
1

Case Studies on E/E Architectures for Power Window and
Central Door Locks Systems

Jordan Ross, Michał Antkiewicz, and Krzysztof Czarnecki
Technical Report: GSDLAB-TR-2016-06-23

Generative Software Development Lab, University of Waterloo, Canada
{mantkiew,j25ross,kczarnec}@gsd.uwaterloo.ca

F

Abstract—Architectural optimization for software-intensive systems is
an emerging area. The automotive industry needs optimized archi-
tectures in order to develop cheaper, lighter, and more reliable cars
which are growing in software complexity. However, there is a lack of
benchmarks that are used to evaluate the performance of the optimza-
tion algorithms which target the area of architecture optimization, as
proposed by Aleti et. al. in [2]. In this technical report, we contribute
two automotive electric/electronic (E/E) architecture case studies for
a power window and a door locks systems. Additionally, we define a
reference model focused on early design, which is similar to the EAST-
ADL domain model. We use the modeling language Clafer to model both
case studies; however, we provide sufficient details to allow researchers
replicating them in other modeling languages such as SysML or AADL.

Index Terms—automotive E/E architecture, case study, Clafer, early
design, synthesis, optimization

1 Introduction

Over the past decade the need for modeling of automotive
electric/electronic (E/E) architectures has grown. The EAST-
ADL [5] is one formalized way of approaching the issue. In addi-
tion, numerous research tools which focused on automotive E/E
architectures have aimed to provide some additional benefits
for modeling. One such way is by optimizing some aspect of
these architectures, whether it is the deployment of functions to
ECU’s, the number of nodes needed in an architecture, or the
routing of wires through a harness.

Aleti et. al. identified the lack of benchmark support for eval-
uating architecture optimization problems [2]. In this work, we
present two case studies detailing three concrete variable system
architectures: a single door power window (Section 4.1), a two
door power window system (Section 4.2), and a central door
locks system (Section 5). By publishing the cases in full detail,
we hope to make the models presented into benchmarks that can
be used to evaluate future architecture optimization research.

In their survey, Aleti also identified a lack of support for practi-
tioners when modeling architectures in various languages used
in research tools [2]. They proposed using a well-known model-
ing language, such as UML, for expressing the models and then
having some translation to the reasoning language as one way
of supporting the practitioners in analyzing the models. In this

work we use Clafer, a lightweight, general-purpose, structural
modeling language to model the case studies. While Clafer is not
a well-known language, it has full formal semantics and existing
translations to reasoners allowing us to perform automatic anal-
yses and optimization of the models. Also, Clafer models can be
translated to UML or SysML (with OCL constraints) and we
invite the community to do so. In the meantime, we present an
informal background on Clafer in Section 2 so that readers can
understand how to build architectural models of their own. In
addition, we present a reference model in Section 3 that defines
all domain concepts used in modeling the case studies. Using a
reference model gives architects a means for modeling different
systems with a standardized meta-model, similar to that of the
EAST-ADL.

Lastly, in Section 6 we give a set of Clafer patterns for best
practice and to improve backend reasoning. While the patterns
are for modeling in Clafer, some patterns could be adapted to
languages such as UML and SysML.

2 Background

Clafer [3] is a lightweight, general-purpose, structural modeling
language that was originally developed for feature modeling
[4]. In this section we provide readers with an informal back-
ground and basic understanding of the Clafer language and its
constructs. The formal semantics of the language can be found
in [4].

Clafer currently supports two backend solvers that generate
instances from Clafer models. The first solver (not used in this
work) is Alloy [9] and the second is Choco3 CSP-based solver
called chocosolver1. Clafer compiler translates an input Clafer
model into the input language of each backend solver. We use
chocosolver to generate both non-optimal and optimal instances
for the modeled E/E architectures. Figure 1 shows the workflow
of how a Clafer file is compiled into one of the backend model
formats then processed to generate instances. Chocosolver uses
exact algorithms in order to find optimal instances based on
single or multiple objectives.

In the following sections, the constructs of a Clafer model are
explained along with examples. Additionally, we use the solver

1. https://github.com/gsdlab/chocosolver

2

Fig. 1. Overall workflow of Clafer and supported backend solvers.

to show what instances are generated from the corresponding
example models.

2.1 Types of clafers and inheritance

In Clafer, a model consists of clafers2. The name “clafer” comes
from the words class, feature, and reference because a clafer
provides modeling capabilities of all these language constructs.

Clafers are organized in a containment hierarchy: clafers can
contain nested clafers, similarly to how classes can contain other
classes and attributes. Each clafer defines a set of instances,
similarly to how a class defines a set of its instances (objects). A
clafer can be one of two types: abstract or concrete, similarly to
classes. A concrete clafer results in an instance being generated,
while an abstract one does not. Clafers are also organized in an
inheritance hierarchy, like classes, with a restriction that only
abstract clafers can be superclafers. Listing 1 shows an example
of two abstract clafers Car and ElectricCar and two concrete
clafers JanesCar and JohnsCar. Comments begin with //.

Listing 1. Example for concrete and abstract clafers
abstract Car // top-level abstract clafer

engine // nested concrete clafer

// an abstract clafer inheriting from an abstract clafer
abstract ElectricCar : Car

battery

// a concrete clafer inheriting from an abstract clafer
JanesCar : ElectricCar

// error: cannot inherit from a concrete clafer
JohnsCar : JanesCar

The containment is specified using indentation, whereas inher-
itance if specified using colon (:). With respect to the contain-
ment hierarchy, we say that a clafer is a child of another clafer
(e.g., engine is a child of Car) and a clafer is a parent of another
clafer (e.g., Car is the parent of engine). With respect to the
inheritance hierarchy, we say that a clafer is a superclafer of
another one (e.g., Car is the superclafer of ElectricCar, which
itself is a superclafer of JanesCar). Conversely, a clafer inherits
from/is a subclafer of/extends another clafer (e.g., ElectricCar
inherits from/is a subclafer of/extends Car).

2.1.1 Instance generation

Given a Clafer model, a backend reasoner can generate all
instances of the model in a given finite scope. For example, for

2. Throughout this paper if the word Clafer begins with an upper-
case letter it refers to the language while a lowercase one refers to the
construct

the model in Listing 1 (without the incorrect JohnsCar) we get
the following instance:
=== Instance 1 Begin ===

JanesCar
engine
battery

--- Instance 1 End ---

As we can see, only instances of the concrete clafer JanesCar and
the inherited concrete clafers are generated. For simplicity, the
instances have the same names as the clafers. To be fully explicit
one would have to write the following, which we usually ommit
(we overload : to mean instanceOf relationship).
=== Instance 1 Begin ===

JanesCar : JanesCar
engine : engine
battery : battery

--- Instance 1 End ---

Note, that because inheritance is transitive, the instance
JanesCar is also an instance of ElectricCar and Car.

2.2 Clafer multiplicity and group cardinality

Up to this point none of the concepts introduced have allowed
for expressing variability in the model. Clafer provides two
constructs expressing variability: clafer multiplicity and group
cardinality. Clafer multiplicity is a range n..m indicating the al-
lowed number of instances of the given clafer with respect to its
parent. The most common multiplicities are 1..1 (mandatory)
which requires one instance of the given clafer per instance of
its parent; and 0..1 (optional) which allows for at most one
instance of the given clafer per instance of its parent.

Group cardinalities are used to express variability over a group
of children of the given clafer, hence the name. By default,
clafers have the group cardinality of 0..*, that is, they do not
impose any constraints on their children.

In Listing 2, we explicitly show the multiplicities of all clafers.
By default, all abstract clafers have the multiplicity of 0..*,
which we usually ommit. Also, by default, clafers have the
multiplicity of 1..1 unless they are children of a group with
cardinality other than 0..*, in which case the default multi-
plicity is 0..1. For example, the clafer engine has multiplicity
of 1 (short for 1..1), wheel has multiplicity of 4, and seat has
the multiplicity of 2..4. These multiplicities specify that every
instance of Car contains exactly one instance of engine, four
instances of wheel, and between two and four instances of seat,
respectively.

In Listing 2, the clafer transmission has group cardinality xor

(keyword for 1..1) meaning that every instance of transmission
must contain exactly one instance of its children (automatic or
manual).

Listing 2. Example with explicit clafer multiplicities and a group cardi-
nality
abstract Car 0..*
engine 1
xor transmission 1
automatic 0..1

3

manual ?
wheel 4
seat 2..4

abstract Chevy : Car 0..*

JohnsCar : Chevy 1

Using the instance generator, two of the 6 instances are:
=== Instance 1 Begin ===

JohnsCar
engine
transmission
automatic

wheel
wheel$1
wheel$2
wheel$3
seat
seat$1

--- Instance 1 End ---

=== Instance 4 Begin ===

JohnsCar
engine
transmission
manual

wheel
wheel$1
wheel$2
wheel$3
seat
seat$1
seat$2

--- Instance 4 End ---

Note that in order to distinguish the multiple instances of the
same clafer from each other, a suffix $n where n is the instance
number is added.

Both model instances satisfy all multiplicity and group cardinal-
ity constraints; for example, the instance generator will never
generate an instance which has both kinds of transmission or
neither of them.

2.3 References

The last Clafer construct which allows for variability in models
are reference clafers, that is, clafers whose instances can point
to instances of other clafers or primitive values.

Listing 3 shows an example of a clafer Car that contains two
references driver and passenger, which denote the driver and
passengers of the car, respectively. The type of the reference
clafer driver is Person, which means that every instance of the
clafer driver points to one instance of the clafer Person. The
multiplicity of driver is 1..1, by default, so every instance of
a Car will be always connected with one instance of Person

via an instance of the reference clafer driver. The reference
clafer passenger can have between zero and four instances,
each pointing to an instance of Person. There are two kinds
of reference clafers: set (specified using ->) and bag (multiset,
specified using ->>). In our example, we do not want to allow
the same person to be a passenger more than once, that is, the
collection of passengers should be a set and we used -> to express
that constraint.

Listing 3. Example using references
abstract Person

abstract Car
driver -> Person
passenger -> Person 0..4

MyCar : Car
John : Person
Jane : Person

A correct instance of this model then would have John or Jane

as the driver because they are the only clafers of type Person in
the model. The reference clafer passenger points to a set of size
0 to 4 meaning that up to four passengers can be in the car.
A correct instance of this model can have no passengers, both
John and Jane as passengers, or only John or only Jane as a
passenger.

Two of eight possible instances for Listing 3 are:
=== Instance 1 Begin ===

MyCar
driver -> John

John
Jane

--- Instance 1 End ---

=== Instance 8 Begin ===

MyCar
driver -> Jane
passenger -> John
passenger$1 -> Jane

John
Jane

--- Instance 8 End ---

We can see two instances of the reference clafer passenger

(passenger and passenger$1) pointing to the instances of John

and Jane, respectively. The following instance is incorrect.
MyCar

passenger -> John
passenger$1 -> John

John
Jane

First, a required instance of driver is missing, which violates the
multiplicity driver 1..1; second, the same instance of John is a
passenger twice, which violates the set constraint.

2.4 Writing Basic Constraints

So far all we have shown with Clafer is the ability to create
models with large amounts of variability using references and
cardinalities. When modeling real systems and problems a
modeler also wants to use constrains in order to restrict the tar-
gets of references and the allowed configurations of the model.
Additionally, constraints are used when wanting to query a
model for one or more specific instances which satisfy the given
constraints.

In this section, we give readers some of the basics for writing
constraints but for conciseness it is not exhaustive. Readers
should refer to other documentation found at http://www.
clafer.org (we recommend “Clafer Cheat Sheet”3 for an informal

3. http://t3-necsis.cs.uwaterloo.ca:8091/ClaferCheatSheet

http://www.clafer.org
http://www.clafer.org
http://t3-necsis.cs.uwaterloo.ca:8091/Clafer Cheat Sheet

4

language reference). One general rule when writing constraints
in Clafer, is that, there are no scalars in the language, only sets,
and therefore writing a number 1 really means a singleton set
containing the number one. Similarly, we cannot directly access
clafer instances (since they only exist at instance generation
time) and instead we often use singleton sets. For example,
the concrete clafer John : Person 1 is a singleton set which will
contain exactly one instance, thus by writing constraints about
the clafer John, we write constraints about its only instance.

Listing 4 builds on the previous two examples and adds some
constraints. The constraints that we want to model are:

• C1: John is the driver of MyCar

• C2: Only Dan and Jane can be passengers in MyCar

• C3: The driver should not be in the set of passengers in a
car

• C4: The total number of passengers with the driver can’t
exceed the number of seats in a car

A constraint is a Boolean expression surrounded by square
brackets “[]”. Just like clafers, constraints can be either top-
level or nested. Nested constraints must hold for every instance
of their context clafer (the clafer they are nested under); conse-
quently an instance of the context clafer cannot exist unless all
of its nested constraints hold.

In Listing 4, the constraint C1 is captured in line 10, whereby
.dref gets the target value of the reference clafer (much like
dereferencing a pointer in a C/C++). C2 is then captured in
line 11 in the model. Note the subtle differences between C1 and
C2 in the constraints and the wording. For C1, set equality (the
operator =) is used to restrict that the target of the reference
has to be John. In C2, the wording is “can be” so subsetting is
used (the keyword in). The difference between in and = is that
the former can let the set be any of values to the right of the
operation where the latter requires that the set is equal to the
right of the operation (note the correct instances that can be
generated). In C2, the expression Jane, Dan computes a union
of instances of Jane and Dan (alternatively, it can be written as
Jane ++ Dan).

Listing 4. Example using constraints
1 abstract Person
2 abstract Car
3 seat 2..4
4 driver -> Person
5 passenger -> Person 0..4
6 [driver.dref not in passenger.dref] // C3
7 [#(passenger, driver) <= #seat] // C4
8
9 MyCar : Car

10 [driver.dref = John] // C1
11 [passenger.dref in (Jane, Dan)] // C2
12 John : Person
13 Jane : Person
14 Dan : Person

Constraints C3 and C4 pertain to every instance of Car so the
constraints are nested under Car. For C3 the not in enforces
that the target of driver is not present in the set passenger.

C4 uses # to get the size of a set such that one can say the size
of the union of sets passenger and driver is less than or equal to
the size of the set seat. When using the instance generator 12

instances are found that satisfy the constraints and two of them
are as follows:
=== Instance 3 Begin ===

MyCar
seats
seats$1
driver -> John
passenger -> Dan

John
Jane
Dan

--- Instance 3 End ---

=== Instance 11 Begin ===

MyCar
seats
seats$1
seats$2
seats$3
driver -> John
passenger -> Jane
passenger$1 -> Dan

John
Jane
Dan

--- Instance 11 End ---

Constraints are one of the most important aspects of Clafer for
modeling systems since restrictions on system configurations,
deployments, etc. can be constrained such that only valid sys-
tems are synthesized.

2.5 Working with Integers

Clafer and its backends also support working with integers
allowing for adding quantitative information to models. Cur-
rently, only integer arithmetic is supported, so working with
numbers is cumbersome when modeling real systems.

