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Figure 1: The eCos Configurator

Abstract—To prevent configuration errors, highly config-
urable software often allows defining constraints over the
available options. As these constraints can be complex, fixing
a configuration that violates one or more constraints can be
challenging. Although several fix-generation approaches exist,
their applicability is limited because (1) they typically generate
only one fix, failing to cover the solution that the user wants;
and (2) they do not fully support non-Boolean constraints,
which contain arithmetic, inequality, and string operators.

This paper proposes a novel concept,range fix, for software
configuration. A range fix specifies the options to change
and the range of values at these options. We also design
an algorithm that automatically generates range fixes for a
violated constraint, based on Reiter’s theory of diagnosis. We
have evaluated our approach on data from five open source
projects, showing that, for our data set, the algorithm generates
complete fix lists that are mostly short and concise, in a fraction
of a second.

I. I NTRODUCTION

A growing share of software exposes sophisticated con-
figurability to handle variations in user and target-platform
requirements. Large enterprise resource planning systems
(e.g., SAP) need to be tailored to different business contexts.
Software product lines often supply software embedded
in specific hardware products like automobiles and air-
planes [1]. Operating systems (e.g., Linux and eCos) need
to run on different hardware platforms like desktops, servers
and mobile devices. To configure Linux for instance, users
typically select the CPU architecture (e.g., x86 or ARM),
the type of filesystem (e.g., ext4 or JFS), and the graphics
driver (e.g., ATI or NVIDIA).

These configuration options are usually described with
dedicated languages that document their hierarchy and con-
straints over their selection. For instance, the Linux kernel
uses Kconfig, and eCos—an embedded configurable operat-
ing system—uses CDL [2]. These real-world languages fall
under the umbrella of variability modelling languages [3].
Another popular variability modelling language is feature
models [4]. Developed jointly by researchers and practi-
tioners, it has been successfully implemented in commercial
product-line tools like pure::variants [5] and Gears [6], and
has an expressiveness comparable to that of Kconfig and
CDL [7].

Configurators translate these models into interactive con-
figuration interfaces, such as the one in Figure 1, and assist

users in arriving at a correct and complete configuration.
To do so, configurators detects possible configuration errors
and reports them. A configuration error is a decision that
conflicts with some constraints. Satisfying these constraints
is often non-trivial. Variability languages often carry ad-
vanced constructs that introduce hidden constraints [2], and
constraint rules declared in different places of the variability
model may have interactions. The interplay of these factors
often leads to very complex situations.

Some configuration tools, like those based on Kconfig,
implement an error avoidance mechanism that automatically
deactivates an option when a certain constraint is violated.
Inactive options are no longer available to the user unless
the constraint is satisfied again. Other configurators, likethe
eCos configurator for CDL (Figure 1), add an interactive
resolution mechanism on top of the avoidance mechanism.
This approach allows violating some constraints, but pro-
poses a fix for each violated constraint. A fix denotes a set
of changes that would restore the consistency of the current
configuration.

To better understand what challenges are faced by the
users of modern configurators, we carried out two empirical
studies of Linux and eCos. Two questionnaires were sub-
mitted to forums, mailing lists and experts with whom we
collaborate. In total, we collected answers from92 Linux
users with up to20 years of experience, and9 eCos users
with up to7 years of experience. The full report of this study
is avaible as a technical report [8]. We present here the two
challenges that stand out most from this study and that are
addressed in this paper:

• Activating inactive features. 18% of the Linux users
report that, when they need to change an inactive
option, they need at least a “few dozen minutes” in
average to figure out how to activate it. 56% of the
eCos users also consider the activation of an inactive
option to be a problem.

• Fix incompleteness.Existing configurators generate
only one fix for an error. However, there are often
multiple solutions to resolving an error, and the user
may prefer other solutions.7 out of 9 eCos users have
encountered situations where thegenerated fix is not
useful. That claim is corroborated by Berger et al.
[2] who report that eCos users complain about the
incompleteness of fixes on the mailing list.

Since we also need to satisfy the corresponding constraint
to activate a feature, activation is inherently the same as
resolving a configuration error, and the idea of fixes would
also work for activation. As a result, a possible solution
for the above two problems is to generate fixes for both
resolving errors and activating features, and fixes should be
complete so that the user can choose the one he wants.

To achieve this goal, two main challenges need to be
addressed. First, our previous study of eCos models [9]
shows that non-Boolean operators, such as arithmetic, in-



equality, and string operators, are quite common in their
constraints. In fact, the models contain four to six times
more Non-Boolean constraints than Boolean ones. Non-
Boolean constraints are challenging since there is often
an infinite number of ways to satisfy them. Computing
such infinite list of fixes is pointless. Thus, acompactand
intentional representation of fixes is needed. Second, many
existing approaches rely on constraint solvers to generate
fixes, either using solvers for MAXSAT/MAXSMT [10] or
the optimizing capability of CSP solvers [11]. However, all
these solvers return only one result per call, which is not
easily applicable to the generation of complete lists of fixes.
A new method to generate complete lists of fixes still needs
to be found.

This paper proposes a new approach to generating fixes
for software configuration. Our contribution is threefold:

• Range fixes.We propose a novel concept,range fix
(Section II), to address the first challenge. Instead of
telling users what concrete changes should be made, a
range fix tells them what options should be changed
and in what range the value of each option can be
chosen. A range fix can represent infinite number of
concrete fixes and still retains the goal of assisting the
user to satisfy constraints. Particularly, we discuss the
desired properties of range fixes, which formalize the
requirement of the fix generation problem. In addition,
we also discuss how constraint interactions should be
handled in our framework (Section IV).

