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ABSTRACT
Software development often involves a set of models defined
in different metamodels, each model capturing a specific
view of the system. We call this set a mutlimodel, and its el-
ements partial or local models. Since partial models overlap,
they may be consistent or inconsistent wrt. a set of global
constraints.

We present a framework for specifying overlaps between
partial models and defining their global consistency. An ad-
vantage of the framework is that heterogeneous consistency
checking is reduced to the homogeneous case yet merging
partial metamodels into one global metamodel is not needed.
We illustrate the framework with examples and sketch a for-
mal semantics for it based on category theory.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability

General Terms
Design, Languages, Theory, Verification.

1. INTRODUCTION
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models

Software development often
involves a set of heterogeneous
models, such as use cases,
process models, UML design
models, and code. These
models are defined by differ-
ent metamodels, and are often
built by different teams, but
collectively represent a sin-
gle system. Due to possible
overlaps between models, in-
dividually consistent models
may be globally inconsistent if
taken together. Many existing
approaches focus on checking consistency of a single model
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[25] or a pair of model [9]. However, individual consistency
or pairwise consistency do not guarantee global consistency.
For example, Fig. 1 shows three UML class diagrams D1,2,3,
where the classes connected by a dashed line are considered
to be the same class (though named differently). Each of the
three diagrams is consistent, and each pair of them is consis-
tent, but taken together the three diagrams are inconsistent:
there is a cycle in the inheritance chain.

The example shows two issues in checking global consis-
tency. First, we need to specify the models’ overlap. For
models like code and UML class diagrams extracted from
code, we may know their overlap by matching the elements
by name. But for models in the conceptual stage, we cannot
deduce their overlap automatically. For example, an entity
“Person” created by a business analyst and a table “Em-
ployee” existing in a legacy database may refer to the same
concept even though they have different names. Second,
when we have an overlap specification, we need an approach
to check global consistency.

Sabezadeh et al.[22] proposed to check global consistency
of homogeneous models by their merging. First, the mod-
els’ overlap is specified by a correspondence diagram: a set
of auxiliary models and mappings “in-between” the local
model, which declare some elements in different local mod-
els as being actually the same. Then all local models are
merged into one model modulo the correspondence, i.e., el-
ements of local models declared the same in the correspon-
dence diagram become one element. Finally, consistency of
the merged model is checked. Thus, verifying global con-
sistency amounts to checking consistency of a single model.
However, the approach was developed for the case of homo-
geneous models only.

The goal of the paper is to adopt the consistency-checking-
by-merging (CCM) idea for the heterogeneous situation. A
straightforward solution is to first merge all involved meta-
models so that all local models become instances of the same
global metamodel; then we can merge them and check the
result wrt. the constraints in the global metamodel. Though
theoretically possible, in practice this approach leads to deal-
ing with huge models and metamodels resulting from the
merge, which is cumbersome and not effective. We present
another approach in which merging metamodels is signifi-
cantly reduced to an unavoidable minimum, and merging
models is reduced to only merging their relevant parts. Briefly,
we find common views between metamodels, project related
models to spaces of instances (overlaps) determined by those
views, and then apply the CCM approach to the homoge-
neous set of projections.



tA

Order

OnlineOrder

A

Node
arrow

GMM

tM
Class:Node

Name:Node

end:arrow

Generalization:Node
start:arrow

GM String:Node
type:arrow

attr:arrow

11:Name

:end
:attr

10:Class

“OnlineOrder”:String
:attr

20:Class
:start

:Generalization

GA

“Order”:String
:type

:type
21:Name

Figure 2: Graph Representation

We formulate the framework in a general way based on
category theory. This makes it applicable to a wide class of
models and metamodels, whose carrier structures are graphs,
attributed graphs, or general graph-like structures. By the
latter we mean systems of sets (nodes, arrows, arrows be-
tween arrows...) interrelated by (source and target) func-
tions.

Realization of the approach requires several challenging is-
sues to be solved: type-safe model matching, specification of
indirect overlap between metamodels, and inter-metamodel
constraints. We will discuss these issues in more detail
in Section 3 after we briefly outline the basics of CCM-
approach in Section 2.

The rest of the paper is structured as follows. Section 4
describes our main techniques with simple examples. Sec-
tion 5 presents general definitions and constructions in a
semi-formal way. Relation to other works is discussed in
Section 6. Section 7 concludes.

2. BACKGROUND: HOMOGENEOUS OVER-
LAP AND CONSISTENCY

We briefly review the basics of the CCM-approach, and
also show how to manage conflicts between values.

2.1 Software models are typed graphs
We consider metamodels as pairs M = (GM , CM ) with

GM a graph and CM a set of constraints. A model (M ’s
instance) is a graph typed over M , i.e., a pair A = (GA, tA)
with GA a graph (typically much bigger than GM ) and
tA : GA → GM a graph mapping (which preserves the in-
cidence relationship between arrows and nodes) such that
all constraints in set CM are satisfied.