Constraints can be used to model numerical relationships be-
tween components and get the total for a set of component.
For example, Listing 5 takes the car example and models three
features which have an associated cost.

Listing 5. Example using constraints
abstract Feature
cost -> integer

abstract Car
bluetooth : Feature
heatedSeats : Feature
passiveKeyEntry : Feature

MyCar : Car
[bluetooth.cost = 5]
[heatedSeats.cost = 10]
[passiveKeyEntry.cost = 25]

The constraints nested under MyCar configure an instance of
Car by giving values to the different feature costs. The dot "."
operator navigates from a parent to a child clafer or to the
target of a reference. Using the instance generator gives just
one correct instance as there is no variability in the model (all
references have been tightly constrained and all multiplicities
are fixed).

=== Instance 1 Begin ===

MyCar

5

passiveKeyEntry
cost -> 25

heatedSeats
cost$1 -> 10

bluetooth
cost$2 -> 5

--- Instance 1 End ---

2.6 Optimization Objectives

In order to do optimization over qualities of a model, objectives
must be defined. In Clafer, optimization objectives are captured
by surrounding a numerical expression with « and » as in lines
26 and 27 of Listing 6. In this example the car with features
is used but a second quality is added to represent the comfort
level for a user. Also note that all of the features are optional
(denoted by the ?, meaning cardinality 0..1) such that there is
variability among the available features. In order to populate
the used feature set of the Car the constraint C1 on lines 9,
13, and 17 constrains that this (the Feature) is in the set of
parent’s (the Car’s) child feature. The constraint C2 on lines 21
and 22 sum the cost and comfort (respectively) of all the present
features in the car to be used for the optimization goals.

Listing 6. Example using optimization
1 abstract Feature
2 cost -> integer
3 comfort -> integer
4 abstract Car
5 feature -> Feature 2..*
6 totalCost -> integer
7 totalComfort -> integer
8 bluetooth : Feature ?
9 [this in parent.feature] // C1

10 [cost = 5]
11 [comfort = 30]
12 heatedSeats : Feature ?
13 [this in parent.feature] // C1
14 [cost = 30]
15 [comfort = 10]
16 passiveKeyEntry : Feature ?
17 [this in parent.feature] // C1
18 [cost = 40]
19 [comfort = 10]
20
21 [totalCost = sum feature.cost] // C2
22 [totalComfort = sum feature.comfort]
23
24 MyCar : Car
25
26 << minimize MyCar.totalCost >>
27 << maximize MyCar.totalComfort >>

The instance generator configured for optimization finds 2
Pareto-optimal instances which are shown below:
=== Instance 1 Begin ===

MyCar
feature -> bluetooth
feature$1 -> heatedSeats
totalCost -> 35
totalComfort -> 40
bluetooth
cost -> 5
comfort -> 30

heatedSeats
cost$1 -> 30
comfort$1 -> 10

--- Instance 1 End ---

=== Instance 2 Begin ===

MyCar

feature -> bluetooth
feature$1 -> heatedSeats
feature$2 -> passiveKeyEntry
totalCost -> 75
totalComfort -> 50
bluetooth
cost -> 5
comfort -> 30

heatedSeats
cost$1 -> 30
comfort$1 -> 10

passiveKeyEntry
cost$2 -> 40
comfort$2 -> 10

--- Instance 2 End ---

What are the tradeoffs between these two instances? Instance
1 has the lowest cost, while sacrificing the comfort. Instance 2
has the highest comfort at the higher cost. Clafer tools include
Clafer Multi-Objective Optimization (MOO) Visualizer, a tool
for visualizing and exploring the set of optimal instances of a
model, which allows the users to perform tradeoff analysis and
find the instances most suitable for their needs [8]. A screenshot
from the tool is shown in Figure 2 when visualizing the instances
generated from Listing 6.

Fig. 2. Screenshot of MOO Visualizer for Listing 6.

3 Reference Model for E/E System Architecture

Before modeling the case studies we define a reference model
(or domain model) for early design of automotive E/E architec-
tures. In this section, we define the reference model along with
its Clafer encoding. Having a reference model creates a uniform
understanding of the components that make up a system and
the relationships and rules among the components for modelers.

The reference model described here is similar to the EAST-ADL
as it contains multiple layers, each describing the system at a
different level of abstraction. Figure 3 shows the reference model
we use for capturing the E/E architecture for the early design
phases when considering multiple candidate architectures.

The perspectives on the right of Figure 3 augment the system
with analysis-task or stakeholder-specific information such as
points of variability, latency, and mass. In the following subsec-
tions, we consider each layer and perspective of the reference
model.

3.1 Feature Model

The feature model captures features of the modeled system. A
feature is a broad concept with many interpreted definitions;

6

Fig. 3. The reference model used for early design of automotive E/E
systems architecture.

however, in this context a feature is a high-level system char-
acteristic relevant to some stakeholder, such as the customer or
the user. Features may represent functionality or performance.
Some concrete examples could be a passive key entry feature in
a door lock system or an automatic closing of a window in a
power window.

When encoded in Clafer, a feature and feature model are just
two abstract clafers that are used to type concrete clafers for
readability as no rules or attributes are associated with them.
Listing 7

Listing 7. Meta model for feature model
abstract FeatureModel
abstract Feature

In Sections 4 and 5 we show how to apply these concepts and
others, described in the subsequent subsections, to two systems.

3.2 Functional Analysis Architecture

The functional analysis architecture (FAA) captures functions
in the system that implement the features described in the
feature model. There are two types of functions defined in the
FAA: analysis functions which model control functions with
their inputs and outputs and functional devices which capture
functions that represent sensors and actuators. Many of the
analysis functions will be realized as software components;
however, some functions or parts of them may be realized
by specialized hardware (such as digital signal processing).
Functional devices will typically be realized by hardware sensors
and actuators plus additional software, such as device drivers or
signal conditioning software.

The FAA also models the communication between functions us-
ing function connectors. These connectors represent the trans-
fer of messages at a logical level between two functions. The
analysis functions and functional devices are then mapped onto
the device nodes which are apart of the hardware architecture
(Section 3.3). The function connectors are then deployed to
the physical media that are captured in the communication
topology (Section 3.4). These deployments from the FAA to the
hardware architecture are depicted by the block arrow in Figure
3.

The Clafer encoding of the FAA is more interesting compared to
the feature model as it captures the deployments, implementa-
tion choice, and some constraints to impose restrictions on the

Listing 8. Meta model for functional analysis architecture.
1abstract FunctionalAnalysisComponent
2deployedTo -> DeviceNode
3xor implementation
4hardware
5[deployedTo.type in (EEDeviceNode, SmartDeviceNode)]
6software
7[deployedTo.type = SmartDeviceNode]
8abstract AnalysisFunction : FunctionalAnalysisComponent
9abstract FunctionalDevice : FunctionalAnalysisComponent
10abstract FunctionConnector
11sender -> FunctionalAnalysisComponent
12receiver -> FunctionalAnalysisComponent
13deployedTo -> HardwareDataConnector ?
14[parent in this.deployedFrom]
15[(sender.deployedTo.dref, receiver.deployedTo.dref) in

(deployedTo.endpoint.dref)]
16[(sender.deployedTo.dref = receiver.deployedTo.dref) <=>

no this.deployedTo]

deployments. Listing 8 contains the encoded FAA concepts in
Clafer.

The deployment of analysis functions and functional devices
is captured through the reference from FunctionalAnalysis

Component to DeviceNode on line 2. Additionally, implementation
choice is captured in FunctionalAnalysisComponent on lines 3-6.
Based on the implementation, deployment is restricted by a set
of rules; the constraints on lines 4 and 6 capture these rules
which are further explained in the next subsection. Section 3.3
explains each of the device node types.

The deployment of function connectors to the communication
topology media is encoded by line 13 where the constraints
nested under impose constraints on the deployment. Function
connectors have an optional deployment since if the two func-
tions are deployed to the same device node there is no need for
a physical communication medium (captured by line 16). The
constraint on line 15 enforces that the medium being used by the
function connector does in fact connect the two device nodes in
which the communicating functions are deployed.

3.3 Device Node Classification

The device node classification captures the device nodes in the
architecture and their properties. A device node is a piece of
physical hardware such as a sensor, actuator, ECU (electronic
control unit), or battery. One of the properties is the type of
device node, which our reference model we define three concrete
types as follows:

• Smart: A device node that can be programmed with one
or more analysis functions or functional devices which are
implemented in software. Examples would be an ECU or a
hardware device with embedded microcontroller.

• Electric/Electronic (E/E): A device node that can
not be programmed with executable software but rather
implements some hardware functionality described by a
functional device or analysis function that is implemented
in hardware. Examples would be a sensor or actuator.

• Power: A device node that generates, stores, or relays
power to other device nodes. In this paper, we do not allow
a power device node to have any logic associated with it

7

Fig. 4. Class diagram showing classification of device nodes and func-
tions.

Listing 9. Meta model for device node classification
abstract DeviceNodeClassification
enum DeviceNodeType = SmartDeviceNode | EEDeviceNode |

PowerDeviceNode
abstract DeviceNode
type -> DeviceNodeType

(i.e., no functional devices or analysis functions deployed
to it). An example would be a battery or fuse box.

Figure 4 shows a class diagram of the classification for device
nodes, analysis functions, and functional devices. It also shows
the allowed deployments of the different functions to the various
device node types. Notice from the figure that the classification
is a lattice, that is, a smart device also has E/E and power
capabilities, whereas an E/E device also has power capability
but not smart capability. Thus, a functional device or analysis
function implemented in hardware can be deployed to either an
E/E or a smart device node.

Listing 9 shows the encoding of the device node and its types
in Clafer. The reference clafer type nested under DeviceNode has
a cardinality of 1..1 meaning that only one of the device node
types is selected in an instance. Additionally, the constraints on
lines 4 and 6 of the FAA listing (Listing 8) capture the allowed
deployments of functions to device nodes.

3.4 Communication Topology

The next part of the hardware architecture is the communi-
cation topology, which defines the physical media that function
connectors use. The following connectors make up the topology:

• Discrete data connectors: A connector used to indicate
the status of a binary input, such as a switch. Figure 5
shows the different levels of abstraction for modeling hard-
ware connectors. We chose to model them at the highest
level (shown in the dashed box) to reduce model complex-
ity, thus we don’t model ports or pins on a device node.

• Analog data connectors: A connector which sends an
analog signal (as opposed to digital); typically encoded
as voltage amplitude. This is also an abstract connector
similar to the discrete data connector.

• Bus connectors: An abstract connector between two or
more device nodes in which all connected nodes may pass

Fig. 5. Modeling of data connectors at different levels of abstraction.
The lowest level is shown on the left where connectors are modeled
between pins, the middle shows connectors between ports, the right is
the highest level where two devices nodes are connected via a connector.
The dashed selection shows the level of abstraction used for data and
power connectors.

Listing 10. Meta model for communication topology
1abstract HardwareConnector
2
3abstract HardwareDataConnector : HardwareConnector
4endpoint -> DeviceNode 2..*
5deployedFrom -> FunctionConnector 1..*
6[this.deployedTo = parent]
7
8abstract DiscreteDataConnector : HardwareDataConnector
9[#(endpoint) = 2]
10abstract AnalogDataConnector : HardwareDataConnector
11[#(endpoint) = 2]
12
13abstract BusConnector : HardwareDataConnector
14[endpoint.type = SmartDeviceNode]
15xor type
16LowSpeedCAN
17HighSpeedCAN
18LIN
19FlexRay
20
21abstract LogicalBusBridge : HardwareDataConnector
22[endpoint.type = SmartDeviceNode]
23bus -> BusConnector 2

messages; these are typically serial buses such as CAN and
LIN.

In order to capture the transfer of messages between two buses,
a bridge is defined between two bus connectors. Listing 10 shows
the encoding of the different communication topology elements.
The deployedFrom reference on line 5 models the inverse relation-
ship back to the function connector in which the cardinality is
1..* to enforce that at least one function connector is using the
connector to be present.

3.5 Power Topology

The last part of the hardware architecture we consider is the
power topology, which models how device nodes are connected
with power and in which we consider two types of power
connectors:

• Load Power Connector: An abstraction for lower gauge
wires that distributes higher power (around 12 V) to device
nodes. These connectors are often used to power motors,
heaters, and lights.

8

Listing 11. Meta model for power topology
abstract HardwareConnector
abstract PowerConnector : HardwareConnector
source -> DeviceNode
sink -> DeviceNode

abstract LoadPowerConnector : PowerConnector
abstract DevicePowerConnector : PowerConnector

• Device Power Connector: An abstraction for higher
gauge wires that distributes lower power (around 5 V) to
device nodes. These connectors are often used to power
smart devices.

Listing 11 shows the encoding of the power topology elements
in Clafer. The connectors are modeled as unidirectional by
having a source and sink which is typical when capturing power
distribution.

3.6 Variability Perspective

The variability perspective is captured in the reference model
not by adding any additional concepts but rather using the
built-in mechanisms of Clafer (multiplicity, group cardinality,
references). A concrete example of this is the deployment of
function to device nodes. In Listing 8, a reference deployedTo is
defined which allows the target of the reference to be any device
node in the model. Additionally, variability can be expressed
for any instantiated reference model type by using cardinalities.
Sections 4 and 5 give concrete examples of modeling variability
for the case studies.

3.7 Mass, Parts Cost, & Warranty Parts Cost Perspectives

The mass, parts cost, and warranty parts cost perspectives differ
from the variability perspective since they require additional
constructs being defined in the reference model instead of being
built into the language. The three perspectives are similar since
all are only captured at the hardware architecture level. In this
reference model, only the unit cost of hardware components is
considered.

Listing 29 in Appendix A contains the complete reference model
with all of the annotations for the mass, cost, warranty cost, and
latency perspectives.

The mass of an architecture is measured by the mass of the
device nodes and the physical connectors. In the reference
model, a mass property is given to a device node, captured in
line 55 of Listing 29. The mass of the connectors is measured
by having a coefficient representing the mass per unit length
(captured by the integer clafers on lines 124-148) of a wire and
having a property for the length of a connector. Additionally
for the discrete and analog connectors the mass is multiplied
by the number of function connectors deployed to it since each
one needs a single wire to communicate. This relationship is
captured by the constraints on lines 84 and 89 in Listing 29.

The cost of an architecture is modeled in the same way as the
mass. For warranty cost, only the device nodes are considered
since only reliability is captured for them. The metric used
for reliability is part per million (ppm) and the warranty cost

is calculated by taking the replacement cost of a device node
multiplied by the ppm value.

