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Figure 1: The eCos Configurator

Abstract—To prevent configuration errors, highly config-
urable software often allows defining constraints over the
available options. As these constraints can be complex, firg
a configuration that violates one or more constraints can be
challenging. Although several fix-generation approachesxést,
their applicability is limited because (1) they typically generate
only one fix, failing to cover the solution that the user wants
and (2) they do not fully support non-Boolean constraints,
which contain arithmetic, inequality, and string operators.

This paper proposes a novel conceptange fix, for software
configuration. A range fix specifies the options to change

and the range of values at these options. We also design

an algorithm that automatically generates range fixes for a
violated constraint, based on Reiter’s theory of diagnosisWe
have evaluated our approach on data from five open source
projects, showing that, for our data set, the algorithm geneates
complete fix lists that are mostly short and concise, in a fraton
of a second.

I. INTRODUCTION

users in arriving at a correct and complete configuration.
To do so, configurators detects possible configuration grror
and reports them. A configuration error is a decision that
conflicts with some constraints. Satisfying these constsai

is often non-trivial. Variability languages often carry-ad
vanced constructs that introduce hidden constraints [&], a
constraint rules declared in different places of the valitgb
model may have interactions. The interplay of these factors
often leads to very complex situations.

Some configuration tools, like those based on Kconfig,
implement an error avoidance mechanism that automatically
deactivates an option when a certain constraint is violated
Inactive options are no longer available to the user unless
the constraint is satisfied again. Other configurators,thiee
eCos configurator for CDL (Figure 1), add an interactive
resolution mechanism on top of the avoidance mechanism.
This approach allows violating some constraints, but pro-
poses a fix for each violated constraint. A fix denotes a set
of changes that would restore the consistency of the current
configuration.

To better understand what challenges are faced by the
users of modern configurators, we carried out two empirical
studies of Linux and eCos. Two questionnaires were sub-
mitted to forums, mailing lists and experts with whom we
collaborate. In total, we collected answers fr& Linux
users with up ta20 years of experience, arleCos users
with up to7 years of experience. The full report of this study
is avaible as a technical report [8]. We present here the two

A growing share of software exposes sophisticated conehallenges that stand out most from this study and that are

figurability to handle variations in user and target-platio

requirements. Large enterprise resource planning systems.

addressed in this paper:
Activating inactive features. 18% of the Linux users

(e.g., SAP) need to be tailored to different business casitex
Software product lines often supply software embedded
in specific hardware products like automobiles and air-
planes [1]. Operating systems (e.g., Linux and eCos) need
to run on different hardware platforms like desktops, sexve

and mobile devices. To configure Linux for instance, users

typically select the CPU architecture (e.g., x86 or ARM),
the type of filesystem (e.g., ext4 or JFS), and the graphics
driver (e.g., ATl or NVIDIA).

These configuration options are usually described with
dedicated languages that document their hierarchy and con-
straints over their selection. For instance, the Linux kérn
uses Kconfig, and eCos—an embedded configurable operat-

report that, when they need to change an inactive
option, they need at least a “few dozen minutes” in
average to figure out how to activate it. 56% of the
eCos users also consider the activation of an inactive
option to be a problem.

Fix incompleteness.Existing configurators generate
only one fix for an error. However, there are often
multiple solutions to resolving an error, and the user
may prefer other solutions. out of 9 eCos users have
encountered situations where tgenerated fix is not
useful That claim is corroborated by Berger et al.
[2] who report that eCos users complain about the
incompleteness of fixes on the mailing list.

ing system—uses CDL [2]. These real-world languages fall Since we also need to satisfy the corresponding constraint
under the umbrella of variability modelling languages [3].to activate a feature, activation is inherently the same as
Another popular variability modelling language is featureresolving a configuration error, and the idea of fixes would
models [4]. Developed jointly by researchers and practi-also work for activation. As a result, a possible solution
tioners, it has been successfully implemented in commlercigor the above two problems is to generate fixes for both
product-line tools like pure::variants [5] and Gears [6]da resolving errors and activating features, and fixes shoald b
has an expressiveness comparable to that of Kconfig ancbmplete so that the user can choose the one he wants.
CDL [7]. To achieve this goal, two main challenges need to be
Configurators translate these models into interactive conaddressed. First, our previous study of eCos models [9]
figuration interfaces, such as the one in Figure 1, and assishows that non-Boolean operators, such as arithmetic, in-



equality, and string operators, are quite common in theilg g e | e o

constraints. In fact, the models contain four to Six times(a Allecation Time Implements  Allocation_Time
more Non-Boolean constraints than Boolean ones. Non EW Activelf Pre_Allocation_Size <= Object_Pool_Size /2

Boolean constraints are challenging since there is often
an infinite number of ways to satisfy them. Computing
such infinite list of fixes is pointless. Thus,campactand —

Figure 2: Option “Startup”
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fixes, either using solvers for MAXSAT/MAXSMT [10] or & (13 Allocation Time Flavor data
the optimizing capability of CSP solvers [11]. However, all [ Startup Calculated Buffer_Size *1024 / Object_Size

these solvers return only one result per call, which is not
easily applicable to the generation of complete lists ofsfixe
A new method to generate complete lists of fixes still needs
to be_ found. _ ~ Section IX.

