
GSDLAB TECHNICAL REPORT

Variability-Aware Performance Modeling:
A Statistical Learning Approach

Jianmei Guo, Krzysztof Czarnecki, Sven Apel,
Norbert Siegmund, Andrzej Wa̧sowski

GSDLAB–TR 2012–08–18 August 2012

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemi-
nation of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

Variability-Aware Performance Modeling:
A Statistical Learning Approach

Jianmei Guo∗, Krzysztof Czarnecki∗, Sven Apel†, Norbert Siegmund‡, and Andrzej Wa̧sowski§
∗University of Waterloo, Canada
†University of Passau, Germany

‡University of Magdeburg, Germany
§IT University of Copenhagen, Denmark

Abstract—Customizable software systems allow users to derive
configurations by selecting features. Building a performance mod-
el to understand the tradeoff between performance and feature
selection is important to be able to derive a desired configuration.
A challenge is to predict performance accurately when features
interact. Another is that, in practice, we can often measure
only few configurations as a sample for prediction, and we
cannot select these configurations freely to cover certain feature
interactions. We propose an incremental and variability-aware
approach to performance modeling based on statistical learning.
Our approach incorporates performance-relevant feature inter-
actions and quantifies their influence implicitly during the process
of performance modeling. It identifies the most relevant feature
selections automatically for performance prediction. Empirical
results on six real-world case studies show that our approach
achieves an average of 94% prediction accuracy measuring few
randomly selected configurations.

I. INTRODUCTION

Customizable software systems facilitate software config-
uration by variability management, i.e., by identifying and
controlling commonalities and variations in a set of software
artifacts such as requirements, architecture, components, and
code [1]–[3]. Commonalities and variations are defined and
managed by variability models, which are used in many
real-world, customizable systems such as the Linux kernel
and the embedded operating system eCos [4]. Today, the
most widely used variability models are feature models, in
which features are essentially configuration options relevant to
users [5]–[7]. Every configuration derived from a customizable
system is represented by a combination of features. A feature
model defines all valid feature combinations (a.k.a., feature
selections) of a customizable system. As shown in Figure 1,
a feature model can be displayed as a tree-like structure
that defines relationships among features. These relationships
define the choices that users can make when configuring a
system.

For a customizable software system, each derived con-
figuration and its corresponding feature selection need to
satisfy various user requirements [8]–[11]. One of the most
important user requirements is performance (e.g., response
time, throughput, and resource utilization), because it directly
affects user perception and costs [12]. Variability-aware per-
formance modeling identifies and incorporates the correlations
between performance and feature selection and helps users
make tradeoffs when configuring a system to satisfy a certain

performance goal [13]. For example, the database illustrated in
Figure 1 can be configured to achieve maximum performance
when used on a server, but may also be configured for low
energy consumption when deployed on a smartphone.

Users need performance models to understand the influence
of a feature selection on performance and to answer questions
like “What happens to performance if I use this configura-
tion?” [13]. Users can also use performance models to an-
ticipate and eliminate performance anomalies [14]. Moreover,
software configuration in practice is often “reconfiguration”
[15], [16], i.e., users start with a default configuration and
then modify it; in this case, performance models help users
choose a proper starting point close to the final performance
goal.

It is non-trivial to build performance models for customiz-
able software systems. First, even for a small feature model,
feature combinatorics can produce an exponential number of
configurations [10]. For example, the relatively simple feature
model shown in Figure 1 gives rise to 2, 560 valid configura-
tions. So, it is usually infeasible to carry out a comprehensive
performance measurement for all valid configurations of a
customizable system [9]. Hence, in practice, often only a
limited set of configurations is measured, either by simulation
in the lab or by monitoring in the field (i.e., in practical
deployments) [13]. How to use few measured configurations to
build performance models with reasonable prediction accuracy
(e.g., above 90%) is still an open issue.

Second, feature interactions may cause unexpected behavior
and unpredictable performance anomalies, which makes many
straightforward assessment methods not applicable [17], [18].
For example, the performance influence of two features, both
appearing in a configuration, may not be easily deducible from
the performance influence of each feature in separation. It
is still a major challenge to detect and incorporate feature
interactions and their performance influence effectively [19].

Third, existing approaches detect feature interactions mainly
by heuristics, based on different feature coverage criteria [8],
[9], [20]. For example, the pair-wise heuristic assumes that
features interact mainly in pairs; it selects and measures a
specific set of configurations that cover all pair-wise feature
interactions for performance prediction [8]. However, in prac-
tice, the configurations that we can measure or that we already
have (e.g., by monitoring in the field) are often random;

and they may not meet any feature coverage criterion. Is it
possible to use random configurations as a basis for reasonable
performance modeling?

We aim at building variability-aware performance models to
address the above challenges. We formalize the performance
modeling problem and reduce it to a nonlinear regression
problem, and we use a statistical learning technique to solve
the problem and to model the correlations between perfor-
mance and feature selection. Our approach incorporates feature
interactions and quantifies their performance influence implic-
itly along with the learning process. It identifies the feature
selections most relevant to performance automatically and uses
them for performance prediction. Our approach works in an
incremental way so that users can use it to produce prediction
results starting with a small set of measured configurations,
and extend it when further configurations are available. The
main contributions are summarized as follows:

• We propose an incremental and variability-aware ap-
proach to performance modeling with reasonable predic-
tion accuracy based on few random sample configura-
tions.

• Our approach aims at automatically identifying the most
relevant feature selections for performance prediction,
which implicitly incorporate performance-relevant feature
interactions; it also applies to higher-order feature inter-
actions without additional effort.

• We demonstrate the practicality and generality of our
approach by experiments on a public dataset with six
customizable systems spanning different domains, imple-
mentation languages, and configuration mechanisms.

• Empirical results show that our approach produces an
average of 94% prediction accuracy on the evaluated
dataset. Moreover, our approach shows a desirable and
robust increasing trend of accuracy with the increase of
sample configurations.

II. PROBLEM FORMALIZATION AND CHALLENGES

Figure 1 shows the feature model of Berkeley DB (C
version)1 using the notation defined in [5], [21]. A feature
model FM defines all N features F = {fi} with 1 ≤ i ≤ N
and all valid configurations C of a customizable system. A
configuration c ∈ C is an assignment of selection or deselec-
tion to each feature in the feature model. A configuration is
valid if the assignment is allowed by the feature model.

We define a Boolean-valued function over F denoting
whether a feature is selected, i.e., x : F → {Y,N}. That is, if
x(f) = Y , then feature f is selected, otherwise it is deselected.
We represent a configuration as a set of assignments to all
features, i.e., c = {x(f1), x(f2), ..., x(fN)}. For simplicity,
c = {x1, x2, ..., xN}, if we mark a position number on
each feature in the feature model. For example, in Figure 1,
a configuration with the selected features {DB, CRYPTO,
PAGESIZE, PS1K, CACHESIZE, CS16M} can be encoded
as {x1 = Y, x2 = Y, x9 = Y, x10 = Y, x15 = Y, x17 = Y }.2

1http://www.oracle.com/us/products/database/berkeley-db/
2Here, we omitted the deselected features for brevity.