3.8 Latency Perspective

Unlike mass, cost, and warranty cost, the latency perspective
is not only captured at the hardware architecture but also in
the FAA. We do this through timing chains — a sequence
of executing functions with their communication as defined in
the FAA. With the latency of a system being modeled, timing
requirements such as end-to-end latency — the time taken to
reach a target function from some source function — or input
synchronization latency — the maximum difference in time
taken to reach a target function from more than one source
function. The case studies in the following sections give concrete
examples of creating the chains, but before one must model
the timing properties of the reference model element that have
a role. The following list contains each of the elements that
contribute to the latency of a system:

• Functional device & analysis function: a base latency is
specified by the user. If the function is implemented in
software the base latency represents the latency a function
is expected to take at some base ECU speed factor. If the
function is implemented in hardware the base latency is
simply the hardware specification latency.

• Function connector: a size is specified by the user to rep-
resent the size of the message being sent. Then based on
whether the function connector is deployed and to what
type of hardware connector, the latency is calculated using
the transfer rate of the hardware connector.

• Device node: a speed factor can be given to the device node
which affects the resulting latency of deployed analysis
functions.

• Discrete/analog data connector: the latency is assumed to
be zero in our model.

• Bus connector: the transfer rate is dependent of the type of
bus which then affects the deployed to function connectors.

The assumptions that are made when using this timing model
are as follows:

• All deployments to nodes are considered to be schedulable.

• The deployment of functions to nodes is such that when any
two functions communicate via a bus there is no blocking
time.

These assumptions greatly simplify the timing analysis done
during optimization. Additionally, during early design, engi-
neers are interested in estimating timing budgets that will be
refined and further analyzed in more detailed design revisions.
Therefore, such a model is sufficient for very early exploration.
Listing 29 in Appendix A shows the complete reference model
with the latency perspective added.

9

4 Power Window Case Study

The first case study we present in this report is the E/E
architecture for a power window system in a car. First a single
driver side door system is presented and then a second system
for the front passenger side door power window is added with
communication between the two. This case study has been de-
veloped and presented in two previous works, one by Murashkin
[7] and one by Akhtar [1]. The case study presented in this work
is an extension of the former while the latter uses the case study
for a comprehensive design analysis, not just exploration.

The reason for choosing the power window as a case study was
due to the fact it was self-contained and not overly complex.
The material for the architecture designs and sources of vari-
ability was obtained through publicly available service manuals
from companies such as Nissan, Infinity, BMW, and GM. The
quality attribute information for cost and mass was obtained
from OEM part supply websites and Amazon.com. Latency
quality attributes were mainly created artificially using typical
values as a base line (based on domain expertise). Lastly, the
reliability attributes (ppm) were obtained from standard values
and handbook calculations. In the last part of this section, we
give details on how the values were formatted as inputs to the
model.

4.1 Single Door: Driver

4.1.1 Feature Model

The features that are considered for the single door power
window are as follows:

• Basic Up/Down The basic operation of the power window.
When the switch is held in the up position the window
retracts until closed or release of the switch. There is an
identical reverse operation for holding the switch down.

• Express The express down feature in which when a user
pushes the button down into an express position, the win-
dow opens until the window is completely open without the
user having to continue pressing down the switch.

• Express Up The express up feature is similar to that of the
express down except for the reverse operation. Addition-
ally, if an object is detected in the window travel path then
the window should stop and retract to be fully open again.

Figure 6 is a feature model which organizes features into a
hierarchy and indicates their variability as Kang et. al. proposed
in [6]. Note that for expressUp to exist the feature express must
be present. This relationship can be captured using nesting
in Clafer and is highlighted in Listing 12. Additionally, using
clafer multiplicities the features express and expressUp are made
optional.

Listing 12. Clafer feature model for single door power window
DWinSysFM : FeatureModel
basicUpDown : Feature
express : Feature ?
expressUp : Feature ?

4.1.2 Functional Analysis Architecture

The functional analysis architecture for the power window needs
to support two sets of functions, one for the basic operation and
one for detecting obstacles for the express up feature. Figure
7 shows the FAA for the system using a graphical domain-
specific language (the legend is shown in Figure 8) that can
be translated to Clafer.

The functions present in the FAA and their allowed implemen-
tations are as follows:

• WinSwitch: A sensor functional device that reads the switch
position requested by the user. Allowed implementation(s):
hardware

• WinArbiter: An analysis function that arbitrates which
incoming signal should be sent to the controller. For the
driver window this component is not needed since only
one input is present, however we still model it. Allowed
implementation(s): hardware, software

• WinControl: The main control logic of the power window.
It takes the switch position request, the current value from
the motor and if an object is present (if pinch detection is
required) and translates it to a command to send to the
motor. Allowed implementation(s): software

• WinMotor: The actuator that takes the desired command
from the controller and translates it to moving the motor
to close and open the window. Allowed implementation(s):
hardware

• CurrentSensor: A sensor placed on the motor to measure the
current being pulled by the motor. This is used to ensure
that the motor does not “stall” by continuing to move in a
direction in which it can no longer move (i.e. the window is
fully open or closed). Allowed implementation(s): hardware

• PositionSensor: A sensor to detect the current position of
the window in the path of travel. Allowed implementa-
tion(s): hardware

• PinchDetection: Another piece of control logic that takes
the position sensor reading and determines if an object is
present or not. Allowed implementation(s): software

The PinchDetectionFAA is a functional analysis architecture
nested inside the driver power window FAA and it is optional
(since the express up feature is). By putting the PositionSensor

and PinchDetection and the two function connectors in the
FAA it allows for those components to be removed when Pinch

Fig. 6. The feature model for a single door power window

10

Fig. 7. The functional analysis architecture for a single door power
window. The “HW” or “SW” in upper right corner of a function
indicates the implementation choice in hardware or software respectively.
“HW/SW” indicates the function can be implemented in either software
or hardware.

Fig. 8. Legend for the graphical domain-specific language (DSL) for
describing the FAA for E/E architectures

DetectionFAA is not present.

Listing 13 shows a snippet of the FAA encoded using Clafer for
the single door power window. Note the use of nesting for the
components inside of PinchDetectionFAA.

Listing 13. Snippet of Clafer model for single door functional analysis
architecture

1 DWinSysFAA : FunctionalAnalysisArchitecture
2 WinSwitch : FunctionalDevice
3 [implementation.hardware]
4 [baseLatency = 20]
5 WinController : AnalysisFunction
6 [implementation.software]
7 [baseLatency = 2]
8 WinMotor : FunctionalDevice
9 [implementation.hardware]

10 [baseLatency = 10]
11 ...
12 winReq : FunctionConnector
13 [sender = WinArbiter && receiver = WinController]
14 [messageSize = 1]
15 winCmd : FunctionConnector
16 [sender = WinController && receiver = WinMotor]
17 [messageSize = 2]
18 PinchDetectionFAA : FunctionalAnalysisArchitecture ?
19 PinchDetection : AnalysisFunction
20 [implementation.software]
21 [baseLatency = 2]
22 PositionSensor : FunctionalDevice
23 [implementation.hardware]
24 [baseLatency = 10]
25 object : FunctionConnector
26 [sender = PinchDetection && receiver = WinController]
27 [messageSize = 2]
28 ...
29 [DWinSysFAA.PinchDetectionFAA <=> DWinSysFM.express.

expressUp]

The constraint on line 29 of Listing 13 expresses equivalence
between the PinchDetectionFAA and the feature expressUp in the
feature model, which ensures that pinch detection functionality
is present if and only if the feature express up is present.

4.1.3 Device Node Classification

The device node classification consists of local nodes, which
belong to the system, and remote nodes which are shared among
many systems. The local nodes that belong to the driver door
power window system are:

• Switch: The physical switch sensor that is present on the
door for the driver to control their window. Allowed type(s):
smart, electric/electronic

• Motor: The motor that moves the window armature to open
and close the window. Allowed type(s): smart, electric/elec-
tronic

• Door Module: An optional ECU that is housed inside the
door. Allowed type(s): smart

• Door Inline: An interconnect that connects the wiring from
the main body harness to the door harness. Allowed type(s):
power

The remote nodes in the system are:

• BCM (Body Control Module): The main ECU that houses
much of the body control software. Allowed type(s): smart

• EC (Electric Center): The main fuse box that is the primary
source of power Allowed type(s): power

A snippet of the device node classification encoding in Clafer is
shown in Listing 14. In order to model the shared components,
a clafer Car is defined which houses any remote components to
the model. Then, the concrete BCM and EC are declared in Car.
Inside the definition of the device node classification for the
driver system, two references are defined to point to the central
components. Using a reference instead of local declaration rep-
resents the fact that the driver device node classification has to
be able to access the BCM and EC; however, since the BCM
reference is optional, the driver system might not need it.

Listing 14. Snippet of Clafer model for single door device node classifi-
cation

1abstract SwitchNode : DeviceNode
2numSwitches -> integer
3
4DWinSysDN : DeviceNodeClassification
5BCM -> DeviceNode ?
6EC -> DeviceNode
7Switch : DeviceNode
8[type in (SmartDeviceNode, EEDeviceNode)]
9[mass = 173]
10[cost = 110]
11[replaceCost = 110]
12[if (type in SmartDeviceNode) then (ppm = 50) else (ppm

= 10)]
13[(type in SmartDeviceNode) => (speedFactor = 10)]
14[numSwitches = 2]
15Motor : DeviceNode
16[type in (SmartDeviceNode, EEDeviceNode)]
17...
18DoorInline : DeviceNode
19[type = PowerDeviceNode]
20...
21DoorModule : DeviceNode ?
22[type = SmartDeviceNode]
23...
24[BCM = Car.BCM]
25[EC = Car.EC]
26
27Car
28BCM : DeviceNode ?
29[type = SmartDeviceNode]

11

30...
31EC : DeviceNode
32[type = PowerDeviceNode]
33...

Listing 14 also contains a sub-type of DeviceNode, namely
SwitchNode. This subtype allows the modeling of a general type
of switch panel on a car and denotes the number of switches on
the panel. Thee number of switches could have been captured by
multiplicities but the solver exhibits a performance slow down.
Patterns like this are discussed in more detail in Section 6.

4.1.4 Power Topology

The power topology for the power window models two types
of power, load and device. The device power topology is quite
straight forward; if a device node is smart then it must have
a connection from the EC to the device node using a device
power connector. The topology is modeled by defining optional
power connectors from the EC to the door inline and then from
the door inline to the respective nodes. Figure 9 shows the
power topology for the single door window and the two sets
of power connectors. Figure 10 is a legends for understanding
the graphical symbols used to model the hardware architecture
elements.

Fig. 9. The power topology for a single door power window. The inside
dotted box for the BCM denote that it is an optional remote device
node.

Fig. 10. Legend for the graphical domain specific language (DSL) for
describing the hardware architecture for E/E architectures.

In order to have the correct device power connectors present in
the architecture the following rules are applied:

• Rule 1: A device power connector between a local device
node and the door inline must exist if the device node is
smart.

• Rule 2: A device power connector between the EC and the
door inline must exist if there is at least one device power
connector leaving the door inline.

The second power connector that is of interest is the load power
connector. Load power is required by the motor in order to move

the window glass. The configuration of the load power is driven
by the deployment of the WinControl analysis function. This is
because the WinControl function acts as a driver for the motor.
Therefore, a load power connector must be defined from each
of the device nodes that can be smart to the motor (as seen in
Figure 9). Secondly, the load power must get from the EC to
the device node that has the WinControl function deployed. This
results in 4 concrete topologies for the load power which can be
described by the following rules:

• Rule 3: If the control is deployed to the motor then a load
power connector must be present from the door inline to
the motor and the EC to the door inline.

• Rule 4: If the control is deployed to the switch or door
module, then a load power connector must exist from the
door inline to the local deivce node, from the local device
node to the motor, and the EC to the door inline.

• Rule 5: If control is deployed to the BCM then a load
power connector must exist from the door inline to the
motor, BCM to the door inline, and EC to the BCM.

Listing 15 shows a snippet of the power topology encoded in
Clafer with the quality attribute values as well. Comments are
used to show which constraint capture what rules for defining
the allowed configurations. A group cardinality xor is used in
order to model the exclusive configurations outlined in rules 3,
4, and 5.

Listing 15. Snippet of Clafer model for single door power topology
DWinSysPT : PowerTopology
dn -> DWinSysDN
MotorLoadPowerWire : LoadPowerConnector
[sink = dn.Motor]

SwitchLoadPowerWire : LoadPowerConnector ?
[source = dn.DoorInline && sink = dn.Switch]
[length = 45]

DoorModuleLoadPowerWire : LoadPowerConnector ?
[source = dn.DoorInline && sink = dn.DoorModule]
[length = 35]

DoorInlineLoadPowerWire : LoadPowerConnector
[sink = dn.DoorInline]

xor MotorLoadPowerConfig
SwitchIsMotorDriver //R4
[MotorLoadPowerWire.source = dn.Switch]
[MotorLoadPowerWire.length = 40]
[DoorInlineLoadPowerWire.source = dn.EC.dref]
[DoorInlineLoadPowerWire.length = 40]
[SwitchLoadPowerWire && DoorInlineLoadPowerWire && no

DoorModuleLoadPowerWire]
DoorModuleIsMotorDriver //R4
...

BCMIsMotorDriver //R5
...

MotorIsMotorDriver //R3
...

switchInlineDP : DevicePowerConnector ?
[source = dn.DoorInline && sink = dn.Switch]
[length = 45]

motorInlineDP : DevicePowerConnector ?
...
[switchInlineDP <=> (dn.Switch.type in SmartDeviceNode)]

//R1
[motorInlineDP <=> (dn.Motor.type in SmartDeviceNode)] //

R1
[ha.pt.inlineECDP <=> some(motorInlineDP, switchInlineDP,

doorModuleInlineDP)] //R2

12

4.1.5 Communication Topology

The communication topology contains two mediums for com-
munication, a bus and discrete connectors. For the driver door
power window there is a single bus that allows for communica-
tion between the BCM and the local device nodes. The discrete
connectors, as stated in the reference model, represent bundles
of wires between two nodes. Unlike the power topology, a single
connector is modeled between two communicating nodes so the
door inline does not play any part in routing the connectors and
it is abstracted away. Making this assumption allows for simpler
models which accommodates early design.

Figure 11 shows the communication topology for the power win-
dow. Note that there is no possible discrete connector between
the door module and BCM due to the assumption made that if
a device is smart (when both are) they must use the bus.

Fig. 11. The communication topology for a single door power window

Listing 16 shows a snippet of the corresponding encoding in
Clafer along with the quality attributes. The endpoints con-
straint on line 7 restricts the possible device nodes that can be
connected to the bus. The endpoint constraints for the discrete
wires explicitly gives the two endpoints for the connector such
that the solver along with the constraint on line 16 in Listing 8
can synthesize the correct connectors needed. The deployment
rules for the function connectors to the communication topology
is then shown in the following section.

Listing 16. Snippet of Clafer model for single door communication
topology

1 DWinSysCT : CommTopology
2 dn -> DWinSysDN
3
4 logicalLowSpeedBus : BusConnector ?
5 [type.LIN || type.LowSpeedCAN]
6 [length = 70]
7 [endpoint in (dn.Motor, dn.Switch, dn.DoorModule, dn.

