
From State- to Delta-Based Bidirectional Model

Transformations

Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki

Generative Software Development Lab,
University of Waterloo, Canada

{zdiskin,yingfei,kczarnec}@gsd.uwaterloo.ca

Abstract. Existing bidirectional model transformation languages are
mainly state-based: a transformation is considered composed from func-
tions whose inputs and outputs only consist of original and updated
models, but alignment relationships between the models are not speci-
fied. In the paper we identify and discuss three major problems caused
by this under-specification. We then propose a novel formal framework
based on a graphical language: models are nodes and updates are arrows,
and show how the three problems can be fixed.

1 Introduction

A bidirectional transformation (BX) synchronizes two models by propagating
updates between them. To date, there exist a large number of bidirectional trans-
formation systems [1,2,3,4,5,6] synchronizing different kinds of models. Despite
their diversity, BX systems are based on few underlying principles and enjoy sev-
eral simple mathematical models [1,7,8] formulated within similar formal frame-
works. The main idea is to consider BX composed from propagating functions
ppg that take the updated model B′ on one side and, if necessary, the original
model A on the other side, and produce the updated model A′ = ppg(B′, A).

A fundamental feature of these frameworks is that they are state- rather than
update-based . That is, propagation procedures take states of models before and
after updates as input and ignore how updates were actually done. Freedom
from operational details allows loose coupling between synchronizers and appli-
cations and is technologically beneficial [9]. However, it requires a mechanism
for model alignment, i.e., relating objects in the before- and after-states of the
updated model. For example, QVT [6], Boomerang [2] and FSML [10] use exter-
nal keys: chosen sets of attributes such that objects having the same key values
are considered to be the same.

We may model alignment by a binary operation dif that takes two models and
produces a delta (an update) between them. Then a general schema of update
propagation (roughly) takes the form

(DifPpg) ppg
def
= dif ; ppgΔ,

where “;” denotes sequential composition and ppgΔ is an operation that takes a
delta between models and computes an updated model on the other side. How-
ever, existing state-based synchronization frameworks and tools “hide” DifPpg

L. Tratt and M. Gogolla (Eds.): ICMT 2010, LNCS 6142, pp. 61–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

62 Z. Diskin, Y. Xiong, and K. Czarnecki

decomposition: the formalisms only specify the behavior of function ppg and
correspondingly deltas do not occur into tools’ interfaces.

Discovering updates (operation dif) and propagating updates (operation ppgΔ)
are two different tasks that must be treated differently and addressed separately.
Mixing them in one state-based operation ppg leads to theoretical and practi-
cal problems. In this paper we will show that state-based framework have the
following deficiencies: (a) inflexible interface for BX tools, (b) ill-formed trans-
formation composition, and (c) an over-restrictive law regulating interaction of
transformations with update composition.

To be concrete, we discuss these problems within the context of update prop-
agation across views and the state-based framework of lenses [1], but basic ideas
of our discussion can be generalized for symmetric synchronization frameworks
[7,8] too.

To support the separation of dif and ppgΔ theoretically, we develop an alge-
braic theory of operation ppgΔ, whose input and output are states of the models
together with updates between them. Making updates explicit leads to a novel
specification framework, in which model spaces are graphs: nodes are models
and arrows are deltas. The latter can be interpreted either operationally (edit
logs or directed deltas) or structurally (relations between models or symmetric
deltas); the latter interpretation is central for the present paper. We will follow
a common mathematical terminology and call a symmetric delta between the
original and updated state of a model an update mapping. Thus, both models
and update mappings are first-class citizens, and we call BXs specified in this
framework update-based BXs, or more specifically, update-based lenses(u-lenses
in short). We prove several basic results about u-lenses, and show that they
present an essential generalization of ordinary lenses.

The structure of the paper is as follows. In the next section, we consider a
simple example showing that different update mappings may lead to different
synchronization results. We then identify and discuss three problems caused by
the absence of update mappings in the lens framework. In Section 3, we introduce
u-lenses and discuss their properties. In Section 4, we discuss how u-lenses relate
to s-lenses and allow us to manage the three problems. Related work is discussed
in Section 5.

2 Problems of State-Based Bidirectional Transformations

We interpret the term “model” as “a state of the model” and will use the two
terms interchangeably.