Figure 1. Feature model of Berkeley DB (C version)

For a certain performance metric P , we define a real-valued
function on C to indicate the actual performance influence
of each configuration, i.e., p : C → R. The problem
is that we cannot measure p(c) for every c ∈ C due to
the exponential number of configurations. In practice, we
have only a limited set of already produced and measured
configurations Ĉ = {ĉ1, ĉ2, ..., ĉm} ⊆ C (usually |Ĉ| � |C|)
and their corresponding performance measurements P (Ĉ) =
{p(ĉ1), p(ĉ2), ..., p(ĉm)}. Given Ĉ and P (Ĉ) as input, the goal
is to find a hypothesis function h to predict the performance
influence of each configuration in C as accurately as possible:

h : C → R s.t. L(h(c), p(c)) is minimal (1)

where L(h(c), p(c)) is a loss function for penalizing errors in
prediction. Assuming C as input, p(c) as the target output,
Ĉ and P (Ĉ) as training examples, and h(c) as the target
hypothesis, the above problem can be formulated as a learning
problem [22].

To solve such a learning problem, the challenges are mani-
fold. First, given a certain performance metric (e.g., response
time), each feature in the feature model has its own relevance
to the metric. How to identify the most relevant features and
filter out the irrelevant ones? Second, we cannot use simple
linear models such as h(c) =

∑n
i=0 βixi as performance

models, because the change of performance influence could
be nonlinear due to feature interactions. How to build such
a nonlinear model? Furthermore, the effects of many learning
techniques depend heavily on the quantity and quality of input
training examples [22]. In our case, we have only few random
configurations (|Ĉ| � |C|). How to achieve prediction with
reasonable accuracy using limited training examples?

III. OVERVIEW OF APPROACH

To address the challenges above, we propose an incremen-
tal and variability-aware approach to performance modeling
based on statistical learning. Figure 2 illustrates the approach.
From the user viewpoint, the approach answers the following
question: What is the value of the performance metric P
(e.g., response time or throughout) for the application A using
configuration c? Our approach matches c with the most similar
performance decision rule of A and returns a quantitative pre-
diction of P (i.e., h(c)). The rules are obtained automatically
by statistical learning from existing training examples. Further,
users can verify the prediction by simulation in the lab or
monitoring in the field. The verified results can be reused as
training examples. Thus, our approach works in an incremental
way and produces results based on existing data.

Figure 2. Overview of our approach

TABLE I
EXAMPLE DATASET OF BERKELEY DB

IV. VARIABILITY-AWARE PERFORMANCE MODELING

This section presents our approach in detail. We describe
each step of the process underlying our approach, providing
the main intuitions behind the approach and the research
question that need to be studied experimentally.

A. Data Interpretation and Preparation

According to the data nomenclature defined in [23], all
training examples form a dataset. Each training example is an
observation, namely a measured configuration ĉ ∈ Ĉ ⊆ C and
its actual performance measurement p(ĉ). Each observation is
recorded in terms of variables, which can be distinguished
as input variables and output variables. Input variables are
measured or preset data items; in our case, they are the
variables to indicate the selection or deselection of features de-
fined in each configuration, i.e., {x1, x2, ..., xN}. For example,
Table I shows an example dataset of Berkeley DB, in which
input variables, x1 through x19, denote the features shown in
Figure 1. Output variables are the variables influenced by the
input variables. Here, they are the variables with respect to the
performance metric P .

Generally, a feature in a feature model can be either abstract
or concrete [24]. A feature is abstract if and only if it is not
mapped to any implementation artifacts; a concrete feature is
mapped to at least one implementation artifact. Thus, we have
the following intuition:

Intuition 1: The actual performance influence of a config-
uration results from all of its concrete features.

Furthermore, some features will appear in all valid configu-
rations, e.g., the features “DB”, “PAGESIZE” and “CACHE-
SIZE” shown in Figure 1. These features provide no informa-
tion to help distinguish the performance influence of different
configurations (a.k.a., information gain in information theory
and statistics [25]). This observation yields another intuition:

Intuition 2: Features that appear in all valid configurations
of a feature model provide no information for performance
modeling.

According to the above two intuitions, we process the input
dataset by removing the abstract features and by removing the
features appearing in all valid configurations, which reduces
the number of input variables.

B. A Nonlinear Regression Problem

Variables can store different types of data. In our case, input
variables are categoric and output variables are numeric. A
categoric variable is one that takes on a single value from
a fixed set of possible values, while a numeric variable has
values that are integers or real numbers [23]. In our case, every
input variable xi has two values “Y” and “N” to indicate if
a feature is selected in a configuration or is not. The output
variable for a configuration c has two kinds of numeric values:
the actual performance measurement p(c) and the predicted
performance influence h(c). The input dataset is the set of
measured configurations Ĉ and the corresponding performance
measurements P (Ĉ). Due to the numeric output and possible
feature interactions, the problem defined in equation (1) re-
duces to a nonlinear regression problem [26].

An effective approach to nonlinear regression is to sub-
divide, or partition, the dataset into smaller regions where
feature interactions are more manageable, for example, higher-
order feature interactions are decomposed into pair-wise fea-
ture interactions. We continue to partition the sub-divisions
recursively, as in hierarchical clustering [26], until finally we
get to chunks of the dataset that are so manageable that we
can fit simple models to them.

C. Classification and Regression Trees (CART)

Classification and regression trees (CART) is a simple and
efficient technique to implement the above recursive partition-
ing process [27]. CART uses a tree to represent the recursive
partition. As shown in Figure 3, CART starts with the input
dataset (Ĉ and P (Ĉ)) and then partitions it into two mutually
exclusive parts by a split node. Here, the first split node is
the input variable x2, which indicates whether the feature
“CRYPTO” is selected or not. Observations with x2 = “N”
go to the left, and observations with x2 = “Y ” go to the
right. The observations in each part are partitioned again by
further split nodes (e.g., the variable x14 of feature “PS32K”).
The partition process continues recursively until each terminal
node or leaf of the tree represents a cell of the partition and
has attached to it a simple local model, which applies to that
cell only. To determine which cell a configuration is in, we
start at the first split node and then match the value of each
split with the configuration until a leaf. Suppose that we use |l|
to indicate the number of all samples contained in any cell l,
we define the local model in the cell using a simple piecewise-
constant model [28], namely the sample mean of the output
variable in that cell:

hl =
1

|l|
∑

ĉi∈l

p(ĉi). (2)

Figure 3. Example CART for 139 training examples of Berkeley DB

For example, in Figure 3, there are 42 observations in the
leftmost cell and the sample mean is hl =

1
42

∑42
i=1 p(ĉi) =

0.5105. If a new configuration c satisfies x2 = N ∧ x14 =
N ∧ x13 = N , then it also falls into the leftmost cell and its
predicted performance influence is h(c) = h l = 0.5105.