BCM.dref)]
8
9 logicalSwitchMotorDisc : DiscreteDataConnector ?

10 [length = 40]
11 [endpoint = (dn.Switch, dn.Motor)]
12
13 logicalSwitchBCMDisc: DiscreteDataConnector ?
14 ...

4.1.6 Deployment

To complete the single door power window case study the last
part needing to be modeled is the deployment of the func-
tional analysis architecture onto the hardware architecture. The
deployment consists of only rules (or constraints) that detail
what the allow mappings of functions to nodes and function

connectors to mediums. The rules that need to be modeled are
as follows:

• Rule 1: The analysis functions can be deployed to any of
the local or central nodes.

• Rule 2: The WinMotor, CurrentSensor, and Position Sensor

must be deployed to the Motor.

• Rule 3: The function connectors can be deployed to any of
the possible discrete connectors or the bus.

The rules can then be encoded using constraints in Clafer; a
snippet of model is shown in Listing 17. Additionally on lines
12-15 the power topology configuration is constrained based on
the deployment of the controller as detailed earlier.

Note the use of implication “=>” in the constraints pertain-
ing to the pinch detection elements. This is such that the
deployment constraints don’t restrict that the pinch detection
FAA must be present (these constraints are conditional on the
presence of the pinch detection FAA).

Listing 17. Snippet of Clafer model for single door deployment
1DWinSysDpl : Deployment
2fa -> DWinSysFAA
3ha -> DWinSysHA
4
5[fa.WinArbiter.deployedTo.dref in (ha.dn.BCM.dref, ha.dn.

Switch, ha.dn.Motor, ha.dn.DoorModule)]
6[fa.PinchDetectionFAA => (fa.PinchDetectionFAA.

PinchDetection.deployedTo.dref in (ha.dn.BCM.dref, ha
.dn.Switch, ha.dn.Motor, ha.dn.DoorModule))]

7[fa.WinSwitch.deployedTo.dref = ha.dn.Switch]
8[fa.PinchDetectionFAA => (fa.PinchDetectionFAA.

PositionSensor.deployedTo.dref = ha.dn.Motor)]
9
10[(fa.WinController.deployedTo.dref = ha.dn.Switch) <=> ha

.pt.MotorLoadPowerConfig.SwitchIsMotorDriver]
11[(fa.WinController.deployedTo.dref = ha.dn.Motor) <=> ha.

pt.MotorLoadPowerConfig.MotorIsMotorDriver]
12[(fa.WinController.deployedTo.dref = ha.dn.BCM.dref) <=>

ha.pt.MotorLoadPowerConfig.BCMIsMotorDriver]
13[(fa.WinController.deployedTo.dref = ha.dn.DoorModule)

<=> ha.pt.MotorLoadPowerConfig.
DoorModuleIsMotorDriver]

14
15[(fa.localWinReq.deployedTo.dref in (ha.ct.

logicalLowSpeedBus, ha.ct.logicalSwitchMotorDisc, ha.
ct.logicalSwitchBCMDisc, ha.ct.logicalMotorBCMDisc,
ha.ct.logicalSwitchDoorModuleDisc, ha.ct.
logicalMotorDoorModuleDisc))]

16...

4.2 Two Door: Driver & Front Passenger

In this section, the previous system is scaled up to a two door
system. When building the second system, we observed that the
passenger door was very close in structure to the driver. So in
the first subsection this commonality is addressed and abstract
clafers are used to generalize the core elements. The following
section then gives the specifics for how the case study extends
the common core to model the passenger door.

4.2.1 Generalizing the Core Elements

The passenger door is almost identical to the driver door with
the exception of an added function and some additional com-
munication. Thus, the generalized elements turn out to be the

13

same as the driver system. Starting with the feature model, the
Clafer model in Listing 12 can be modified to be abstract and
have two separate concretizations of it, as shown in Listing 18.

Listing 18. Generalized feature model and two concretizations
abstract WinSysFM : FeatureModel
basicUpDown : Feature
express : Feature ?
expressUp : Feature ?

DWinSysFM : WinSysFM
PWinSysFM : WinSysFM

The same can be done for the remaining layers presented in the
single door power window. Listing 30 in Appendix B shows the
full generalized architecture.

4.2.2 Extending for the Passenger System

The passenger door system requires some extensions to the base
model which are not present in the driver door system. Starting
with the feature model, it only makes sense for the passenger
to have less features than the driver. The following rules can be
derived then:

• Rule 1: The passenger should not have the feature express

if the driver does not have it.

• Rule 2: The passenger should not have the feature
expressUp if the driver does not have it.

These rules turn into constraints captured in the specialization
of the passenger feature model in Listing 19.

Listing 19. Clafer feature model for two door system
DWinSysFM : WinSysFM
PWinSysFM : WinSysFM
[express => DWinSysFM.express]
[express.expressUp => DWinSysFM.express.expressUp]

The functional analysis architecture for the passenger system
needs to include the additional switch and connector which
models the driver side switch controlling the passenger window.
Since the generalized FAA contains all other functionality, the
only thing the passenger concretization needs is a functional de-
vice to represent the driver side switch and a function connector
from the switch to the arbiter. Figure 12 shows such architecture
and the corresponding Clafer model is shown in Listing 20.
Observe that the arbiter can now always prefer the input from
the driver-side switch, which will override the passenger’s input.

Fig. 12. The functional analysis architecture for a passenger door power
window system

Listing 20. Clafer functional analysis architecture for a two door system
DWinSysFAA : WinSysFAA
[DriverWinSys.DWinSysFM.express.expressUp <=> DWinSysFAA.

PinchDetectionFAA]

PWinSysFAA : WinSysFAa
[PassengerWinSys.PWinSysFM.express.expressUp <=>

PWinSysFAA.PinchDetectionFAA]
DWinSwitch : FunctionalDevice
[deployedTo.hardware]
[baseLatency = 10]

driverWinReq : FunctionConnector
[sender = DWinSwitch && receiver = WinArbiter]
[messageSize = 1]

The only difference for the passenger device node classification
is an addition of a reference to the driver side device node
Switch. This is shown on lines 113 and 114 of Listing 31 in
Appendix C.

For the power topology, there are no extensions for either system
from the generalized topology. However, the communication
topology requires some additional connectors which is shown
in Figure 13.

Fig. 13. The communication topology for the passenger door power
window system. The “Driver” bus is shown as a reference for the bridge
between the two buses. It is assumed that any node connected to the
“Passenger” bus can use the bridge to send a message over the bridge
to the “Driver" bus.

Listing 21 shows the concretization of the two common com-
munication topologies and the extension for the passenger.
Note the use of a logical bus bridge in order to model the
communication between the passenger local bus and the driver
local bus.

Listing 21. Clafer communication topology for two door system
DWinSysCT : WinSysCT
...

PWinSysCT : WinSysCT
logicalDoorBusBridge : LogicalBusBridge ?
[bus = (PWinSysCT.logicalLowSpeedBus, DWinSysCT.

logicalLowSpeedBus)]
[gatewayTransferTimePerSize = 10]
[endpoint in (PWinSysDN.Motor, PWinSysDN.Switch,

PWinSysDN.DoorModule, PWinSysDN.BCM.dref, DWinSysDN
.Motor, DWinSysDN.Switch, DWinSysDN.DoorModule)]

logicalDriveSwitchPassSwitch : DiscreteDataConnector ?
[length = 260]
[endpoint = (PWinSysHA.PWinSysDN.DSwitch.dref,

PWinSysHA.PWinSysDN.Switch)]
logicalDriveSwitchPassMotor : DiscreteDataConnector ?
[length = 260]
[endpoint = (PWinSysHA.PWinSysDN.DSwitch.dref,

PWinSysHA.PWinSysDN.Motor)]
logicalDriveSwitchPassDoorModule : DiscreteDataConnector

?
[length = 250]
[endpoint = (PWinSysHA.PWinSysDN.DSwitch.dref,

PWinSysHA.PWinSysDN.DoorModule)]
logicalDriveSwitchBCM : DiscreteDataConnector ?
[length = 85]
[endpoint = (PWinSysHA.PWinSysDN.DSwitch.dref,

PWinSysHA.PWinSysDN.BCM.dref)]
...

14

The added communication topology and additional functional
device requires the deployment for the passenger system to be
extended as well. Listing 22 gives a snippet of the Clafer model
for the two deployments.

Listing 22. Clafer functional analysis architecture for two door system
DWinSysDpl : WinSysDpl
...

PWinSysDpl : WinSysDpl
[PWinSysFA.DWinSwitch.deployedTo.dref = PWinSysHA.

PWinSysDN.DSwitch.dref]
[PWinSysFA.dWinReq.deployedTo.dref in (
PWinSysHA.PWinSysCT.logicalDoorBusBridge,
PWinSysHA.PWinSysCT.logicalDriveSwitchPassSwitch,
PWinSysHA.PWinSysCT.logicalDriveSwitchPassMotor,
PWinSysHA.PWinSysCT.logicalDriveSwitchPassDoorModule,
PWinSysHA.PWinSysCT.logicalDriveSwitchBCM)]

...

4.3 Quality Attributes & Timing Analysis

4.3.1 Normalizing the Quality Attributes

As stated earlier, Clafer and chocosolver can currently reason
over integers only. Therefore the gathered values for mass,
cost, etc. must be scaled and rounded to provide meaningful
numerical results while working with integers.

The first step is to choose some unit base for the different qual-
ities such as grams for mass. Next, all the values are observed
in the converted unit base and a check is made for any values
that are less than 1. If any such values do exist then they must
be scaled upwards in order to increase precision. For example,
if a transfer rate was 0.0001ms/byte then it could be converted
to 1µs/byte. Then, any other qualities that are summed with
the new unit base would need to be converted as well (i.e. all
of the data connection latencies due to buses). If a unit is not
scalable such as dollars, one can change the unit to be dollars
per thousand.

An issue that arises with working with chocosolver is that the
total of any summation or multiplication can’t overflow. Thus,
care needs to be expressed when changing the base of numbers
such that the numbers don’t become too large to work with.

4.3.2 End-to-End Latency Constraints

For both power window systems there exist two end-to-end
latency constraints that are of interest to model and constrain;
they are as follows:

• TR1: The time it takes for the switch to read the pressed
value to the time the motor begins actuation must be less
than 750ms.

• TR2: The time it takes for the position sensor to read a
value to the time the motor begins actuation must be less
than 500ms.

• TR3: The time it takes the switch and position sensor
to read the data and be sent to the control must be
synchronized to less than 50ms.

The requirements are captured by creating two timing chains,
one from WinSwitch to WinMotor and another from PositionSensor

to WinMotor. These chains are captured in lines 12-26 for the
driver power window in Listing 31 in Appendix C. The require-
ments are then modeled in lines 29-32 of the same Listing.

For TR3 a input synchronization constraint must be modeled
using Clafer which the snippet of interest is shown in Listing 23.
The use of the set min and max are use to get the smallest and
largest latencies from the three chains.

Listing 23. Snippet of Clafer to show the encoding of TR4.
ControlInputDifference -> integer
[ControlInputDifference = (max(SwitchToControlLatency.dref,

PositionSensorToControlLatency.dref)
- min(SwitchToControlLatency.dref,

PositionSensorToControlLatency.dref))]

Also of interest to engineers is the margin that exists between
the end-to-end latency requirement and the actual end-to-end
latency. This is a good optimization parameter when optimizing
latency as it increases the robustness of the system when the
margin is maximized by allowing more room for error. Lines
35-41 capture the margins for the driver power window in
Listing 31.

5 Door Locks Case Study

The second case study we present in this report is a E/E
architecture for a central door locks system. Only the locking
control for the driver and three passenger doors was considered;
not the trunk or fuel lid. In this case study, we considered
features such as remote key access (where a remote control is
used to unlock and lock the car) and passive key entry (where a
key fob is used to lock and unlock without touching the remote).

We chose this system in order to build on the power window
by modeling a second system in the body domain. With two
such systems, future work can be done in incorporating the
two systems together and exploring trade-offs when sharing
components.

Similar to the power window case study, the material was
gathered from OEM service manuals such as GM, BMW, and
Nissan. The domain knowledge for the passive key entry was
obtained from various articles and suppliers.

5.1 Feature Model

The door locks system contains many more features than the
power window which is expected since it is more complex.
Figure 14 shows the feature model for the door locks system
and the variability that exists. The feature model layer alone
encodes 16 variants of the system.

The description for the features is as follows:

• Basic: The basic operation of the door locks system using
the inside lock switch and cylinder key switch. It also
includes unlocking all doors when the car is in park.

• Speed Smart Lock: The feature that will lock the car when
a certain threshold speed has been reached.

15

Fig. 14. The feature model for a central door locks system

• Lock Switch Position: The feature that dictates where the
inside lock switch will be located. The possibilities are a
lock switch on the driver and front passenger door or a
shared switch in the center (i.e., the console).

• Remote Key Access (RKA): The feature that allows a car to
unlock and lock when a remote control button is pressed.

• Passive Key Entry (PKE): The feature that allows a car
to unlock/lock when the door handle is touched/button
pressed without touching the key fob.

• Outside Door Handle Sensor: The feature for what type of
sensor is used to detect that the user wishes to lock/unlock
the car using PKE. The capacitive sensor is a touch device
that detects when a user has grabbed/touched the door
handle. The button sensor is a physical push button placed
on the outside door handle of the car.

Listing 24 shows the feature model encoded in Clafer. Note that
instead of using an xor grouping for the LockPositionSwitch, a
cardinality 0..1 was chosen to reduce the feature model size.

Listing 24. Clafer feature model for door locks
DLockFM : FeatureModel
Basic : Feature
IndividualLockSwitch : Feature ?
SpeedSmartLock : Feature ?

RKA : Feature ? // Remote Key Access
PKE : Feature ? // Passive Key Entry
xor OutsideDoorHandleSensor
ButtonSensor : Feature
CapacitiveSensor : Feature

[PKE => RKA]

5.2 Functional Analysis Architecture

The functional analysis architecture for the door locks is split
into three fragments based on the features (Basic, RKA, and
PKE). Figure 15 shows the basic functionality. For readability
purposes, the common functional components that are identical
across the four (or two) doors are grouped together with a
single connector. Additionally, the connectors are not named
for readability.

The following is a detailed description of the basic functional
components (only one from a grouping is explained):

• [Central]DoorLockButton4 A door lock button placed in the

4. We use the square brackets to denote the variable portion of the
name

respective location to lock and unlock all doors. Allowed
implementation(s): hardware

• SpeedSensor A functional device that reads the cur-
rent speed of the car which is needed for the feature
SpeedSmartLock. Allowed implementation(s): hardware

• GearPositionSensor A functional device that detects the
current gear position of the car (Park, Reverse, Drive, etc.).
Allowed implementation(s): hardware

• [Driver]DoorLockMotor A functional device that locks and
unlocks the door. Allowed implementation(s): hardware

• [Driver]DoorCylinderSwitch A functional device the detects
the position of the cylinder switch when a key is inserted
and turned. Allowed implementation(s): hardware

• [Driver]DoorContact A functional device that detects if the
door is ajar or closed. Allowed implementation(s): hardware

• [Driver]DoorLockSensor A functional device that detects
the current position of the lock for the door (i.e. the door is
locked or unlocked). Allowed implementation(s): hardware

• DoorLockControl The control function that reads in the sen-
sor inputs and gives the appropriate signal to the motors for
locking/unlocking the doors. Allowed implementation(s):
software

The second functional analysis fragment is for the RKA feature
which is shown in Figure 16. The DoorLockControl analysis
function is replicated as it is the only shared component with
the basic FAA fragment.

