded by state labels, and an LTS thus becomes a triple M = (T, λ, L) with
T and L graphs and λ: T → L a graph morphism. For example, the graph of
labels for model M1 in Fig. 4(a) could consist of three nodes $, snack , and

. .
^,

and two consecutive arrows buy: $→ snack and eat: snack → . .
^.

$1: $	

buyA: buy buyC: buy

eatA: eat

J1:J	

M1

eatC: eat

:snack :snack

[;]

ha
pp

y:
 L

ife

M2

he
al

th
y:

 L
ife

$1: $ 	

J1:J	

r

Fig. 7. Labeling

Then an accurate specification of
model M1 is shown in Fig. 7, where
names before colons refer to states and
transitions, while names after colons
refer to their labels. The latter can
be considered as types, and the for-
mer as their instances. Similarly, for
model M2, the graph of labels could be
taken to be a single arrow life: $→ . .

^,
while the transition graph has two ar-
rows healthy and happy.

Note that the classical LTS notion is subsumed if we require the set L• of
state labels to be a singleton: then there is only one state label, and a transition
can be always applied to a state.

m
[=]

T�
Tè

M

T ’è T ’
M’

mT
mL

 λ

 λ’

Lè

T’� L’�

L ’è L ’

T L

L�

Fig. 8. An LTS morphism

Since an LTS becomes a two-layer graph, an LTS
morphism should have two-layers too. The upper
box in Fig. 8 illustrates the definition (where G→

stands for
−→
G for typographical reasons). The inner-

most nodes in the diagram are sets, and thin arrows
between them are functions (the diagonal ones are
the source and the target functions in the respective
graphs). Block nodes and arrows denote systems of
sets and functions. The entire diagram specifies an
LTS morphism m: M →M ′ as a pair of graph mor-
phisms, mT : T → T ′ and mL: L→ L′, which com-
mute with labeling, λ;mL = mT ;λ′ (note symbol [=]
in the center of the square diagram).

Thus, our diagrams in section 2 were not quite accurate by leaving labels
implicit; we employed the fact that labeling was bijective. An accurate descrip-
tion would be to leave diagrams as is, but provide the possibility to zoom-in and
reveal the two-layer picture shown in Fig. 8. Correspondingly, merge of LTSs
is also a two-layer operation that begins with a two-layer match followed by a
two-layer colimit. We will describe them later after we refine our notion of LTS.

9

4.2 LTSs as functors

Our examples showed that for specifying LTS matching we need sequential com-
position of transitions, and their labels as well. An important condition to make
sequential composition well-behaved is associativity: for any triple of consecu-
tive arrows a,b,c, we have (a; b); c = a; (b; c). This law holds in a majority of the
practical interpretations of LTSs we can think of.
Definition 2 (Precategories and prefunctors.). A precategory is a directed
graph with an associative arrow composition. That is, for any pair (a, b) of
consecutive arrows, an arrow a; b is defined, and the associativity law holds.

A morphism of pre-categories, or a pre-functor, f : C1 → C2, is a graph mor-
phism that preserves composition: f(a; b) = f(a); f(b) for any pair of consecutive
arrows a, b in C1. ut

Now we define an LTS to be a triple M = (T, λ, L) with T and L precategories
and λ a prefunctor. For example, for model M1 in Fig. 7, λ(buyA; eatA) =
buy ; eat = λ(buyC ; eatC). The diagram in Fig. 8 defining an LTS moprhism m
is still valid, but now we interpret the four inner block-arrows as prefunctors.

Figure 7 specifies a span of LTS morphisms in a briefed notation with bidirec-
tional links instead of two leg. Intermodel links are assumed to have two layers
and thus encode two spans: between transitions and between labels. For exam-
ple, the middle link says that transitions buyA;eatA and healthy are matched
over respectively matched labels buy;eat and life. Thus, the head of the span is
a (two-layered) LTS and its legs are (two-layered) morphisms.
Definition 3 (Categories). A category is a precategory with a special loop
arrow idX (called identity) assigned to each node X. The following equations are
to hold for any arrow a: X → Y : idX ; a = a = a; idY .

A morphism of categories, or a functor, f : C1 → C2, is a pre-functor that
sends identities to identities: f(idX) = idf(X) for any node X ∈ C•1 . ut

w1;b1;
w2;b2;r

Ma

Mc

 $1:$	
 02:0	

b1;w2

 03:0	

 01:0	

Morphism m

w1;b1

w1:work

b2:buy

r: rest
b1:buy

w2:work

id01: id0

id$1: id$

w2;b2

[=]

[=]

 01:0	
 $1:$	

w:work

b:buy

[=]
w;b

id01:id0

b;w

id$1: id$

[=]

[1..*]

Fig. 9. Idle actions

Do we really need categories, or is the no-
tion of pre-category good enough for our mod-
eling goals? Consider yet another consumer-
oriented model Mc in Fig. 9 (where some of the
composed labels are omitted). The model says
that after two cycles of working and buying, the
system needs to take a rest to return to the ini-
tial state. To formalize this condition, we intro-
duce an idle loop id01 at state 01 (of type id0),
and postulate equality w1;b1;w2;b2;r=id01 that
holds along with the respective label equality
work;buy;work;buy;rest=id0 (note the equality
symbol between the two transitions). Simi-
larly, the equality symbol near state $1 says
that b1;w2=id$1 : working results in the same
amount of money (at least, an amount afford-
ing the next buying, which is considered to be the same state).