• Fix generation algorithm. We designed an algorithm
that generates range fixes automatically (Section III)
to address the second challenge. Our algorithm builds
upon Reiter’s theory of diagnosis [12], [13] and SMT
solvers [14]. Additionally, our algorithm is designed for
a general representation of constraints and variables,
which makes it potentially useful in other areas such
as debugging.

• Evaluation with eCos. Our algorithm is (1) applied
on eCos CDL (Section V) and (2) evaluated on data
from five open source projects using eCos (Section VI).
The evaluation compares three different fix generation
strategies and concludes that the propagation strategy
is the most effective one on our dataset. Specifically,
for a total of 117 constraint violations, the evaluation
of the propagation strategy shows that our notion of
range fix leads to mostly simple (83% of the fix lists
have sizes smaller than 10, where the size is measured
by summing up the number of variables in all the
fixes in the list) yet complete set of fixes. It also
demonstrates that our algorithm can generate fixes for
models containing hundreds of options and constraints
in an average of 50ms and a maximum of 245ms.

Finally, we discuss threats to validity in Section VII, the
related work in Section VIII and conclude the paper in

Figure 2: Option “Startup”

Figure 3: Option “Object Pool Size”

Section IX.

II. RANGE FIXES

Motivating example We now motivate our work with
a concrete example based on the eCos configurator [15].
Figure 1 shows a small model for configuring an object pool.
The left panel shows a set of options that can be changed by
the user, organized into a tree. The lower-right panel shows
the properties of the current option, defined according to
the eCos models. Particularly, theflavor property indicates
whether the option is a Boolean option or a data option.
A Boolean option can be either selected or unselected; a
data option can be assigned an integer or a string value.
In Figure 1, “Pre-Allocation Size” is a data option; “Use
Pre-Allocation” is a Boolean option.

Besides the flavor, each option may also declare con-
straints usingrequiresproperty oractive-if property. When
a requires constraint is violated, an error is reported in the
upper-right panel. In Figure 1, option “Pre-Allocation Size”
declares a requires constraint requiring its value be smaller
than or equal to “Object Pool Size”, and an error is reported
because the constraint is violated.

An active-if constraint implements the error avoidance
mechanism. When it is violated, the option is disabled in the
GUI and its value is considered as zero. Figure 2 shows the
properties of the “Startup” option. This option declares that
at most half of the object pool can be pre-allocated. Since
this constraint is violated, the “Startup” option is disabled
and the user cannot change its value.

Fixing a configuration error or activating an option re-
quires satisfying the corresponding constraints. In orderto
fix the error on “Pre Allocation Size” in Figure 1, we need to
look up the definition of “Object Pool Size”. In Figure 3, we
see that “Object Pool Size” declares acalculatedproperty
meaning that the value of the option cannot be modified by
the user. Instead, it is determined by a declared expression.
As a result, the constraint declared on “Pre-Allocation Size”
is, in fact, the following:
Pre_Allocation_Size <=

Buffer_Size * 1024 / Object_Size



Furthermore, according to the CDL semantics, a constraint
is effective—and thus considered by the error checking
system—only when its containing option is active, and an
option is active only when its active-if constraint is satisfied
and its parent option is selected. “Pre-Allocation Size” has
a parent, yielding the following complete constraint:
Use_Pre_Allocation -> (Pre_Allocation_Size <=

Buffer_Size * 1024 / Object_Size)

By analyzing the constraint, we realize that we may fix
the error by one of the following changes: decreasing “Pre-
Allocation Size”, or increasing “Buffer Size”, or decreasing
“Object Size”, or, more simply, disabling the pre-allocation
function. Now we could choose one of these possibilities
and navigate to the respective option to make the change.

This example shows that there are three sub-tasks for
enabling a constraint. First, the user needs to figure out
the complete semantic constraint according to the constraint
language. Since variability languages often have fairly com-
plex semantics on visibility and value control [2], it is very
easy to overlook some part of the constraint. Secondly,
users needs to analyze the semantic constraint and figure out
how to change the options to make it satisfied. In practice,
constraints can be very large. One semantic constraint we
have found in a CDL model contains55 options references
and 35 constants, connected by66 logical, arithmetic and
string operators. It is very difficult to analyze such a large
constraint. Thirdly, users have to navigate to the correspond-
ing options and make the changes. Real world variability
models contain thousands of options, e.g., an eCos model
reported [2] contains1244 options, which makes navigation
very cumbersome [8].

Solution Our approach automatically generates a list of
range fixes to help satisfy a constraint. For the error in
Figure 1, we will generate the following fixes.

• [Use_Pre_Allocation := false]

• [Pre_Allocation_Size: Pre_Allocation_Size <=

8]

• [Buffer_Size: Buffer_Size >= 5]

• [Object_Size: Object_Size <= 409.6]

Each range fix consists of two parts: the option to be
changed and a constraint over the options showing the range
of values. The first range fix is also a concrete assignment,
and will be automatically applied when selected. The other
fixes are ranges. If the user selects, for example, the second
fix, the configurator will highlight option “Pre-Allocation
Size”, prompt the range “<=8”, and ask the user to select a
value in the range.