The functions for the RKA FAA are as follows:

• CentralRFAntenna A radio frequency (RF) antenna that
receives signals from the key remote and are sent to
a receiver/transciever for decoding. Allowed implementa-
tion(s): hardware

• CentralRFReceiver A receiver that decodes the antenna
signal. Allowed implementation(s): hardware

• IDAuthentication The analysis function that takes the de-
coded signal from the receiver and determines if the key
that sent the signal has permission to unlock/lock the car.
Allowed implementation(s): software

The last functional analysis fragment, shown in Figure 17,
contains the functionality for the PKE feature. The functions
are described as follows:

• [Driver]SideOutsideLFAntenna A low frequency (LF) an-
tenna that broadcasts a signal generated by the transmitter
to the outside perimeter of the [driver] side door. Allowed
implementation(s): hardware

• [Driver]SideLFTransmitter Transmitter that encodes a sig-
nal from the control to send to the antenna. Allowed
implementation(s): hardware

• Inside[Front]LFAntenna A low frequency antenna that
broadcasts a signal generated by the transmitter inside

16

Fig. 15. The functional analysis architecture for the basic features in the door locks system

Fig. 16. The functional analysis architecture for the RKA fragment in
the door locks system

Fig. 17. The functional analysis architecture for the PKE fragment in
the door locks system

[front] region of the car. Allowed implementation(s): hard-
ware

• InsideLFTransmitter Transmitter that encodes a signal
from the control to send to the inside antennas. Allowed
implementation(s): hardware

• [Driver]SideDoorHandleButtonSensor A functional device
that detects when the button on the outside door handle
has been pressed. Allowed implementation(s): hardware

• [Driver]SideDoorHandleCapacitiveSensor A functional de-
vice that detects when the handle is grabbed/touched.
Allowed implementation(s): hardware

• PKEControl The control function that takes the inputs and
determines what messages to broadcast to the antennas
and dictates to the door lock control what the lock/unlock
request is. Allowed implementation(s): software

The three fragments then can be encoded using Clafer with
their links to the feature model. A snippet of the functional
analysis architecture for the door locks is shown in Listing 25.
The complete FAA can be found in Listing 32 in Appendix D.

Listing 25. Clafer functional analysis architecture snippet for door locks

abstract DoorLockFAA : FunctionalAnalysisArchitecture
// -- Core Components --//
// Cylinder Switches
DriverDoorCylinderSwitch : FunctionalDevice
[implementation.hardware]
[baseLatency = 10]

...
// Door Lock Control
DoorLockControl : AnalysisFunction
[implementation.software]
[baseLatency = 4]

...
// -- Optional Fragments/Components --//
// Speed Smart Lock FA Components
SpeedSmartLockFA : FunctionalAnalysisArchitecture ?
SpeedSensor : FunctionalDevice
[implementation.hardware]
[baseLatency = 10]

speed : FunctionConnector
[messageSize = 1]
[sender = SpeedSensor && receiver = DoorLockControl]

// Central or Distributed Lock Switch
xor DoorLockButtonFA : FunctionalAnalysisArchitecture
IndividualLockSwitchFA : FunctionalAnalysis
DriverDoorLockButton : FunctionalDevice
[implementation.hardware]
[baseLatency = 10]

PassDoorLockButton : FunctionalDevice
...

CentralLockSwitchFA : FunctionalAnalysis
CentralLockButton : FunctionalDevice
...

RemoteKeyAccessFA : FunctionalAnalysisArchitecture ?
CentralRFAntenna : FunctionalDevice
...

PassiveKeyEntryFA : FunctionalAnalysisArchitecture ?
DriverOutsideLFAntenna : FunctionalDevice
...
xor OutsideDoorHandleSensor
ButtonSensor
DriverDoorButtonSensor : FunctionalDevice
...

CapacitiveSensor
DriverDoorCapacitiveSensor : FunctionalDevice
...

DLockFAA : DoorLockFAA
[DoorLockButtonFA.IndividualLockSwitchFA <=> DLockFM.

Basic.IndividualLockSwitch]
[SpeedSmartLockFA <=> DLockFM.Basic.SpeedSmartLock]
[RemoteKeyAccessFA <=> DLockFM.RKA]
[PassiveKeyEntryFA <=> DLockFM.PKE]
[PassiveKeyEntryFA.OutsideDoorHandleSensor.ButtonSensor

<=> DLockFM.PKE.OutsideDoorHandleSensor.ButtonSensor]
[PassiveKeyEntryFA.OutsideDoorHandleSensor.

CapacitiveSensor <=> DLockFM.PKE.
OutsideDoorHandleSensor.CapacitiveSensor]

Similarly to the power window, a functional analysis architec-

17

ture fragment is defined for an optional feature. This allows for
a group of functions and connectors to be made optional by just
having the fragment being optional. In addition to just defining
fragments, the door locks FAA is also using xor groupings to
model exclusive functions that stem from the feature model
which was not done for the power window.

5.3 Device Node Classification

Similar to the functional analysis architecture, the device node
classification splits the local device nodes into three fragments.
In addition to the local nodes, there exists four remote nodes
which are shared with other systems. Two of the four are the
electric center and BCM which were described in the power
window case study. A detailed description of each of the local
device nodes and their allowed types is as follows:

• [Driver]SideDoorLockMotorAssembly: A hardware device
that contains the motor and various sensors for the locking
mechanism. Allowed type(s): electric/electronic.

• [Driver]LockPowerSwitch: A physical switch that can lock
or unlock the car. Allowed type(s): electric/electronic.

• CentralRFAntennaModule: A hardware module that contains
an RF antenna, a receiver, and some processing power.
Allowed type(s): smart.

• Transmitter: A transmitter hardware module. Allowed
type(s): electric/electronic.

• PassiveKeyModule: An ECU dedicated for PKE functions.
Allowed type(s): smart.

• [Driver]DoorButtonHandleModule: A hardware module em-
bedded in the door handle that contains an LF antenna
and a button sensor. Allowed type(s): electric/electronic.

• [Driver]DoorCapacitiveHandleModule: A hardware module
embedded in the door hanlde that contains a LF antenna
and a capacitive sensor. Allowed type(s): electric/elec-
tronic.

• Inside[Front]LFAntenna: An LF antenna hardware device.
Allowed type(s): electric/electronic.

In contrast to the power window case study, the device nodes
are of fixed types. The only variability that exists at the device
node level is the presence. The remote device nodes that are
unique to the door locks case study are as follows:

• Transmission Control Module (TCM) A device node respon-
sible for handling any control associated with the transmis-
sion. For this case study it is used to house the gear position
sensor functional device. Allowed type(s): smart.

• Combination Meter A hardware device responsible for mea-
suring the current speed of the car. Allowed type(s): smart.

The Clafer encoding of the device node classification is different
than in the power window since for the door locks it is split
into multiple fragments to group the nodes associated with the
features. A snippet of the Clafer is shown in Listing 26. Like

the FAA, xor groupings are used to model the exclusive sets of
device nodes that follow from the feature model.

Listing 26. Clafer device node classification snippet for door locks
abstract DoorLockDN : DeviceNodeClassification
//-- Core Device Nodes --//
DriverDoorLockMotorAssembly : DeviceNode
...
TCM -> DeviceNode
BCM -> DeviceNode
EC -> DeviceNode
// -- Optional Device Nodes --//
// Speed Smart Lock Nodes
CombinationMeter -> DeviceNode ?
// Central or Individual Lock Nodes
xor DoorLockButtonDN
IndividualLockSwitchDN : DeviceNodeClassification
DriverLockPowerSwitch : DeviceNode
...

CentralLockSwitchDN
CenterLockPowerSwitch : DeviceNode
...

RemoteKeyAccessDN : DeviceNodeClassification ?
CentralRFAntennaModule : DeviceNode
...

PassiveKeyEntryDN : DeviceNodeClassification ?
Transmitter : DeviceNode ?
...
xor OutsideDoorHandleSensor
ButtonSensor
DriverDoorButtonHandleModule : DeviceNode
...

CapacitiveSensor
DriverDoorCapacitiveHandleModule : DeviceNode
...

InsideFrontLFAntenna : DeviceNode
...

DLockDN : DoorLockDN
[BCM = Car.BCM]
[TCM = Car.TCM]
[EC = Car.EC]
[CombinationMeter => CombinationMeter = Car.

CombinationMeter]
[DoorLockButtonDN.IndividualLockSwitchDN <=> DLockFM.

Basic.IndividualLockSwitch]
[CombinationMeter <=> DLockFM.Basic.SpeedSmartLock]
[RemoteKeyAccessDN <=> DLockFM.RKA]
[PassiveKeyEntryDN <=> DLockFM.PKE]
[PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor

<=> DLockFM.PKE.OutsideDoorHandleSensor.ButtonSensor]
[PassiveKeyEntryDN.OutsideDoorHandleSensor.

CapacitiveSensor <=> DLockFM.PKE.
OutsideDoorHandleSensor.CapacitiveSensor]

5.4 Power Topology

In the device node classification, the inline that was modeled
in the power window was not for the door locks. An inline was
not modeled in this case study as there was no interesting power
configurations that were affected by the door inline as there were
in the power window. The power topology for the door locks
did not contain the configurations in which the power window
did due to the DoorLockControl analysis function being always
deployed to the BCM.

The power topology, shown in Figure 18 contains no variability
itself as the only optional components are driven by the selection
of the device nodes used (i.e. there is no variability in the
configuration of the topology given a set of device nodes). The
only unique piece to the door locks is the need for a device power
connector when using a capacitive sensor.

The full Clafer encoding of the power topology is shown in
Listing 32 in Appendix D.

18

Fig. 18. The power topology for the door locks system

5.5 Communication Topology

As opposed to the power topology, the communication topology
is interesting and also larger than the power window. In order to
manage the size and complexity, it is split into 3 figures. First,
Figure 19 shows the communication topology fragment for the
basic and RKA features. Two buses are needed: the first is a high
speed bus (which would be either high speed CAN or FlexRay)
which handles safety critical nodes; the second is a low speed bus
(either low speed CAN or LIN) which handles the non-critical
body domain nodes. This low speed bus is assumed to be routed
through the main body harness and not to the doors as was so
in the power window.

Fig. 19. The communication topology for the door locks system basic
and RKA fragments.

The other two figures (Figures 20 and 21) show two views
which can be overlaid to describe to complete communication
architecture of the PKE feature. The first view shows the
possible communication connectors needed when the BCM
acts as a LF transmitter (i.e. the DriverSideLFTransmitter,
PassengerSideLFTransmitter, and InsideLFTransmitter are all de-
ployed to the BCM). The second view, shows when the transmitter
device node is used instead.

Fig. 20. The communication topology for the door locks system PKE
fragment which uses the BCM as a transmitter.

Fig. 21. The communication topology for the door locks system PKE
fragment which uses the transmitter device node.

The full Clafer encoding of the communication topology is
shown in Listing 32 in Appendix D.

5.6 Deployment

To complete the door locks case study, the last part to be
modeled in the deployment. As in the power window, the
deployment for the door locks is just a set of constraints that
restricts the set of possible targets for the functional analysis
components. The unique part of the door locks encoding is using
fragments to split up the deployment by features. It allows us
to drop the repeated use of implication (denoted by =>) in the
constraints. For example, the Clafer snippets shown below are
identical for modeling the deployment constraints. Listing 27
shows how the constraint is written using an implies (as in
the power window model), whereas Listing 28 shows how the
constraints can be nested inside a fragment.

Listing 27. Using implies in constraint expression to handle conditional
deployment.
[DLockFM.PKE => (fa.PassiveKeyEntryFA.DriverLFTransmitter.

deployedTo in (ha.dn.PassiveKeyEntryDN.Transmitter, ha.
dn.BCM.dref))]

Listing 28. Nesting the constraint under a fragment to handle conditional
deployment.
PassiveKeyEntryDpl ?
[fa.PassiveKeyEntryFA.DriverLFTransmitter.deployedTo in (

ha.dn.PassiveKeyEntryDN.Transmitter, ha.dn.BCM.dref)]
[PassiveKeyEntryDpl <=> DLockFM.PKE]

We present other modeling techniques in Section 6. The full
Clafer encoding for the deployment is shown in Listing 32 in
Appendix D.

5.7 Quality Attributes & Timing Analysis

Similar to that of the power window case study, the values
for the different quality attributes were obtained from various
sources then normalized so that they could be used in integer
operations. Also, for the door locks case study end-to-end
timing constraints were constructed for three requirements as
well as an input synchronization constraint as follows:

• TR1: The time it takes for the individual switch to read
the pressed value to the time the motor begins to move to
lock/unlock the door must be less than 500ms.

19

• TR2: The time it takes for the central switch to read the
pressed value to the time the motor begins to move to
lock/unlock the door must be less than 500ms.

• TR3: The time it takes for the handles sensor the read the
user request to the time the motor begins to lock/unlock
the door must be less than 750ms.

• TR4: The time it takes the door contacts, door sensors,
and the lock switch to read the data and send to the control
must by synchronized to less than 50ms.

TR1 through TR3 are end-to-end timing constraints that are
quite similar to that of the power window. Lines 700-731 in
Listing 32 in Appendix D shows the required Clafer to encode
the requirements.

6 Techniques for Modeling Complex Systems in Clafer

In this section, we provide and discuss some techniques that
arose while developing the case studies. For each of the tech-
niques, we associate one or more tags with it in order to classify
what the technique is for. The tags are as follows:

• Clafer : A technique that is only useful in the Clafer model-
ing language and can not be applied to other languages such
as UML or SysML. We leave the details for how patterns
can be applied to SysML or UML out of this report.

• Performance: A technique that has performance implica-
tions when using the Clafer backend chocosolver.

• Readability: A technique that is used to improve the read-
ability of the model to either the modeler or an outside
reader.

• Best-Practice: A technique that is consider “best-practice”
when creating models as it improves the general under-
standing of the model.

Technique 1: Partition the Clafer model When starting
a new Clafer model for modeling a complex system such as an
automotive E/E architecture it is good to divide up the model
as follows:

1) Meta-model elements: The abstract Clafers that make up
the meta model (or types) for the models being created.

2) Generic systems & components: An abstract model of
systems and/or components that are re-used among several
concrete model instances.

3) Concrete system model: The model that instantiates from
the previous two sections.