For example, Fig. 2 shows how to represent a UML class
diagram A as a typed graph. GM is the graph represent-
ing the metamodel of UML class diagrams; GA is the graph
representing the diagram A; and tA is the type mapping.
UML classes, attributes, primitive values and generalization
relations are represented as nodes; their relationships are
captured by arrows. The value of mapping tA at an ele-
ment e is given after colon, e.g., expression “10:Class” means
tA(10)=Class for node 10. Identifiers of some elements are
omitted, e.g., for all arrows. To refer to the elements, we
will use the following notation: if N is the name of an el-
ement e, let &N be the slot (owned by e) where the name

is held, and &&N be e itself. For example, &‘Order’=11
and &&’Order’=10. In its turn, graph GM is typed over the
metametamodel graph GMM .

Any UML class diagram can be represented by a typed
graph as above but not the converse. To ensure that a
typed graph is a correct diagram, constraints must be de-
clared and added to the metamodel. For example, (C1) a
class has only one name, or (C2) a class has only one parent
class (we assume that multiple inheritance is prohibited), or
(C3) classes with stereotype ’singleton’ cannot be instanti-
ated with more than one object. Note that constraints can
either be imposed by a particular metamodeling technique,
e.g., constraints (C1) and (C2), or can be user-defined, e.g.,
(C3), in a suitable language like OCL. In this paper we do
not distinguish these two types and consider them abstractly
as constraints over graphs.

2.2 Matching models via spans
Suppose two business analysts independently build two

UML diagrams, A1 and A2 in Figure 3. To check their
global consistency, we first need to specify overlap between
the diagrams. Suppose we know that class ’OnlineOrder’ in
diagram A1 and class ’Order’ in A2 refer to the same class,
and their ’price’ attributes refer to the same attribute. We
could write the following two informal equations

OnlineOrder@A1 = Order@A2

price@A1 = price@A2.
Note that these equations conform to the type system of
class diagrams: we match a class to a class and an attribute
to an attribute. Hence, we can represent the set of equa-
tions by a class diagram A0 shown in the middle of Fig. 3.
The question mark indicates that the name of the class is
unknown and the corresponding slot is empty. That is, the
slot node ( :Name) in the graph representing model A0 does
not have any arrow ( :type) adjoint to it (see the auxiliary
top-rightmost box in the figure). Nevertheless, it is conve-
nient to denote the slot and its owner by &’?’ and &&’?’
like if ’?’ were a name.

Since elements of model A0 represent pairs of elements
(e1, e2) with ei ∈ Ai, i = 1, 2, we have two inter-model map-
pings fi : A0 → Ai. Formally, these mappings are functions
between the corresponding graphs, e.g., f1 acts on GA0 ’s
nodes as follows:
f1(&&’?’) = &&’OnlineOrder’, f1(&&’price’) = &&’price’,
f1(&’?’) = &’OnlineOrder’, f1(&’price’) = &’price’,

f1(’price’) = ’price’.

Its action on arrows is evident. Mapping f2 is defined sim-
ilarly. Importantly, both mappings preserve the types of
elements, i.e., commute with the typing mappings of the
corresponding graphs. In Fig. 3 we specify mappings in a
shortened way, but precise formal specifications like above
will be needed when we consider merging.

We call a pair of mappings with a common source a (bi-
nary) span. The source (model A0) is called the head of the
span, mappings fi are legs and their targets (models Ai) are
feet. Thus, an overlap of two homogeneous models is spec-
ified by a correspondence span over the same metamodel.
An overlap of n models is described by an n-ary span with
n legs and feet.

2.3 Merging and conflicts
After specifying the overlap by a correspondence span, we

merge two models into one and check whether it satisfies all
constraints defined in the metamodel.
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The merge procedure consists of two parts. We first dis-
jointly merge the graphs underlying the models, and then
glue together elements declared to be the same by the span.
The result is shown as diagram AΣ in Figure 3, in which the
merged graph has five rather than six class nodes because of
gluing. Class &&{OnlineOrder,Order} has one name slot
because the two local name slots were also glued, but this
slot holds two names since they are not (and cannot be)
equated in the head. (A precise formal specification of the
mechanism can be found in [6]). Besides graph AΣ, merging
also produces two graph mappings gi : Ai → AΣ that show
how the local models are embedded into the merge.

The merge procedure is fully automatic and can be pre-
cisely formalized in terms of the colimit operation developed
in category theory. A detailed explanation and examples of
how colimit works can be found in [21] or [6]. It follows
from general properties of colimit that the merged graph
GAΣ is correctly typed over graph GM (with M denoting
the metamodel of class diagrams).

After we have built the merged graph, we can check whether
it satisfies all constraints defined in the metamodel (say, with
a checking tool). In our example, we find two violations:
class {OnlineOrder, Order} has (i) two names and (ii) two
parent classes.