Range fixes automate the three sub-tasks mentioned
above. The semantics of CDL constructs is automatically
taken into account and the constraint is automatically ana-
lyzed. The navigation is also automatically performed when
applying a fix. The user only has to choose a fix and decide
a value within the range of the fix.

Definitions Although different variability languages have
different constructs and semantics, existing work [2], [16],
[17] shows that all variability models can be converted into
a set of variables (options) and a set of constraints. Our
approach also builds upon this principle.

In essence, a variability language provides a universe
of typed variablesV and a constraint languageΦ(V) for
writing quantifier-free predicate logic constraints overV.
Consequently, aconstraint violation consists of a tuple
(V, e, c), where V ⊆ V is a set of typed variables; the
current configuratione is a function assigning a type-correct
value to each variable; andc ∈ Φ(V ) is a constraint over
V violated bye. A fix generation problem for a violation
(V, e, c) is to find a set of range fixes to help users produce
a new configuratione′ such thatc is satisfied, denoted as
e′ |= c.

Consider the following example of a constraint violation:

V : {m : Bool, a : Int, b : Int}
e : {m = true, a = 6, b = 5}
c : (m → a > 10) ∧ (¬m → b > 10) ∧ (a < b)

(1)

All range fixes we have seen so far change only one
variable, but more complex fixes are sometimes inevitable.
For example, we cannot solve violation (1) by changing only
one variable. Several alternative fixes are possible:

• [m := false, b : b > 10]
• [(a, b) : a > 10 ∧ a < b]

The first fix contains two parts separated by “,”, each
changing a variable. We call each part afix unit. The second
fix is more complex. This fix contains only one fix unit, but
the range of this fix unit is defined on two variables. When
the fix is executed, the user has to choose a value for each
variable within the range.

Taking the above forms into consideration, we can define
a range fix. Arange fixr for a violation(V, e, c) is a set of
fix units. A fix unit can be either anassignment unitor a
range unit. An assignment unit has the form of “var := val”
wherevar ∈ V is a variable andval is a value conforming
to the type ofvar. A range unit has the form of “U : cstrt”,
whereU ⊆ V is a set of variables andcstrt ∈ Φ(U) is a
satisfiable constraint overU specifying the new ranges of
the variables. A technical requirement is that the variables
in fix units should be disjoint, otherwise two different values
may be assigned to one variable.

We user.V to denote the set of the variables to be changed
in all units. We user.c to denote the conjunction of the
constraints from all units. The constraint from an assignment
unit “var := val” is var = val, and the constraint from a
range unit “U : cstrt” is cstrt. For example, letr be the
range fix [m := false, b : b > 10], thenr.v = {m, b} and
r.c is m = false ∧ b > 10.

Applying range fix r of violation (V, e, c) to e will
produce a new configuration interactively. We denote all
possible configurations that can be produced by applying



r to e asr ⊲ e, wherer ⊲ e = {e′ | e′ |= r.c∧ ∀v∈V (e
′(v) 6=

e(v) → v ∈ r.V )}

Desired Properties A simple way to generate a fix from
a violated constraint is to produce a range unit where the
changed variables are all variables in this constraint and the
range of these variables is the constraint itself. For example,
the fix for violation (1) could be[(m, a, b) : (m → a >

10) ∧ (¬m → b > 10) ∧ (a < b)]. However, such a fix is
as difficult to understand as the original constraint. In this
subsection, we discuss the desired properties of range fixes.

Supposer is a range fix for a violation(V, e, c). The
first desired property is that a range fix should be correct:
all configurations that can be produced from the fix must
satisfy the constraint.

Property 1 (Correctness). ∀e′ ∈ (r ⊲ e), e′ |= c

Each value currently assigned to a variable is a config-
uration decision made by the user, and a fix should alter
as few decisions as possible. The second desired property
is thus that a fix should change a minimal set of variables.
For example,[m := true, b : b > 10] is preferable to
[m := true, b : b > 10, a : a = 9] because the latter
unnecessarily changesa, which does not contribute to the
satisfaction of the constraints.

Property 2 (Minimality of variables). There exists no fixr′

for (V, e, c) such thatr′ is correct andr′.V ⊂ r.V .

Minimal fixes, however, might not cover all possible
changes that resolve a violation, and these uncovered cases
might be preferred by some users. However, as our evalua-
tion will show, minimality is good heuristics in practice.

Thirdly, after determining a set of variables, we would like
to present the maximal range of the variables. The reason is
simple: extending the range over the same set of variables
gives more choices, and usually neither decreases readability
nor affects more existing user decisions. For example,[m :=
true, b : b > 10] is better than[m := true, b : b > 11]
because it covers a wider range onb.

Property 3 (Maximality of ranges). There exists no fixr′

for (V, e, c) such thatr′ is correct,r′.V = r.V and(r⊲e) ⊂
(r′ ⊲ e)

Fourthly, after deciding the range over the variables,
we would like to represent the range in the simplest way
possible. Thus, another desired property is that a fix unit
should change as few variables as possible. In other words,
no fix unit can be divided into smaller equivalent fix units.
We call this propertyminimality of units.

However, as we treatΦ as a general notion, our gen-
eration algorithm cannot ensure all fix units are minimal.
Therefore we do not treat this property as part of the formal
requirement. However, this does not seem to be a limitation
in practice; all fix units generated in our evaluation contain
only one variable, which are minimal by construction.