Tag(s): Best-Practice, Readability

Technique 2: Every concrete clafer should have a “type”
In Clafer, every abstract or concrete clafer is a thing. What
makes Clafer into a domain-specific modeling language is when
the modeler defines a “type” (an abstract clafer) for every clafer.
This is accomplishing by having every concrete clafer inheriting
from an abstract one. Tag(s): Clafer, Best-Practice, Readability

Technique 3: Use nesting to show sub-systems and/or
fragments in an architecture or topology Nesting can
capture a group of elements for a subsystem or fragment under a
common parent (i.e., a system or fragment). Making the parent
optional makes all nested elements optional. Tag(s): Clafer,
Best-Practice, Performance

Technique 4: Use references to model components that
physically reside outside the system and instantiation
to model ownership References should be used when compo-
nents are used inside a particular system but do not belong to
that subsystem. For example:
Car : System
BCM : DeviceNode
ready ?

PowerWindow : System
BCM -> DeviceNode

[PowerWindow.BCM = Car.BCM]

Modeling this way shows that the Car owns the BCM and resides
in that system but the BCM is also used inside the PowerWindow

system.

Using a constraint to assign PowerWindow.BCM; however, does not
allow referring to the clafer ready of the BCM because the type
of the reference is DeviceNode. If possible, it is recommended to
specify Car.BCM as the type of the reference as follows:
PowerWindow : System
BCM -> Car.BCM
[BCM.ready]

As we can see, now the clafer ready is accessible in constraints.

Tag(s): Best-Practice

Technique 5: Don’t model any relationships between
two references An example of this would be when modeling
connectors in a system; a connector should not be defined
between reference components such as the BCM and electric
center. The reason for this is so that if multiple people are
working on the model concurrently, there are not multiple or
conflicting relationships. Tag(s): Best-Practice

Technique 6: Define an general environment to own
components outside the system For any component that
is not owned to any of the systems being modeled, they should
be declared inside some general environment. For example the
environment could be Car which declares environment compo-
nent BCM.

Tag(s): Clafer, Best-Practice

Technique 7: Nest constraints under concretized clafers,
not references This technique stops writing a constraint in the
power window system, instead of the car environment, which
determines that the BCM has a cost of $100 or has to be smart.
The reasoning for this technique is the same as for not modeling
relationships between 2 references. Tag(s): Clafer, Best-Practice

Technique 8: Only constrain deployment targets in one
direction When creating a deployment reference, it is some-
times beneficial to creating an inverse of the reference (i.e. a
deployed to and deployed from relationship). When an inverse
is present, care should be taken to only constrain deployment

20

targets in one direction and use general constraints to populate
the inverse such as in the following model:
abstract Function
deployedTo -> Device
[parent in this.deployedFrom]

abstract Device
deployedFrom -> Function *
[this.deployedTo = parent]

This is so that over time no inconsistencies arise in the relation-
ships. Tag(s): Clafer, Best-Practice

Technique 9: Use upper bounds on cardinalities when
possible If possible it is always better to give an upper bound
for a clafer cardinality (i.e. don’t use *) in order for the scope
analyzer to calculate a more accurate scope (which could lead
to finding more correct instances or reducing the size of the
problem). Tag(s): Clafer, Performance

Technique 10: Avoid instantiating multiple copies of a
component in the model When deciding how to represent
a set of components that are the same, the modeler should
see if there is a way they can achieve the same result using
multiple references to a single core component instead of mul-
tiple references to multiple identical components. A concrete
example of this is abstracting a set of wires into a connector
like when creating 6 identical logicalSwitchMotor discrete wires
and deploying a single command to each instead of having all
commands be deployed to a single discrete connector. Tag(s):
Best-Practice, Performance

Technique 11: Use an implication when writing con-
straints involving optional clafers When writing con-
straints there will be some clafers that may not need to satisfy
the constraint because the component was not used. In order
to maintain the variability one should make sure to have an
constraint that says “if we have component A then constraint C
should hold”. For example:
[fa.PinchDetectionFA => (fa.PinchDetectionFA.PositionSensor

.deployedTo.ref = ht.dn.Motor)]

Tag(s): Clafer

Technique 12: Consider making a subtype of a refer-
ence model component to express performance friendly
properties In some cases there may be a reference model
component that needs to be abstracted such that instantiating
unnecessary clafers is avoided. A concrete example would be the
switches for the driver power window. The switch panel includes
two switches (one fore the driver and one for the passenger). One
way to model this would be to use a cardinality on the definition
Switch as follows:
Switch : DeviceNode 2
[mass = 10]

// Total mass = 20g

However by adding another clafer, it will increase the complex-
ity of the model and the search space. An alternative would
be to subtype device node and have a numSwitches child integer
clafer that represents the number of switches the device has.
This then can be use in adjusting the mass and cost of the device
node.
abstract SwitchNode : DeviceNode
numSwitches -> integer
baseMass -> integer

[mass = baseMass*numSwitches]
Switch : SwitchNode
[baseMass = 10]

// Total mass = 20g

Tag(s): Performance

Technique 13: Do not sum/multiply up quality at-
tributes for referenced components Only components that
are instantiated should be included when summing up the
quality attributes for components to ensure that a component
is not added or multiplied twice. Tag(s): Clafer, Best-Practice

Technique 14: Care should be expressed when assigning
quality attribute values to abstractions Care should be
taken because it restricts the user from assigning a different
value when extending the abstraction. Tag(s): Best-Practice

Technique 15: References to optional clafers need to be
optional When a clafer is instantiated as being optional then
any reference to that clafer must also be made optional. This
is to maintain the optionality of the instantiated component.
However, if one always wants the reference to exist then it
should not be made optional and should know the instantiated
component will always exist. Tag(s): Clafer

Technique 16: Modeling Many to Many Relationships
The following snippet shows how to model many-to-many rela-
tionships in Clafer.
abstract LogicalBus
realizedBy -> PhysicalBus 1..*
[parent in this.realizes.ref]

abstract PhysicalBus
realizes -> LogicalBus 1..*
[parent in this.realizedBy.ref]

Tag(s): Clafer

Technique 17: Modeling Performance Friendly Inverse
Relationships Many times an inverse relationship is not
queried and thus the set is not needed but the cardinality is of
importance. This can be captured through a constraint instead
of declaring a new clafer and reference in order to be much more
performance friendly. Consider the refactoring of the example
in the previous technique:
abstract LogicalBus
realizedBy -> PhysicalBus 1..*

abstract PhysicalBus
[some lb : LogicalBus | this in lb.realizedBy]

Tag(s): Clafer, Performance

Technique 18: Alternatives for modeling exclusive prop-
erty sets There are two alternatives for modeling an exclusive
property. For example in the power window our device nodes
have a property stating if they are smart, electric/electronic, or
power.

Alt 1: Using abstract clafers and references The benefit of
modeling this way is the reduced number of clafers needed.
However if the types have constraints associated with them it
may not be best.
enum DeviceNodeType = SmartDeviceNode | EEDeviceNode |

PowerDeviceNode

21

abstract DeviceNode
type -> DeviceNodeType

Motor : DeviceNode
[type in (SmartDeviceNode, EEDeviceNode)]

Alt 2: Using abstract clafers and references The benefit of
modeling this way is a constraint can be nested under each
of the children of type. The downside of this alternative is the
increased number of clafers.
abstract DeviceNode
xor type
smart
ee
power

Motor : DeviceNode
[type.smart || type.ee]

Tag(s): Clafer, Performance

7 Conclusion

In this technical report, we presented a reference model and
used it to model two automotive E/E architectures: a power
window and a door locks system. Additionally, we demonstrated
how Clafer could be used to model the two case studies and
capture the variability at each of the different layers. This work
contributes two case studies that can be used in future evalua-
tions of optimization algorithms as a benchmark for automotive
architecture.

In future work, the case studies could be extended by modeling
the two body domain systems together as well as extending
the power window to four doors. Additionally, the case studies
could be extended with quality attributes by adding resource
constraints for memory and computing power as well as more
optimization objectives such as reliability.

References

[1] Zubair Akhtar. Model based automotive system design: A power
window controller case study. Master’s thesis, University of
Waterloo, 03 2015. https://uwspace.uwaterloo.ca/handle/10012/
9215, last accessed Jun 23, 2016.

[2] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic lit-
erature review. Software Engineering, IEEE Transactions on,
39(5):658–683, May 2013.

[3] Kacper Bąk and Michał Antkiewicz. Clafer: A lightweight mod-
eling language. Web site. http://www.clafer.org/, last accessed
Jun 23, 2016.

[4] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czar-
necki, and Andrzej Wąsowski. Clafer: Unifying class and feature
modeling. Software and Systems Modeling, 2014. The final
publication is available at Springer via DOI.

[5] EAST-ADL Association. EAST-ADL domain model specifica-
tion, version V2.1.12. http://east-adl.info/Specification/V2.1.
12/EAST-ADL-Specification_V2.1.12.pdf, last accessed Jun 23,
2016.

[6] Kyo Kang, Sholom Cohen, James Hess, William Novak, and
A. Peterson. Feature-oriented domain analysis (foda) feasibil-
ity study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, 1990. http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=11231, last accessed Jun 23, 2016.

[7] Alexandr Murashkin. Automotive electronic/electric architecture
modeling, design exploration and optimization using clafer. Mas-
ter’s thesis, University of Waterloo, 09 2014. https://uwspace.
uwaterloo.ca/handle/10012/8780, last accessed Jun 23, 2016.

[8] Alexandr Murashkin, Michał Antkiewicz, Derek Rayside, and
Krzysztof Czarnecki. Visualization and exploration of optimal
variants in product line engineering. In SPLC, 2013.

[9] Software Design Group, MIT. Alloy: A language and tools for
relational models. Web site. http://alloy.mit.edu/alloy/, last
accessed Jun 23, 2016.

https://uwspace.uwaterloo.ca/handle/10012/9215
https://uwspace.uwaterloo.ca/handle/10012/9215
http://www.clafer.org/
http://east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231
https://uwspace.uwaterloo.ca/handle/10012/8780
https://uwspace.uwaterloo.ca/handle/10012/8780
http://alloy.mit.edu/alloy/

22

Appendix A
Reference Model

Listing 29. Complete reference model
1 //---------------------------- Meta-Model Elements --------------------------//
2 // Meta-Model Elements - This section contains all meta-model elements that
3 // are used to model a general automotive E/E architecture. Most of the
4 // elements are adapted from the EAST-ADL v2 specification.
5
6 // System is our version of the EAST-ADL "System Model". The two are similiar
7 // but have a couple differences:
8 // - The implementation level is ignored.
9 // - The analysis level and design level have been combined into the

10 // architecture
11 abstract System
12 abstract FeatureModel
13 abstract Architecture
14 abstract FunctionalAnalysis
15 abstract HardwareArchitecture
16 abstract DeviceNodeClassification
17 abstract CommTopology
18 abstract PowerTopology
19 abstract Deployment
20
21 // Some generic "types" of Clafer’s. Some types don’t have properties but
22 // are rather used for readability for a user
23 abstract Feature
24
25 abstract FunctionalAnalysisComponent
26 deployedTo -> DeviceNode
27 xor implementation
28 hardware
29 [latency = baseLatency]
30 [deployedTo.type in (EEDeviceNode, SmartDeviceNode)]
31 software
32 [latency = baseLatency*deployedTo.speedFactor]
33 [deployedTo.type in SmartDeviceNode]
34 baseLatency -> integer // [ms]
35 latency -> integer // [ms]
36 abstract AnalysisFunction : FunctionalAnalysisComponent
37 abstract FunctionalDevice : FunctionalAnalysisComponent
38 abstract FunctionConnector
39 sender -> FunctionalAnalysisComponent
40 receiver -> FunctionalAnalysisComponent
41 deployedTo -> HardwareDataConnector ?
42 [parent in this.deployedFrom]
43 [(sender.deployedTo.dref, receiver.deployedTo.dref) in (deployedTo.endpoint.dref)]
44 [(sender.deployedTo.dref = receiver.deployedTo.dref) <=> no this.deployedTo]
45 latency -> integer // [us]
46 messageSize -> integer // [byte]
47 [if (deployedTo) then (latency = messageSize*deployedTo.transferTimePerSize) else (latency = 0)]
48
49
50 enum DeviceNodeType = SmartDeviceNode | EEDeviceNode | PowerDeviceNode
51
52 abstract DeviceNode
53 type -> DeviceNodeType
54 speedFactor -> integer // unitless
55 mass -> integer // [g]
56 cost -> integer // [dollar]
57 ppm -> integer // unitless
58 replaceCost -> integer // [dollar]
59 warrantyCost -> integer = ppm*replaceCost // [dollar per million]
60 [(type in (PowerDeviceNode, EEDeviceNode)) => (speedFactor = 0)]
61
62 // Hardware Connection Mediums
63 abstract HardwareConnector
64 length -> integer // [cm]
65 mass -> integer // [mg]
66 cost -> integer // [dollar per thousand]
67 abstract PowerConnector : HardwareConnector
68 source -> DeviceNode
69 sink -> DeviceNode
70 abstract LoadPowerConnector : PowerConnector
71 [mass = Data.MassPerLength.LoadPowerConnector*length]
72 [cost = Data.CostPerLength.LoadPowerConnector*length]
73 abstract DevicePowerConnector : PowerConnector
74 [mass = Data.MassPerLength.DevicePowerConnector*length]
75 [cost = Data.CostPerLength.DevicePowerConnector*length]
76
77 abstract HardwareDataConnector : HardwareConnector
78 endpoint -> DeviceNode 2..*
79 deployedFrom -> FunctionConnector 1..*
80 [this.deployedTo = parent]
81 transferTimePerSize -> integer // [us/byte]

23

82
83 abstract DiscreteDataConnector : HardwareDataConnector
84 [mass = length*(#deployedFrom)*Data.MassPerLength.DiscreteDataConnector]
85 [transferTimePerSize = 0]
86 [cost = Data.CostPerLength.DiscreteDataConnector*length*(#deployedFrom)]
87
88 abstract AnalogDataConnector : HardwareDataConnector
89 [mass = length*(#deployedFrom)*Data.MassPerLength.AnalogDataConnector]
90 [transferTimePerSize = 0]
91 [cost = Data.CostPerLength.AnalogDataConnector*length*(#deployedFrom)]
92
93 abstract BusConnector : HardwareDataConnector
94 [endpoint.type = SmartDeviceNode]
95 xor type
96 LowSpeedCAN
97 [transferTimePerSize = Data.TimePerSize.LowSpeedCANBus]
98 [mass = Data.MassPerLength.LowSpeedCANBus*length]
99 [cost = Data.CostPerLength.LowSpeedCANBus*length]