This paper proposes a new approach to generating fixes
for software configuration. Our contribution is threefold: II. RANGE FIXES

Figure 3: Option “Object Pool Size”

- Range fixes.We propose a novel concepange fix Motivating example We now motivate our work with

(Section 1), to address the first challenge. Instead of, ¢,ncrete example based on the eCos configurator [15].
telling users what concrete changes should be made, g re 1 shows a small model for configuring an object pool.
range fix tells them what options should be changedryg |eft panel shows a set of options that can be changed by
and in what range the value of each option can b&ne ser, organized into a tree. The lower-right panel shows
chosen. A range fix can represent infinite number ofy,o nroperties of the current option, defined according to
concrete fixes and still retains the goal of assisting they o ecos models. Particularly, thilavor property indicates
user to satisfy constraints. Particularly, we discuss the, pather the option is a Boolean option or a data option.
desired properties of range fixes, which formalize they goolean option can be either selected or unselected: a

requirement of the fix generation problem. In addition,data option can be assigned an integer or a string value.
we also discuss how constraint interactions should bg, Figure 1, “Pre-Allocation Size” is a data option; “Use

handled in our framework (Section V). Pre-Allocation” is a Boolean option.
« Fix generation algorithm. We designed an algorithm

h p ically (Section Il Besides the flavor, each option may also declare con-
that generates range fixes automatically ( _ectlon . )straints usingequiresproperty oractive-if property. When
to address the second challenge. Our algorithm build

ter's th £ di i 112 q A requires constraint is violated, an error is reported @& th
upon Reiter's t eory o diagnosis [12], [13] and SMT upper-right panel. In Figure 1, option “Pre-Allocation &iz
solvers [14]. Additionally,

our algorithm is designed for declares a requires constraint requiring its value be small

a general rep_resentan_on of const_ramts and varlable%an or equal to “Object Pool Size”, and an error is reported
which makes it potentially useful in other areas SUChbecause the constraint is violated

as debugging. An active-if constraint implements the error avoidance

° Evaltgtlorz:l\:/)vgh Squs. O\l/“'r alg(]jon;hm ISI (1) gpplleéj mechanism. When it is violated, the option is disabled in the
]?n ef.os (Section .) an ( ) e\gﬂ uatg on sf%UI and its value is considered as zero. Figure 2 shows the
rom five open source projects using eCos (Section V), roperties of the “Startup” option. This option declareatth

The ev_aluation compares three different fix generatio t most half of the object pool can be pre-allocated. Since
strategies and concludes that the propagation strateg¥ic -onstraint is violated. the “Startup” option is disebl
is the most effective one on our dataset. Specifically,and the user cannot chan,ge its value

for a total of 117 constraint violations, the evaluation Fixing a configuration error or activating an option re-

of the propaganon strategy shows t?at our nc_)tlo_n quuires satisfying the corresponding constraints. In otder
range T'X leads to mastly simple (83% (?f the fix lists fix the error on “Pre Allocation Size” in Figure 1, we need to
have slzes smaller than 10, where th? SIZE 1S measurqgok up the definition of “Object Pool Size”. In Figure 3, we
by summing up the number of variables in all the see that “Object Pool Size” declarescalculatedproperty

gxes mtthte “tsrt]) tyet colmpl.(te;e set of f|xest. I;f. als? meaning that the value of the option cannot be modified by
emonstrates that our algorithm can generate TXes 194, ser Instead, it is determined by a declared expression
models containing hundreds of options and constraint

. £50 d . f 245 As a result, the constraint declared on “Pre-AllocatioreSiz
in an average o ms and a maximum o ms. is, in fact, the following:
Finally, we discuss threats to validity in Section VII, the Pre_Al | ocati on_Si ze <=

related work in Section VIII and conclude the paper in Buffer_Size = 1024 / Object_Size



Furthermore, according to the CDL semantics, a constrainDefinitions Although different variability languages have
is effective—and thus considered by the error checkindifferent constructs and semantics, existing work [2],]]16
system—only when its containing option is active, and an17] shows that all variability models can be converted into
option is active only when its active-if constraint is siiéid  a set of variables (options) and a set of constraints. Our
and its parent option is selected. “Pre-Allocation Size$ ha approach also builds upon this principle.

a parent, yielding the following complete constraint: In essence, a variability language provides a universe
Use_Pre_Al | ocation -> (Pre_All ocation_Size <= of typed variablesv and a constraint language(V) for
Buf fer_Size » 1024 /| (bject_Size) writing quantifier-free predicate logic constraints oVt

By analyzing the constraint, we realize that we may fixConsequently, aconstraint violation consists of a tuple

the error by one of the following changes: decreasing “Pre{V,e,c), whereV C V is a set of typed variables; the

Allocation Size”, or increasing “Buffer Size”, or decreagi  current configuratiom is a function assigning a type-correct

“Object Size”, or, more simply, disabling the pre-allocati value to each variable; ande ®(V) is a constraint over

function. Now we could choose one of these possibilitiesV” violated bye. A fix generation problem for a violation

and navigate to the respective option to make the change.(V, e, c) is to find a set of range fixes to help users produce
This example shows that there are three sub-tasks far new configuratiore’ such thatc is satisfied, denoted as

enabling a constraint. First, the user needs to figure out’ = c.