Armed with these properties of range fixes, we can define
thecompletenessof a list of fixes. Since the same constraint
can be represented in different ways, we need to consider
the semantic equivalence of fixes. Two fixesr and r′ are
semantically equivalentif (r ⊲ e) = (r′ ⊲ e), otherwise they
aresemantically different.

Property 4 (Completeness of fix lists). Given a constraint
violation (V, e, c), a list of fixesL is complete iff

• any two fixes inL are semantically different,
• each fix inL satisfies Property 1, 2, and 3,
• and any fix that satisfies Property 1, 2 and 3 is

semantically equivalent to a fix inL

Thus, afix generation problemis to find a complete list
of fixes for a given constraint violation(V, e, c).

III. F IX GENERATION ALGORITHM

In Section II we claimed that a fix should change a
minimal set of variables and have a maximal range. As
a result, our generation algorithm consists of three steps.
(i) We find all minimal sets of variables that need to be
changed. For example, in violation (1), a minimal set of
variables to change isD = {m, b}. (ii) For each such
set of variables, we replace any unchanged variable inc

by its current value, obtaining a maximal range of the
variables. In the example, we replacea by 6 and get
(m → 6 > 10)∧(¬m → b > 10)∧(6 < b). (iii) We simplify
the range to get a set of minimal, or close to minimal, fix
units. In the example we will get[m := true, b : b > 10].
Step (ii) is trivial and does not demand further developments.
We now concentrate on steps (i) and (iii).

A. From constraint and configuration to variable sets

To collect all minimal variable sets, we resort to Reiter’s
theory of diagnosis [12]. This theory defines the problem of
diagnosis and gives an incomplete algorithm for solving the
problem. This algorithm was later corrected by Greiner et al.
[13] and is now known asHS-DAGalgorithm. Fundamen-
tally, Reiter’s theory assumes a constraint set that can be split
into hard andsoftconstraints. The set of hard constraints are
invariable and assumed satisfiable. The set of soft constraints
can be altered and also be unsatisfiable. Adiagnosisis a
subset of soft constraints that, when removed from the set,
restores the satisfiability of the whole set. The problem of
diagnosis is to find all minimal diagnoses from a set of hard
and soft constraints.

Given the constraint violation(V, e, c), we convert the
problem of finding minimal variable sets to the problem of
diagnosis by treatingc as a hard constraint and converting
e into soft constraints. For example, violation (1) can be



converted into the following constraint set.

Hard constraint (c):
[0] (m → a > 10) ∧ (¬m → b > 10) ∧ (a < b)

Soft constraints (e):
[1] m = true

[2] a = 6
[3] b = 5

To make the whole set satisfiable, we need to remove at least
constraints{1, 3} or constraints{2, 3}, which correspond to
two variable sets{m, b} and{a, b}.

To find all diagnoses, Reiter’s theory uses an ability of
most SAT/SMT solvers: finding an unsatisfiable core. An
unsatisfiable coreis a subset of the soft constraints that is
still unsatisfiable. For example, the above constraint set has
two unsatisfiable cores{1, 2} and{3}.

If we cancel a constraint from each unsatisfiable core, we
get a diagnosis. The HS-DAG algorithm implements this
idea by building a directed acyclic graph (DAG), such that
each node is labelled either by an unsatisfiable core or SAT,
and each arc is labelled by a constraint that is cancelled. The
union of the labels on every path from the root to a SAT
node defines a diagnosis.

Figure 4: HS-
DAG

Figure III-A shows an HS-DAG
for the above example. Suppose the
constraint solver initially returns the
unsatisfiable core{1, 2}, and a root
node is created for this core. Then
we build an arc for each constraint in
the core. In this case, we build two
arcs 1 and 2. The left arc is1, so
we remove constraint[1] from the set,
and invoke the constraint solver again.
This time the constraint solver returns
{3}. We remove constraint[3] and
now the constraint set is satisfiable.
We create a node SAT for the edge. Similarly, we repeat
the same steps for all other edges until all paths reach SAT.
Finally, each path from the root to the leaf is a diagnosis.
In this case, we have{1, 3} and{2, 3}.

This process alone cannot ensure that the generated di-
agnoses are minimal. To ensure it, three additional rules
are applied to the algorithm. The details of these rules can
be found in [13], and are omitted here due to space limit.
Greiner et al. [13] prove that HS-DAG builds a complete set
of minimal diagnosis after applying the three rules.

B. From variable sets to fixes

Equipped with the minimal variable sets, we can substitute
the configuration values of the variables that do not belong
to these sets intoc (Step (ii)). Step (iii) is to divide this
modified constraint into smaller fix units.

Since the operators in the constraints differ from one
language to the other, this task is essentially domain-specific.

Nevertheless, since we assume the constraint language is
based on quantifier-free predicate logic, we can do some
general processing. The basic idea is to convert the constraint
into conjunctive normal form (CNF), and convert each clause
into a fix unit. Yet, we still need to carefully make sure the
fix units are disjoint and are as simple as possible.

First, if the constraints contain any operators convertible
to propositional operators, we convert them into propo-
sitional operators. For example, eCos constraints contain
the conditional operator “:?” such as(m ? a : b) > 10.
We convert it into propositional operators:(¬m ∨ a >

10) ∧ (m ∨ b > 10).
Secondly, we convert the constraint into CNF. In our

example, with{m, b}, we have(m → 6 > 10) ∧ (¬m →
b > 10) ∧ (6 < b), which gives three clauses in CNF:
{¬m ∨ 6 > 10, m ∨ b > 10, 6 < b}.