3. FROM HOMO- TO HETEROGENEOUS
MULTIMODELING: THE PROBLEMS

Existing CCM-approaches [22] handle the homogeneous
case well, but in practice software models are often hetero-
geneous. Business analysts, database experts, and object-
oriented software designers all work with different models in
different languages, say, BPMN, ER, UML.

For instance, Fig. 4 presents three different UML mod-
els of a system developed independently by three different
teams: a class diagram cd, a statechart sc, and a sequence
diagram sd, whose simplified metamodels are shown in the
right half of the figure.

Since the models are developed independently, synonymy
and homonymy of names, and other similarities and dis-
crepancies between models are quite possible. For example,
classes Order in the class and the sequence diagram may
refer to the same or different classes of the system. If they
refer to the same class, we need to check whether message
settled@sd refers to operation setSettled@cd. If it is the
case, we have a naming conflict (synonymy) between the
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Figure 4: Motivating Example

models; in addition, parameters of the message and the op-
eration it refers to are named differently (homonymy): ’d’ in
cd and ’date’ in sd. Such conflicts are fixable by renaming,
but we also need to take into account the statechart.

There may be more serious discrepancies between the mod-
els. Suppose, for example, that the sequence diagram states
that parameter ’date’ is of type String while class diagram
declares a different type for the same parameter. This dis-
crepancy violates the condition that an operation parameter
has a single type. This condition is stated in both metamod-
els (of class and sequence diagrams), but message settled

does not belong to a class diagram and operation setSet-

tled is not in a sequence diagram. There are also semanti-
cally motivated constraints that directly regulate interaction
between models defined in different metamodels. For exam-
ple, we may require that the interaction described by the
sequence diagram is to be allowed by the statechart’s state
machine. Thus, specifying overlap and checking global con-
sistency of heterogeneous models gives rise to several specific
problems caused by heterogeneity.

A) Type-safety is important for overlap specification. In
the homogeneous situation, we allow only elements of the
same type to be matched to ensure type safety. However,



in heterogeneous cases different models are declared in dif-
ferent metamodels, and hence their elements have disjoint
types. We need a new method to ensure type-safety in over-
lap specifications.

B) Indirect overlap often occurs in heterogeneous mul-
timodeling. For example, in class diagrams operations are
linked to their owning classes. Such linking also exists but is
implicit in sequence diagrams (through consecutive linking
Classes, Objects, Lifelines, Messages, and MsgTypes).
Hence, we cannot use direct matching to describe overlap
between sets of Class-Operation links in class diagrams and
Class-MsgType links in sequence diagrams.

C) Inter-metamodel constraints (like conformance of traces
to statecharts) are important for heterogeneous multimodel-
ing. These constraints regulate interaction of partial mod-
els, and hence are not captured by metamodels of any of
them. Such constraints are inherently global and should be
explicitly specified.

D) Metamodel inter-relations become crucial as soon as
we consider type-safety as a fundamental requirement. The
latter implies that model interaction should be coherent with
metamodel interaction, and hence “the metamodel” of a het-
erogeneous multimodel is a system of metamodels together
with their relationships rather than a discrete set of isolated
metamodels. To address this new dimension of multimodel-
ing, we need a language for specifying systems of interacting
metamodels.

4. HETEROGENEOUS OVERLAP AND CON-
SISTENCY BY EXAMPLES

In this section we incrementally introduce our approach.
We will consecutively consider very simple examples ad-
dressing the principle points: (i) building overlap metamod-
els to ensure type-safe matching, (ii) the necessity of derived
elements, (iii) inter-model constraints, and (iv) N-ary mul-
timodeling with a non-trivial correspondence diagram.

4.1 From heterogeneous to homogeneous over-
laps and type-safety

Consider the overlap between class diagram cd and se-
quence diagram sd in Fig. 4. Suppose we know that class
Order together with methods addItem, setSettled in cd
refer to the same elements in the system as class Order to-
gether with message types addItem, settled in sd. How-
ever, if we take the type discipline strictly, direct linking of
these elements is prohibited because their types reside in dif-
ferent metamodels. Hence, before matching models we need
to match their metamodels, mmCD and mmSD, as shown
in Fig. 5. Namely, we state that metaclasses Class@mmCD
and Class@mmSD refer to the same concept, and meta-
classes Operation@mmCD and MsgType@mmSD are also syn-
onyms. These declarations can be presented by a span in
the middle of Fig. 5. The head of this span is a new over-
lap metamodel mmCA, and two legs m1,2 map it to the two
metamodels we are matching.