Generally, all split nodes beyond the first split (i.e., root)
imply interaction effects [28], i.e., the interacting influence of
all input variables appearing in split nodes. For example, the
influence of the variable x14 (feature “PS32K”) depends on
the value of variable x2 (feature “CRYPTO”). Suppose that
there are q leaves in a CART, we can formulate the global
model of CART within the function framework of an additive
model [26] as follows:

h(c) =

q∑

i=1

βiδi(x1, x2, ..., xN) (3)

where δi is a function to represent the combination of input
variables in the branch from root to the i th leaf, and βi is
the corresponding weight to indicate the interacting influence
of all variables in the branch. Defining an indicator function
I : {δi} → {0, 1} to denote if formula δi is satisfied, we can
represent all the branches of CART with indicator variables.
For example, a part of the global model for CART shown in
Figure 3 is as follows:
h(c) = 0.5105 ∗ I(x2 = N ∧ x14 = N ∧ x13 = N) +

1.1322 ∗ I(x2 = N ∧ x14 = N ∧ x13 = Y) + · · · .
This equation can be easily translated into a set of decision

rules, as shown in Figure 2. For example, the above equation
can be paraphrased using if-then rules as follows:
If x2 = N ∧ x14 = N ∧ x13 = N , then h(c) = 0.5105;
If x2 = N ∧ x14 = N ∧ x13 = Y , then h(c) = 1.1322; · · · .

From Figure 3 and the above equations and decision rules,
we can easily see the effects of whenever two or more input
variables interact. These combinations of interacting variables
and their identified effects represent the feature selections
most relevant to performance and their influence. Essentially,
they also incorporate performance-relevant feature interactions
and their influence implicitly. For example, in Figure 3, the
branch from root to the rightmost leaf identifies a performance-
relevant feature combination (x2 = Y ∧ x14 = Y ∧ x3 = Y)
and its influence 38.9690, which may incorporate the influence

of pair-wise feature interactions such as f2#f14 and f2#f3
or higher-order feature interactions such as f2#f14#f3.3

D. CART Design for Variability-Aware Performance Modeling

1) Choosing Split Nodes: The first problem that CART
needs to solve is determining how to split the input dataset
using information contained in the dataset. Recall the loss
function used in equation (1). The most common loss func-
tion for a regression problem is squared error loss [26]:
L(h(c), p(c)) = (h(c) − p(c))2. The within-node sum of
squared errors for a given CART T is:

S =
∑

l∈leaves(T)

∑

ĉi∈l

(hl − p(ĉi))
2 (4)

where hl is the local model defined in equation (2) for leaf l.
Thus, we rely on the following intuition to build a CART:

Intuition 3: To achieve minimal prediction error, we choose
the split node that minimizes S as the best one for each
recursive partition of CART.

2) Scale of Training Set: Many learning techniques depend
heavily on the quantity and quality of training examples [22].
Regardless of impact of noises, more training examples imply
higher accuracy. However, in practice, it is usually difficult
to obtain performance measurements for many configurations.
For example, SQLite4 has 3, 932, 160 configurations (see Ta-
ble II); measuring even just 1% of them would be extremely
time consuming. Since the number of all features in a feature
model (i.e., N) is often far less than the number of all
configurations (e.g., SQLite has only 39 features), a practical
consideration is to use the linear number of features as the
size of the input training set, e.g., N , 2 ∗ N , or 3 ∗ N . This
leads to the following research question:

RQ 1: Can we achieve a reasonable prediction accuracy
based on a small training set whose size is proportional to
the number of features?

3) Pruning: An important problem for building a good
CART is how to prune the tree to avoid overfitting training
examples. A hypothesis function h is said to overfit the training
examples if there exists another hypothesis h ′, such that h
has smaller error than h′ over the training examples, but
h′ has a smaller error than h over the whole population of
all possible inputs [22]. Overfitting is a significant practical
difficulty for many learning techniques [22]. For CART, many
pruning techniques have been proposed to avoid overfitting
[28] and existing tools also provide parameters to control the
pruning process [23]. However, systematical tuning of these
parameters often leads to a manual, iterative process [13].

To implement a simple automated process of building
CART, we use the size of the input training set (i.e., m = |Ĉ|)
to automatically set the values of two parameters minsplit and
minbucket. The minsplit parameter specifies the minimum
number of observations that must exist at a node in the
tree before it is considered for splitting. The minbucket

3Here, # is the notation of feature interactions defined in [18].
4http://www.sqlite.org/

parameter is the minimum number of observations in any
leaf node. Considering the scales of systems we studied, the
rules of automated parameter setting conform to the following
intuition:5

Intuition 4: If 0.1∗m < 10, then minbucket = �0.1∗m+
0.5� ∧ minsplit = 2 ∗ minbucket; otherwise minsplit =
�0.1 ∗ m + 0.5� ∧ minbucket = �minsplit/2�. Finally,
minsplit ≥ 4 ∧minbucket ≥ 2.

For example, as shown in Figure 3, we build a CART
with minsplit = 14 and minbucket = 7 for Berkeley DB’s
139 training examples. Furthermore, we use only the two
parameters and fix others to control the pruning process and to
generate CART automatically, which leads to another research
question:

RQ 2: Can we use only the two parameters minsplit and
minbucket set automatically by Intuition 4 to generate CART
automatically and avoid overfitting?

4) Feature Coverage: Two common feature coverage cri-
teria are feature-wise, which covers configurations with and
without every individual feature, and pair-wise, which covers
configurations with and without every pair-wise feature in-
teraction [8], [9], [41]. The feature-wise heuristic determines
a feature’s performance influence by calculating the perfor-
mance delta of two configurations with and without the feature.
The pair-wise heuristic selects and measures a specific set
of configurations that cover all pair-wise feature interactions
relevant to performance. Some heuristics are also designed to
cover various higher-order feature interactions [8], but they
are based on feature-wise and pair-wise heuristics and need
more measurements. The feature-wise and pair-wise heuristics
depend on a set of specifically selected configurations, whereas
our approach uses random configurations that do not need to
conform to any feature coverage criterion. Thus, we have the
following research question:

RQ 3: What is the difference of effects between our ap-
proach using random configurations and the feature-wise or
pair-wise heuristics for comparable sizes of training sets?

5) Missing Data: Missing data are a problem for all sta-
tistical analyses [28]. In our case, the training examples are
randomly selected and the size of training set is supposed to
be comparatively small, so the training set is likely to have
missing values for some features. Although CART is claimed
to be robust to missing data [28], we are still interested in the
following research question:

RQ 4: Is our approach robust when using few random
training examples?

A special situation is that the training set has completely
missing values for some features, i.e., missing features [28].
For example, users could prefer configurations with certain
features; thus, the produced and measured configurations do
not cover all features defined in the feature model and miss
some features completely [20]. In our case, for all configu-
rations in the training set, if an input variable x i ≡ “N”,
then the training set misses feature fi; if xi ≡ “Y ”, feature

5Here, �� indicates rounding down, i.e., �x� = max{n ∈ Z|n ≤ x}.

fi is excluded during performance modeling according to
Intuition 2, which is essentially also a situation of missing
features. The feature-wise or pair-wise heuristics cannot be
used in this case. This leads to an interesting research question:

RQ 5: Does our approach produce reasonable predictions
using a training set with some missing features?

E. Similarity Match

As shown in Figure 2, predicting performance for a new
configuration c, our approach will match c with the most
similar decision rule of A and returns the quantitative pre-
diction of P (i.e., h(c)). According to the CART shown in
Figure 3 or its derived decision rules, the similarity match
is straightforward, i.e., matching the configuration with a
complete branch from root to a leaf in the CART or the
complete premise of a decision rule. For example, consider
a new configuration with selected features {DB, CRYPTO,
REPL, SEQ, PAGESIZE, PS32K, CACHESIZE, CS64M}, it
matches the branch (x2 = Y, x14 = Y, x3 = N) in the CART
shown in Figure 3, and its performance influence predicted
by the branch is 37.6846. Here, our approach finds out only
the feature selections that are most relevant to the performance
metric and produce minimal performance variance in the input
dataset, which leads to the following research problem:

RQ 6: Can the performance influence of a configuration be
predicted only by the features selections identified by CART?