100 HighSpeedCAN
101 [transferTimePerSize = Data.TimePerSize.HighSpeedCANBus]
102 [mass = Data.MassPerLength.HighSpeedCANBus*length]
103 [cost = Data.CostPerLength.HighSpeedCANBus*length]
104 LIN
105 [transferTimePerSize = Data.TimePerSize.LINBus]
106 [mass = Data.MassPerLength.LINBus*length]
107 [cost = Data.CostPerLength.LINBus*length]
108 FlexRay
109 [transferTimePerSize = Data.TimePerSize.FlexRayBus]
110 [mass = Data.MassPerLength.FlexRayBus*length]
111 [cost = Data.CostPerLength.FlexRayBus*length]
112
113 abstract LogicalBusBridge : HardwareDataConnector
114 [endpoint.type = SmartDeviceNode]
115 bus -> BusConnector 2
116 gatewayTransferTimePerSize -> integer // [us/byte]
117 [transferTimePerSize = gatewayTransferTimePerSize + sum(bus.transferTimePerSize)]
118 [length = 0]
119 [mass = 0]
120 [cost = 0]
121
122
123 // ---------------------- Quality Attribute Data -----------------------------//
124 Data
125 MassPerLength // [mg/cm]
126 LoadPowerConnector -> integer = 185
127 DevicePowerConnector -> integer = 104
128 DiscreteDataConnector -> integer = 110
129 AnalogDataConnector -> integer = 110
130 LowSpeedCANBus -> integer = 20
131 HighSpeedCANBus -> integer = 20
132 LINBus -> integer = 20
133 FlexRayBus -> integer = 40
134 CostPerLength // [dollar per thousand / cm]
135 LoadPowerConnector -> integer = 9
136 DevicePowerConnector -> integer = 9
137 DiscreteDataConnector -> integer = 13
138 AnalogDataConnector -> integer = 13
139 LowSpeedCANBus -> integer = 52
140 HighSpeedCANBus -> integer = 104
141 LINBus -> integer = 26
142 FlexRayBus -> integer = 208
143 TimePerSize // [us/byte]
144 LowSpeedCANBus -> integer = 64
145 HighSpeedCANBus -> integer = 32
146 LINBus -> integer = 400
147 FlexRayBus -> integer = 1
148 ReferenceSpeedFactor -> integer = 10

Appendix B
Generalized Power Window

Listing 30. Complete generalized E/E architecture for power window
1 //------------------- Power Window Abstract Clafer --------------------------//
2 // Power Window Abstract Clafer - This section contains all abstract clafers
3 // that detail a generic system/component that can be used in the concerete
4 // system model.
5
6 abstract WinSysFM : FeatureModel
7 basicUpDown : Feature
8 express : Feature ?
9 expressUp : Feature ?

10
11 abstract WinSysFA : FunctionalAnalysis
12 WinSwitch : FunctionalDevice

24

13 [implementation.hardware]
14 [baseLatency = 20]
15 WinArbiter : AnalysisFunction
16 [baseLatency = (if implementation.software then 1 else 5)]
17 WinController : AnalysisFunction
18 [implementation.software]
19 [baseLatency = 2]
20 WinMotor : FunctionalDevice
21 [implementation.hardware]
22 [baseLatency = 10]
23 CurrentSensor : FunctionalDevice
24 [implementation.hardware]
25 [baseLatency = 5]
26
27 localWinReq : FunctionConnector
28 [sender = WinSwitch && receiver = WinArbiter]
29 [messageSize = 1]
30 winReq : FunctionConnector
31 [sender = WinArbiter && receiver = WinController]
32 [messageSize = 1]
33 winCmd : FunctionConnector
34 [sender = WinController && receiver = WinMotor]
35 [messageSize = 2]
36 current : FunctionConnector
37 [sender = CurrentSensor && receiver = WinController]
38 [messageSize = 1]
39
40 PinchDetectionFA : FunctionalAnalysis ?
41 PinchDetection : AnalysisFunction
42 [implementation.software]
43 [baseLatency = 2]
44 PositionSensor : FunctionalDevice
45 [implementation.hardware]
46 [baseLatency = 10]
47 object : FunctionConnector
48 [sender = PinchDetection && receiver = WinController]
49 [messageSize = 2]
50 position : FunctionConnector
51 [sender = PositionSensor && receiver = PinchDetection]
52 [messageSize = 1]
53
54 abstract WinSysDN : DeviceNodeClassification
55 BCM -> DeviceNode ?
56 EC -> DeviceNode
57 Switch : SwitchNode
58 [type in (SmartDeviceNode, EEDeviceNode)]
59 [baseMass = 173]
60 [cost = 110]
61 [replaceCost = 110]
62 [if (type in SmartDeviceNode) then (ppm = 50) else (ppm = 10)]
63 [(type in SmartDeviceNode) => (speedFactor = 10)]
64 Motor : DeviceNode
65 [type in (SmartDeviceNode, EEDeviceNode)]
66 [mass = 453]
67 [if (type in SmartDeviceNode) then (cost = 107) else (cost = 122)]
68 [if (type in SmartDeviceNode) then (ppm = 50) else (ppm = 20)]
69 [if (type in SmartDeviceNode) then (replaceCost = 107) else (replaceCost = 122)]
70 [(type in SmartDeviceNode) => (speedFactor = 10)]
71 DoorInline : DeviceNode
72 [type = PowerDeviceNode]
73 [mass = 10] //TODO: Not a realistic number
74 [cost = 4] //TODO: Not a realistic number
75 [ppm = 1]
76 [replaceCost = 2] //TODO: Not a realistic number
77 DoorModule : DeviceNode ?
78 [type = SmartDeviceNode]
79 [mass = 368]
80 [cost = 300]
81 [ppm = 50]
82 [replaceCost = 300]
83 [speedFactor = 10]
84
85 abstract WinSysPT : PowerTopology
86 dn -> WinSysDN
87
88 inlineECDist -> integer
89 inlineBCMDist -> integer
90
91
92 MotorLoadPowerWire : LoadPowerConnector
93 [sink = dn.Motor]
94 SwitchLoadPowerWire : LoadPowerConnector ?
95 [source = dn.DoorInline && sink = dn.Switch]
96 [length = 45]
97 DoorModuleLoadPowerWire : LoadPowerConnector ?
98 [source = dn.DoorInline && sink = dn.DoorModule]
99 [length = 35]

25

100 DoorInlineLoadPowerWire : LoadPowerConnector
101 [sink = dn.DoorInline]
102
103 xor MotorLoadPowerConfig
104 SwitchIsMotorDriver
105 [MotorLoadPowerWire.source = dn.Switch]
106 [MotorLoadPowerWire.length = 40]
107 [DoorInlineLoadPowerWire.source = dn.EC.dref]
108 [DoorInlineLoadPowerWire.length = inlineECDist]
109 [SwitchLoadPowerWire && DoorInlineLoadPowerWire && no DoorModuleLoadPowerWire]
110 DoorModuleIsMotorDriver
111 [MotorLoadPowerWire.source = dn.DoorModule]
112 [MotorLoadPowerWire.length = 30]
113 [DoorInlineLoadPowerWire.source = dn.EC.dref]
114 [DoorInlineLoadPowerWire.length = inlineECDist]
115 [no SwitchLoadPowerWire && DoorInlineLoadPowerWire && DoorModuleLoadPowerWire]
116 BCMIsMotorDriver
117 [MotorLoadPowerWire.source = dn.DoorInline]
118 [MotorLoadPowerWire.length = 45]
119 [DoorInlineLoadPowerWire.source = dn.BCM.dref]
120 [DoorInlineLoadPowerWire.length = inlineBCMDist]
121 [no SwitchLoadPowerWire && DoorInlineLoadPowerWire && no DoorModuleLoadPowerWire]
122 MotorIsMotorDriver
123 [MotorLoadPowerWire.source = dn.DoorInline]
124 [MotorLoadPowerWire.length = 45]
125 [DoorInlineLoadPowerWire.source = dn.EC.dref]
126 [DoorInlineLoadPowerWire.length = inlineECDist]
127 [no SwitchLoadPowerWire && DoorInlineLoadPowerWire && no DoorModuleLoadPowerWire]
128
129 switchInlineDP : DevicePowerConnector ?
130 [source = dn.DoorInline && sink = dn.Switch]
131 [length = 45]
132
133 motorInlineDP : DevicePowerConnector ?
134 [source = dn.DoorInline && sink = dn.Motor]
135 [length = 45]
136
137 doorModuleInlineDP : DevicePowerConnector ?
138 [source = dn.DoorInline && sink = dn.DoorModule]
139 [length = 35]
140
141 [doorModuleInlineDP <=> dn.DoorModule]
142
143 inlineECDP : DevicePowerConnector ?
144 [source = dn.EC.dref && sink = dn.DoorInline]
145 [length = WinSysPT.inlineECDist]
146
147 abstract WinSysCT : CommTopology
148 dn -> WinSysDN
149 inlineBCMDist -> integer
150
151
152 logicalLowSpeedBus : BusConnector ?
153 [type.LIN || type.LowSpeedCAN]
154 [length = 70+inlineBCMDist]
155 [endpoint in (dn.Motor, dn.Switch, dn.DoorModule, dn.BCM.dref)]
156
157 logicalSwitchMotorDisc : DiscreteDataConnector ?
158 [endpoint = (dn.Switch, dn.Motor)]
159 [length = 40]
160 logicalSwitchBCMDisc: DiscreteDataConnector ?
161 [endpoint = (dn.Switch, dn.BCM.dref)]
162 [length = 45+inlineBCMDist]
163 logicalMotorBCMDisc : DiscreteDataConnector ?
164 [endpoint = (dn.Motor, dn.BCM.dref)]
165 [length = 45+inlineBCMDist]
166 logicalSwitchDoorModuleDisc : DiscreteDataConnector ?
167 [endpoint = (dn.Switch, dn.DoorModule)]
168 [length = 25]
169 logicalMotorDoorModuleDisc : DiscreteDataConnector ?
170 [endpoint = (dn.Motor, dn.DoorModule)]
171 [length = 30]
172
173 abstract WinSysHA : HardwareArchitecture
174 dn -> WinSysDN
175 pt -> WinSysPT
176 ct -> WinSysCT
177
178
179 abstract WinSysDpl : Deployment
180 fa -> WinSysFA
181 ha -> WinSysHA
182
183 // The most general deployment constraint that we have is that the
184 // FunctionalAnalysisComponents must be deployed to its own HardwareTopology
185 [fa.WinArbiter.deployedTo.dref in (ha.dn.BCM.dref, ha.dn.Switch, ha.dn.Motor, ha.dn.DoorModule)]
186 [fa.WinController.deployedTo.dref in (ha.dn.BCM.dref, ha.dn.Switch, ha.dn.Motor, ha.dn.DoorModule)]

26

187 [fa.PinchDetectionFA => (fa.PinchDetectionFA.PinchDetection.deployedTo.dref in (ha.dn.BCM.dref, ha.dn.Switch, ha.dn.
Motor, ha.dn.DoorModule))]

188
189 // More specific constraints on functional analysis component...
190 [fa.WinSwitch.deployedTo.dref = ha.dn.Switch]
191 [fa.WinMotor.deployedTo.dref = ha.dn.Motor]
192 [fa.CurrentSensor.deployedTo.dref = ha.dn.Motor]
193 [fa.PinchDetectionFA => (fa.PinchDetectionFA.PositionSensor.deployedTo.dref = ha.dn.Motor)]
194
195 // Constraints pertaining to the power topology selection based on analysis function deployment
196 [(fa.WinController.deployedTo.dref = ha.dn.Switch) <=> ha.pt.MotorLoadPowerConfig.SwitchIsMotorDriver]
197 [(fa.WinController.deployedTo.dref = ha.dn.Motor) <=> ha.pt.MotorLoadPowerConfig.MotorIsMotorDriver]
198 [(fa.WinController.deployedTo.dref = ha.dn.BCM.dref) <=> ha.pt.MotorLoadPowerConfig.BCMIsMotorDriver]
199 [(fa.WinController.deployedTo.dref = ha.dn.DoorModule) <=> ha.pt.MotorLoadPowerConfig.DoorModuleIsMotorDriver]
200
201 [ha.pt.switchInlineDP <=> (ha.dn.Switch.type in SmartDeviceNode)]
202 [ha.pt.motorInlineDP <=> (ha.dn.Motor.type in SmartDeviceNode)]
203 [ha.pt.inlineECDP <=> some(ha.pt.motorInlineDP, ha.pt.switchInlineDP, ha.pt.doorModuleInlineDP)]
204
205 // Constraints pertaining to the communication topology selected based on analysis function deployement
206 [(fa.localWinReq.deployedTo.dref in (ha.ct.logicalLowSpeedBus, ha.ct.logicalSwitchMotorDisc, ha.ct.

logicalSwitchBCMDisc, ha.ct.logicalMotorBCMDisc, ha.ct.logicalSwitchDoorModuleDisc, ha.ct.
logicalMotorDoorModuleDisc))]

207 [(fa.winReq.deployedTo.dref in (ha.ct.logicalLowSpeedBus, ha.ct.logicalSwitchMotorDisc, ha.ct.logicalSwitchBCMDisc, ha
.ct.logicalMotorBCMDisc, ha.ct.logicalSwitchDoorModuleDisc, ha.ct.logicalMotorDoorModuleDisc))]

208 [(fa.winCmd.deployedTo.dref in (ha.ct.logicalLowSpeedBus, ha.ct.logicalSwitchMotorDisc, ha.ct.logicalSwitchBCMDisc, ha
.ct.logicalMotorBCMDisc, ha.ct.logicalSwitchDoorModuleDisc, ha.ct.logicalMotorDoorModuleDisc))]

209 [(fa.current.deployedTo.dref in (ha.ct.logicalLowSpeedBus, ha.ct.logicalSwitchMotorDisc, ha.ct.logicalSwitchBCMDisc,
ha.ct.logicalMotorBCMDisc, ha.ct.logicalSwitchDoorModuleDisc, ha.ct.logicalMotorDoorModuleDisc))]

210 [(fa.PinchDetectionFA.object.deployedTo.dref in (ha.ct.logicalLowSpeedBus, ha.ct.logicalSwitchMotorDisc, ha.ct.
logicalSwitchBCMDisc, ha.ct.logicalMotorBCMDisc, ha.ct.logicalSwitchDoorModuleDisc, ha.ct.
logicalMotorDoorModuleDisc))]

211 [(fa.PinchDetectionFA.position.deployedTo.dref in (ha.ct.logicalLowSpeedBus, ha.ct.logicalSwitchMotorDisc, ha.ct.
logicalSwitchBCMDisc, ha.ct.logicalMotorBCMDisc, ha.ct.logicalSwitchDoorModuleDisc, ha.ct.
logicalMotorDoorModuleDisc))]

212
213 abstract SwitchNode : DeviceNode
214 numSwitches -> integer
215 baseMass -> integer
216 [mass = baseMass*numSwitches]

Appendix C
Two Door Power Window

Listing 31. Complete E/E architecture for two door power window case study
1 //-------------------- Power Window System Model ----------------------------//
2 // Power Window System Model - This section is the concrete model of the power
3 // window system. This is the model that instances will be generated for. It
4 // will heavily use the previous two sections.
5
6 // Driver Window System
7 DriverWinSys : System
8 DWinSysFM : WinSysFM
9 DWinSysFA : WinSysFA

10 [DriverWinSys.DWinSysFM.express.expressUp <=> DWinSysFA.PinchDetectionFA]
11 // Timing Chains
12 SwitchToControlDeviceLatency -> integer = WinSwitch.latency + WinArbiter.latency
13 ControlToMotorDeviceLatency -> integer = WinController.latency + WinMotor.latency
14 SwitchToControlCommLatency -> integer = localWinReq.latency + winReq.latency
15 ControlToMotorCommLatency -> integer = winCmd.latency
16 SwitchToMotorEndToEndLatency -> integer = SwitchToControlDeviceLatency + ControlToMotorDeviceLatency + (

SwitchToControlCommLatency+ControlToMotorCommLatency)/1000
17
18 PositionSensorToControlDeviceLatency -> integer = PositionSensor.latency + PinchDetection.latency
19 PositionSensorToControlCommLatency -> integer = position.latency + object.latency
20 PositionSensorToMotorEndToEndLatency -> integer = PositionSensorToControlDeviceLatency +

ControlToMotorDeviceLatency + (PositionSensorToControlCommLatency+ControlToMotorCommLatency)/1000
21
22 SwitchToControlLatency -> integer = SwitchToControlDeviceLatency + SwitchToControlCommLatency/1000
23 PositionSensorToControlLatency -> integer = PositionSensorToControlDeviceLatency +

PositionSensorToControlCommLatency/1000
24 ControlInputDifference -> integer
25 [ControlInputDifference = (max(SwitchToControlLatency.dref, PositionSensorToControlLatency.dref)
26 - min(SwitchToControlLatency.dref, PositionSensorToControlLatency.dref))]
27
28 // End-to-End Timing Constraint(s)
29 [(TimingRequirements.BasicEndToEndLatency) => (SwitchToMotorEndToEndLatency <= TimingRequirements.