the complete semantic constraint according to the comstrai  Consider the following example of a constraint violation:

language. Si_nce vari_api!i'Fy languages often have fai_riylco . {m:Bool,a:int,b:int}

plex semantics on visibility and value control [2], it is yer e : {m=true,a=6b=5) 1)

easy to overlook some part of the constrglnt. Se_condly, c : (m—a>10)A(-m —b>10)A(a <b)

users needs to analyze the semantic constraint and figure out ]

how to change the options to make it satisfied. In practice, All range fixes we have seen so far change only one

constraints can be very large. One semantic constraint w§riable, but more complex fixes are sometimes inevitable.

have found in a CDL model contairi options references FOr €xample, we cannot solve violation (1) by changing only

and 35 constants, connected 6 logical, arithmetic and ©ONe variable. Several alternative fixes are possible:

string operators. It is very difficult to analyze such a large e« [m:=false, b:b > 10]

constraint. Thirdly, users have to navigate to the corredpo  * [(a,b) :a >10Aa <]

ing options and make the changes. Real world variabilityThe first fix contains two parts separated by “", each

models contain thousands of options, e.g., an eCos modehanging a variable. We call each pafiaunit The second

reported [2] containg244 options, which makes navigation fix is more complex. This fix contains only one fix unit, but

very cumbersome [8]. the range of this fix unit is defined on two variables. When

Solution Our approach automatically generates a list Ofthe_ fix is e_xe_cuted, the user has to choose a value for each

range fixes to help satisfy a constraint. For the error invarable within the range. _ _ _

Figure 1, we will generate the following fixes. Taking _the above f_orms into _con_5|derat|on, we can define

a range fix. Arange fixr for a violation(V, e, ¢) is a set of

o [Use_Pre_Allocation : = fal se] fix units. A fix unit can be either aassignment unibr a

o [Pre_Allocation_Size: Pre Allocation_Size <= range unit An assignment unit has the form afcr := val”
8] wherevar € V is a variable andal is a value conforming

e [Buffer_Size: Buffer_Size >= 5] to the type ofvar. A range unit has the form oft# : ¢strt”,

* [oject_Size: Cbject_Size <= 409. 6] wherelU/ C V is a set of variables andstrt € ®(U) is a

Each range fix consists of two parts: the option to besatisfiable constraint ovdy specifying the new ranges of
changed and a constraint over the options showing the ranghe variables. A technical requirement is that the varible
of values. The first range fix is also a concrete assignmenin fix units should be disjoint, otherwise two different vau
and will be automatically applied when selected. The othemay be assigned to one variable.
fixes are ranges. If the user selects, for example, the secondWe user.V to denote the set of the variables to be changed
fix, the configurator will highlight option “Pre-Allocation in all units. We user.c to denote the conjunction of the
Size”, prompt the range<ts8”, and ask the user to select a constraints from all units. The constraint from an assigmme
value in the range. unit “var := val” is var = val, and the constraint from a

Range fixes automate the three sub-tasks mentionednge unit U : cstrt” is cstrt. For example, let be the
above. The semantics of CDL constructs is automaticallyange fix[m :=fal se, b: b > 10], thenr.v = {m, b} and
taken into account and the constraint is automatically anar.c is m = fal se A b > 10.
lyzed. The navigation is also automatically performed when Applying range fix » of violation (V,e,c) to e will
applying a fix. The user only has to choose a fix and decidproduce a new configuration interactively. We denote all
a value within the range of the fix. possible configurations that can be produced by applying



rtoeasr>e, whererse = {e' | e = r.cAVyev(e'(v) # Armed with these properties of range fixes, we can define
e(v) »verV)} the completenessf a list of fixes. Since the same constraint
Desired Properties A simple way to generate a fix from can be represented in different ways, we need to consider
a violated constraint is to produce a range unit where théhe semantic equivalence of fixes. Two fixesand " are
changed variables are all variables in this constraint aed t semantically equivalerit (r>e) = (' > ¢), otherwise they
range of these variables is the constraint itself. For examp aresemantically different
the fix for violation (1) could be{(m,a,b) : (m — a >
10) A (=m — b > 10) A (a < b)]. However, such a fix is
as difficult to understand as the original constraint. Irs thi
subsection, we discuss the desired properties of range fixes « any two fixes inl. are semantically different,

Supposer is a range fix for a violationV, e, c). The « each fix inL satisfies Property 1, 2, and 3,
first desired property is that a range fix should be correct: « and any fix that satisfies Property 1, 2 and 3 is
all configurations that can be produced from the fix must ~ semantically equivalent to a fix ih
satisfy the constraint.

Property 4 (Completeness of fix lists)Given a constraint
violation (V, e, ¢), a list of fixesL is complete iff

Thus, afix generation problenis to find a complete list
Property 1 (Correctness)Ve’ € (re), € Ec of fixes for a given constraint violatio(V, e, c).

Each value currently assigned to a variable is a config-

uration decision made by the user, and a fix should alter I1l. FIX GENERATION ALGORITHM
as few decisions as possible. The second desired property
is thus that a fix should change a minimal set of variables.
For example,m := true, b : b > 10] is preferable to
[m := true, b:b > 10, a : a = 9] because the latter
unnecessarily changes which does not contribute to the
satisfaction of the constraints.