Model Ma in Fig. 9 is a more abstract view of the same behavior. In this
view, the difference between states 01, 02, and 03 is ignored, each cycle work;buy

10

returns to the same state, and rest is not needed. The relationship between
two models is specified by an LTS morphism m: Mc →Ma (see Fig. 8). The
transition (instance) part of the morphism maps all “vertical” arrows in Mc, the
loop w1; b1;w2; b2; r, and all idle loops id0i in Mc to the idle loop id01 in Ma;
loops id$1 and b1;w2 in Mc to id$1 in Ma; and all work- and buy-instances in
Mc are mapped to similar instances in Ma. The label part of the morphism m
maps labels rest and id0 in Mc to id0 in Ma, and work to work, buy to buy, and
id$ to id$. Note that both components of m map idle loops to idle loops, i.e., are
functors.

Model Ma is indeed an abstraction of Mc as several non-idle transitions
between states 01, 02, 03 in Mc are mapped to the same element — identity
id01 in Ma. That is, morphism m forces a rich sub-LTS of Mc, which consists of
states 01,2,3 and transitions between them, to collapse into a primitive sub-LTS
of Ma consisting of a single state 01 with its idle loop. It means that the notion
of being idle is relative: idling in one model can be a complex activity in another
model.

Thus, idle loops and mappings using them are useful for behavior modeling,
and we can finally define our notion of an LTS.
Definition 4 (LTSs). An LTS is a triple M = (T, λ, L) with T and L categories
of transitions and labels resp., and λ: T → L a functor.

An LTS morphismm: M →M ′ is a pair of functors commuting with labeling
as shown in diagram Fig. 8. ut

4.3 M-sets and their colimits

We considered several structures (graphs, categories, LTSs), consisting of sets
and functions between them such that certain equations hold. Morphisms be-
tween these structures are defined componentwise, i.e., as families of functions
between the constituent sets. As function composition is associative, all mor-
phisms we considered are also associatively composable, which, along with iden-
tity morphisms (identity functions for all components), give us categories Graph,
Cat, LTS of graphs, categories, LTSs, resp. This sequence should begin with the
simplest category of this kind: the category Set of all sets and functions.

In this section, we define M-sets—a generalization of structures mentioned
above, and their colimits.M-sets are a remarkable construct. On the one hand,
they are a far reaching generalization of structures we considered above (graphs,
pre- and categories, LTSs), which encompasses any model defined by an MOF-
metamodel, whose constraints can be expressed by equations. On the other hand,
M-sets can be seen as an immediate generalization of sets, such that operations
onM-sets are very close to operations over sets; we will employ this for defining
M-sets colimits.

4.3.1 M-sets. Let M=(GM, EM) be a metamodel consisting of a directed
graph GM and a set EM of equational constraints (equations). An instance of
M is a pair I = (GI , tI) with GI a graph specifying the instance’s data, and

11

tI : GI → GM a graph morphism called typing mapping such that all equations
in EM hold (and we write I |= EM).

For an element e∈GI , its type is an element tI(e)∈GM. Conversely, for an

element (type) x∈GM, its extension is a set [[x]]
I

of all those elements of GI ,

whose type is x. If x is a node n in GM, then [[n]]
I

is a set of nodes in GI
whose type is n. If x is an arrow a: n→ n′ in GM, then [[a]]

I ⊂ [[n]]
I×[[n ′]]

I
is

a relation defined by arrows in GI whose type is a; indeed, each such arrow gives
us a pair from [[n]]

I×[[n ′]]
I

(to simplify presentation, we ignore the possibility of
multi-relations, when the same pair of nodes in GI is related by more than arrow
of the same type). Also, we assume that all arrows a in GM have multiplicities

that force relations [[a]]
I

to be total single-valued functions; otherwise, we replace
a “bad” arrow by a span whose legs are functions (this is analogous to the
known procedure for the relational schema normalization). In this way, we build

a mapping [[]]
I
: GM → Set, whose image in Set actually gives us the instance

graph. It is easy to check that mapping [[]]
I

is a graph morphism.3

Thus, instances ofM are systems of sets and functions similar to those men-
tioned above, and we call themM-sets. For example, an LTS is anM-set for the
metamodel MLTS specified in Fig. 10, where two equality symbols denote two
commutativity constraints expressing functoriality of λ. (The graph of this meta-
model is also shown in the upper box in Fig. 8.)