2.1 Model Synchronization via Lenses: A Missing Link

We first remind the basic motivation and definition of lenses. Lenses are an
asymmetric BX framework: in the two models being synchronized, one model
(the view) is determined by the other (the source). We have a set of source models
A, a set of view models B, and two propagation functions between them, get

From State- to Delta-Based Bidirectional Model Transformations 63

and put, whose arities are shown in Fig. 1a. Function get (meaning “get the
view”) takes a source model A∈A and computes its view B∈B. Function put

(a) Operations

(GetPut) A = put(A.get, A)
(PutGet) (put(B′, A)).get = B′

(PutPut) put(B′′, put(B′, A))
= put(B′′, A)

(b) Equational laws

Fig. 1. Lens operations and laws

takes an updated view model B′∈B and the
original source A∈A and computes an up-
dated source A′∈A (“puts the view back”).
Function put is a special case of propaga-
tion function ppg (not ppgΔ) discussed in
Section 1.

Definition 1 (adapted from [1]) . A well-
behaved (wb) lens is a tuple l = (A,B, get, put)
with A and B sets called the source and the
view space of the lens, and get : A → B and
put : B×A → A are functions such that the
laws GetPut and PutGet in Fig. 1b hold for
any A ∈ A and B′ ∈ B. (We write A.get and
put(B, A) for the values of get and put to ease readability.) We write l : A � B
for a lens l with the source space A and the view space B.

A wb lens is called very well-behaved, if for any A ∈ A, B′, B′′ ∈ B the PutPut
law holds as well.

In Fig. 1 and below, we use the following notation. Given a function f : X → Y ,
we call a pair (x, y) with y=f(x) an application instance of f and write (x, y):f
or x • :f� y. For a binary f : X1×X2 → Y , an application instance is a triple
(x1, x2, y) with y=f(x1, x2). We will also often write a pair (x, y) as xy.

Figure 2 shows a transformation instance in the lens framework. The source
model specifies Person-objects with their first and last names and birthdates.
Each person belongs to a department, which has a department name. The get
function extracts a view containing the persons from the “Marketing” depart-
ment and omits their birthdate. The put function reflects the updates on the
view back into the source.

Note the change from Melinda French (p1) in state B to Melinda Gates (p1′)
in state B′. This change can be interpreted as the result of two different updates:
(u1) person p1 is renamed, or (u2) person p1 is deleted from the model and an-
other person p1′ is inserted. These updates can be described structurally (rather
than operationally) by specifying a binary sameness relation R� between the
states. For update (u1), R� = {p1p

′
1, p2p

′
2}, and for (u2), R� = {p2p

′
2}, where

xy denotes pair (x, y). We will call sameness relations or similar correspondence
specifications update mappings. The latter allow us to specify updates lightly
without involving full update operation logs.

A reasonable put-function should translate (u1) into renaming of Melinda
French in the source, whereas (u2) is translated into deletion of Melinda French
from the source followed by insertion of a new person Melinda Gates with at-
tribute Birth set to Unknown. Thus, the results of translation A′ should be
different, A′(u1) �= A′(u2), despite the same argument states (B′, A). The dif-
ference may be more serious than just in the attribute values. Suppose that the
model also specifies Cars to be owned by Persons, and in the source model there

64 Z. Diskin, Y. Xiong, and K. Czarnecki

Fig. 2. Running Example

was a Car object with a single owner Melinda French. Then the backward trans-
lation of update (u2) must remove this Car-object as well. Thus, states A′(u1)
and A′(u2) will have different sets of objects.

2.2 Inflexible Interface

At first glance, a state-based BX looks more flexible than an update-based, as
a state-based BX frees users from specifying update mappings. However, since
different update mappings lead to different synchronization results, we may want
to control how to discover updates from two states or from an operation log. In
these cases, we need the interface of update-based BX.

If we have an update-based procedure ppgΔ, we can construct a state-based
BX by composing it with operation dif , where dif can be a manually-implemented
procedure or one of existing model difference tools [11,12,13]. In contrast, given
a state-based ppg, we cannot easily build an update-based BX because it is not
easy to extract ppgΔ from the whole ppg (unless decomposition DifPpgis given
explicitly). As a result, state-based BXs are in fact less flexible.

2.3 Ill-Formed Sequential Composition

Compositionality is at the heart of lenses’ applications to practical problems.
Writing correct bidirectional transformation for complex views is laborious and
error-prone. To manage the problem, a complex view is decomposed into a se-
quence of simple components, say, model B = Bn is a view of Bn−1, which is a
view of Bn−2,..., which is a view of B0 = A, such that for each component view
a correct lens can be found in a repository. A lens-based language provides the

From State- to Delta-Based Bidirectional Model Transformations 65

Fig. 3. Sequentially composed transformation

programmer with a number of operators of lens composition. Sequential compo-
sition is one of the most important operators, and a fundamental result states
that sequential composition of wb lenses is also wb.