In Section Il we claimed that a fix should change a
minimal set of variables and have a maximal range. As
a result, our generation algorithm consists of three steps.
(i) We find all minimal sets of variables that need to be
changed. For example, in violation (1), a minimal set of
Property 2 (Minimality of variables) There exists no fix’ ~ variables to change i) = {m,b}. (ii) For each such
for (V, e, ¢) such that is correct andr’.V C r.V. set of variables, we replace any unchanged variable in

inimal fi h ioh I ib| by its current value, obtaining a maximal range of the
Minimal fixes, however, might not cover all possible \aiiapies In the example, we replace by 6 and get

changes that resolve a violation, and these uncovered CaSES s 6 > 10)A(—m — b > 10)A(6 < b). (iii) We simplify
might be preferred by some users. However, as our evalugpq range to get a set of minimal, or close to minimal, fix
tion will show, minimality is good heuristics in practice. units. In the example we will geitn == true, b: b > 10]

Thirdly, afr':er detgrm||n|ng a se;c %f varlqblt)(als, W_?r:NOUId like Step (ii) is trivial and does not demand further developraent
to present the maximal range of the variables. The reason {8 ,ow concentrate on steps (i) and (iii).

simple: extending the range over the same set of variables
gives more choices, and usually neither decreases reyglabil

nor affects more existing user decisions. For exanijple=  A. From constraint and configuration to variable sets
true, b : b > 10] is better thanm := true, b : b > 11]
because it covers a wider range &an To collect all minimal variable sets, we resort to Reiter’s

theory of diagnosis [12]. This theory defines the problem of
diagnosis and gives an incomplete algorithm for solving the
problem. This algorithm was later corrected by Greiner et al
[13] and is now known a$iS-DAG algorithm. Fundamen-
Fourthly, after deciding the range over the variablesfally, Reiter's theory assumes a constraint set that caplite s
we would like to represent the range in the simplest wayinto hard andsoftconstraints. The set of hard constraints are
possible. Thus, another desired property is that a fix unitnvariable and assumed satisfiable. The set of soft congrai
should change as few variables as possible. In other word§an be altered and also be unsatisfiablediAgnosisis a
no fix unit can be divided into smaller equivalent fix units. subset of soft constraints that, when removed from the set,
We call this propertyminimality of units restores the satisfiability of the whole set. The problem of
However, as we treab as a general notion, our gen- diagnosis is to find all minimal diagnoses from a set of hard
eration algorithm cannot ensure all fix units are minimal.and soft constraints.
Therefore we do not treat this property as part of the formal Given the constraint violatior{V, e, ¢), we convert the
requirement. However, this does not seem to be a limitatioproblem of finding minimal variable sets to the problem of
in practice; all fix units generated in our evaluation camtai diagnosis by treating as a hard constraint and converting
only one variable, which are minimal by construction. e into soft constraints. For example, violation (1) can be

Property 3 (Maximality of ranges) There exists no fix’
for (V, e, ¢) such that’ is correct,”’.V = r.V and(r>e) C
(r'>e)



converted into the following constraint set. Nevertheless, since we assume the constraint language is
based on quantifier-free predicate logic, we can do some
general processing. The basic idea is to convert the camistra
into conjunctive normal form (CNF), and convert each clause
into a fix unit. Yet, we still need to carefully make sure the
fix units are disjoint and are as simple as possible.

First, if the constraints contain any operators convestibl
to propositional operators, we convert them into propo-
To make the whole set satisfiable, we need to remove at leasttional operators. For example, eCos constraints contain
constraints{1, 3} or constraintg2, 3}, which correspond to the conditional operator “:?” such asn?a : b) > 10.
two variable set{m, b} and{a, b}. We convert it into propositional operatoré-m V a >

To find all diagnoses, Reiter’s theory uses an ability of10) A (m Vv b > 10).
most SAT/SMT solvers: finding an unsatisfiable core. An  Secondly, we convert the constraint into CNF. In our
unsatisfiable corés a subset of the soft constraints that is example, with{m, b}, we have(m — 6 > 10) A (-m —
still unsatisfiable. For example, the above constraintasth , > 10) A (6 < b), which gives three clauses in CNF:
two unsatisfiable core§l, 2} and{3}. {-mV6>10, mVb>10, 6 < b}.

If we cancel a constraint from each unsatisfiable core, we Thirdly, we apply the following rules repetitively until we
get a diagnosis. The HS-DAG algorithm implements thisreach a fixed point.
idea by building a directed acyclic graph (DAG), such that
each node is labelled either by an unsatisfiable core or SAT
and each arc is labelled by a constraint that is cancellegl. Th
union of the labels on every path from the root to a SAT
node defines a diagnosis.

Figure IlI-A shows an HS-DAG
for the above example. Suppose the

Hard constraint):

[0] (m—a>10)A(-m —b>10)A (a <)
Soft constraintsd):

[1] m =true

2] a=6

Blb=5

Rule 1 Apply constant folding to all clauses.
" Rule 2 If a clause contains only one literal, delete the
negation of this literal from all other clauses.
Rule 3 If a clauseC; contains all literals inC5, delete
C1.
Rule 4If a clause taking the form of = ¢ wherewv is a
variable and: is a constant, replace all occurrences

constraint solver initially returns the 1 2 of v with c

unsatisfiable cord 1,2}, and a root '

node is created for this core. Then| 3 | | 3 In our example, applying Rule 1 to the above CNF, we
we build an arc for each constraint in 3 get{-m, mVvb>10, 6 <b}. Apply Rule 2 to the above
the core. In this case, we build two ‘ AT ‘ ‘ SAT CNF_, we get_{ﬁm, b > 10, 6 < b}. No further rule can be
arcs 1 and 2. The left arc is1, so "7 2. 3) applied to this CNF. . .