Trans
λT- TraLabel

[=,=]

State

so

?

ta

? λS- StaLabel

so

?

ta

?

Fig. 10. LTS metamodel

Morphism of M-sets are defined componentwise,
i.e., a morphism f : I → J is a family of functions
fn: [[n]]

I → [[n]]
J

indexed by nodes n in GM, such

that [[a]]
I
; fn = fm; [[a]]

J
for all arrows a: m→ n

in GM. An equivalent non-indexed definition is a
graph mapping f : GI → GJ commuting with typ-
ing, f ; tJ = tI . Thus, we have a category M-Set of
M-sets and their morphisms (a categorician would
call it the presheaf topos of shape M [2]). For ex-
ample, each of the categories Graph, Cat, LTS can
be seen as category M-Set for the respective meta-
model M.

A fundamental fact about M-sets is that they can be perfectly managed in
parallel with ordinary sets. Ordinary notions of union, product, factorization
(quotient set), etc, are easily defined for M-sets componentwise. Below we will
see how this can be employed for defining colimit.

4.3.2 Colimits of M-sets. Figure 11 describes the general case of merging
two LTSs as described in Sect. 3. Nodes in the diagram are LTSs, and arrows are
their morphisms as specified by Fig. 8. The binary colimit operation takes a span
(r1, R, r2) of LTSs as its input, and produces a covering cospan (u1, U, u2) (note

3 Moreover, we can also freely extend graph GM with all possible arrow compositions
and identity loops, and thus make it a category G+

M; then mapping [[]]I can be

freely extended to a functor [[]]I : G+
M → Set.

12

the label [cover]), which makes the entire square commutative (label [=]) (these
and other properties were discussed in Sect. 3. Now we will give a constructive
definition of colimit and show that it provides all the necessary properties.

We first consider the simplest case of set colimit, when nodes in the di-
agram are interpreted by sets, and arrows by functions. To compute colimit,

M1 M2

(M1+M2)/r

u1 u2

R
r1 r2

[colimit]
[cover]

[=]

Fig. 11. Colimit
pattern

we take the disjoint union of sets, M = M1] M2, and
factorize it by the equivalence relation E∗ ⊂ M×M ,
which is the reflexive transitive closure of relation E =
{(r1(x), r2(x)) : x∈R}. That is, we define U

def
= M/E∗ and

ui
def
= ιi; ε (i = 1, 2), where ιi: Mi →M are canonical injec-

tions, and ε: M →M/E∗ is the canonical surjection. As all
these are defined up to isomorphism, U is also so defined. It
is easy to see that r1;u1 = r2;u2 by definition of E∗ and ui,
and that (u1, u2) is a cover since ε is a cover.

A remarkable property of U is its minimality: for any

cospan M1
v1- V �

v2
M2 such that r1; v1 = r2; v2, there is a unique function

!: U → V such that ui; ! = vi for i = 1, 2. It can be proved that minimality is
equivalent to coverage: a cospan U is covering iff it is minimal in the sense above.
Indeed, if set U would contain an element e beyond the union of images of ui,
mapping ! could map this e to any element of V without destroying the com-
mutativity conditions. It can be also proved by standard categorical arguments
that minimality in the sense above uniquely determines the colimit cospan up to
a unique isomoprhism between the heads. Thus, colimit can be declared declar-
atively as the uniquely defined minimal cospan completing the input span up to
a commutative square as shown in Fig. 11.

Now we define colimit ofM-sets, i.e., for the same diagram Fig. 11 but inter-
preted by M-sets for some given metamodel M = (GM, EM). Everything will
be done componentwise. As M-set morphisms are families of functions indexed
by nodes in GM, each such node n determines a Set-interpretation of the span

R, i.e., as a span Mn
1
�r

n
1 Rn

rn2- Mn
2 of two functions rni between the respec-

tive sets. (For example, for LTSs, GM has four nodes, and for each of them we
have a span, whose legs are defined in Fig. 8.) Hence, as we have already defined

colimit for sets, for any n we have a colimit set cospan Mn
1

un
1- Un �

un
2 Mn

2 .
A tedious “equation chasing” shows that owing to (i) commutativity constraints
for M-set morphisms, and (ii) minimality of colimit, for any arrow a: n→ n′

in the metamodel, there is a unique function a!: Un → Un
′

commuting with
everything necessary, so that actually we have a cospan of M-sets and their

morphisms: M1
u1- U �

u2
M2.

For example for the LTS metamodel in Fig. 10, for a = so: Trans→ State, we
first compute cospan

MTrans
1

so1;u
State
1 - UState � so2;u

State
2 MTrans

2

13

such that rTrans1 ; so1;uState1 = rTrans2 ; so2;uState2 , and then use minimality of UTrans

to compute so!: UTrans → UState. Arrows ta!: UTrans → UState, so!: UTraLabel → UStaLabel,
and ta!: UTraLabel → UStaLabel are computed in the same way.