V. EVALUATION

To answer the above research questions, we implemented
our approach using R 2.15.1 and Java (Eclipse 4.2 with JVM
1.7). R is a language and environment for statistical computing
and graphics.6 We used Rattle and rpart packages in R to
generate CART [23]. We also developed a rule generator to
automatically parse the generated CART and extract decision
rules. Furthermore, we performed experiments to evaluate our
approach. Our empirical results are presented in this section. 7

A. Experimental Setup

We use a publicly-available dataset [8] for two reasons.
First, the dataset covers a reasonable spectrum of practical ap-
plication scenarios. As shown in Table II, there are six existing
real-world customizable systems with different characteristics:
different sizes (45 thousand to 300 thousand lines of code,
192 to millions of configurations), different implementation
languages (C, C++, and Java), and different configuration
mechanisms (such as conditional compilation, configuration
files, and command-line options). Second, the dataset includes
the performance measurements of all configurations of all
systems (The exception is SQLite where the original authors
measured 4,553 configurations as the sample and additional
100 random configurations for accuracy evaluation [8]). For
each system, the performance has been measured using its

6http://www.r-project.org/
7An implementation of our approach and all experimental results including

intermediate data are available at http://code.google.com/p/cpm/.

TABLE II
OVERVIEW OF THE ANALYZED SYSTEMS

standard benchmark either delivered by its vendor (e.g., O-
racle’s standard benchmark for Berkeley DB) or often used
in its application community (e.g., autobench and httperf for
Apache Web Server).

In our experiments, independent variables are the kind of
the analyzed system and the size of the training set. The
prediction fault rate (|actual−predicted|

actual) and the model building
time for each configuration of a system are measured as
dependent variables. To reduce the fluctuations in dependent
variables caused by random generation, we performed five
repetitions for each combination of independent variables.
All measurements were performed on the same Windows 7
machine with Intel Core i5 CPU 2.5 GHz and 8 GB RAM.

1) Generation of Training and Test Sets: We randomly
selected a certain number of configurations from the dataset
as the training set and all of the rest as the test set. Note
that for all but one system the dataset contains the entire
population of configurations. For each system, we generated
four sizes of training sets: N , 2∗N , 3∗N , and PW . N is the
number of features of each system, and PW is the number
of measurements needed by pair-wise heuristic mentioned in
Section IV-D4. The two numbers for each system are listed
in Table II. For each size of the training set, the generation
process is repeated five times.

2) Simulation of Missing Features: We simulated the situ-
ation of missing features, as discussed in Section IV-D5. For
each system, we first randomly selected a certain number of
features and fixed their indicator variables to a certain value
(“Y” or “N”). Here, we set two percentages 20% and 40% of
all relevant features (excluding those identified by Intuitions 1
and 2). Then, we randomly selected a set of configurations
satisfying the above fixing conditions from the dataset as the
training set and all of the rest as the test set. For example,
in Figure 1, if the indicator variable of feature “CRYPTO”
is fixed to “N”, i.e., x2 ≡ “N”, then all configurations
in the training set miss feature “CRYPTO”; if x2 ≡ “Y ”,
then feature “CRYPTO” appears in all configurations in the
training set but is excluded during performance modeling (see
Intuition 2), which is also a situation of missing features.

Here, the size of training sets is the number of measure-
ments needed by the pair-wise heuristic, i.e., PW in Table II.
However, sometimes, we may not be able to collect enough
configurations satisfying the fixing conditions. For example,
all configurations satisfying a fixing condition are less than

PW . If the collected configurations are less than 1
2 ∗PW , we

discard them and produce no results. The above generation
process is repeated five times. That is, for each percentage
(20% or 40%) and each value (“Y” or “N”), we randomly
selected five different combinations of features and fixed their
values to generate training sets and test sets.

B. Results

We first measure the fault rate and the model building time
of our approach for RQ 1, 2, 4 and 6. Then, we compare our
approach with feature-wise and pair-wise heuristics for RQ 3.
Finally, we measure the fault rate using training sets with
some missing features for RQ 5. Each experiment includes
hypothesis and evidence.

1) Fault Rate: The hypothesis of this experiment is that
our approach can produce meaningful prediction trends and
results when working with different kinds of systems and small
training sets. Figure 4 shows the statistics of fault rates when
applying our approach to the six systems listed in Table II and
four sizes of input training sets (i.e., N , 2 ∗ N , 3 ∗ N , and
PW). Figure 4(a) shows the boxplot of all statistics including
outliers. We can see that the outliers decrease significantly as
the size of the training set increases (N ∼ PW). Figure 4(b)
excludes the outliers so that the box, the median, and the
whisker can be shown clearly. Table III lists the medians
and means of fault rates. From Figure 4(b) and Table III, we
can see an obvious decreasing trend of the fault rate with
an increasing training set. When the size of the training set
reaches PW , the median of fault rates reduces to less than
8% and the mean less than 10% for all systems. For half of
the analyzed systems, our approach produces the median less
than 8% and the mean less than 9% using only the training
set with size N .

2) Model Building Time: A further hypothesis is that our
approach can build performance models fast when working
with different kinds of systems and small training sets. Fig-
ure 5 shows the measured time consumption of model building
when applying our approach to the six systems and four
sizes of training sets. For most of the systems (five out of
the six), the time consumption is less than 0.04s. This is
because these systems have less than 30 features in the feature
model and less than 150 configurations as the training set,
as listed in Table II. Only for SQLite with 38 features, the
time consumption shows an increasing trend as the size of the
training set scales from 39 to 566; however, it is still less
than 0.09s. Since performing more measurements becomes
infeasible in a reasonable amount of time, we conclude that
the model building time is always practical.

3) Comparison on small training sets: We compared our
approach with the feature-wise and pair-wise heuristics to
observe their effects on small training sets. The hypothesis
here is that our approach provides a more flexible and robust
prediction. Figure 6 shows the comparison results when ap-
plying these approaches to the six systems and the training
sets scaling from N to PW . We took the means of fault rates
on the sizes of FW and PW , published in [8], and showed