Definition 2 (Lens’ composition [1]). Given lenses l : A � B and k : B � C,
their sequential composition (l; k) : A � C is defined as follows. For any A ∈ A,
A.get(l;k) = A.getl.getk, and for any pair (C′, A) ∈ C×A, put(l;k)(C′, A) =
putl(B′, A) where B′ stands for putk(C′, A.getl).

Theorem 1 ([1]). Sequential composition (l; k) is a (very) well-behaved lens as
soon as both lenses l and k are such.

For example, transformation in Fig. 2 can be implemented by composing two
transformations in Figure 3. The first one (transformation l) removes the at-
tribute Birth, and the second one (transformation k) extracts a list of persons
from the “Marketing” department. In the backward propagation, both trans-
formations rely on their dif component to recover updates from models. Sup-
pose both dif procedures use key to recover update. Procedure difl uses the
key {FirstName, LastName}, and difk uses a smaller key {FirstName}, which,
nevertheless, works well for the Marketing Department (cf. Fig. 3C).

Ignoring updates may lead to incorrect BX composition. Suppose Melinda
French has married and become Melinda Gates as shown in Figure 4C’. Trans-
formation k will successfully discover this update, and modify the last name of
Melinda to Gates in model B′. However, when transformation l compares B and
B′, difk will consider Melinda Gates as a new person because her last name is
different. Then ppgk

Δ will delete Melinda French in the source model A and insert
a new person with an unknown birthday thus coming to state A′. The result is
wrong because the update produced by k and the update discovered by l are
different, and hence the two transformations should not be composed.

This example shows a fundamental requirement for sequential composition:
two transformations are composable only when they agree on update mappings
on the common intermediate model (B in our case). However, this requirement
is never specified (and is difficult to specify) in existing state-based frameworks.

66 Z. Diskin, Y. Xiong, and K. Czarnecki

Fig. 4. A wrong putting back

2.4 PutPut: Over-Restrictive State-Based Version

The most controversial law of the basic lens framework is PutPut (Fig. 1b).
It says that an updated view state B′′ leads to the same updated source A′′

regardless of whether the update is performed in one step from B to B′′ or with
a pair of smaller steps B−B′−B′′ through an intermediate state B′. This seems
to be a natural requirement for a reasonable backward propagation put, but
many practically interesting BXs fail to satisfy the law.

Fig. 5. Violation of PutPut

Consider our running example.
Suppose that in a view B (Fig. 5)
the user deletes Melinda French
and comes to state B′. The put-
function deletes Melinda in the
source as well and results in state
A′. If later the user inserts back
exactly the same person in the
view, the put-function will insert
this new person in the source and
set attribute Birth to Unknown
(state A′′ in the figure). How-
ever, since the states B and B′′

are equal, PutPut-law prescribes
the states A and A′′ be also
equal. However, the birthdate of
Melinda was lost in state A′ and
cannot be recovered in A′′. Hence,
for a quite reasonable transforma-
tion shown in Fig. 5, PutPut fails.

To analyze the problem, we
present function put as compo-
sition dif ;putΔ and consider the
effect of PutPut componentwise.

From State- to Delta-Based Bidirectional Model Transformations 67

For pure propagation putΔ, PutPut requires preservation of update composi-
tion: If we first propagate b and then propagate b′, we should get the same result
of propagating b; b′, where “;” indicates sequential composition of updates. For
alignment dif , PutPut requires dif(B, B′′) = dif(B, B′); dif (B′, B′′). Although
the constraint on putΔ holds well for the example, its counterpart on dif is un-
realistic. For two identical models, B and B′′, it is quite reasonable that dif
returns the identity update. However, update b is a deletion and update b′ is an
insertion. Their composition b; b′ is different from the identity update. Formally,
by specifying updates with sameness relations we have R� = {p2p

′
2} for b and

R′
� = {p′2p′′2} for b′. Sequential composition of R� and R′

� as binary relations is
relation R�⊗R′� = {p2p

′′
2} that is smaller than the identity update {p1p

′′
1 , p2p

′′
2}

(and indeed, information that objects p1 and p′1 are the same is beyond updates
b and b′). As b; b′ is not identity, we cannot expect that the corresponding com-
position on the source a; a′ is identity, even though propagation ppgΔ preserves
composition.

This example shows a serious defect of the PutPut-law. In fact, it constrains
both the alignment (dif) and the propagation (putΔ). Although the latter re-
quirement is not too restrictive in practice, the former is rarely satisfied. Hence,
PutPut often fails due to dif rather than putΔ. To improve PutPut, we should only
constrain pure propagation putΔ to be defined in an update-based framework
for BX.