The same idea also works for computing arrows λ!S : UState → UStaLabel and
λ!T : UTrans → UTraLabel. For example, for λ!S , we first compute the cospan

MState
1

λS1;u
StaLabel
1 - UStaLabel �λS2;u

StaLabel
2 MState

2 ,

and then use minimality of UState to compute λ!S : UState → UStaLabel. In this way
we build an instance U : GM → Set of the graph GM specified in Fig. 10, which
satisfy the necessary commutativity conditions and, hence, is a valid instance of
the metamodel MLTS.

Mappings ui: Mi → U , (i = 1, 2) between M-sets are defined in a straight-
forward way. Moreover, yet another round of equation chasing shows that cospan
(u1, U, u2) is actually the minimal one amongst all cospans that complete the
span (r1, R, r2) up to a commutative square in the category ofM-sets. Hence, by
a standard categorical reasoning, U is defined up to an isomorphism. Finally, in
Appendix, we describe an algorithm for computing colimit of an arbitrary multi-
ary span specifying a match between multiple M-sets (like, e.g., in Fig. 3).

Thus, however complex are (a) the metamodel M = (GM, EM) and (b) the
input configuration (match) ofM-sets, colimit of the latter is a simple operation
computed componentwise. Note how well the diagram Fig. 11 works: it is abstract
enough and hides all “n-layers” and hence is applicable for any category of M-
sets, but it is concrete enough to show how each layer works.

4.3.3 Three colors of model merge. The analysis above makes it clear
that model merge consists of two parts. The first is model match, which requires
heuristics, analysis of names and modeling contexts, and is not a fully automatic,
hence, not an algebraic, operation. After models are matched, their merge is
a routine automatic procedure called colimit. In a sense, the latter is trivial,
hence, the slogan: CT makes trivial things really trivial, and, thus, facilitates the
fundamental for software engineering separation of concerns. In our diagrams,
we distinguish between pseudo-algebraic and algebraic (automatic) operations
by coloring their results in green and blue, resp. We believe that this green-blue
separation of concerns is important for model merge and other MMt operations
specified in [12].

5 Parallel composition and Limits

Parallel composition of executable components (or behaviors) is a fundamental
operation of behavior modeling. It assumes that several (local) components run
simultaneously so that a global state is a tuple of local states, and a global tran-
sition is a tuple of local transitions. Some local transitions may be required to be
synchronized, that is, be always executed simultaneously (like a handshake). We
will show that parallel composition can be defined categorically by an operation

14

called limit, which is dual to colimit in some precise sense (so that synchroniza-
tion appears as a parallel match, and parallel composition as a parallel merge).

We will begin with a simple case of unsynchronized composition, then con-
sider how synchronization is specified by mappings, and finally discuss duality
between the merge and parallel composition.

5.1 Unsynchronized composition

Suppose that Ben and Bill from Sect. 3.1 decided to give their behavior models
a try, and run them simultaneously, both starting at the same moment, but oth-
erwise entirely independently. It means, for example, that if one of them works,
the other can do nothing (idle), or also work, or eat if he has already earned
his dollar. Then the parallel composition consists of all possible pairs of states,
and all possible pairs of transitions as shown in Fig. 12. Importantly, in order
to specify the possibility of, say, Ben is working while Bill is idling, we added
to every state in Bill’s model an idle (loop) transition, and the same for Ben’s
model, which makes them categories. Now we can describe the parallel merge U
as a Cartesian product of two categories: horizontal and vertical transitions are
those in which one component is idling, whereas diagonal transitions combine
two non-idle ones. (And the idle loops in the product are pairs of idle loops.)

mee Ben

Bill

$	
work buyA

work

buyC

00	 $0	

0$	

(work,id)

$$	

AC	

(work,id)

(buyA,buyC)

(id
, w

or
k)

(work, work)

A

$	

C	

0	
id

0	
id

A$	

A0	
(buyA, id)

(buyA, work)

02	 $C	

(id
, b

uy
C

)

(work,buyC)

[=]

[=]

[=]

[=]

[=]

[=]

[=]

[=]
(buyA, id)

(work,id) (buyA, id)

(id
, w

or
k)

(id

, b
uy

C
)

p1

p2

M1

M2

U= M1 x M2

[1]
[1]

[key]

Ben|| Bill

Fig. 12. Parallel composition (product)

By the definition of a product cate-
gory, all triangle diagrams are commu-
tative, which makes perfect sense in our
context. For example, commutativity
of the two left top triangles says that
the differences between the three ways
of earning two dollars by the system
U are irrelevant from the global view-
point. There are two canonical projec-
tion mappings ui: U →Mi, which are
(total and single-valued as we assume
by default, and) surjective. Surjectiv-
ity of projections captures simultane-
ity of the parallel merge: any local ele-
ment (state or transition) must become
a component of a global element. Another important postcondition is that any
global element is actually a pair of local elements, that is, if for global elements
e, e′ ∈ U , equalities u1(e) = u1(e′) and u2(e) = u2(e′) hold, then e = e′. We
denote this property by a predicate label [key]: in the relational algebra jargon,
the pair of attributes u1, u2 is a key for the “binary relation” U .