we remove constrairi] from the set, ' ’ Fourthly, two clauses are merged into one if they share
and invoke the constraint solver again. variables. In the example, we hayem, b > 10 A6 < b}.
This time the constraint solver returns Figure 4: HS- Fifthly, we apply any domain specific rules to simplify
{3}. We remove constrainf3] and DAG the constraints in each clause, or divide the clause into
now the constraint set is satisfiable. smaller, disjoint ones. These rules are designed according

We create a node SAT for the edge. Similarly, we repeato the types of operators used in the constraint language.
the same steps for all other edges until all paths reach SATN our current implementations of CDL expressions, we use
Finally, each path from the root to the leaf is a diagnosisiwo types of rules. First, for clauses containing only linea
In this case, we havél, 3} and {2, 3}. equations or inequalities with one variable, we solve them
This process alone cannot ensure that the generated dind merge the result. Secondly, we eliminate some obviously
agnoses are minimal. To ensure it, three additional rulegliminable operators, such as replacing0 with a. We also
are applied to the algorithm. The details of these rules cadpply Rule 1 and Rule 4 shown above during the process.
be found in [13], and are omitted here due to space limitIn the example, the second clause consists of two linear
Greiner et al. [13] prove that HS-DAG builds a complete setinequalities, we solve the inequalities and merge the mnge

of minimal diagnosis after applying the three rules. onb, we get{—m,b > 10}.
_ ) Finally, we convert each clause into a fix unit. If the clause
B. From variable sets to fixes has the form ofv, —v, or v = ¢, we convert it into an

Equipped with the minimal variable sets, we can substituteédssignment unit, otherwise we convert it into a range unit.
the configuration values of the variables that do not belondn the example, we convertm into an assignment unit and
to these sets inte (Step (ii)). Step (iii) is to divide this b > 10 into a range unit and géin :=false, b: b > 10].
modified constraint into smaller fix units. As mentioned before, the above algorithm does not guar-

Since the operators in the constraints differ from oneantee the fix units are minimal. The reason is that we
language to the other, this task is essentially domainiipec cannot ensure that the domain-specific rules in the fifth step



are complete, since some common operators such those apply the elimination strategy to violation (2), we first find

strings are undecidable in general [18]. the constraints sharing variables withwhich includes only
2, and then replace andy in ¢, with their current values,
IV. CONSTRAINT INTERACTION gettingc, = n — false V fal se. Then we generate fixes

So far we have only considered range fixes for ondor (V,e,cAch).

constraint. However, the constraints in variability madel Although the elimination strategy prevents the violation
are often interrelated; satisfying one constraint migbtate  of new constraints, it has two noticeable drawbacks. First,
another. As a result, we have to consideulti-constraint it exudes many potentially useful fixes. In many cases, it
violation rather than single-constraint violation. A nilt s jnevitable to bring new errors during error resolution.
constraint violation is a tupl¢V.e,c,C), whereV ande  sSimply excluding fixes will only provide less help to the
are unchanged; is the currently violated constraint, add  yser. In our example, we will get an empty fix set, which
is the set of constraints defined in the model and satisfiedges not help the user resolve the error. Secondly, since we
by e. The following example shows how a fix satisfyirg need to deal with the conjunction of several constraints, th
can conflict with other constraints il that were previously  resulting constraint is much more complex than the original

satisfied. one. Our evaluation showed that some conjunctions can
V' : {m:Bool,n :Bool,z : Bool,y : Bool,z : Bool } count more than ten constraints. Nevertheless, compared to
e : {mrtrue,nr>false x> false, the propagation strategy, this increase in complexityils st
y+>false,z—false} small.
c : mAn
C : {ec2,c3} where Propagation When a fix violates other constraints, we fur-
caisn— (zVy) ther modify variables in the violated constraints to keegsth
e IS T — 2z constraints satisfied. In this case, the fix is “propagated”
(2)  through other constraints. For example, fiwill violate c,
If we generate a fix fromV, e, c), we obtainr = [n :=  so we further modify variables or y to satisfyc,. Then the
true]. However, applying this fix will violate:. modification ofz will violate c3, and we further modify. In

Existing work has proposed three different strategies tdhe end, we get two fixeB: :=true,z :=true, z := true]
deal with this problem; each has its own advantages anénd [n := true,y := true]. This approach is used in the
disadvantages. We now revisit these three strategies, ar@Cos configuration tool [15] and the feature model diagnosis
show that they can all be used with range fix generatiorapproach proposed by White et al. [11].

by converting a multi-constraint violation into a single- 1o apply this strategy, we first perform a static slicing on
constraint one. In the evaluation section we will give ac g get a set of constraints directly or indirectly related to
comparison of the three strategies. c. More concretely, we start from a sét containing only
Ignorance All constraints inC are simply ignored, and ¢. If a constraintc’ shares any variable with any constraint
only fixes for (V,e, c) are generated. This strategy is usedin D, we addc to D. We keep adding constraints until
in fix generation approaches considering only one constrairwve reach a fixed point. Then we make a conjunction of
[19]. This strategy does not solve the constraint inteoacti all constraints inD, and generate fixes for the conjunction.
problem at all. However, it has its merits: first, the fixes For example, if we want to apply the propagation strategy
are only related to the violated constraint, which makes ito violation (2), we start withD = {c}, then we addc,
easier for the user to comprehend the relation between theecause it shareswith ¢, next we add:s because it shares
fixes and the constraints; secondly, this strategy does nat with ¢5. Now we reach a fixed point. Finally, we generate
suffer from the problems of incomplete fix list and large fix fixes for (V,e,c A ca2 A c3).