Thirdly, we apply the following rules repetitively until we
reach a fixed point.

Rule 1 Apply constant folding to all clauses.
Rule 2 If a clause contains only one literal, delete the

negation of this literal from all other clauses.
Rule 3 If a clauseC1 contains all literals inC2, delete

C1.
Rule 4 If a clause taking the form ofv = c wherev is a

variable andc is a constant, replace all occurrences
of v with c.

In our example, applying Rule 1 to the above CNF, we
get {¬m, m ∨ b > 10, 6 < b}. Apply Rule 2 to the above
CNF, we get{¬m, b > 10, 6 < b}. No further rule can be
applied to this CNF.

Fourthly, two clauses are merged into one if they share
variables. In the example, we have{¬m, b > 10 ∧ 6 < b}.

Fifthly, we apply any domain specific rules to simplify
the constraints in each clause, or divide the clause into
smaller, disjoint ones. These rules are designed according
to the types of operators used in the constraint language.
In our current implementations of CDL expressions, we use
two types of rules. First, for clauses containing only linear
equations or inequalities with one variable, we solve them
and merge the result. Secondly, we eliminate some obviously
eliminable operators, such as replacinga+0 with a. We also
apply Rule 1 and Rule 4 shown above during the process.
In the example, the second clause consists of two linear
inequalities, we solve the inequalities and merge the ranges
on b, we get{¬m, b > 10}.

Finally, we convert each clause into a fix unit. If the clause
has the form ofv, ¬v, or v = c, we convert it into an
assignment unit, otherwise we convert it into a range unit.
In the example, we convert¬m into an assignment unit and
b > 10 into a range unit and get[m := false, b : b > 10].

As mentioned before, the above algorithm does not guar-
antee the fix units are minimal. The reason is that we
cannot ensure that the domain-specific rules in the fifth step



are complete, since some common operators such those on
strings are undecidable in general [18].

IV. CONSTRAINT INTERACTION

So far we have only considered range fixes for one
constraint. However, the constraints in variability models
are often interrelated; satisfying one constraint might violate
another. As a result, we have to considermulti-constraint
violation rather than single-constraint violation. A multi-
constraint violation is a tuple(V, e, c, C), whereV and e

are unchanged,c is the currently violated constraint, andC
is the set of constraints defined in the model and satisfied
by e. The following example shows how a fix satisfyingc
can conflict with other constraints inC that were previously
satisfied.

V : {m : Bool, n : Bool, x : Bool, y : Bool, z : Bool}
e : {m 7→ true, n 7→ false, x 7→ false,

y 7→ false, z 7→ false}
c : m ∧ n

C : {c2, c3} where
c2 is n → (x ∨ y)
c3 is x → z

(2)
If we generate a fix from(V, e, c), we obtainr = [n :=
true]. However, applying this fix will violatec2.

Existing work has proposed three different strategies to
deal with this problem; each has its own advantages and
disadvantages. We now revisit these three strategies, and
show that they can all be used with range fix generation
by converting a multi-constraint violation into a single-
constraint one. In the evaluation section we will give a
comparison of the three strategies.

Ignorance All constraints inC are simply ignored, and
only fixes for (V, e, c) are generated. This strategy is used
in fix generation approaches considering only one constraint
[19]. This strategy does not solve the constraint interaction
problem at all. However, it has its merits: first, the fixes
are only related to the violated constraint, which makes it
easier for the user to comprehend the relation between the
fixes and the constraints; secondly, this strategy does not
suffer from the problems of incomplete fix list and large fix
list, unlike the two others; thirdly, this strategy requires the
least computation effort and is the easiest to implement.

Elimination When a fix violates other satisfied constraints,
it is excluded from the list of fixes, i.e., the fix is “elimi-
nated” by other constraints. In the example in violation (2),
fix r will violate c2 and thus is excluded from the generated
fix set. This strategy is proposed by Egyed et al. [20] and
used in their UML fix generation tool.

To apply this strategy to range fix generation, we first
find a subset ofC that shares variables withc, then replace
the variables not inc with their current values ine, and
connect all constraints by conjunctions. For example, to

apply the elimination strategy to violation (2), we first find
the constraints sharing variables withc, which includes only
c2, and then replacex andy in c2 with their current values,
getting c′

2
= n → false ∨ false. Then we generate fixes

for (V, e, c ∧ c′
2
).

Although the elimination strategy prevents the violation
of new constraints, it has two noticeable drawbacks. First,
it exudes many potentially useful fixes. In many cases, it
is inevitable to bring new errors during error resolution.
Simply excluding fixes will only provide less help to the
user. In our example, we will get an empty fix set, which
does not help the user resolve the error. Secondly, since we
need to deal with the conjunction of several constraints, the
resulting constraint is much more complex than the original
one. Our evaluation showed that some conjunctions can
count more than ten constraints. Nevertheless, compared to
the propagation strategy, this increase in complexity is still
small.

Propagation When a fix violates other constraints, we fur-
ther modify variables in the violated constraints to keep these
constraints satisfied. In this case, the fix is “propagated”
through other constraints. For example, fixr will violate c2,
so we further modify variablesx or y to satisfyc2. Then the
modification ofx will violate c3, and we further modifyz. In
the end, we get two fixes[n := true, x := true, z := true]
and [n := true, y := true]. This approach is used in the
eCos configuration tool [15] and the feature model diagnosis
approach proposed by White et al. [11].