3 U-Lenses: Update-Based Bidirectional Transformations

We build our formal framework for update-based BX in an incremental way.
First we define updates abstractly as arrows between models, and thus come to
the notion of a model space as a graph. Then we define an update-based lens
(u-lens) as a triple of functions (get0, get1, put) satisfying certain equational
laws. Functions get0 and get1 send nodes (models) and arrows (updates) in the
source space to, respectively, nodes and arrows in the view space. Function put
formalizes the ppgΔ component of put in state-based lenses, mapping the arrows
in the view space back to the arrows in the source space, and this mapping is
parameterized by nodes (original models) in the source. To distinguish u-lenses
from ordinary lenses working only with states, we call the latter s-lenses.

Since updates can be composed, our model spaces are graphs with composable
arrows, or categories. Mappings between categories are normally compatible with
composition and exhibit remarkable algebraic properties that have been studied
in category theory. Not surprisingly, the u-lens framework is essentially cate-
gorical. Nevertheless, our presentation will mainly be arranged in set- rather
than category-theoretical way to make comparison with s-lenses easier. Yet we
employ simple categorical notions where their usage provides especially compact
and transparent view of the formalities. Explanations of these categorical notions
are displayed in boxes marked as “Background”.

68 Z. Diskin, Y. Xiong, and K. Czarnecki

3.1 Building the Definition: Models and Updates

Representations of model updates can be classified into two main groups: directed
deltas and symmetric deltas [14]. In the former, an update is basically a sequence
of edit operations (add, change, delete). In the latter, an update is a specification
of the common part of the before- and after-states of the model (while deleted
and added parts are given by “subtracting” the common part from the before-
and after-states). A typical representative of the second group is our update
mappings, that is, triples a = (A, R�, A′) with A and A′ being states of the
model and R� a sameness relation (the common part) between them. More
details can be found in [15].

Whatever representation is used, updates have the following properties.
1. An update has a source model and a target model.
2. There may be multiple updates between two models.
3. A model can be updated to any model conforming to the same metamodel.
4. Updates can be composed sequentially. For the operational representation,

if an edit sequence a updates model A to A′, and another edit sequence a′

updates A′ to A′′, then the composed update from A to A′′ is concatenation
of a and a′. For the structural representation, composition of a = (A, R�, A′)
and a′ = (A′, R′

�, A′′) is (A, R�⊗R′
�, A′′) with ⊗ denoting relational com-

position. We write a; a′ for the composition of updates a and a′.
5. For any model A, there is a “no-change” update, which we call idle and de-

note by 1A. Operationally, an idle update is given by the empty edit sequence.
Structurally, the idle update 1A is the identity mapping (A, {(e, e) : e∈A}, A).

These considerations suggest to abstract updates as arrows between models,
which can be composed. Hence, a model universe appears as a graph (points
1,2) with composable arrows (4), which is connected (3) and reflexive (5) — see
Background below for precise definitions (where we write “a set X of widgets”
instead of “a set X of abstract elements called widgets”). Identity loops should be
required to be neutral wrt. composition since idle updates are such. In addition,
we require arrow composition in our abstract model to be associative (both
concatenation of edit sequences and relational composition are associative).

Definition 3. A model space is a connected category, whose nodes are called
models and arrows are updates.

Background: Graphs. A graph G consists of a set of nodes G0 and a set
of arrows G1 together with two functions ∂s : G1 → G0 and ∂t : G1 → G0. For
an arrow a∈G1, we write a : A → A′ if ∂sa = A and ∂ta = A′ and call nodes A
the source and A′ the target of a. A graph is connected, if for any pair of nodes
A, A′ there is at least one arrow a : A → A′. A reflexive graph is additionally
equipped with operation 1: G1 → G0 that assigns to each node A a special
arrow-loop 1A : A → A called identity.

From State- to Delta-Based Bidirectional Model Transformations 69

Fig. 6. Translation of update mappings

Background: Categories. A category is a reflexive graph with well-behaved
composition of arrows. In detail, a category is a pair C=(|C|, ;) with |C| a
reflexive graph and ; a binary operation of arrow composition, which assigns to
arrows a : A → A′ and a′′ : A′ → A′′ an arrow a; a′ : A → A′′ such that the fol-
lowing two laws hold: a; (a′; a′′) = (a; a′); a′′ for any triple of composable arrows
Associativity, and 1A; a = a = a;1A′ Neutrality of identity wrt. composition.

We write A∈C for a node A∈|C|0, and a∈C for an arrow a∈|C|1.