Note that the overlap metamodel can be considered as
a common view between mmCD and mmSD, and mappings
m1,m2 as the corresponding view definitions. The view def-
inition m1 : mmCA→ mmCD can be executed for any in-
stance of mmCD (i.e., for any class diagram) by extracting
its mmCA-portion and respectively changing its type map-
ping. For example, class diagram cd shown in left upper
corner of Fig. 6 (we have slightly simplified the class di-

agram from Fig. 4 to save space) will be translated into
diagram cd2CA typed over metamodel mmCA. We write
cd2CA = getm1(cd) with getm1 denoting the operation of
view execution (getView) determined by view definition m1

(in figures we omit the superscript). We will also say that
model cd is projected into the overlap space mmCA, and call
model cd2CA the mmCA-projection of cd. Since the own-
ership between classes and actions is not specified in the
overlap, the cd2CA-view of cd will be just a discrete set of
named elements. Note also that the view is computed along
with traceability mappings m1 : cd2CA → cd

Similarly, sequence diagram sd in the top right corner of
Fig. 6 is translated into a discrete set sd2CA = getm2(sd) of
named elements also typed over mmCA, along with its trace-
ability mapping m2 . Since both views are instances of the
same metamodel, we can type-safely match them and build
a span (ca1, f1, f2). This span and the corresponding merge
(colimit) are shown in the middle part of Fig. 6. They reveal
a conflict between the models: actions setPaid@cd2CA and
paid@sd2CA are linked but their names are different (in the
merge model cd+sd, the action with two names is shown by
?).

4.2 Indirect overlap
A closer inspection of the original models cd and sd shows

that the conflict above is mistaken because message ’paid’
is actually an operation of class OrderManager rather than
Order. The error occurred because our overlap model does
not capture the relationship between classes and actions (op-
erations). To build a better overlap, we need to match the
ownership edge Class-Operation@mmCD and similar edge
Class-MsgType@mmSD. However, the latter is not directly
included into the metamodel mmSD. Nevertheless, the con-
cepts of MsgType and Class are related indirectly via a se-
quence of intermediate edges: a message ends at the lifeline,
which belongs to an object, which belongs to a class. We
can compose these three edges into a new — derived — edge
Class-MsgType shown in the metamodel mmSD+ (Fig. 7)
with a dashed line. In addition, we use UML stereotypes
and prefix the names of derived elements by a slash.

In more detail, we augment metamodel mmSD with a new
element mtp (read“messageType”) coupled with its definition,
i.e., specification of some operation computing the instances
of the derived element. In our case, the operation is sequen-
tial composition of four association links leading, consecu-
tively, from instances of Class to instances of MsgType. It
can be written in OCL as follows:
context Class

inv: self.mtp=self.objects.lifeline.messages.type

Now we declare the sameness of associations oper@mmCD
and mtp@mmSD+ by placing association act into the head
of the span as shown in Fig. 7, and defining m1(act) = oper,
m2(act) = /mtp. Since mappings m1, m2 in Fig. 7 define
richer views than earlier defined mappings m1,m2 in Fig. 5,
projections cd2CA and sd2CA in Fig. 7 are also richer than in
Fig. 5 and include links between classes and operations. We
at once see that matching setPaid@cd2CA and paid@sd2CA
is illegal, and the corresponding“equation”must be removed
from the span. The result of merging models cd2CA and
sd2CA modulo the new span ca1 is shown in the middle
bottom of Fig. 7. It is a correct mmCA model satisfying the
constraints of mmCA: an element may have only one name,
and different actions owned by a class are named differently.
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The next section will show more interesting cases of using
derived elements in overlap specification.

4.3 Inter-metamodel constraints
So far we only checked the constraints declared in the head

of the correspondence span (mmCA in our examples). These
constraints are common for both feet metamodels (mmCD
and mmSD). However, as discussed in Section 3, there may
be important constraints which reside in neither of the feet
metamodels. For example, traces of actions exhibited by a
sequence diagram must conform to the state machine spec-
ified by the corresponding statechart. We will denote this
constraint by ttt]smsmsm meaning “Traces are to conform to the
StateMachine”. Declaration of the constraint ttt]smsmsm requires
elements from both metamodels, mmSD and mmSC, and
cannot be done in either of them. Hence, a new metamodel
in which ttt]smsmsm could be specified has to be built. In this
section we first show how to build such a metamodel, and
then show how to project partial models sd and sc to the
space of this metamodel instances, in which projections can
be matched, merged and checked against ttt]smsmsm.

To declare ttt]smsmsm, we need a metamodel encompassing meta-
classes for Classes, Traces (sequences of actions), StateMa-
chines, and related notions: States, Transitions, Events as
specified by metamodel mmCTrSM in the middle of Fig. 9.
The upper half of this metamodel is “taken” from the se-
quence diagram metamodel mmSD as specified by mapping
m1 in Fig. 9. Note that m1 maps class Trace@mmCTrSM to
derived class /Trace@mmSD, whose instances are sequences
of actions described by the sequence diagram and hence can
be computed by a suitable query. The lower half of mm-
CTrSM is taken from the statechart metamodel mmSC as
specified by mapping m2 in Fig. 9 (and we again use de-
rived elements). Having built metamodel mmCTrSM, we
declare in it the constraint ttt]smsmsm with its intended seman-
tics. We call the configuration (m1,mmCTrSM,m2) a partial
span because mappings m1 and m2 are partially defined (on
the upper and lower halves of mmCTrSM resp.). In Fig. 9
and other figures below, a semi-arrow head indicates par-
tiality of the mapping.

