Specifying Overlaps of Heterogeneous Models for Global Consistency Checking

Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki

Generative Software Lab
University of Waterloo, Canada

Motivation

Homogenous Overlap and Consistency Checking by Merging

[Sabetzadeh, Easterbrook 2006]

Model Correspondence via Span

Model A0 reifies all *same*-links

Triple (A0,f1,f2) is called a **span** from A1 to A2

Heterogeneous Overlap and Consistency Check

Can we do consistency check by merge?

What is the correspondence?

Heterogeneous Case

Class diagram

cd

Sequence diagram

sd

Statechart

SC

?

Four problems

Problems 1: Type Safety

Incompatible types: Operation vs. MessageType!

Problem 2: Indirect correspondence

No explicit target in mmSD (and sd)!

Problem 3: Inter-Model Constraints

The inter-model constraint is neither in mmSD nor mmSC!

Problem 4: N-ary Metamodel Relations

Pairwise, ternary, ... overlaps! Overlaps between overlaps!

Solutions

Problem 1: Type Correspondence

Operation 'get' models view execution mechanism

Problem 2: Indirect Overlap

Problem 3: Inter-Model Constraints

Problem 4: N-ary Metamodel Interrelations

Summary

- Heterogeneous consistency check is reduced to the homogeneous one but metamodel merging is minimal
 - only to manage inter-metamodel constraints, working as locally as possible
- Despite heterogeneity, matching is type safe
- Applicability to a wide class of metamodeling techniques (based on graph-like structures)
- Formal foundations based on the wellestablished institution theory

Local vs. total consistency checking: Discussion

Two approaches:

(a) Total direct merge: cd, sd, sc are considered instances of the same global metamodel M.M can be derived from the metamodel mappings.

(b) Local merge: we first specify an overlap metamodel CA = a common view to CD, SD, SC. Then project the three models to the overlap and apply Consistency Checking by Merge.

Future work

- Theoretical validation
 - complete the formal semantics outlined in the paper
 - prove that (a) local and (b) global (via total merging of all metamodels) CC are equivalent
 - develop a taxonomy of heterogeneous multimodels and verify its usability
- Experimental validation of the approach