3.2 Building the Definition Cont’d: Views and Update Translation

Background: Functors. Let A and B be categories. A semi-functor
f : A → B is a pair (f0, f1) of functions fi : Ai → Bi, (i=0,1) that preserves
1) the incidence relations between nodes and arrows, ∂xf1(a)=f0(∂xa), x = s, t,
and 2) identities, f1(1A) = 1f0(A). A semi-functor is called a functor if 3)
composition is also preserved: f1(a; a′) = f1(a); f1(a′).

In the state-based framework, model spaces are sets and a view is a function
get : A → B between these sets. In the update-based framework, model spaces
are graphs and a view get consists of two components: a function on nodes
get0 : A0 → B0 computing views of source models, and a function on arrows
get1 : A1 → B1 translating updates in the source space to updates in the view
space. The idea of function get1 is illustrated by Fig. 6, in which vertical arrows
denote pairs of elements from the sameness relations, and horizontal arrows
denote traceability links. Roughly, function get1 maps the links in the update

70 Z. Diskin, Y. Xiong, and K. Czarnecki

Equational laws Their meaning

(GetInc) ∂x(a.get1) = (∂xa).get0, x = s, t Preservation of
incidence rela-
tions

(PutInc1) put(b, A) is defined iff A.get0 = ∂sb
(PutInc2) ∂sput(b, A) = A

(GetIdl) 1A.get1 = 1B with B
def
= A.get0 Preservation of

idle updates(PutIdl) 1A = put(1B , A) with B
def
= A.get0

(PutGet) (put(b, A)).get1 = b Correctness
(GetGet) (a;a′).get1 = (a.get1); (a

′.get1) Preservation of
composition(PutPut) put(b; b′, A) = put(b, A); put(b′, A′)

with A′ def
= ∂tput(b, A)

Fig. 7. U-lens operations and laws

mapping a : A → A′ accordingly to how function get0 maps the elements in the
models A and A′. Thus, given a view mechanism, the same view definition de-
termines both get-functions.1

Evidently, the pair (get0,get1) should preserve the incidence between models
and updates (as prescribed by GetInc-law in Fig. 7), and map idle updates to
idle updates (GetIdl-law). In other words, it is reasonable to assume that update
translation is a semi-functor.

A backward translation is given by a function put : B1×A0 → A1, which takes
an update in the view space and produces an update in the source. Similarly to
ordinary lenses, it also takes the original source model as its second argument to
recover information missing in the view. An example of put is implicit in Fig. 6,
where the the update a∗ = put(b, A) is not shown to avoid clutter but specified
in the right lower corner of the figure. Note that a∗ �= a because birthdates are
lost in the view and update mapping S specifies Melinda Gates as a new object.

The backward translation must satisfy three technical laws ensuring that the
formal model is adequate to the intuition : PutInc1, PutInc2 and PutIdl. Applying
put to a view update b : B → B′ and a source A, we of course assume that B
is the view of A, i.e., A.get0 = B as prescribed by PutInc1-law in Fig. 7. Thus,
though function put is partially defined, this partiality is technical and ensures
right incidence between updates and models: this gives us the “only if” half of
the law PutInc1. On the other hand, we require that for any update b that holds
the required incidence of A, the backward translation is defined, which gives
us the “if” half of the law. In this sense, PutInc1 is analogous to totality require-
ment in the lens framework [1]. Similarly, we must require that the result of
put is to be an update of model A, hence, the PutInc2 law. In addition, it is
reasonable to require that idle updates in the view space are translated into idle
updates in the source. as stated by PutIdl-law.

Five laws introduced above state the most basic properties of get and put
operations, which ensure that the formal model is adequate to its intended

1 Action of a view definition on update mappings can be shown by categorical argu-
ments with a precise formal definition of queries [16]. How it can be done for XML
schemas as models and relational deltas as updates is shown in [17].

From State- to Delta-Based Bidirectional Model Transformations 71

meaning. Other laws specified in Fig. 7 provide more interesting properties of
update propagation, which really constrain the transformational behavior.

The PutGet-law ensures the correctness of backward propagation. It is similar
to the corresponding s-lens law, but is defined on updates rather than states.
The incidence laws allow us to deduce PutGet for states from PutGet for updates.
We do not require GetPut-law because some information contained in update
a : A → A′ is missing from its view get1(a) and cannot be recovered from a’s
source A. As for the s-lens’ law GetPut, its actual meaning is given by ours
PutIdl-law, and the name GetPut for this law may be misleading.

Finally, GetGet and PutPut state compatibility of update propagation with
update composition.