The next step is to project models sd and sc to the meta-
model mmCTrSM. We cannot directly execute view defini-
tions mj (j = 1, 2) because they are partial, but we can
execute them in three steps.
Step 0. We explicitly specify the domains mmCTr and mmSM
of mappings mj (j = 1, 2; see Fig. 10) on which they become
totally defined mappings m!j ; inclusion mappings ij embed
the domains into the head of the span.
Step 1. Total view definitions m!j(j = 1, 2) are executed
for models sd and sc and produce views sd2CTr and sc2CSM
over metamodels mmCTr and mmCSM resp.
Step 2. Because the two latter metamodels are included
into mmCTrSM, we may consider their instances as “partial”
instances of mmCTrSM. Formally, we compose typing map-
pings of models sd2CTr, sc2CSM with inclusion mappings ij ,
j = 1, 2 and get typing mappings into mmCTrSM. In Fig. 10,
these new typing mappings are marked by ∗.

The three steps are performed automatically and may be
hidden from the user, who observes the projection mappings
getm1 and getm2 as if mappings mj were ordinary total view
definitions.

Now we have two models sd2CTr and sc2CSM over the
same metamodel mmCTrSM. To finish consistency checking,

m1mmCD mmCA

mmSC

mmSD

m2

m3

mmCTrSM

m4

m5

m6

=

=

Figure 11: Metamodel schema of the example in
Fig. 4

the user must match the models and build a correspondence
span, say, (f1, ca2, f2). The head of the span is denoted by
ca2 because it is, in fact, an instance of metamodel mmCA
built in Section 4.2 (it can be formally proved). After that,
the system merges models modulo the span and checks the
result against the constraints in mmCTrSM, including the
inter-metamodel constraint ttt]smsmsm. The entire procedure is
well seen in the right half of Fig. 10: data provided by the
user are shown with bullet nodes and solid arrows (and are
black), data automatically computed are shown with blank
nodes and dashed arrows (and are blue).

4.4 N-ary multimodeling and metamodel schemas
In this subsection we consider our full example involving

all three models, cd, sd and sc.
First we build a ternary span (mmCA,m1,m2,m3) spec-

ifying correspondences between operations, messages and
transitions in cd, sd, sc resp. as shown in Fig. 11; a dashed
frame indicates that the metamodel is augmented with de-
rived elements defined by queries. Ternary span mmCA is
a straightforward extension of binary span mmCA built in
Section 4.2 with a new leg towards sc. Projecting the three
models to the head, matching them with a ternary corre-
spondence span, say, ca3 (see Fig. 12), merging projections
modulo ca3, and finally checking the constraints against the
merge can be done in exactly the same way as in Section 4.2.
A minor distinction is that the leg ca3→getm2(sd) is partial
because there are binary (rather than ternary) correspon-
dences like (setPaid@cd, paid@sc) that do not involve sd’s
elements; colimit operation consumes such correspondences
as well.

The second point of consistency checking is at the span
(mmCTrSM,m4,m5) where constraint ttt]smsmsm is to be checked
as explained in Section 4.3. However, when we consider all
three models, the correspondence span ca2 between projec-
tions getm4(sd) and getm5(sc) can be derived from the span
ca3 rather than specified independently. Indeed, we have
mapping m6 that sends nodes Class and Action and edge
act between them to the corresponding elements in mmC-
TrSM. By applying the retyping procedure explained in Sec-
tion 4.3, we project the span ca3 into mmCTrSM and get a
span ca2 as shown in Fig. 12 (where the block arrow rtpm6

denotes the retyping operation). After the span ca2 is com-
puted, we proceed exactly as described in Section 4.3 and
check the constraint ttt]smsmsm.

An important property of the metamodel schema in Fig. 11
is commutativity of the two triangle diagrams (note two =-
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labels):
(=)m m6;m4 = m2 and m6;m5 = m3.

Because view execution and retyping preserve metamodel
mapping composition (we will formalize these properties in
Section 5), we have commutativity for view execution map-
pings as well:

(=)get getm4; getm6 = getm2 and getm5; getm6 = getm3.

Hence, we have only one projection of sequence diagram sd
to the instance space of mmCA, and only one projection of
sc to the same space.

The simple example above shows how local model interac-
tion is governed by the multimodel schema specifying meta-
models’ inter-relationships. The example also demonstrates
that N-ary multimodeling may exhibit sufficiently complex
metamodels schemas bearing their own constraints like com-
mutativity.

5. MAKING MULTIMODELING PRECISE:
A GENERAL FRAMEWORK

The three basic ingredients of our approach are (i) meta-
models and their mappings, (ii) models and their mappings,
and (iii) a mechanism of model translation from one meta-
model to another. We build a (minimal in a sense) math-
ematical framework allowing to define these concepts and
their inter-relations in Section 5.1. In Section 5.2 we show
that global consistency checking can be indeed realized in
this framework. In Section 5.3 we show how the abstract
framework of Section 5.1 can be implemented with con-
structs close to modeling practice: typed structures, query
and constraint languages.