●

●

●

●●●

●●

●

●

●●

●

●
●
●●●●●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●●●
●
●●

●●

●
●●

●●

●●
●●●●

●

●●●

●

●●●

●

●

●

●●

●

●●●●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●●

●

●

●
●
●

●●

●

●

●●●

●

●

●●●●
●●
●

●

●

●

●●
●●
●

●

●

●

●

●●

●
●
●
●
●

●

●
●

●

●●

●

●●●

●●●●

●●●

●

●

●

●●●

●●

●●●

●

●
●●●

●
●
●
●●●●

●
●

●

●●

●●

●

●

●●●●

●●

●

●●●●●●

●

●

●●

●

●
●

●●

●●●
●●●●●●

●

●●

●

●

●

●●

●

●●
●

●

●

●●

●

●●
●

●
●●

●●

●

●

●●
●

●●

●

●

●●

●

●

●

●

●
●
●●●
●

●●

●●●

●

●●

●●

●

●

●
●

●

●

●●●

●●

●●●
●

●

●●

●●

●●●●

●●

●●●

●●

●

●

●

●
●●●

●●

●

●
●

●

●●●●

●

●

●●

●
●●
●●
●●

●

●●●

●●

●●

●

●

●●

●

●

●●

●

●●●

●●

●

●●

●●●●●
●●●●●
●
●

●●●

●●

●
●
●●●

●

●●●

●●

●●●
●●●
●
●
●
●
●●●●
●●●
●●
●
●●
●●●●
●
●
●
●●●●●●●●●●
●●●●●●●●●●●

●●

●●●●●●
●●

●

●
●●
●
●●

●

●●●●
●
●●
●●●●
●
●●
●
●●●●●

●

●
●
●
●●●●●●●●●●
●●●
●●

●●
●
●

●
●
●

●●●
●
●
●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●
●●

●●
●
●

●

●

●●

●●●

●●

●●
●

●

●●

●●●

●
●

●

●

●

●●●

●

●

●

●

●
●

●●

●●

●

●●●
●●
●

●

●●
●
●●

●●●●●

●●●

●●

●

●

●●

●

●●●

●

●
●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●●

●●●

●●

●

●●

●

●

●

●●

●

●●

●●●●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●●●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●
●
●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●
●
●

●

●

●●

●●

●

●

●

●
●●●●

●

●

●●

●

●●●

●

●●

●●

●

●
●

●

●

●

●●●

●

●

●●●●
●

●●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●●●

●●

●

●

●

●●

●

●●●

●

●●

●
●
●

●

●

●●●●●●

●●●
●
●

●

●

●●●●

●
●
●
●

●●

●●●●

●

●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●●●

●

●●●●●

●●●

●

●

●●●●●●

●●●●●●

●

●●

●

●●

●

●●●●

●

●●●●

●●

●

●●

●

●●●

●●●●●

●●

●●●

●●●●●

●●●●●

●●

●

●●●●●●●●●

●●

●

●

●

●

●●

●

●●

●

●

●●●●●●

●

●●
●
●
●●

●

●●

●
●●
●

●

●●
●
●●

●●

●
●
●

●

●
●

●●

●

●
●●

●

●

●
●●

●

●●

●●●

●

●

●●

●●
●

●

●

●

●

●
●
●

●

●

●●●

●

●
●●

●●
●●

●
●
●●●

●●●

●

●●

●

●●●●

●●

●

●●●

●●

●
●●
●

●
●

●

●

●

●●●

●

●●

●

●●

●●●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●●

●
●

●
●

●
●●●●

●

●●

●●

●
●

●

●●●

●

●

●
●
●
●
●
●●
●
●●●

●●●●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●
●

●●

●

●

●
●●

●●
●

●
●
●●
●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●●

●●●

●

●●●

●

●

●
●

●●
●

●●

●

●●

●
●

●

●●

●●●●
●
●●●
●
●●
●
●
●
●●●●
●
●●●
●
●
●
●●●
●
●
●●
●
●
●
●
●
●
●●●●●●●●
●
●●●
●
●
●●
●●●
●
●
●
●
●
●●●●●●●
●●●
●●
●●●●
●
●●
●
●●●●
●●●
●
●●
●●●
●
●
●
●●●●●●
●●
●
●
●
●●●●●●
●
●●
●
●
●
●
●●
●
●●●●
●
●●●
●
●●●
●
●●
●●●
●●
●
●●●●●
●
●●
●●
●●
●
●●●●●
●
●●●
●●
●●
●●
●●●●●●

●

●●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●●●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●●●

●

●●●

●

●●●●●

●

●●

●

●

●

●●●●

●●

●●●●●●●●●●

●

●●●●

●

●●

●

●●●●

●

●●

●

●●●

●
●
●●
●●

●●●●

●

●●●

●
●

●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●

●

●●●●●●●●●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●●●●●●

●

●●●●

●

●

●

●●

●

●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●
●

●●

●

●

●●●●●●

●●

●

●●

●

●

●

●

●

●

●

●●

●●

●●●●●

●

●●

●

●

●●●

●

●●

●

●

●

●●●

●

●
●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●●

●

●

●

●●●

●

●

●●●●

●

●

●

●●

●

●●

●

●●●●

●

●●

●

●●

●

●
●
●●●

●

●

●

●●●
●●

●

●
●

●

●

●

●●

●●●

●

●

●●●●

●

●
●●

●

●

●

●
●●●
●●
●●●●●
●

●

●

●
●
●●

●●●
●

●

●●

●●
●●●●●

●

●

●●●

●

●●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●●●●●

●

●●

●

●
●●

●

●●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●

●

●●
●●

●

●●

●

●●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●●

●

●●

●

●
●

●

●●

●

●

●●

●●
●●

●●●

●

●●●●●●

●

●●●●

●

●

●

●●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●●
●
●
●

●

●

●

●
●●●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●
●●
●

●

●

●

●

●

●

●●

●●●

●

●
●

●

●

●
●
●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●●
●●●

●

●

●

●
●

●

●
●

●

●

●●
●

●●

●

●
●

●

●
●

●

●●

●
●●
●●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●●

●

●●

●

●●

●●
●

●

●

●

●

●●

●●

●

●

●●●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●●

●

●●●

●

●

●

●●

●

●●

●
●

●●

●

●
●

●
●●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●●●
●

●

●

●

●

●●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●●●
●●

●●●●●
●●●●●●
●
●●●●●

●
●
●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●
●
●●●●●●

●
●
●
●●●●●●
●●●●●●●●
●

●

●
●
●
●●●●●●
●●●●●●●●●

●●●●

●●●
●

●●

●

●

●

●
●
●

●●
●●●
●●●
●
●●
●●●●●●

●
●
●
●●●●●●●●●●●●●●●
●

●●
●
●
●
●

●
●
●●●
●

●

●
●
●●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●
●●●●●●
●●●●●●●●●●
●●●
●●
●●●●●●●
●●●●●●●●●
●●●●●●
●●