Definition 4 (u-lens). An update-based lens (u-lens) is a tuple l = (A,B, get,
put), in which A and B are model spaces called the source and target of the
u-lens, get : A → B is a semi-functor providing B-views of A-models and their
updates, and put : B1×A0 → A1 is a function translating view updates back to
the source so that laws PutInc1 and PutInc2 in Fig. 7 are respected.

An u-lens is called well-behaved (we will write wb) if it also satisfies PutIdl
and PutGet laws. A wb u-lens is called very well-behaved if it satisfies GetGet
and PutPut.

We will write l : A � B for a u-lens with source A and target B, and denote
the functions by getl and putl. Note that for a very wb u-lens, getl is a functor
between categories A and B.

3.3 Sequential Composition of U-Lenses

As we discussed in Section 2.3, sequential composition of lenses is extremely
important for their practical applications. In the present section we will define
sequential composition of u-lenses and prove that composition of two (very) wb
u-lenses is also a (very) wb u-lens as soon as the components are such.
Background: Functor composition. Given two semi-functors between cate-
gories, f : A → B and g : B → C, their composition f;g : A → C is defined com-
ponentwise via function composition: (f;g)i = fi; gi, i = 0, 1. Evidently, f;g is a
semi-functor again. Moreover, if f and g are functors, their composition is also
a functor (the proof is straightforward).

Definition 5. Let l : A � B and k : B � C be two u-lenses. Their sequential
composition is an u-lens (l; k) : A � C defined as follows. Forward propagation
of (l; k) is sequential composition of semi-functors, get(l;k) def= getl; getk

Backward propagation is defined as follows. Let c : C → C′ be an update in
space C, and A ∈ A a model such that A.get

(l;k)
0 = C, that is, B.getk0 = C with

B denoting A.getl0. Then put(l;k)(c, A) = putl(b, A) with b = putk(c, B).

Theorem 2. Sequential composition of two (very) wb u-lenses is also a (very)
wb u-lens as soon as the components are such.

72 Z. Diskin, Y. Xiong, and K. Czarnecki

Proof. The get-part of the theorem is evident: sequential composition of semi-
functors (functors) is a semi-functor (functor). The put-part needs just an accu-
rate unraveling of Definition 5 and straightforward checking of the laws. ��

4 U-Lenses with Alignment: Fixing the Problems

We will first define the notion of u-lens with alignment and show how it is
related to the s-lens formalism. Then we will review the three main problems of
state-based synchronization within the u-lens framework.

4.1 From U- to S-Lenses

Definition 6 . An alignment over a model space A is a binary operation
dif : A0×A0 → A1 satisfying the incidence law DifInc in Fig. 8. Alignment is
well-behaved (wb) if the DifId-law holds, and very wb if, in addition, DifDif holds
too.

(DifInc) ∂sdif (A, A′) = A, ∂tdif (A,A′) = A′

(DifId) dif (A,A) = 1A

(DifDif) dif (A,A′); dif (A′, A′′) = dif (A,A′′)

Fig. 8. Alignment operations and laws

In most practically interesting cases, alignment is wb but not very wb; we have
only introduced the latter notion for analysis of s-lens’s PutPut.

Definition 7 (ua-lenses) . An u-lens with alignment (ua-lens) is a pair � =
(l, dif) with l=(get, put): A � B an u-lens and dif an alignment over B. An
ua-lens is called (a) well-behaved (wb) if its both component are such, (b) very
wb if l is very wb, and (c) very-very wb if alignment is also very wb.

Theorem 3. Any ua-lens � gives rise to an s-lens �0. Moreover, if � is (very-
very) wb, then �0 is also (very) wb.

Proof. Given a ua-lens �=(get, put, dif): A � B, we define an s-lens �0: A0 � B0

as follows. For any models A ∈ A0 and B′ ∈ B0, we set A.get�0
def= A.get�0 and

put�0(B′, A) def= ∂tput�(dif�(A.get�0, B
′), A). It is easy to check that s-lens laws

in Fig. 1b follow from the alignment laws in Fig. 8 and u-lens laws in Fig. 7.
In more detail, given the incidence laws for alignment and u-lenses, laws DifId
and u-lens PutIdl imply s-lens GetPut, u-lens PutGet ensures s-lens PutGet, and
DifDif together with u-lens PutPut provide s-lens PutPut. ��
Note that to obtain a very wb s-lens, we need both very wb alignment and
very wb u-lens. This is a formal explication of our arguments at the end of
Section 2.4 that PutPut-law often fails due to non-very wb alignment rather than
propagation procedures as such. Nevertheless, the following weakened version of
PutPut holds.