Due to space limitations, the presentation is very brief and
semi-formal: we show how the concepts could be formally
defined rather than present real formal definitions. We use
simple category theory concepts without explanation, and
refer to basic concepts of the institution theory [14] — an
abstract framework for logic and model theory.

5.1 Abstract multimodeling framework
An abstract multimodeling framework Fabstr is a tuple of

constructs defined below.
1) A category MMod whose objects are called metamodels



and arrows are metamodel mappings.
2) Each metamodel M is assigned with two categories,

one being a subcategory of the other, [[ M ]] ⊂ [[ M ]]?. Intu-

itively, objects of [[ M ]]? are structures properly typed over
M but perhaps violating M ’s constraints (hence the ques-
tion mark); we will call them structural instances. Objects
of [[ M ]] are (legal) models: structural instances of M satis-
fying, in addition, all constraints in M .

We require all categories [[ M ]]? to be closed under colim-
its (merging). This is the case for many classes of structures
carrying metamodels and models like graphs or attributed
graphs. But we do not require this property on [[ M ]]. Our
examples above show that in practically interesting situa-
tions [[ M ]] is not closed under colimits.

3) Any metamodel mapping m : M → N ::MMod is as-
signed with a getView functor getm : [[ N ]]→ [[ M ]] that maps
in the opposite direction (think of m as a view definition and
getm as a view execution).

Moreover, if m = 1M is the identity mapping of meta-
model M , then getm is the identity functor on [[ M ]], and for

two consecutive mappings M
m1- N

m2- O,

getm1;m2 = getm2 ; getm1 : [[ O ]]→ [[ M ]]

(a sequentially composed view definition is executed consec-
utively).

4) A subcategory MModinc ⊂ MMod of inclusion map-
pings is fixed: it has the same objects but fewer mappings
than MMod. A formal inclusion mapping i : M → N ::MModinc

is to be thought of as inclusion of metamodel M into a bigger
metamodel N .

Any inclusion i : M → N is assigned with a retyping func-
tor rtpi : [[ M ]]? → [[ N ]]? (think of retyping described in Sec-
tions 4.3-4).

Note that in contrast to operation get, rtp maps structural
instances (particularly, models) to structural instances (not
necessarily models): if even an instance A is an M -model, we
cannot guarantee that rtpi(A) would satisfy all constraints
in N .

Similarly to get, we require rtp111M to be the identity func-
tor on [[ M ]]?, and for two consecutive mappings m1, m2 as

above, rtpm1;m2 = rtpm1 ; rtpm2 : [[ M ]]? → [[ O ]]?.
We will write an abstract multimodeling framework in a

short form as a triple Fabstr = (MMod, get, rtp) assuming
that the [[ ]]-part of the construction is “included” into get,

and the [[ ]]? and MModincparts are “included” into rtp.
Operations get and rtp together provide model translation

over partial mappings. A partial mapping m : M ⇀ N be-
tween metamodels (note the semi-arrow head) is, formally,

a diagram M �im
Dm

fm- N with Dm ⊂ M a meta-
model called the domain of m (while M is the source of
m), im is the corresponding inclusion, and fm is an ordi-
nary (total) metamodel mapping (the function of m). Evi-
dently, sequential composition getfm ;rtpim provides a func-
tor [[ M ]]? ← [[ N ]]? translating N ’s structural instances and
their mappings into M ’s ones. We will denote this compo-
sition by getm (so that the actual meaning of getm depends
on whether m is a total or a partial mapping).

5.2 Multimodels and their consistency
Let Fabstr = (MMod, get, rtp) be an abstract multimod-

eling framework.
A homogeneous multimodel over Fabstr is a pair (M,A)

with M ∈ MMod a metamodel and A a diagram in [[ M ]];
the latter can be thought of as a family of models together
with a system of correspondence spans. A multimodel is con-

sistent if colimit AΣ
def
= ΣA (which always exists in [[ M ]]?)

satisfies M ’s constraints, i.e., AΣ ∈ [[ M ]].
A heterogeneous multimodel is a tuple

AA = (A1:M1 . . .An:Mn)

with Mi ∈MMod and Ai a homogeneous multimodel over
Mi, i = 1..n. Consistency of a heterogeneous multimodel is
much more involved than in the homogeneous situation, and
we will begin with a simpler case of discrete multimodels, for
which each diagram Ai is actually a set of models without
mappings between them.

The algorithm for checking global consistency of a dis-
crete heterogeneous multimodel AA is as follows. We begin
with specifying a system of common views (overlaps) be-
tween metamodels Mi. For simplicity, we assume that such
a system amounts to a set M of total and partial spans
like that one shown in Fig. 11 if we remove mapping m6 be-
tween spans themselves. Global consistency of AA is checked
at the heads of these spans. That is, for each span S in M
we perform the following procedure.