Finally, the parallel merge U is, of course, defined up to a canonical isomor-
phism: OIDs of elements in U can be arbitrarily chosen. Hence, we claim that
defining local LTSs to be categories, and their parallel merge to be their product,
is an appropriate mathematical model of the scenario.

15

5.2 Synchronization via Cospans

Now suppose that to earn their dollars, Ben and Bill need to work together on a
joint project. After that, they act separately and indepedently, as shown by LTS
U in Fig. 13. Remarkably, this LTS can be automatically computed by an opera-
tion called limit, if synchronization between the models is properly specified. This
specification is given by mappings si: Mi → S, (i = 1, 2) from the local models to
a common model S representing the global (synchronized) view of the behavior.

Bill

Ben

work buyA

id

0	

work

buyC

id

S

00	

A$	

$C	 AC	
(buyA,id)

[=]

(work, work)

(id
,b

uy
C

)

[=] (buyA,buyC)
$	

C	

2	

work

0	

$$	
(buyA,id)

s2

u1

u2

(id,id
)

U=M1 x M2\S

[1]

[1]
[1]

[1]

0	 $	 A

M1

M2

[=]

[ke
y]

s1

Fig. 13. Synchronized parallel composition

The global view should evidently
contain a global transition work,
composed from two local instances
of work acting in parallel (note
the corresponding links in map-
pings si). In addition, there are
two global idle loops. The first
one, id0, is a pair of local idles,
(id0@M1, id0@M2) as shown by
the respective links in the cospan
(s1, s2). The second global identity,
id2, is much more interesting. It is
the image of several local transi-
tions from both sides, which means
that from the global viewpoint, the
differences between the respective
states and actions are not essential (compare with the case in Fig. 9).

Now the desired result of synchronized composition can be formally defined

by a simple formula: U
def
= {e ∈M1×M2 : s1(u1(e)) = s2(u2(e))}, where u1, u2

are canonic projections described above. The operation producing the product
span (U, u1, u2) from a cospan (S, s1, s2) of LTSs and their morphisms as de-
scribed above is called limit (in the category of LTSs), that is, span (u1, U, u2)
is the limit of cospan (s1, S, s2) as shown by diagram Fig. 14.

M1 M2

(M1xM2)\S

u1 u2

S
s1 s2

[limit]

[key]

[=]

Fig. 14. Limit
pattern

Note a remarkable duality between colimit and limit op-
erations given by diagrams in Fig. 11 and Fig. 14: the di-
agrams are mutually convertible by inverting directions of
all morphisms. Match is given by a span while synchroniza-
tion is given by a cospan. Merge is the result of stepwise
factorization (colimit) A → A/E∗1 → (A/E∗1)/E∗2 → . . . →
((A/E∗1)/ . . .) = A/E∗, while parallel composition is the re-
sult of stepwise subtraction (limit) M1×M2 ⊃ U1 ⊃ U2 ⊃
. . . ⊃ Un = U . The results of these dual processes are also
remarkably dual: the colimit cospan enjoys the joint cover

property and minimality, while the limit span enjoys the joint key property and
maximality (it can be shown that properties cover and key are dual in some
precise sense). A precise formal account of limit-colimit duality can be found in
any CT textbook.

16

The limit-colimit duality has a practical consequence. Our green-blue sep-
aration of concerns for merge immediately carries on to parallel composition:
synchronizing models by cospans is non-trivial (green), whereas composition as
such is automatic and trivial (blue). In general, the limit-colimit duality gives
rise to a sort of technology transfer: some merge technologies should be adaptable
for parallel composition and conversely.

6 Structural Modeling

The goal of this section is to show that categorical constructs considered above
for LTSs also make sense for structural modeling, e.g., we argue that merging
class diagrams (CDs) motivates considering sequential composition of associa-
tions, and identity associations. In other words, it makes sense to consider a CD
D as a (finite) representation of (perhaps, infinite) category D+ generated by D
by composing its associations.