●●●●
●
●●●
●●●

●
●
●●●●●

●

●

●
●●

●●

●

●●

●
●●

●

●●

●

●

●
●
●●

●●●
●●●●
●

●

●
●

●●●

●

●

●
●
●●
●●

●

●●
●

●

●

●●

●●
●●

●

●●●●
●
●●●
●

●

●
●
●●

●●

●

●
●

●●●●
●
●

●●
●
●●●
●
●

●

●●

●●●

●
●
●

●●

●●

●●

●●
●●

●●●●

●
●●
●
●

●

●

●

●
●

●●●

●
●
●
●

●

●

●

●
●
●●●
●●●
●
●

●●
●

●●

●●
●

●

●

●

●
●
●

●

●
●

●●

●●

●

●●
●
●

●

●

●

●
●

●

●●●

●●

●
●●
●●
●●●●

●●

●●

●●
●
●

●

●

●●

●

●
●●●
●

●
●●
●

●

●

●●
●
●●

●

●●●●●●

●

●
●●●●
●

●

●●
●●●
●

●
●
●

●

●●●
●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●
●●

●
●

●●●●

●

●●●●

●●●●●

●

●

●●

●●
●

●

●●

●●

●●
●

●●

●
●●
●●●●●●●
●

●●●
●

●●●●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●●

●●

●

●●●

●●

●●●

●

●

●

●

●●

●●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●●

●

●

●●●

●

●

●●

●●

●●

●

●

●

●

●●●

●●●

●●

●●

●●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●●

●●●

●●●●●

●●

●●●●●●

●●

●

●

●

●

●●

●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●●●

●

●

●●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●●●

●

●

●

●●●●●●●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●●●●●

●

●●●●●●

●●●

●

●●●●●●

●

●●●●

●●

●●

●●●

●●●●
●
●
●
●
●●

●●

●

●●

●
●

●

●●

●
●●●
●●
●●●●●●

●

●●

●

●●
●●

●●●●●

●
●●●
●●

●●●●

●
●●●
●

●

●

●●●
●●●
●●●●●

●●

●●●●●●●●
●●
●

●●

●

●
●●●●●●●
●●

●●●●●●●●
●

●●

●

●●
●

●●

●●
●
●●●

●

●
●
●

●

●
●

●

●
●
●●●●
●
●●●●●●●●

●

●●

●

●●

●

●●
●

●

●

●
●●
●
●●●●●●
●●
●●●
●
●
●
●
●
●
●●
●
●●
●
●●
●
●●●
●●●●●
●
●●
●
●
●●●●
●
●
●
●
●●●
●●●●●●●●●●
●●
●●
●
●●
●●●
●●●●●
●●
●
●
●
●
●
●●●
●●
●●●●
●
●●
●
●
●●●
●
●
●●●●●●
●●
●
●
●●
●●●
●●
●●
●●
●

●●●●●●●●●●●●●●●
●●●●●
●●●
●
●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●
●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●●●●●●
●●●●●
●
●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●
●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●
●●●●●●
●●
●●●●
●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●

4 4 4 4

0
10

20
30

40

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●

5 5 5 5

0
10

20
30

40

6 6 6 6

0
10

20
30

40

●●
●●

●●●●●
●
●●●●●●●●●●●
●●●●
●
●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

1 1 1 1

0
10

20
30

40

●●● ●●● ●● ●●

2 2 2 2

0
10

20
30

40

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●
●●
●●●●●
●●
●●●
●
●
●●●●●●●●●●●●●
●
●●●●●●
●
●●
●●●
●
●
●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●
●●
●●●●
●
●●●
●●
●●●
●●●●●●●●●●●
●●●●●●●●
●
●●
●
●●●●●●●●●
●
●●●●●●●●
●●●●●●
●●
●
●●●●●●
●●●
●●●●●
●●●●●●
●●●●●●●
●●●●●●●●●●●
●
●
●●●●●●●
●
●●
●
●●●
●●●●●●●●
●●●●●●●
●
●●
●●
●
●
●
●●●●
●●
●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●

3 3 3 3

0
10

20
30

40
Fa

ult
 R

at
e

(1
00

%
)

N 2*N 3*N PW

(a) Including outliers

4 4 4 4

0.
0

0.
2

0.
4

0.
6

0.
8

5 5 5 5

0.
0

0.
2

0.
4

0.
6

0.
8

6 6 6 6

0.
0

0.
2

0.
4

0.
6

0.
8

1 1 1 1

0.
0

0.
2

0.
4

0.
6

0.
8

2 2 2 2

0.
0

0.
2

0.
4

0.
6

0.
8

3 3 3 3

0.
0

0.
2

0.
4

0.
6

0.
8

Fa
ult

 R
at

e
(1

00
%

)

N 2*N 3*N PW

(b) Excluding outliers

Figure 4. Fault rate statistics for the six systems listed in Table II and four
sizes of training sets (N ∼ PW)

TABLE III
STATISTICS OF MEDIANS AND MEANS OF FAULT RATES (%)

them as the blue small circles in Figure 6. Here, FW is the
number of measurements needed by the feature-wise heuristic;
in our case, FW is equal to N for the six systems. Since our
approach works in an incremental way, we took the means of
fault rates on each size, listed in Table III, as sample points,
and fitted them to a curve using a quadratic polynomial, i.e.,
the black asterisks and black solid lines shown in Figure 6.
As listed in Table II, in most cases, PW is larger than 3 ∗N .

N 2*N 3*N PW
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Size of Training Set

Ti
m

e
co

ns
um

pt
io

n
(s

)

Apache
LLVM
x264
BerkeleyDBC
BerkeleyDBJ
SQLite

Figure 5. Time consumption of model building for the six systems and four
sizes of training sets

5 10 15 20 25 30
0

0.2

0.4

F
a
u
lt

R
a
te

 (
1
0
0
%

)

Apache

0 20 40 60 80 100
0

0.2

0.4

F
a
u
lt

R
a
te

 (
1
0
0
%

)

x264

20 40 60 80
0

0.1

0.2

#Measurements

F
a
u
lt

R
a
te

 (
1
0
0
%

)

BerkeleyDBJ

FW and PW
Our Approach

0 20 40 60 80
0.02

0.04

0.06

0.08
LLVM

0 50 100 150
0

0.5

1

1.5
BerkeleyDBC

0 200 400 600

0.08

0.09

0.1

#Measurements

SQLite

Figure 6. Comparison on small training sets

The exception is Berkeley DB Java where PW = 48 and
3 ∗N = 3 ∗ 26 = 78.

From Figure 6, we can see that our approach shows a robust
decreasing trend of the fault rate on small training sets. For half
of the analyzed systems (LLVM, x264, and Berkeley DB Java),
the black solid line is located below the two blue circles; that
is, our approach suffers smaller fault rates than the feature-
wise and pair-wise heuristics. In two systems (Apache and
Berkeley DB C), the fault rate of our approach is higher;
however, it decreases dramatically as the size of training set
scales from N to PW , and finally reaches a value very close
to the fault rate of the pair-wise heuristic.

It is worth mentioning that x264 contains many higher-
order feature interactions, so the feature-wise and pair-wise
heuristics produce higher fault rates and additional special
heuristics have to be considered to reduce the fault rate [8].

TABLE IV
FAULT RATES (%) FOR MISSING FEATURES

Our approach works well in this case without special treatment
of higher-order feature interactions.

4) Missing Features: Our hypothesis is that our approach
does not work well when some important features (e.g., the
features identified by CART) are missing completely. Table IV
lists the medians and means of fault rates when applying our
approach to the six systems and the training sets with some
missing features generated by randomly fixing 20% or 40%
of all features to “Y” or “N”. We observe an increasing trend
of the fault rate as the percentage of missing features increases
(20% ∼ 40%). In addition, we use the symbol “−” to indicate
situations, in which we cannot obtain enough (1

2∗PW ∼ PW)
configurations satisfying the fixing conditions. From Table IV,
one can see that we often cannot obtain enough configurations
when fixing features to “Y”. It is because a feature model has
many alternative groups (see Figure 1), in which only one
feature can be selected.

C. Threats to Validity

To avoid misleading effects of specific-selected training sets
and test sets, we generated them automatically by randomly
selecting four sizes of configurations respectively from all
valid configurations as the training set and all of the rest
as the test set, and repeated each random selection five
times with freshly generated training sets and test sets with
the same size. The exception is the test set of SQLite, in
which the original authors could not measure all possible
configurations in reasonable time and thus only sampled 100
random configurations for prediction evaluation [8].