From State- to Delta-Based Bidirectional Model Transformations 73

Theorem 4. Any very wb ua-lens satisfies the following conditional law:

(PutPut!) if difdif (A.get0, B
′, B′′) then putput(A, B′, B′′) for all A∈A, B′, B′′∈B,

where difdif and putput denote the following ternary predicates:
difdif(B, B′, B′′) holds iff dif(B, B′); dif(B′, B′′) = dif(B, B′′), and
putput(A, B′, B′′) holds iff s-lens PutPut (see Fig. 1) holds for (A, B′, B′′).

Proof. Given difdif(B, B′, B′′) with B = A.get, the u-lens PutPut together with
incidence laws provide putput(A, B′, B′′). ��
Theorem 4 shows that the notion of very wb ua-lens is a reasonable formalization
of BX compatible with updates, and Theorem 3 shows that this notion is stronger
than wb s-lens but weaker than very wb s-lens.

4.2 Review of the Three Problems

U-lenses allow us to manage the problems identified in Section 2 in the following
way.

First, the possibility to build an s-lens from ua-lens (Theorem 3) shows the
flexibility of u-lenses. Second, when the get and put functions of two u-lenses
are composed (Definition 5), they must match on update mappings (arrows)
rather than only on models (nodes) thus providing continuity of composition
wrt. updates. Third, PutPut-law for u-lenses and based on it PutPut!-law for
ua-lenses (Theorem 4) are much more adequate to the intended behavior of BXs
than state-bases PutPut. Particularly, many useful BXs that satisfy the former
would violate the latter (e.g., that one presented in Fig. 5). However, we can still
find useful transformations that violate u-lens PutPut.

For instance, we can modify example considered in Fig. 5 in the following way.
Suppose that the view also shows persons’ birth years. When putting the updated
year back, function put uses the month and the day of the month in the original
source to restore the whole birthdate. Now, if a person’s birthdate is 1984-02-29,
changing the year to a non-leap one, say, 1985, in state B′ will be propagated
back to the date 1985-?-? in state A′. Changing the year in the view back to
1984 in state B′′ gives us the identity update b′′=b; b′=1B : B → B (as B = B′′)
to be propagated back into identity a′′=1A : A → A (as A = A′′). However,
update a′ : A′ → A′′ cannot restore the lost date 02-29 and hence a; a′ �= a′′. Yet
removing PutPut from the list of u-lens laws is also not a good solution because
it frees BXs from any obligations to respect somehow update composition. We
plan to attack this problem in a future work.

5 Related Work

A well-known idea is to use incremental model transformations operating with
updates to speed up synchronization, e.g., [18]. However, semantics of these ap-
proaches is state-based and updates are only considered as an auxiliary techno-
logical means. Ráth et al. [19] propose change-driven model transformations that

74 Z. Diskin, Y. Xiong, and K. Czarnecki

map updates to updates, but they only concern uni-directional transformations,
consider updates only operationally, and do not provide a formal framework.

Many BX systems conform to a formal framework. Focal is based on basic
s-lenses [1], QVT [6] can be modeled in a “symmetric lens” framework [7], and
MOFLON [20] is built upon TGGs [5]. These frameworks are state-based and
thus have the problems we described.

Some researchers motivated by practical needs have realized the limitation of
the state-based approach and introduced update modeling constructs into their
frameworks. Xiong et al. enrich a state-based framework with updates to deal
with situations where both models are modified at the same time [3,21]. Foster
et al. augment basic lenses with a key-based mechanism to manage alignment
of sets of strings, coming to the notion of dictionary lens [2]. However, even in
these richer (and more complex) frameworks updates are still second-class enti-
ties. Transformations still produce only states of models, and the transformation
composition problem persists. This problem is managed in the recent framework
of matching lenses [22], where alignment is explicitly separated from transfor-
mation. However, even in the novel frameworks addressing alignment, updates
are still second-class entities and the BX laws are state-based. As a result, laws
for updates have to be expressed through states, making the framework very
restrictive. For example, if we build a model transformation as a matching lens,
the source model and the view model must have the same number of objects for
each object type.

Close to ours is work by Johnson and Rosebrugh, who consider the view up-
date problem in the database context and employ category theory (see [16] and
reference therein). For them, updates are also arrows, a model space is a category
and a view is a functor. However, in contrast to the lens-based frameworks in-
cluding ours, in which models are points without internal structure, for Johnson
and Rosebrugh models are functors from a category considered as a database
schema to the category of sets and functions. This setting is too detailed for our
goals, complicates the machinery and makes it heavily categorical. Also, while
we are interested in the laws of composition (of transformations and within a
single transformation via PutPut), they focus on conditions ensuring existence
of a unique update policy for a given view. Further, they do not consider rela-
tions between the update-based and state-based frameworks, which are our main
concern in the paper.