Company

Person

worksFor

Address

locatedAt

commutesTo

[=] [≤]

[;]
[≤]

Fig. 15. Composition of associations and
three possible constraints

Figure 15 shows a simple CD with
three classes and three given directed
associations between them, ’worksFor’,
’locatedAt’, and ’commutesTo’. Se-
quential composition of the two up-
per association (note the label [;]) pro-
duces a derived association shown with
dashed (blue) arrow. Comparison of
this derived association with given association ’commutesTo’ is an important
property of the domain described by the CD. If both associations are equal, the
addresses a person commutesTo are exactly the addresses of the person’s work
places. This constraints can be expressed by placing equality symbol [=] between
the two arrows. If the derived association subsets ’commutesTo’ (note the middle
dotted arrow labeled [≤]), a person can commute to addresses besides person’s
work places. If the derived association supersets ’commutesTo’ (the rightmost
dotted arrow), some persons can reach their work places without commuting
(e.g., with carpooling). The latter two constraints are known in UML as subset-
ting of associations, and are usually shown with arrows between the association
edges as we did in Fig. ??. Note a difference between the UML and the CT
mind-sets. The constraints we considered above are known in UML, and can
be precisely specified in OCL; however, the UML does not anyhow encourage
to think about association composition and the corresponding constraints like
discussed above. In contrast, the categorical view on CDs does encourage the
modeler to think about the composition of associations and possible commuta-
tivity or subsetting constraints.

Another use of association composition is for managing semantic relativism,
when as association basic in one CD is a derived association in another CD
(similarly to what we discussed above for transitions).

Figure 16 presents an example of merging two class diagrams, CD1 and CD2.
Correspondence links state that classes Person and Employee refer to the same
class of real world objects, and association ’commutes’ in CD2 corresponds to the

17

Company Person

loc

works

Address

Employee

Address

commutes [;]

CD1 CD2
r

Company Prsn-Empl

loc

works

Address

[jointly cover]

u1 u2

[1]

[=]

[1]

commutes

[;]

Fig. 16. Map-based merge of class diagrams

sequential composition of associations ’works’ and ’loc’ in CD1. Hence, model
CD2 is, in fact, a view to model CD1, and hence their merge is isomorphic
to CD1. Note that without the link from ’commutes’ in CD2 to the derived
association in CD1, association ’commutes’ would appear as a basic element in
the merge model thus creating redundancy.

7 Discussion and Conclusions

We will briefly summarize our work in the paper to broaden applicability of our
observations. We will also point out to several important problems left for the
future work, and conclude the paper.

7.1 Mappings, their management, and arrow encapsulation. The CT
analysis of MMt is based on inter-model mappings. An MMt scenario amounts
to a sequence of operations over models and mappings, and important properties
of the scenario can be expressed via properties of mappings. (Note that focusing
on mappings is not foreign for MMt: it just makes explicit traceability mappings,
which are often considered auxiliary and left implicit in typical non-categorical
specifications used in MMt.) Complex scenarios give rise to complex systems of
mappings, but CT provides an effective mechanism to manage this complexity—
arrow encapsulation (AE).

The essence of AE is that complex configurations of mappings are encoded by
arrows, which can be composed and from which new configurations can be built,
and so on. On the other hand, many models themselves can be decomposed into
more elementary blocks and their mappings, and so on until the truly primitive
level of elements and links is reached. AE thus provides zoom-in and zoom-out
mechanism based on algebra, which allows the user to switch between abstraction

18

levels as needed. Figure 8, along with Figures 11 and 14, present a very simple
example; other examples can be found in [12].

AE also allows the user to relate properties of arrow configurations on differ-
ent levels, thus supporting validity checks of a scenario implementation against
its specification. Moreover, CT provides a library of well-designed patterns for
AE (see [12]), and techniques that allow us to reason about them.

7.2 Unification. Categorical specification of MMt scenarios provides three
facets of unification. First, categorical operations may be defined across dif-
ferent types of input configurations, e.g., the same colimit operation provides a
mathematical model of merging two models with an inter-model span, or several
models with a system of inter-model spans, including multi-ary spans and spans
between spans (see [14]). Colimit works equally well for injective or surjective
single-valued mappings, and even for multi-valued mappings, if the latter are
replaced by spans whose legs are single-valued (this is analogous to the well-
known normalization of relational schemas). Similar arguments work for parallel
composition via limits (not surprising as we have seen that limits are dual to
colimits).

Second, categorical operations can be defined generically w.r.t. different meta-
models. Moreover, for any metamodel M being a graph with equational con-
straints, colimits and limits of M’s instances are computed in basically the
same way irrespective of the shape of the graph. On the other hand, managing
more complex constraints needs special “tuning” and can be challenging. How-
ever, categorical logic provides several patterns that allow us to replace complex
constraints with quantifiers by equations (via introduction of new objects and
mappings). We plan to address this issue in the future work.

Third, a large diversity of MMt scenarios can be composed from a small
library of elementary categorical operations: arrow composition, limits and col-
imits. Adding to this library a higher-order operation of building powerobjects
makes it even more expressible.