Let H be S’s head. First, we project to the space [[ H ]]? of
structural H-instances all models Ai, whose metamodels Mi

are reachable from H by the legs of the span. If the span is
total, projecting is provided by the view mechanism. If the
span is partial, projecting needs both view execution and
model retyping as explained above. In this way we obtain a
set of instances AH ⊂ [[ H ]]?.

Second, instances in AH are matched by a correspondence
diagram EH (for example, think of spans ca2 or ca3 in our
examples). Note that EH -data are provided by the user and
are, in fact, part of the multimodel’s state.

Third, all instances in AH are merged modulo the corre-
spondence diagram EH into a structural instance

(AΣ)H
def
= (ΣAH/EH) ∈ [[ H ]]?.

Finally, we check whether (AΣ)H ∈ [[ H ]], i.e., whether it
satisfies all constraints declared in H.

A general multimodeling case with Ai being diagrams
rather than sets can be treated similarly. The key is that
translation operations get and rtp are functors, that is, they
translate not only instances but also instance mappings, and
hence correspondence diagrams as well. Then the projection
AH ⊂ [[ H ]]? will be a diagram rather than a set of instances,
and diagram EH will provide a second level correspondence
structure. As colimit operation consumes any sort of input
diagrams, the algorithm works well for the general case too.

Another generalization of the algorithm, for which the
metamodel schema is more complicated than a set of spans,
is harder and is a work in progress.

5.3 Concrete multimodeling framework
In a nutshell, a concrete multimodeling framework con-

sists of three components: (i) a base category G of graph-like
structures to be thought of as the carriers of metamodels and
models, (ii) a constraint language C together with binary re-
lations |= of satisfying a constraint by a model, and (iii) a
query language Q together with operations of query execu-
tion over a model. In more detail (but still very briefly with
many important conditions skipped), a concrete framework
is given by the following constructs



1) G-objects are to be thought of as graphs, or many-
sorted (colored) graphs, or attributed graphs [11]. The key
point is that they are definable by a metametamodel itself
being a graph with, perhaps, a set of equational constraints.
In precise categorical terms, we require G to be a presheaf
topos [3], and hence possessing limits, colimits, and other
important properties. We will call G-objects “graphs”.

For a “graph” G thought of as a metamodel, an instance
of G is a pair A = (DA, tA) with DA another “graph” and
tA : DA → G a mapping (arrow in G) to be thought of as
typing. An instance mapping f : A→ B is a “graph” map-
ping f : DA → DB commuting with typing: f ; tB = tA. This
defines a category [[ G ]] of G-instances.

Any mapping m : G′ → G determines a functor
pbm : [[ G ]]→ [[ G ′ ]] built with pullback operation in the stan-
dard way (see e.g.[15, p.48]).

2) Constraints are defined exactly like in the institution
theory. We postulate a functor C : G→ Sets and a binary
relation |=G⊂ [[ G ]]×C(G) for every “graph” G. For an in-
stance A ∈ [[ G ]] and a constraint c ∈ C(G), we write A |=G c
for (A, c) ∈|=G.

3) Queries are an original part of the definition. We be-
gin with a functor Q : G→ G of query specifications. For
a “graph” G ∈ G, the “graph” Q(G) ⊃ G is to be thought
of as “graph” G augmented with definitions of derived ele-
ments. (Actually we require Q to be a monad [3]). Functor
Q also acts on constraints: for a “graph”G and a set of con-
straints C ⊂ C(G) over G, there is a set Q(C) ⊂ C(Q(G))
of constraints derived from C.

DA
⊂- D[[ Q ]](A)

G

tA
?

⊂ - Q(G)

t[[ Q ]](A)
?

Semantics of query specifications
is given by an operation [[Q ]] that
maps G-instances to Q(G)-instances
as specified by the inset diagram on
the right (two derived arrows are
dashed and the derived node is un-
derlined). We require this diagram to be a pullback square,
which means that“graph”DA is the inverse image of“graph”
D[[ Q ]](A), that is, the original data are not changed by the
query execution.

To ensure that derived instances satisfy derived constraints,
we require the following to hold for any instance A:

(QC) A |=G C implies [[Q ]](A) |=Q(G) Q(C).

Finally, we requite operation [[Q ]] to act also on instance
mappings: for any injective arrow f : A→ B in [[ G ]], there
is defined an injective arrow [[Q ]]f : [[Q ]](A)→ [[Q ]](B) in
[[Q(G) ]]. In the database literature, this property of a query
language is called monotonicity, and it is known that queries
without negation are monotonic [18].