To apply this strategy, we first perform a static slicing on
C to get a set of constraints directly or indirectly related to
c. More concretely, we start from a setD containing only
c. If a constraintc′ shares any variable with any constraint
in D, we addc′ to D. We keep adding constraints until
we reach a fixed point. Then we make a conjunction of
all constraints inD, and generate fixes for the conjunction.
For example, if we want to apply the propagation strategy
to violation (2), we start withD = {c}, then we addc2
because it sharesn with c, next we addc3 because it shares
x with c2. Now we reach a fixed point. Finally, we generate
fixes for (V, e, c ∧ c2 ∧ c3).

The propagation strategy ensures that no satisfied con-
straint is violated and no fix is eliminated. However, there are
two new problems. First, the performance cost is the highest
among the three strategies. The constraints in real-world
models are highly interrelated. In large models, the strategy
often led to conjunctions of hundreds of constraints. The
complexity of analyzing such large conjunctions is signifi-
cantly higher than analyzing a single constraint. Secondly,
since many constraints are considered together, this strategy
potentially leads to large fixes (i.e., fixes that modify a large
set of variables), and large number of fixes, which are not
easy to read and to apply.



V. I MPLEMENTATION

We have implemented a command-line tool generating
fixes for eCos CDL using the Microsoft Z3 SMT solver
[14]. Our tool takes a CDL configuration as input, and
automatically generates fixes for each configuration error
found. Alternatively, the user can enter an option to activate
via the command-line interface, and our tool generates fixes
to activate this option.

To implement our algorithm, one important step is to
convert the constraint in the CDL model into the standard
input format of the SMT solver: SMT-LIB [21]. To perform
this task, we carefully studied the formal semantics of CDL
[17], [22] through reverse engineering from the configurators
and the documents. However, there are still two problems to
deal with. First, CDL is an untyped language, while SMT-
LIB is a typed language. To convert CDL, we implement
a type inference algorithm to infer the types of the options
based on their uses. When a unique type cannot be inferred
or type conflicts occur, we manually decide the feature types.

The second problem is dealing with string constraints.
The satisfiability problem of string constraints is undecidable
in general [18], and general SMT solvers do not support
string constraints [14]. Yet, string constraints are heavily
used in CDL models. Nevertheless, our previous study on
CDL constraints [9] actually shows that the string constraints
used in real world models employ a set semantics: a string
is considered as a set of substrings separated by spaces, and
string functions are actually set operations. For example,
is_substr is actually a set member test. Based on this
discovery, we encode each string as a bit vector, where
each bit indicate a particular substring is presented or not.
Since in fix generation we will never need to introduce new
substrings, the size of the bit vector is always finite and can
be determined by collecting all substrings in the model and
the current configuration.

VI. EVALUATION

A. Methodology

Our algorithm ensures Properties 1-4 for the generated
range fixes. However, to really know whether the approach
works in practice, several research questions need to be
answered by empirical evaluation:

• RQ1: How complex are the generated fix lists?
• RQ2: How often are the final user changes covered by

our fixes?
• RQ3: How efficient is our algorithm?
• RQ4: Does our approach cover more user changes than

existing approaches?
• RQ5: What are the differences among the three strate-

gies?

The evaluation uses 6 eCos configuration files from 5
eCos-based open-source projects (Table I). Each file targets

Table I: Real World Configuration Files

Architecture Project Options Constraints Changes
virtex4 ReconOS 933 330 49
xilinx ReconOS 765 272 53
ea2468 redboot4lpc 658 96 14
aki3068net Talktic 817 195 3
gps4020 PSAS 535 85 23
arcom-viper libcyt 771 189 26

Table II: Constraint violations

Architecture Erros in defaults Errors in changes Activating
virtex4 56 5 15
xilinx 48 1 2
ea2468 8 8 1
aki3068net 26 3 0
gps4020 12 10 4
arcom-viper 26 0 0

a different hardware architecture (the first column in Ta-
ble I); each architecture uses a different mixture of eCos
packages, yielding variability models with different options
and constraints (columns three and four). The configuration
process for a given model starts from the model’s default
configuration; the last column in Table I specifies the number
of changes made by a project to a default configuration.

The evaluation needs a set of real-world constraint viola-
tions. Interestingly, the default configuration for each model
already containserrors—violations of requires constraints.
The first column in Table II shows their numbers. The mod-
els share common core packages, causing duplicated errors.
A set of 68 errors from defaults remain after removing
duplicates.

For RQ2 and RQ4, we attempt to recover the sequence
of user changes from the revision history of the configura-
tion files. We assume that the user starts from the default
configuration and solves errors from defaults by accepting
the suggestions from the eCos configurator. We record this
corrected default configuration as the first version. Then we
diff each pair of consecutive revisions to find changes to
options. Next we replay these changes to simulate the real
configuration process. Since we do not know the order of
changes within a revision, we use three orders: a top-down
exploration of the configuration file, a bottom-up one, and
a random one. The rationale for the first two orders is that
expert users usually edit the textual configuration file directly
rather than using the graphical configurator. In this case, they
will read the options in the order that they appear in the file,
or the inverse if they scroll from bottom to top.