7.3 Usability. CT provides a powerful formal framework than binds MMt
together, and inevitably brings with it a vast array of formal constructs and
challenging usability issues. This is a large area of future research, and we
can only make several comments. The first one is quite general. As said in
the introduction, we see the role of CT for MMt as being similar to the role
of the relational data model for data management, and with methodologically
similar usability issues. The database community successfully solved these is-
sues and replaced the mathematical relational theory by its engineering ap-
proximations, e.g., SQL, relational algebra as it is taught in standard database
courses, and ER-modeling. We believe that a similar path can well be fol-
lowed by the MDE community as soon as it starts detecting the categorical
patterns hidden inside the MMt scenarios (see [12] for a discussion). More con-
cretely, CT formalities come with a well-designed modularization mechanism
(that we tried to demonstrate), which can greatly facilitate practical use of
the CT-framework. Finally, when the formal semantics is well-understood, we
can approach creating a reasonable engineering notation in a principled way.

19

Ma
[inv] :0	
 :$	

:work

:buy

Mc

 $1:$	
 02:0	

 03:0	

 01:0	
 w1:work

b2:buy

r:
re

st

b1:buy

w2:work

[id]

[id]

Fig. 17. Syntactic
tips

For instance, we can introduce various notational macros. A
simple example is shown in the inset figure to be compared
with Fig. 9. In the former, idle loops are omitted (they can
always be restored if needed), and a marker [id] inside a
chain of consecutive transitions says that the composition
of transitions is equal to the idle loop of the state closest
to the marker. Two such markers inside a chain formed
by two opposite transitions (as in model Ma) require the
transitions to be mutually inverse, and can be replaced by
a single marker [inv]. More examples of how a categorical
semantics can simplify a notation can be found in [10].

Instead of conclusion. Playing with LTSs in this paper
was conceived purely for its tutorial role. Unexpectedly, these toy examples re-
vealed several technical details of LTSs and operations over them that appear
to be novel. This can be seen as evidence of CT’s effectiveness as a modeling
language: even a mere rearrangement of a known area in categorical terms can
lead to new insights into the subject. CT is actually a way of thinking about
multi-structural problems like those encountered in MMt, which enhances un-
derstanding of the domain and suggest reasonable architectural patterns for
designing MMt tools.

20

References

1. Anjorin, A., Schürr, A., Taentzer, G.: Construction of integrity preserving triple
graph grammars. In: Ehrig et al. [15], pp. 356–370

2. Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall Inter-
national Series in Computer Science (1995)

3. Batory, D.S., Azanza, M., Saraiva, J.: The objects and arrows of computational
design. In: MoDELS. LNCS, vol. 5301, pp. 1–20. Springer (2008)

4. Batory, D.S., Latimer, E., Azanza, M.: Teaching model driven engineering from a
relational database perspective. In: Moreira et al. [23], pp. 121–137

5. Bernstein, P.A.: Applying model management to classical meta data problems. In:
CIDR (2003)

6. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a multi-modeling
language? In: WADT. LNCS, vol. 5486, pp. 71–87. Springer (2009)

7. Diskin, Z.: Model synchronization: mappings, tile algebra, and categories. In: R.
Lämmel et al. (ed.) Postproceedings GTTSE 2009. LNCS#6491, Springer (2011)

8. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and kleisli cate-
gories. In: de Lara, J., Zisman, A. (eds.) FASE. LNCS, vol. 7212, pp. 163–177.
Springer (2012)

9. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations: the asymmetric case. JOT 10, 6: 1–25 (2011)

10. Diskin, Z.: Visualization vs. specification in diagrammatic notations: A case study
with the uml. In: Hegarty, M., Meyer, B., Narayanan, N.H. (eds.) Diagrams. LNCS,
vol. 2317, pp. 112–115. Springer (2002)

11. Diskin, Z.: Mathematics of generic specifications for model management. In: Rivero,
L.C., Doorn, J.H., Ferraggine, V.E. (eds.) Encyclopedia of Database Technologies
and Applications, pp. 351–366. Idea Group (2005)

12. Diskin, Z., Kokaly, S., Maibaum, T.: Mapping-aware megamodeling: Design pat-
terns and laws. In: Erwig, M., Paige, R.F., Wyk, E.V. (eds.) SLE. Lecture Notes
in Computer Science, vol. 8225, pp. 322–343. Springer (2013)

13. Diskin, Z., Maibaum, T., Czarnecki, K.: Towards category theory foundations
for model management. Tech. Rep. GSDLab-TR 2014-03-03, University of Wa-
terloo/McMaster University, http://gsd.uwaterloo.ca/node/566 (2014)

14. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models
for global consistency checking. In: MoDELS Workshops. LNCS, vol. 6627, pp.
165–179. Springer (2010)

15. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Graph Transformations
- 6th International Conference, ICGT 2012, Bremen, Germany, September 24-29,
2012. Proceedings, Lecture Notes in Computer Science, vol. 7562. Springer (2012)