6 Conclusion

The paper identifies three major problems of the state-based bidirectional trans-
formation (BX) frameworks: inflexible interfaces, ill-formed composition of trans-
formations and over-restricting PutPut-law. It is shown that these problems can
be managed (though the third one only partially) if propagation procedures are
decomposed into alignment followed by pure update propagation. Importantly,
the latter inputs and outputs not only models but also update mappings be-
tween them. We have developed the corresponding algebraic framework for an
asymmetric BXs determined by a view, and called the basic structure u-lens.

From State- to Delta-Based Bidirectional Model Transformations 75

In the u-lens framework, updates are arrows to be thought of as update map-
pings. They may be considered as light structural representation of updates:
updates mappings do the alignment job yet keep us away from the complexi-
ties of full update operation logs. This shows that being non-state-based does
not necessarily mean being operation-based: it means being update-arrow-based
with an open possibility to interpret arrows as required by applications.

Acknowledgements. Thanks go to Michal Antkiewicz for his contributions to
the initial version of the paper, and to anonymous referees for valuable comments.
Financial support was provided by the Ontario Research Fund.

References

1. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3), 17 (2007)

2. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
Resourceful lenses for string data. In: Proc. 35th POPL (2008)

3. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: ASE, pp. 164–173 (2007)

4. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
ICFP, pp. 47–58 (2007)

5. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: ICGT, pp. 411–425
(2008)

6. Object Management Group: MOF query / views / transformations specification
1.0 (2008), http://www.omg.org/docs/formal/08-04-03.pdf

7. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open
questions. Software and System Modeling 9(1), 7–20 (2010)

8. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: Czar-
necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301, pp. 21–36. Springer, Heidelberg (2008)

9. Foster, J.N., Greenwald, M., Kirkegaard, C., Pierce, B., Schmitt, A.: Exploiting
schemas in data synchronization. J. Comput. Syst. Sci. 73(4), 669–689 (2007)

10. Antkiewicz, M., Czarnecki, K., Stephan, M.: Engineering of framework-specific
modeling languages. IEEE Transactions on Software Engineering 99 (RapidPosts),
795–824 (2009)

11. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

12. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differenc-
ing. In: ASE, pp. 54–65 (2005)

13. Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D.: Differencing and
merging of architectural views. In: ASE, pp. 47–58 (2006)

14. Mens, T.: A state-of-the-art survey on software merging. IEEE Trans. Software
Eng. 28(5), 449–462 (2002)

15. Diskin, Z., Czarnecki, K., Antkiewicz, M.: Model-versioning-in-the-large: Algebraic
foundations and the tile notation. In: ICSE 2009 Workshop on Comparison and
Versioning of Software Models, pp. 7–12 (2009), doi:10.1109/CVSM.2009.5071715

http://www.omg.org/docs/formal/08-04-03.pdf

76 Z. Diskin, Y. Xiong, and K. Czarnecki

16. Johnson, M., Rosebrugh, R.: Constant complements, reversibility and universal
view updates. In: Meseguer, J., RoCsu, G. (eds.) AMAST 2008. LNCS, vol. 5140,
pp. 238–252. Springer, Heidelberg (2008)

17. Liefke, H., Davidson, S.: View maintenance for hierarchical semistructured data. In:
Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874,
p. 114. Springer, Heidelberg (2000)

18. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1), 21–43 (2009)

19. Ráth, I., Varró, G., Varró, D.: Change-driven model transformations. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 342–356. Springer, Heidelberg
(2009)

20. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A standard-
compliant metamodeling framework with graph transformations. In: Rensink, A.,
Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer, Hei-
delberg (2006)

21. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting parallel updates with bidirec-
tional model transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 213–228. Springer, Heidelberg (2009)

22. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching
lenses: Alignment and view update. Technical Report MS-CIS-10-01, University of
Pennsylvania (2010)

	From State- to Delta-Based Bidirectional Model Transformations
	Introduction
	Problems of State-Based Bidirectional Transformations
	Model Synchronization via Lenses: A Missing Link
	Inflexible Interface
	Ill-Formed Sequential Composition
	PutPut: Over-Restrictive State-Based Version

	U-Lenses: Update-Based Bidirectional Transformations
	Building the Definition: Models and Updates
	Building the Definition Cont'd: Views and Update Translation
	Sequential Composition of U-Lenses

	U-Lenses with Alignment: Fixing the Problems
	From U- to S-Lenses
	Review of the Three Problems

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