We replay the changes as just explained and collect (i)
errors—violating requires constraints—and (ii)activation
violations. An activation violation occurs when an option
value should be changed, but is currently inactive. The last
two columns in Table II show the numbers of the resulting
violations from changes. After duplicate removal, 27 errors
and 22 activation violations remain; together with the first
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dataset, we have a total of117 multi-constraint violations.
Finally, we invoke our tool to generate fixes for the

117 violations. For RQ4, we also invoke the built-in fix
generator of the eCos configurator on the 27 errors from
the user changes. The activation violations are not compared
because they are not supported by the eCos configurator. The
experiments were executed on computer with Intel Core i5
2.4 GHz CPU and 4 GB memory.

B. Results

We first give the results for RQ1-RQ4 using the propaga-
tion strategy. We answer RQ5 by presenting the comparison
of the three strategies last.

RQ1 To answer RQ1, we first consider two basic measures
over the 117 violations: the distribution of the number of
fixes per violation (see Figure 5) and the distribution of the
number of variables changed by each fix (see Figure 6).
From these figures we see that most fix lists are short
and most fixes change a small number of variables. More
concretely,95% of the fix lists contain at most five fixes
and75% of the fixes change less than five variables. There
is also an activation violation that did not produce any fix. A
deeper investigation of this violation revealed that the option
is not supported by the current hardware architecture, and
cannot be activated without introducing new configuration
errors. The extracted changes actually lead to an unsolved
configuration error in the subsequent version.

It is still unclear how the combination of fix number and
fix size affect the size of a fix list, and how the large fixes
and long lists are distributed in the violations. To understand
this, we measure the size of a fix list. The size of a fix list
is defined as the sum of the number of variables in each fix.
The result is shown in Figure 7. From the figure we can see
that the propagation strategy does lead to large fix lists. The
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largest involves 58 variables, which is not easily readable.
However, the long lists and large fixes tend to appear only
on a relatively few number of violations, and the majority
of the fix lists are still small: 83% of the violations contains
less than 10 variables.

We also measure the number of variables in each fix unit
to understand how large the fix units are. It turns out that
every fix unit contains only one variable. This shows that
(1) “minimality of fix units” effectively holds on all the
violations and (2) ranges declared on more than one variable
(such as the second fix for violation (1)) have never appeared
in the evaluation.

RQ2 Given an error or activation violation, we examined
the change history to identify a subsequent configuration that
corrected the problem. To answer RQ2, we checked if the
values in the corrected configuration fell within one of the
ranges proposed by our generated fixes.

There are in total47 out of 49 violations with subsequent
corrections in our dataset. The fixes generated by our tool
covered 46 of these violations (98%). An investigation into
the remaining violations showed that the erroneous option
discussed in RQ1 is responsible for that discrepancy. Since
the propagation strategy ensures no new error is introduced,
the resolved value from the dataset was not proposed as a
fix.

RQ3 For each of the 117 violation, we invoked the fix
generator 100 times, and calculated the average time. The
result is presented as a density graph in Figure 8. It shows
that most fixes are generated within 100 ms. Some fixes
require about 200 ms, which is still acceptable for interactive
tools.

RQ4 We measure whether the fixes proposed by the eCos
configurator cover the user changes in the same way as in



RQ2. Since the eCos configurator is unable to handle the ac-
tivation violations, we measure only error resolutions. There
are 26 out of 27 errors that have subsequent corrections. The
eCos configurator was able to handle19 of the 26 errors,
giving a coverage of73%. Comparatively, our tool covered
all 26 errors.

RQ5 As discussed in Section IV, the propagation strategy
potentially produces large fix lists. At this stage, we would
like to know if the other two strategies actually produce
simpler fixes. We compare the size of fix lists generated
by the three strategies in Figure 9. The elimination and
ignorance strategies completely avoid large fix lists, with
the largest fix list containing four variables in total. The
elimination strategy changes even fewer variables because
some of the larger fixes are eliminated.

We also compare the generation time of the three strate-
gies. For all violations, the average generation time for the
propagation strategy is 50ms, while the elimination strategy
is 20ms and the ignorance strategy is 17ms. Since the overall
generation time is small, it does not make a big difference
in tooling.

Next, we want to understand to what extent the other
two strategies affect completeness or bring new errors.
First we see that the elimination strategy does not generate
fixes for 17 violations. This is significantly more than the
ignorance and propagation strategies, which have zero and
one violation, respectively. We measure the coverage of user
changes using the elimination strategy. In the 47 violations,
only 27 are covered, giving a coverage of 57%. This is even
lower than the eCos configurator, which generates only one
fix, showing that a lot of useful fixes were eliminated by
this strategy.

The problem of the ignorance strategy is that it may bring
new errors. To see how frequently a fix brings new errors,
we compare the fix list of the ignorance strategy with the
fix list of the elimination strategy. If a fix does not appear
in the list of elimination strategy, it must potentially bring
new errors. As a result, 32% of the fixes generated by the
ignorance strategy bring new errors, which covers 44% of
the constraint violations. This shows that the constraintsin
practice are usually inter-related and the ignorance strategy
potentially causes new errors in many cases.

VII. T HREATS TOVALIDITY

We see two main threats to external validity. First, we have
evaluated our approach on one variability language. How-
ever, Berger et al. [2] study and compare three variability
languages—CDL, Kconfig and feature modeling—and find
that CDL has the most complex constructs for declaring
constraints, and constraints in CDL models are significantly
more complex than those in Kconfig models. Thus, our result
is probably generalizable to the other two other languages.