list, unlike the two others; thirdly, this strategy requithe

: : : . The propagation strategy ensures that no satisfied con-
least computation effort and is the easiest to implement.

straint is violated and no fix is eliminated. However, there a
Elimination When a fix violates other satisfied constraints,two new problems. First, the performance cost is the highest
it is excluded from the list of fixes, i.e., the fix is “elimi- among the three strategies. The constraints in real-world
nated” by other constraints. In the example in violation (2) models are highly interrelated. In large models, the sgsate
fix ~ will violate ¢ and thus is excluded from the generatedoften led to conjunctions of hundreds of constraints. The
fix set. This strategy is proposed by Egyed et al. [20] anccomplexity of analyzing such large conjunctions is signifi-
used in their UML fix generation tool. cantly higher than analyzing a single constraint. Secqndly

To apply this strategy to range fix generation, we firstsince many constraints are considered together, thigegirat
find a subset o’ that shares variables with then replace potentially leads to large fixes (i.e., fixes that modify ay&ar
the variables not inc with their current values ire, and  set of variables), and large number of fixes, which are not
connect all constraints by conjunctions. For example, teeasy to read and to apply.



V. IMPLEMENTATION Table I: Real World Configuration Files

We h . | ted d-li tool ti Architecture  Project Options  Constraints  Changes

~ We have implemented a command-line tool generating —e.z RECONOS 933 330 Y

fixes for eCos CDL using the Microsoft Z3 SMT solver xilinx ReconOS 765 272 53

[14]. Our tool takes a CDL configuration as input, and  ©€a2468 redbootdlpc 658 96 14
tomatically generates fixes for each configuration error 2Ki0c8net  Talktic 8l 195 3

au y 9 9 _ gps4020 PSAS 535 85 23

found. Alternatively, the user can enter an option to attiva arcom-viper  libcyt 771 189 26

via the command-line interface, and our tool generates fixes

to activate this option. Table II: Constraint violations

To implement our algorithm, one important step is to , _ , o
Architecture  Erros in defaults  Errors in changes  Activgtin

convert the constraint in the CDL model into the standard —ava 6

5 15

input format of the SMT solver: SMT-LIB [21]. To perform xilinx 48 1 2
this task, we carefully studied the formal semantics of CDL ~ €a2468 8 8 1
h h i ing from the configurato ~ 2Xoocanet 20 3 °
[17], [22] through reverse engineering ] g gps4020 12 10 4
and the documents. However, there are still two problems to arcom-viper 26 0 0

deal with. First, CDL is an untyped language, while SMT-
LIB is a typed language. To convert CDL, we implement
a type inference algorithm to infer the types of the optionsa different hardware architecture (the first column in Ta-
based on their uses. When a unique type cannot be inferragle 1); each architecture uses a different mixture of eCos
or type conflicts occur, we manually decide the feature typespackages, yielding variability models with different apts

The second problem is dealing with string constraintsand constraints (columns three and four). The configuration
The satisfiability problem of string constraints is undedit®  process for a given model starts from the model’s default
in general [18], and general SMT solvers do not supportonfiguration; the last column in Table | specifies the number
string constraints [14]. Yet, string constraints are higavi of changes made by a project to a default configuration.
used in CDL models. Nevertheless, our previous study on The evaluation needs a set of real-world constraint viola-
CDL constraints [9] actually shows that the string constiai  tions. Interestingly, the default configuration for eachdelo
used in real world models employ a set semantics: a stringjready contain®rrors—violations of requires constraints.
is considered as a set of substrings separated by spaces, afik first column in Table Il shows their numbers. The mod-
string functions are actually set operations. For exampleg|s share common core packages, causing duplicated errors.
is_substr is actually a set member test. Based on thisp set of 68 errors from defaults remain after removing
discovery, we encode each string as a bit vector, whergypiicates.
each bit indicate a particular substring is presented or not g, RQ2 and RQ4, we attempt to recover the sequence
Since in fix generation we will never need to introduce newys \;ser changes from the revision history of the configura-
substrings, the size of the bit vector is always finite and cagiop, files. We assume that the user starts from the default
be determined by collecting all substrings in the model anq.qnfiguration and solves errors from defaults by accepting
the current configuration. the suggestions from the eCos configurator. We record this
corrected default configuration as the first version. Then we
diff each pair of consecutive revisions to find changes to
A. Methodology options. Next we replay these changes to simulate the real

onfiguration process. Since we do not know the order of

our glgorithm ensures Praperties 1-4 for the generate hanges within a revision, we use three orders: a top-down
range fixes. However, to really know whether the approaCI%xploration of the configuration file, a bottom-up one, and

works md [:;)ractlce,_ _se\I/eraII reﬁearch questions need to bf random one. The rationale for the first two orders is that
answered by empirical evaluation: expert users usually edit the textual configuration fileatlye

VI. EVALUATION

« RQ1: How complex are the generated fix lists? rather than using the graphical configurator. In this cdssy, t

« RQ2: How often are the final user changes covered bywill read the options in the order that they appear in the file,
our fixes? or the inverse if they scroll from bottom to top.