Existing CART implementation tools (e.g., Rattle and rpart
in R) provide parameters to improve accuracy and reduce
modeling time [23], [28], but systematical tuning of all pa-
rameters leads to a manual, iterative process [13]. To achieve
a simple automated process of CART building, we used only
two relevant parameters and fixed others to control the building
process. We cannot guarantee that the accuracy and model
building time depend on certain shapes of CART. However,
to avoid influence of specific-shaped CART, we automatically
set the two parameters’ values according to the size of each
input training set and then generated CART automatically.

To increase external validity, we used a public dataset with
six systems spanning different domains with different sizes,
different configuration mechanisms, and different implemen-
tation languages. All the systems are deployed and used in

real-world scenarios. However, we are aware of that the results
of our evaluations are not automatically transferable to all
other customizable systems [8]. Moreover, the performance
is measured by standard benchmarks in respective application
domain. The generalities of measurement results depend on
the generalities of the workloads.

D. Discussion

By experiments on six real-world customizable systems,
we demonstrated the feasibility of our approach. With an
average accuracy of 94% (by statistics of means of fault rates
in Table III), our approach produces reasonable predictions
based only on a limited set of random configurations and their
corresponding performance measurements.

Our approach has the following desirable properties. First,
it achieves reasonable predictions with random configurations
(RQ 4). Second, it can flexibly process any quantity of
configurations, e.g., linear number of features (RQ 1). Third,
it shows a robust decreasing trend of the fault rate with the
increase of sample configurations; in most cases, it obtains
similar accuracies to or even better than the feature-wise and
pair-wise heuristics (RQ 3). The above three points support our
approach as an incremental approach: it produces results based
on existing data and improves accuracy continuously as the
dataset increases. Moreover, our approach incorporates feature
interactions and quantifies their performance influence implic-
itly during the process of model building. Our approach auto-
matically identifies only the most relevant features selections
for performance prediction (RQ 6), and performs well in the
presence of higher-order feature interactions (e.g., for x264),
without the need of additional measurements. Sometimes our
approach works well using only N sample configurations (e.g.,
half of analyzed systems in our experiments), which makes it
promising for systems with a large number of configurations.

With respect to RQ 5, if the data are really missing
completely at random, the only loss is statistical power [28].
Our empirical results also verify this viewpoint. However,
our experiment using the training sets with some missing
features simulates a special case. In practice, users may prefer
configurations with certain features and produce a set of
configurations that are skewed to some features as the training
examples, but the configurations they want to predict are
likely skewed to the same features. If users have to predict
new configurations with some features completely missing in
existing training examples, we suggest measuring at least two
(due to minbucket ≥ 2) configurations covering these missing
features before using our approach.

Our approach implements a simple automated process of
building CART by controlling only two parameters and avoids
overfitting to produce reasonable prediction accuracy (RQ 2).
But we also noticed that the fault rate of our approach will
decrease slowly when it has reached a “relatively” lower value.
Take Apache, for example, as shown in Table III, the mean
of fault rates reduces from 26.9% to 11.6%, as the size of
training set increases from N to 2∗N , but it still maintains at
9.7% when the size reaches PW . The problem is that the fault

rate of 9.7% is higher than 3.9% obtained by the pair-wise
heuristic [8]. We believe that the problem can be alleviated
by systematical parameter tuning for building a better CART,
which will explore in future work.

VI. RELATED WORK

A. Performance Modeling

There are many model-based approaches to performance
prediction [29], [30]. For example, linear and multiple re-
gression model the correlations between input parameters and
output performance metrics. Bayesian (or belief) networks
are used to learn causal relationships between parameters.
Machine learning approaches, such as principal component
analysis, are used to learn the correlations between config-
urations and a performance metric and find dimensions of
maximal variance in a dataset. However, the feasibility of these
approaches depends heavily on the application scenario and
program to be analyzed [8], because they usually require a
large training set. Hence, it is not clear for an application
scenario which method to choose. In contrast, we support any
kind of application scenario independently of the program to
be analyzed. We also empirically show that our approach can
obtain good prediction effects using only a small training set.

Happe et al. [31] proposed a compositional reasoning ap-
proach based on the component specifications with resource
demands and predicted execution time. Their approach is
applicable only to component-based systems, whereas our
approach is applicable to all customizable systems, once a
variability model is built for them. Westermann et al. [12]
presented an empirical study on automated inference of perfor-
mance prediction models using statistical inference techniques,
such as Kriging and MARS. They focused on building models
with less measurement points and lower average fault rates,
but they did not consider how to identify the configuration
parameters relevant to performance.

Tawhid and Petriu [32] presented a model-driven approach
to deriving a performance model from an extended feature
model with performance analysis information. The approach
requires up-front and detailed knowledge of domain-specific
performance analysis, which makes tuning prediction for ac-
curacy difficult. Our approach avoids the problems by directly
working with performance measurements. Ramirez and Cheng
[33] presented an approach that leverages goal-based models
to facilitate the automatic derivation of utility functions at
the requirements level, whereas our approach works at the
configurations level. Thereska et al. [13] proposed a practical
performance model for popular interactive client applications.
They mainly consider peripheral configuration parameters such
as CPU speed and memory size, while our approach focuses
on the features of customizable systems.

B. Measurement-Based Prediction

Siegmund et al. [8] first proposed a general measurement-
based approach that treats customizable systems as a black
box and detects performance-relevant feature interactions.
Their approach tries to find a sweet-spot between prediction

accuracy and measurement effort based on heuristics. The
approach needs a set of specifically selected configurations,
whereas our approach works with few random configurations.
Moreover, we do not have to detect all feature interaction
explicitly, because our approach quantifies their influence
implicitly in performance models. Nevertheless, we expect
that a combination of both approaches is beneficial to further
reducing measurements and increasing prediction accuracy.

Sincero et al. [34] used existing configurations and measure-
ments to predict a configuration’s non-functional properties.
They designed the Feedback approach to find the correlation
between feature selection and measurement and to provide a
qualitative information about how a feature influences a non-
functional property during configurations. In contrast to our
approach, their approach do not actually predict a value quanti-
tatively. Chen et al. [35] combined benchmarking and profiling
to build a model to predict the performance of component-
based applications. In contrast, our approach correlates perfor-
mance measurements with configurations and can work with
configurations collected by simulation or monitoring.

C. Root Cause Detection

Feature interactions are the main cause of unpredictable
performance anomalies [17]. Many researchers have applied
and extended various techniques to automatically detect fea-
ture interactions at the specification and semantic levels.
For example, at the specification level, they used pair-wise
measurement based on linear temporal logic [36] and state
charts [37] to model and detect feature interactions. At the
semantic level, namely feature interactions that change the
functional behavior of a program, they used model checking
[38], [39] and verification techniques [19], [40]. Some ap-
proaches aim at investigating the code base to detect structural
feature interactions [18], [41]. Siegmund et al. [8] focused on
all performance-relevant feature interactions in a black-box
fashion. In contrast, our approach incorporates performance-
relevant feature interactions and quantifies their influence
implicitly during performance modeling.