The second threat is that our evaluation is a simulation
rather than actual configuration process. We address this
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threat by using the models of six architectures and con-
figurations gathered from five projects. The configurations
and changes have a wide range of characteristics as shown
in Tables I and II. However, it still may be that these
changes are not representative of the problems that real users
encountered. We hope to address this threat by running a
user study in an industry setting in the future.

A threat to internal validity is that our translation of
CDL into logic constraints could be incorrect. To address
this threat, we have developed a formal specification of
CDL semantics in functional style, in addition to the one
developed by Berger et al. [17]. We have carefully inspected
and compared both against each other and tested them on
examples with respect to the eCos configurator.

VIII. R ELATED WORK

The idea of automatic fix generation is not new. Nentwich
et al. [19] propose an approach that generates abstract fixes
from first-order logic rules. Their fixes are abstract because
they only specify the variables to change and trust the user to
chose a correct value. In contrast, our approach also gives the
range of values for a variable. Furthermore, their approach
only supports “=” and “6=” as predicates and, thereby,
cannot handle models like eCos. Scheffczyk et al. [23]
enhance Nentwich et al.’s approach by generating concrete
fixes. However, this approach requires manually writing
fix generation procedures for each predicate used in each
constraint, which is not suitable for variability models, often
containing hundreds of constraints. Egyed et al. [20] propose
to write such procedures for each type of variable rather than
each constraint to reduce the amount of code written and
apply this idea to UML fix generation. Yet, in variability
models, the number of variables is often larger than the
number of constraints. The actual reduction of code is thus
not clear. Jose et al. [10] generate fixes for programming
bugs. They first identify the potentially flawed statements
using MAXSAT analysis, and then propose fixes based
heuristic rules. However, their heuristic rules are specific
to programming languages and are not easily applicable to



software configuration. Also, they propose at most one fix
each time rather than a complete list.

Fix generation approaches for variability models also ex-
ist. The eCos configurator [15] has an internal fix generator,
producing fixes for a selected error or on-the-fly when the
user changes the configuration. White et al. [11] propose an
approach to generate fixes that resolve all errors in one step.
However, both approaches can only produce one fix rather
than a complete list. Furthermore, they have very limited
support of non-Boolean constraints. White et al.’s approach
does not handle non-Boolean constraints at all, while eCos
configurator supports only non-Boolean constraints in a
simple form:v ⊕ c wherev is a variable,c is a constant
and⊕ is an equality or inequality operator.

Another set of approaches maintain the consistency of
a configuration. Valid domains computation [24], [25] is an
approach that propagates decisions automatically. Initially all
options are set to an unknown state. When the user assigns a
value to an option, it is recorded as a decision, and all other
options whose values are determined by this decision are
automatically set. In this way, no error can be introduced.
Janota et al. [26] propose an approach to complete a partial
configuration by automatically setting the unknown options
in a safe way. However, both approaches require that the
configuration starts with variables in the unknown state.
Software configuration in practice is often “reconfiguration”
[2], i.e., the user starts with a default configuration, and
then makes change to it. In reconfiguration cases, variables
have assigned concrete values rather than the unknown state.
Furthermore, these approaches are designed for small finite
domains, and it is not clear whether they are scalable to
large domains such as integers.

Several approaches have been proposed to test and debug
the construction of variability models themselves. Trinidad
et al. [27] use Reiter’s theory of diagnosis [12] to detect
several types of deficiencies in FODA feature models. Wang
et al. [28] automatically fix deficiencies based on the priority
assigned to constraints. These approaches target the con-
struction of variability models and cannot be easily migrated
to configuration.

Others automatically fix errors without user intervention.
Demsky and Rinard [29] propose an approach to fix runtime
data structure errors according to the constraint on the data
structure. Mani et al. [30] use the hidden constraints in a
transformation program to fix input model faults. Xiong et
al. [31] propose a language to construct an error-fixing pro-
gram consistently and concisely. Compared to our approach,
these approaches also infer fixes from constraints, but they
only need to generate one fix that is automatically applied.
Completeness is not considered by these approaches.

The HS-DAG algorithm is often used in combination with
the QuickXPlain algorithm [32]. The QuickXPlain algo-
rithm computes the preferred explanations and relaxations
for over-constrained problems. This combination has been

successfully applied in recommender systems to find the
most representative relaxations of a set of requirements,
i.e., those with highest likelihood of being chosen by the
users [33]–[35]. O’Sullivan et al. [36] propose an alternative
algorithm for the same problem. The most representative
relaxations are then used to propose alternative solutions
based on a database of known operational solutions. The
filtering of fixes is a possible extension to our work.

IX. CONCLUSION AND FUTURE WORK

Range fixes provide alternative solutions to constraint
violations in software configuration. They are correct, min-
imal in the number of variables per fix, maximal in their
ranges, and complete. We also evaluated three different
strategies for handling the interaction of constraints: ig-
norance, elimination, and propagation. On our data set,
the propagation strategy provides the most complete fix
lists without introducing new errors, and the fix sizes and
generation times are within acceptable ranges. However, if
more complex situations are encountered, elimination or
ignorance can provide simpler fix lists and faster generation
time, at the expense of completeness or the guarantee not to
introduce new errors.

We are also implementing a new Kconfig configurator
with range fix support. In addition, our industry partner has
shown interest in including range fixes in their tool, and we
are discussing the evaluation of our approach on large-scale
industrial models and configurations.
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