« RQ3: How efficient is our algorithm? We replay the changes as just explained and collect (i)

« RQ4: Does our approach cover more user changes thagrors—violating requires constraints—and (égtivation
existing approaches?_ violations An activation violation occurs when an option

« RQS: What are the differences among the three strateyajye should be changed, but is currently inactive. The last
gies? two columns in Table Il show the numbers of the resulting

The evaluation uses 6 eCos configuration files from 5Sviolations from changes. After duplicate removal, 27 esror
eCos-based open-source projects (Table I). Each file tsargeand 22 activation violations remain; together with the first
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Figure 6: The number of variables per fix Figure 8: Fix generation time

dataset, we have a total 17 multi-constraint violations.  |argest involves 58 variables, which is not easily readable
Finally, we invoke our tool to generate fixes for the However, the long lists and large fixes tend to appear only
117 violations. For RQ4, we also invoke the built-in fix on a relatively few number of violations, and the majority
generator of the eCos configurator on the 27 errors frompf the fix lists are still small: 83% of the violations contsin
the user changes. The activation violations are not condpardgess than 10 variables.
because they are not supported by the eCos configurator. The\e also measure the number of variables in each fix unit
experiments were executed on computer with Intel Core i§o understand how large the fix units are. It turns out that
2.4 GHz CPU and 4 GB memory. every fix unit contains only one variable. This shows that
(1) “minimality of fix units” effectively holds on all the
violations and (2) ranges declared on more than one variable

~ We first give the results for RQ1-RQ4 using the propagaygych as the second fix for violation (1)) have never appeared
tion strategy. We answer RQ5 by presenting the comparisop, the evaluation.

of the three strategies last.

B. Results

i ) ) RQ2 Given an error or activation violation, we examined
RQ1 To answer RQ1, we first consider two basic measureg,g change history to identify a subsequent configuratian th
over the 117 violations: the distribution of the number of . ..acted the problem. To answer RQ2, we checked if the

fixes per violation (see Figure 5) and the distribution of the, 5 a5 in the corrected configuration fell within one of the

number of variables changed by each fix (see Figure 6)ranges proposed by our generated fixes.

From these figures we see that most fix lists are short e are in total7 out of 49 violations with subsequent
and most fixes change a small number of variables. MOr .o ctions in our dataset. The fixes generated by our tool
concretely,95% of the fix lists contain at most five fixes . ared 46 of these violations (98%). An investigation into
and 75% of the fixes change less than five variables. Therge remaining violations showed that the erroneous option

is also an acti_vati_on violat.ion_that. did not produce any fix. A discussed in RQL1 is responsible for that discrepancy. Since
deeper investigation of this violation revealed that theap the propagation strategy ensures no new error is introguced

is not supported by the current hardware architecture, a”fhe resolved value from the dataset was not proposed as a
cannot be activated without introducing new configurationf-

iX.
errors. The extracted changes actually lead to an unsolve o ] ]
configuration error in the subsequent version. RQ3 For each of the 117 violation, we invoked the fix

It is still unclear how the combination of fix number and 9€nerator 100 times, and calculated the average time. The

fix size affect the size of a fix list, and how the large fixes®SUlt is presented as a density graph in Figure 8. It shows

and long lists are distributed in the violations. To undengt  that most fixes are generated within 100 ms. Some fixes
this, we measure the size of a fix list. The size of a fix list"€quire about 200 ms, which is still acceptable for intavact

is defined as the sum of the number of variables in each fix00!S:
The result is shown in Figure 7. From the figure we can se®kQ4 We measure whether the fixes proposed by the eCos
that the propagation strategy does lead to large fix liste. Thconfigurator cover the user changes in the same way as in



RQ5 As discussed in Section 1V, the propagation strategy
potentially produces large fix lists. At this stage, we would

like to know if the other two strategies actually produce 33
0

Number
ooo

N WS Jo)
ooo

RQ2. Since the eCos configurator is unable to handle the ac- s - =
tivation violations, we measure only error resolutionseih 40 1 3
are 26 out of 27 errors that have subsequent corrections. The, 23 | ..I- 5
eCos configurator was able to handi& of the 26 errors, Sen - =

giving a coverage of3%. Comparatively, our tool covered §§§ ]

all 26 errors. 520 - . I_
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simpler fixes. We compare the size of fix lists generated
by the three strategies in Figure 9. The elimination and
ignorance strategies completely avoid large fix lists, with
the largest fix list containing four variables in total. The  Figure 9: The sizes of fix lists in the three strategies
elimination strategy changes even fewer variables because

some of the larger fixes are eliminated.