16. Fiadeiro, J.L., Costa, J.F., Sernadas, A., Maibaum, T.S.E.: Process semantics of
temporal logic specifications. In: Bidoit, M., Choppy, C. (eds.) COMPASS/ADT.
Lecture Notes in Computer Science, vol. 655, pp. 236–253. Springer (1991)

17. Goguen, J.A.: A categorical manifesto. Mathematical Structures in Computer Sci-
ence 1(1), 49–67 (1991)

18. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward bridging the gap between for-
mal foundations and current practice for triple graph grammars - flexible relations
between source and target elements. In: Ehrig et al. [15], pp. 141–155

19. Große-Rhode, M.: Semantic Integration of Heterogeneous Software Specifications.
Monographs in Theoretical Computer Science. An EATCS Series, Springer (2004)

21

20. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Cor-
rectness of model synchronization based on triple graph grammars. In: Whittle,
J., Clark, T., Kühne, T. (eds.) MoDELS. LNCS, vol. 6981, pp. 668–682. Springer
(2011)

21. Lambers, L., Hildebrandt, S., Giese, H., Orejas, F.: Attribute handling for bidi-
rectional model transformations: The triple graph grammar case. ECEASST 49
(2012)

22. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Bidirectional model transformation
with precedence triple graph grammars. In: Vallecillo, A., Tolvanen, J.P., Kindler,
E., Störrle, H., Kolovos, D.S. (eds.) ECMFA. Lecture Notes in Computer Science,
vol. 7349, pp. 287–302. Springer (2012)

23. Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P.J. (eds.): Model-Driven
Engineering Languages and Systems - 16th International Conference, MODELS
2013, Miami, FL, USA, September 29 - October 4, 2013. Proceedings, Lecture
Notes in Computer Science, vol. 8107. Springer (2013)

24. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Lamo, Y.: A graph transformation-
based semantics for deep metamodelling. In: Schürr, A., Varró, D., Varró, G. (eds.)
AGTIVE. LNCS, vol. 7233, pp. 19–34. Springer (2011)

25. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-
merge approach to version control in mde. J. Log. Algebr. Program. 79(7), 636–658
(2010)

26. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A diagrammatic formalisation of
mof-based modelling languages. In: TOOLS. LNBIP, vol. 33. Springer (2009)

27. Sabetzadeh, M., Easterbrook, S.: An algebraic framework for merging incomplete
and inconsistent views. In: 13th Int.Conference on Requirement Engineering (2005)

28. Taentzer, G., Mantz, F., Arendt, T., Lamo, Y.: Customizable model migration
schemes for meta-model evolutions with multiplicity changes. In: Moreira et al.
[23], pp. 254–270

22

A Appendix. Multi-ary Colimits of M-Sets

In this section, we consider a general case of merging multiple models related by
multiple spans. First of all, we note that a set of local models and intermodel
spans amounts to a bigger set of secondary models and morphisms. For example,
for the case in Fig. 2 two local models with a span amount to three secondary
models Mi, Rij and two morphisms; for Fig. 3, we have eight secondary models
and eight secondary moprhisms. The operation called colimit can be considered
as a procedure that first builds a disjoint union of all secondary models, and then
factorizes it by gluing together elements linked together by secondary morphisms.

Given sets (A1, .., Am) and functions
(f1, .., fk) between them, begin:
1) let A =]i=1...mAi and
ιi: Ai → A are canonic injections

2) let E = ∅ ⊂ A×A
3) for every fj , j = 1, . . . , k do

for every a in the domain of fj do
let E = E ∪ {(a, fj(a))} od od

4) let E∗ = reflexive transitive closure of E
5) let ε: A→ A/E∗ be the canonic surjection
6) return multicospan with head U = A/E∗

and legs ui = ιi; ε: Ai → U , i = 1 . . .m

Fig. 18. Colimit algorithm for multiple sets and
functions

A precise definition of the al-
gorithm for the case when models
are sets, and morphisms are (total
single-valued) functions, is speci-
fied in Fig. 18. Two required post-
conditions (commutativity and
joint coverage) are easy to check:
fj ;ui′ = ui for any fj : Ai → Ai′ ,
and

⋃
i=1..m ui(Ai) = U . Cospan

(U, u1...um) has two important
properties. First, the result of fac-
torization, and hence, the head
U , are defined up to a canonic
isomorphism: if U ′ = A/E∗ and
u′i: Ai → U ′ is another cospan re-
turned by the procedure, them

there is a uniquely defined bijection b: U → U ′ such that ui; b = u′i for all
i = 1..m. The second property is minimality: for any cospan (V, vi: Ai → V) with
head V commuting with all functions fj as described above (i.e., fj ; vi′ = vi),
there is a unique function !: U → V such that ui; ! = vi for all i = 1...m. It can
be proved that minimality is equivalent to coverage: a cospan U is covering iff it
is minimal in the sense above.

23