Some researchers found that different execution paths [14]
or different request flows [42] resulted from configuration
changes are the root-causes of performance changes or anoma-
lies. However, in most practice cases, we at most know the
feature model of a customizable system and a limited set of
existing configurations. It is difficult even for developers to
know how the configurations will be executed. So we still
consider customizable systems as a black box and model the
correlations between performance and feature selection.

VII. CONCLUSION

We proposed an incremental and variability-aware approach
to performance modeling of customizable software systems.
We used a statistical learning technique named CART to
correlate performance with feature selection. Our approach
incorporates performance-relevant feature interactions along
with the process of model building and quantifies their per-
formance influence implicitly in performance models. Our

approach identifies only the most relevant feature selections
automatically and uses them for performance prediction. We
demonstrated the feasibility of our approach by experiments
on six real-world systems spanning different domains, different
implementation languages, and different configuration mecha-
nisms. Our empirical results show that our approach produces
an average of 94% prediction accuracy using a limited set
of random sample configurations. Our approach also shows a
robust increasing trend of prediction accuracy as the number
of sample configurations increases.

Our approach has the potential of wide application to help
users understand tradeoffs between performance and feature
selection when configuring a customizable software system.
Next, we will consider systematical parameter tuning for
CART to further improve prediction accuracy and modeling
efficiency.

REFERENCES

[1] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer-Verlag,
2005.

[2] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[3] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[4] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wa̧sowski,
“Cool features and tough decisions: A comparison of variability mod-
eling approaches,” in VaMoS. ACM, 2012, pp. 173-182.

[5] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. “Feature-
oriented domain analysis (FODA) feasibility study,” Technical Report
CMU/SEI-90-TR-021, SEI, CMU, 1990.

[6] D. Batory, D. Benavides, and A. Ruiz-Cortés, “Automated analysis of
feature models: challenges ahead,” Communications of the ACM, vol.
49, no. 12, pp. 45-47, 2006.

[7] S. Apel and C. Kästner, “An overview of feature-oriented software
development,” Journal of Object Technology, vol. 8, no. 5, pp. 49-84,
2009.

[8] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory, M.
Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in ICSE. IEEE, 2012, pp. 167-177.

[9] N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and S.
Kolesnikov, “Scalable prediction of non-functional properties in software
product lines,” in SPLC. IEEE, 2011, pp. 160-169.

[10] J. Guo, J. White, G. Wang, J. Li, and Y. Wang, “A genetic algorithm for
optimized feature selection with resource constraints in software product
lines,” Journal of Systems and Software, vol. 84, no. 12, pp. 2208-2221,
2011.

[11] J. White, B. Dougherty, and D. Schmidt, “Selecting highly optimal
architectural feature sets with filtered cartesian flattening,” Journal of
Systems and Software, vol. 82, no. 8, pp. 1268-1284, 2009.

[12] D. Westermann, R. Krebs, and J. Happe, “Efficient experiment selection
in automated software performance evaluations,” in EPEW. Springer,
2011, pp. 325-339.

[13] E. Thereska, B. Doebel, A. Zheng, and P. Nobel, “Practical performance
models for complex, popular applications,” in SIGMETRICS. ACM,
2010, pp. 1-12.

[14] M. Attariyan and J. Flinn, “Automating configuration troubleshooting
with dynamic information flow analysis,” in OSDI. USENIX Associa-
tion, 2010, pp. 237-250.

[15] Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, “Generating range fixes
for software configuration,” in ICSE. IEEE, 2012, pp. 58-68.

[16] T. Berger, S. She, R. Lotufo, A. Wa̧sowski, and K. Czarnecki, “Vari-
ability modeling in the real: A perspective from the operating systems
domain,” in ASE. ACM, 2010, pp. 73-82.

[17] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec, “Feature
interaction: A critical review and considered forecast,” Computer Net-
works, vol. 41, no. 1, pp. 115-141, 2003.

[18] D. Batory, P. Höfner, and J. Kim, “Feature interactions, products, and
composition,” in GPCE. ACM, 2011, pp. 13-22.

[19] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer, “Detection
of feature interactions using feature-aware verification,” in ASE. IEEE,
2011, pp. 372-375.

[20] B. Lamancha and M. Usaola, “Testing product generation in software
product lines using pairwise for features coverage,” in ICTSS. Springer,
2010, pp. 111-125.

[21] J. Guo, Y. Wang, P. Trinidad, and D. Benavides, “Consistency mainte-
nance for evolving feature models,” Expert Systems with Applications,
vol. 39, no. 5, pp. 4987-4998, 2012.

[22] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[23] G. Williams, Data Mining With Rattle and R: The Art of Excavating

Data for Knowledge Discovery. Springer, 2011.
[24] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund, “Abstract Features

in Feature Modeling,” in SPLC. IEEE, 2011, pp. 191-200.
[25] S. Kullback, Information Theory and Statistics. Courier Dover, 1997.
[26] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer, 2009.
[27] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classication and

Regression Trees. Wadsworth, 1984.
[28] R.A. Berk, Statistical Learning from a Regression Perspective. Springer,

2008.
[29] A. Abdelaziz, W. Kadir, and A. Osman, “Comparative analysis of

software performance prediction approaches in context of component-
based system,” International Journal of Computer Applications, vol. 23,
no. 3, pp. 15-22, 2011.

[30] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: A survey,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 295-310, 2004.

[31] J. Happe, H. Koziolek, and R. Reussner, “Facilitating performance
predictions using software components,” IEEE Software, vol. 28, no.
3, pp. 27-33, 2011.

[32] R. Tawhid and D. Petriu, “Automatic derivation of a product performance
model from a software product line model,” in SPLC, 2011, pp. 80-89.

[33] A. Ramirez and B. Cheng, “Automatic derivation of utility functions
for monitoring software requirements,” in MoDELS. Springer, 2011, pp.
501-516.

[34] J. Sincero, W. Schröder-Preikschat, and O. Spinczyk, “Approaching non-
functional properties of software product lines: Learning from products,”
in APSEC. IEEE, 2010, pp. 147-155.

[35] S. Chen, Y. Liu, I. Gorton, and A. Liu, “Performance prediction of
component-based applications,” Journal of Systems and Software, vol.
74, no. 1, pp. 35-43, 2005.

[36] M. Calder and A. Miller, “Feature interaction detection by pairwise
analysis of LTL properties: A case study,” Formal Methods in System
Design, vol. 28, no. 3, pp. 213-261, 2006.

[37] C. Prehofer, “Plug-and-play composition of features and feature inter-
actions with statechart diagrams,” Software and System Modeling, vol.
3, no. 3, pp. 221-234, 2004.

[38] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: Efficient verification of temporal
properties in software product lines,” in ICSE. ACM, 2010, pp. 335-
344.

[39] K. Lauenroth, K. Pohl, and S. Toehning, “Model checking of domain
artifacts in product line engineering,” in ASE. IEEE, 2009, pp. 269-280.

[40] S. Apel, W. Scholz, C. Lengauer, and C. Kästner, “Detecting depen-
dences and interactions in feature-oriented design,” in ISSRE. IEEE,
2010, pp. 161-170.

[41] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,” in
ICSE. ACM, 2010, pp. 105-114.

[42] R. Sambasivan, A. Zheng, M. Rosa, and E. Krevat,“Diagnosing perfor-
mance changes by comparing request flows,” in NSDI. USENIX, 2011,
pp. 1-14.