We also compare the generation time of the three stratdhreat by using the models of six architectures and con-
gies. For all violations, the average generation time fer th figurations gathered from five projects. The configurations
propagation strategy is 50ms, while the elimination sgwte and changes have a wide range of characteristics as shown
is 20ms and the ignorance strategy is 17ms. Since the overdll Tables | and Il. However, it still may be that these
generation time is small, it does not make a big differenceehanges are not representative of the problems that real use
in tooling. encountered. We hope to address this threat by running a

Next, we want to understand to what extent the othetser study in an industry setting in the future.
two strategies affect completeness or bring new errors. A threat to internal validity is that our translation of
First we see that the elimination strategy does not generafeDL into logic constraints could be incorrect. To address
fixes for 17 violations. This is significantly more than the this threat, we have developed a formal specification of
ignorance and propagation Strategies, which have zero arfdDL semantics in functional style, in addition to the one
one violation, respectively. We measure the coverage of usgleveloped by Berger et al. [17]. We have carefully inspected
changes using the elimination strategy. In the 47 violatjon and compared both against each other and tested them on
only 27 are covered, giving a coverage of 57%. This is evergxamples with respect to the eCos configurator.
lower than the eCos configurator, which generates only one
fix, showing that a lot of useful fixes were eliminated by
this strategy. The idea of automatic fix generation is not new. Nentwich

The problem of the ignorance strategy is that it may bring€t al- [19] propose an approach that generates abstract fixes
new errors. To see how frequent'y a fix brings new errorsrrom first-order IOgiC rules. Their fixes are abstract beeaus
we compare the fix list of the ignorance strategy with thethey only specify the variables to change and trust the wser t
fix list of the elimination strategy. If a fix does not appear chose a correct value. In contrast, our approach also diees t
in the list of elimination strategy, it must potentially bgg ~ range of values for a variable. Furthermore, their approach
new errors. As a result, 32% of the fixes generated by th&nly supports =" and “#" as predicates and, thereby,
ignorance strategy bring new errors, which covers 44% ofannot handle models like eCos. Scheffczyk et al. [23]
the constraint violations. This shows that the constraimts €nhance Nentwich et al's approach by generating concrete
practice are usually inter-related and the ignoranceesjyat fixes. However, this approach requires manually writing

6 7 8 .9 16 18 23 38 56 57 58
Size of fix list

VIll. RELATED WORK

potentially causes new errors in many cases. fix generation procedures for each predicate used in each
constraint, which is not suitable for variability model$tem
VII. THREATS TOVALIDITY containing hundreds of constraints. Egyed et al. [20] psepo

We see two main threats to external validity. First, we haveao write such procedures for each type of variable rather tha
evaluated our approach on one variability language. Howeach constraint to reduce the amount of code written and
ever, Berger et al. [2] study and compare three variabilityapply this idea to UML fix generation. Yet, in variability
languages—CDL, Kconfig and feature modeling—and findmodels, the number of variables is often larger than the
that CDL has the most complex constructs for declaringhumber of constraints. The actual reduction of code is thus
constraints, and constraints in CDL models are signifigantl not clear. Jose et al. [10] generate fixes for programming
more complex than those in Kconfig models. Thus, our resulbugs. They first identify the potentially flawed statements
is probably generalizable to the other two other languagesusing MAXSAT analysis, and then propose fixes based

The second threat is that our evaluation is a simulatiorheuristic rules. However, their heuristic rules are specifi
rather than actual configuration process. We address tht® programming languages and are not easily applicable to



software configuration. Also, they propose at most one fixsuccessfully applied in recommender systems to find the
each time rather than a complete list. most representative relaxations of a set of requirements,
Fix generation approaches for variability models also exd.e., those with highest likelihood of being chosen by the

ist. The eCos configurator [15] has an internal fix generatorusers [33]-[35]. O’Sullivan et al. [36] propose an alteiveat
producing fixes for a selected error or on-the-fly when thealgorithm for the same problem. The most representative
user changes the configuration. White et al. [11] propose arelaxations are then used to propose alternative solutions
approach to generate fixes that resolve all errors in one stepased on a database of known operational solutions. The
However, both approaches can only produce one fix rathéfltering of fixes is a possible extension to our work.

than a complete list. Furthermore, they have very limited
support of non-Boolean constraints. White et al.’s appnoac

does not handle non-Boolean constraints at all, while eCos Range fixes provide alternative solutions to constraint
configurator supports only non-Boolean constraints in Jviolations in software configuration. They are correct, min

simple form:v & ¢ wherewv is a variable,c is a constant imal in the number of variables per fix, maximal in their
and@ is an equality or inequality operator. ranges, and complgte. We .also e\_/aluated three. dlﬁerent

Another set of approaches maintain the consistency oftrategies fpr_handllng the mteractlpn of constraints: ig
a configuration. Valid domains computation [24], [25] is anNrance, elimination, and propagation. On our data set,
approach that propagates decisions automatically. liyia ~ the propagation strategy provides the most complete fix
options are set to an unknown state. When the user assigndigS Without introducing new errors, and the fix sizes and
value to an option, it is recorded as a decision, and all otheg€neration times are within acceptable ranges. However, if
options whose values are determined by this decision arB'0re€ complex situations are encountered, elimination or
automatically set. In this way, no error can be introducedignerance can provide simpler fix lists and faster genenatio
Janota et al. [26] propose an approach to complete a partiélfne’ at the expense of completeness or the guarantee not to
configuration by automatically setting the unknown optionsintroduce new errors. _ _ _
in a safe way. However, both approaches require that the W& are also implementing a new Kconfig configurator
configuration starts with variables in the unknown state With range fix support. In addition, our industry partner has
Software configuration in practice is often “reconfiguratio SNOWn interest in including range fixes in their tool, and we
[2], i.e., the user starts with a default configuration, and@"€ discussing the evaluation of our approach on largescal
then makes change to it. In reconfiguration cases, variabld@dustrial models and configurations.
have assigned concrete values rather than the unknown state REFERENCES
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