From these data we can derive an abstract framework
Fabstr along the following lines. We first fix a subcategory
G◦⊂G of finite “graphs” to be the carriers of metamodels. A
metamodel is a pair M = (GM , CM ) with GM ∈ G◦ a car-
rier graph and CM ⊂ C(GM ) a set of constraints. Structural

instances of M are instances of GM , i.e., [[ M ]]?
def
= [[ GM ]],

and models of M are GM ’s instances satisfying CM .
Metamodel mappings are G-arrows of the form m:GM →

Q(GN ) (Kleisli arrows of monad Q), which are compatible
with constraints: C(m)(CM ) ⊂ Q(CN ). Any such map-

ping determines a functor getm
def
= [[Q ]]; pbm : [[ N ]]→ [[ M ]],

which satisfies conditions postulated in the definition of the
abstract framework. The retyping functors rtp are defined

by composition (like in the example of Section 4.3) and also
satisfy necessary conditions. With accurate formal defini-
tions, it can be proved that every concrete multimodeling
framework gives rise to an abstract multimodeling frame-
work. Hence, the algorithm of global consistency checking
can be used with a concrete framework as well.

6. RELATED WORK
Specifying overlaps of homogeneous models by correspon-

dence spans is known for a long time [13, 5, 4, 17]. Close
relations between consistency checking and model merging
were noticed in [7] for behavioral, and in [22] for structural
models. A large body of work in this direction was done
in databases in the context of view integration, where they
worked mainly with ER-diagrams [23]; a generalization for a
much more expressive graph-based language was developed
in [5]. A serious limitation of these approaches was that they
work for the homogeneous case only because it was unclear
how to merge heterogeneous models.

Consistency of heterogeneous models is a central issue of
the living with inconsistency frameworks [20, 24, 19, 10].
Their basic idea is to translate all models and constraints
into a common logical formalism, and check if there are con-
flicts between logical formulas. Although these approaches
handle many cases in heterogeneous multimodeling, the con-
figuration of model overlap (which may be very intricate as
our examples show) is flattened and hidden in arrays of for-
mulas. As a result, none of the approaches fully covers het-
erogeneous multimodeling: they mainly handle well-defined
cases where elements are matched by names, or only pairwise
cases. In contrast, the structure of inter-model relationships
is made visible and essentially used in our approach.

Several approaches also transform models to aid model
merging and consistency management. Egyed [8] proposes a
flexible framework based on model transformation and map-
ping; however, it is the user’s responsibility to use them
correctly. Ehrig et al. [12] use graph transformation to de-
rive views from a reference model, and integrate modified
views using colimit. Compared to our work, their work re-
quires users to define the transformation manually. Jurack
and Taentzer [16] consider multimodeling (they say compos-
ite models) in a distributed environment. Their setting is
mainly operational and is based on graph transformations.
None of the approaches handles inconsistent views.

Many researchers focus on discovering traceability links
between heterogeneous models [2] and discovering differ-
ences between homogeneous models [1]. Their results can be
integrated into our approach as a means for an automated
construction of correspondence spans.

7. CONCLUSION
The paper describes a general approach to global consis-

tency checking of heterogeneous multimodels. The approach
is based on finding common views between metamodels of
the models involved, projecting all models to these views,
merging projections and checking the result against the con-
straints specified in the view. We have shown that type-safe
matching, indirect model overlap, and inter-metamodel con-
straints can be uniformly managed along the lines described.
The approach gives rise to a novel framework for heteroge-
neous multimodeling, in which a network of interrelated
metamodels — the metamodel schema — plays the central



role.
The framework has a number of advantages. First, het-

erogeneous consistency checking is reduced to homogeneous
with a minimal amount of metamodel merging; the latter is
unavoidable if we want to treat inter-metamodel constraints
yet we work as locally as possible. Second, the framework
is applicable to a wide class of models and metamodels sat-
isfying not too restrictive conditions formulated in Section
5. Third is the adaptability of the framework to the liv-
ing with inconsistencies paradigm: conflicts between mod-
els can be recorded in the heads of the correspondence spans
and resolved later. Forth, heterogeneous multimodeling be-
comes directly related to the institution theory and hence
to a source of important (and hard to prove) mathemati-
cal results about interrelation of logical theories and their
models.

However, the approach still needs practical, and in part
also theoretical, validation. On the practical side, the main
question is how effectively a multimodeling tool based on
the framework could be implemented. On the theoretical
side, the cornerstone of the approach is a default assumption
that our “as local as possible” consistency checking is equiv-
alent to direct global consistency checking. By the latter we
mean merging all metamodels into one global metamodel
MM , then all partial models becomes partial instances of
MM , whose joint consistency can be checked by a homoge-
neous CCM-algorithm. There are strong formal arguments
justifying this assumption but an accurate formal proof is
still to be complete.

An important theoretical line of future work is to develop a
useful classification of heterogeneous multimodels. We may
classify multimodels by the type of their metamodel schema:
whether it is a plain collection of spans, or there are spans
over spans over spans..., or perhaps even more complex con-
figurations. Types of mappings in the metamodel schema
are also essential: whether they are plain projections or
complex views involving non-trivial queries. Complexity of
queries involved in the metamodel schema of a multimodel
is its important property, and many useful results can be
found in the database literature. Defining multimodeling in
abstract mathematical terms along the lines described in the
paper would allow useful interaction of the two fields.
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