BasicEndToEndLatency)]
30 [(PinchDetectionFA && TimingRequirements.PinchDetectionEndToEndLatency) => (PositionSensorToMotorEndToEndLatency

<= TimingRequirements.PinchDetectionEndToEndLatency)]
31 // Input Synchronization Contraint(s)
32 [(PinchDetectionFA && TimingRequirements.ControlInputSynchLatency) => ControlInputDifference <= TimingRequirements

.ControlInputSynchLatency]
33

27

34 // Timing Margins
35 BasicEndToEndLatencyMargin -> integer ?
36 [if TimingRequirements.BasicEndToEndLatency then (BasicEndToEndLatencyMargin = (TimingRequirements.

BasicEndToEndLatency - SwitchToMotorEndToEndLatency))
37 else (no BasicEndToEndLatencyMargin)]
38 PinchDetectionEndToEndLatencyMargin -> integer ?
39 [if TimingRequirements.PinchDetectionEndToEndLatency then (
40 PinchDetectionEndToEndLatencyMargin = (TimingRequirements.PinchDetectionEndToEndLatency -

PositionSensorToMotorEndToEndLatency))
41 else (no PinchDetectionEndToEndLatencyMargin)]
42 DWinSysHA : WinSysHA
43 DWinSysDN : WinSysDN
44 [this.BCM = Car.BCM]
45 [this.EC = Car.EC]
46 [this.Switch.numSwitches = 2]
47 DWinSysPT : WinSysPT
48 [dn = DWinSysDN]
49 [inlineECDist = 40]
50 [inlineBCMDist = 40]
51 DWinSysCT : WinSysCT
52 [dn = DWinSysDN]
53 [inlineBCMDist = 40]
54 [dn = DWinSysDN]
55 [pt = DWinSysPT]
56 [ct = DWinSysCT]
57 DWinSysDpl : WinSysDpl
58 [fa = DWinSysFA]
59 [ha = DWinSysHA]
60
61
62 // Passenger Window System
63 PassengerWinSys : System
64 PWinSysFM : WinSysFM
65 [express => DriverWinSys.DWinSysFM.express]
66 [express.expressUp => DriverWinSys.DWinSysFM.express.expressUp]
67 PWinSysFA : WinSysFA
68 [PassengerWinSys.PWinSysFM.express.expressUp <=> PWinSysFA.PinchDetectionFA]
69 DWinSwitch : FunctionalDevice
70 [implementation.hardware]
71 [baseLatency = 10]
72 dWinReq : FunctionConnector
73 [sender = DWinSwitch && receiver = WinArbiter]
74 [messageSize = 1]
75
76 // Timing Chains
77 SwitchToControlDeviceLatency -> integer = WinSwitch.latency + WinArbiter.latency
78 ControlToMotorDeviceLatency -> integer = WinController.latency + WinMotor.latency
79 SwitchToControlCommLatency -> integer = localWinReq.latency + winReq.latency
80 ControlToMotorCommLatency -> integer = winCmd.latency
81 SwitchToMotorEndToEndLatency -> integer = SwitchToControlDeviceLatency + ControlToMotorDeviceLatency + (

SwitchToControlCommLatency+ControlToMotorCommLatency)/1000
82
83 PositionSensorToControlDeviceLatency -> integer = PositionSensor.latency + PinchDetection.latency
84 PositionSensorToControlCommLatency -> integer = position.latency + object.latency
85 PositionSensorToMotorEndToEndLatency -> integer = PositionSensorToControlDeviceLatency +

ControlToMotorDeviceLatency + (PositionSensorToControlCommLatency+ControlToMotorCommLatency)/1000
86
87 SwitchToControlLatency -> integer = SwitchToControlDeviceLatency + SwitchToControlCommLatency/1000
88 PositionSensorToControlLatency -> integer = PositionSensorToControlDeviceLatency +

PositionSensorToControlCommLatency/1000
89 ControlInputDifference -> integer
90 [ControlInputDifference = (max(SwitchToControlLatency.dref, PositionSensorToControlLatency.dref)
91 - min(SwitchToControlLatency.dref, PositionSensorToControlLatency.dref))]
92
93 // End-to-End Timing Constraint(s)
94 [(TimingRequirements.BasicEndToEndLatency) => (SwitchToMotorEndToEndLatency <= TimingRequirements.

BasicEndToEndLatency)]
95 [(PinchDetectionFA && TimingRequirements.PinchDetectionEndToEndLatency) => (PositionSensorToMotorEndToEndLatency

<= TimingRequirements.PinchDetectionEndToEndLatency)]
96 // Input Synchronization Contraint(s)
97 [(PinchDetectionFA && TimingRequirements.ControlInputSynchLatency) => ControlInputDifference <= TimingRequirements

.ControlInputSynchLatency]
98
99 // Timing Margins

100 BasicEndToEndLatencyMargin -> integer ?
101 [if TimingRequirements.BasicEndToEndLatency then (BasicEndToEndLatencyMargin = (TimingRequirements.

BasicEndToEndLatency - SwitchToMotorEndToEndLatency))
102 else (no BasicEndToEndLatencyMargin)]
103 PinchDetectionEndToEndLatencyMargin -> integer ?
104 [if TimingRequirements.PinchDetectionEndToEndLatency then (
105 PinchDetectionEndToEndLatencyMargin = (TimingRequirements.PinchDetectionEndToEndLatency -

PositionSensorToMotorEndToEndLatency))
106 else (no PinchDetectionEndToEndLatencyMargin)]
107
108 PWinSysHA : WinSysHA
109 PWinSysDN : WinSysDN
110 [this.BCM = Car.BCM]

28

111 [this.EC = Car.EC]
112 [this.Switch.numSwitches = 1]
113 DSwitch -> SwitchNode
114 [DSwitch = DriverWinSys.DWinSysHA.DWinSysDN.Switch]
115 PWinSysPT : WinSysPT
116 [dn = PWinSysDN]
117 [inlineECDist = 130]
118 [inlineBCMDist = 130]
119 PWinSysCT : WinSysCT
120 [dn = PWinSysDN]
121 [inlineBCMDist = 130]
122 logicalDoorBusJoin : LogicalBusBridge ?
123 [bus = (PWinSysCT.logicalLowSpeedBus, DWinSysCT.logicalLowSpeedBus)]
124 [gatewayTransferTimePerSize = 10] // This is the time to transfer a unit size over the gateway
125 [endpoint in (PWinSysDN.Motor, PWinSysDN.Switch, PWinSysDN.DoorModule, PWinSysDN.BCM.dref, DWinSysDN.Motor

, DWinSysDN.Switch, DWinSysDN.DoorModule)]
126 logicalDriveSwitchPassSwitch : DiscreteDataConnector ?
127 [length = 260]
128 [endpoint = (PWinSysHA.PWinSysDN.DSwitch.dref, PWinSysHA.PWinSysDN.Switch)]
129 logicalDriveSwitchPassMotor : DiscreteDataConnector ?
130 [length = 260]
131 [endpoint = (PWinSysHA.PWinSysDN.DSwitch.dref, PWinSysHA.PWinSysDN.Motor)]
132 logicalDriveSwitchPassDoorModule : DiscreteDataConnector ?
133 [length = 250]
134 [endpoint = (PWinSysHA.PWinSysDN.DSwitch.dref, PWinSysHA.PWinSysDN.DoorModule)]
135 logicalDriveSwitchBCM : DiscreteDataConnector ?
136 [length = 85]
137 [endpoint = (PWinSysHA.PWinSysDN.DSwitch.dref, PWinSysHA.PWinSysDN.BCM.dref)]
138 [dn = PWinSysDN]
139 [pt = PWinSysPT]
140 [ct = PWinSysCT]
141 PWinSysDpl : WinSysDpl
142 [fa = PWinSysFA]
143 [ha = PWinSysHA]
144 [PWinSysFA.DWinSwitch.deployedTo.dref = PWinSysHA.PWinSysDN.DSwitch.dref]
145 [PWinSysFA.dWinReq.deployedTo.dref in (
146 PWinSysHA.PWinSysCT.logicalDoorBusJoin,
147 PWinSysHA.PWinSysCT.logicalDriveSwitchPassSwitch,
148 PWinSysHA.PWinSysCT.logicalDriveSwitchPassMotor,
149 PWinSysHA.PWinSysCT.logicalDriveSwitchPassDoorModule,
150 PWinSysHA.PWinSysCT.logicalDriveSwitchBCM)]
151
152 //----------------------------- Car System Model ----------------------------//
153 Car
154 BCM : DeviceNode ?
155 [type = SmartDeviceNode]
156 [mass = 408]
157 [cost = 460]
158 [ppm = 50]
159 [replaceCost = 460]
160 [speedFactor = 10]
161 EC : DeviceNode
162 [type = PowerDeviceNode]
163 [mass = 0]
164 [cost = 0]
165 [ppm = 10]
166 [replaceCost = 0]
167
168
169 totalCarMass -> integer = sum(DeviceNode.mass) + (sum(HardwareConnector.mass)/1000)
170 totalCarCost -> integer = sum(DeviceNode.cost) + (sum(HardwareConnector.cost)/1000)
171 totalCarWarrantyCost -> integer = sum(DeviceNode.warrantyCost)
172
173
174 // Timing Requirements
175 TimingRequirements
176 BasicEndToEndLatency -> integer ?
177 PinchDetectionEndToEndLatency -> integer ?
178 ControlInputSynchLatency -> integer ?
179
180 // Optimization Goals:
181 // Comment out these goals if optimization should not be perfromed (no other modifications are necessary)
182 // << minimize totalCarMass >>
183 // << minimize totalCarCost >>
184 // << minimize totalCarWarrantyCost >>

Appendix D
Central Door Locks

Listing 32. Complete E/E architecture for central door locks case study
1 //------------------- Door Lock Abstract Clafer --------------------------//
2 // Door Lock Abstract Clafer - This section contains all abstract clafers
3 // that detail a generic system/component that can be used in the concerete
4 // system model.

29

5 abstract DoorLockFA : FunctionalAnalysis
6 // ------- Core Components ---------------//
7 // Cylinder Switches
8 DriverDoorCylinderSwitch : FunctionalDevice
9 [implementation.hardware]

10 [baseLatency = 10]
11 PassDoorCylinderSwitch : FunctionalDevice
12 [implementation.hardware]
13 [baseLatency = 10]
14 driverCylReq : FunctionConnector
15 [messageSize = 1]
16 [sender = DriverDoorCylinderSwitch && receiver = DoorLockControl]
17 passCylReq : FunctionConnector
18 [messageSize = 1]
19 [sender = PassDoorCylinderSwitch && receiver = DoorLockControl]
20 // Door Contacts
21 DriverDoorContact : FunctionalDevice
22 [implementation.hardware]
23 [baseLatency = 10]
24 PassDoorContact : FunctionalDevice
25 [implementation.hardware]
26 [baseLatency = 10]
27 RearRightPassDoorContact : FunctionalDevice
28 [implementation.hardware]
29 [baseLatency = 10]
30 RearLeftPassDoorContact : FunctionalDevice
31 [implementation.hardware]
32 [baseLatency = 10]
33 driverContactSignal : FunctionConnector
34 [messageSize = 1]
35 [sender = DriverDoorContact && receiver = DoorLockControl]
36 passContactSignal : FunctionConnector
37 [messageSize = 1]
38 [sender = PassDoorContact && receiver = DoorLockControl]
39 rearRightPassContactSignal : FunctionConnector
40 [messageSize = 1]
41 [sender = RearRightPassDoorContact && receiver = DoorLockControl]
42 rearLeftPassContactSignal : FunctionConnector
43 [messageSize = 1]
44 [sender = RearLeftPassDoorContact && receiver = DoorLockControl]
45 // Door Lock Sensors
46 DriverDoorLockSensor : FunctionalDevice
47 [implementation.hardware]
48 [baseLatency = 10]
49 PassDoorLockSensor : FunctionalDevice
50 [implementation.hardware]
51 [baseLatency = 10]
52 RearRightPassDoorLockSensor : FunctionalDevice
53 [implementation.hardware]
54 [baseLatency = 10]
55 RearLeftPassDoorLockSensor : FunctionalDevice
56 [implementation.hardware]
57 [baseLatency = 10]
58 driverLockPosition : FunctionConnector
59 [messageSize = 1]
60 [sender = DriverDoorLockSensor && receiver = DoorLockControl]
61 passLockPosition : FunctionConnector
62 [messageSize = 1]
63 [sender = PassDoorLockSensor && receiver = DoorLockControl]
64 rearRightPassLockPosition : FunctionConnector
65 [messageSize = 1]
66 [sender = RearRightPassDoorLockSensor && receiver = DoorLockControl]
67 rearLeftPassLockPosition : FunctionConnector
68 [messageSize = 1]
69 [sender = RearLeftPassDoorLockSensor && receiver = DoorLockControl]
70 // Door Lock Control
71 DoorLockControl : AnalysisFunction
72 [implementation.software]
73 [baseLatency = 4]
74 driverLockCmd : FunctionConnector
75 [messageSize = 1]
76 [sender = DoorLockControl && receiver = DriverDoorLockMotor]
77 passLockCmd : FunctionConnector
78 [messageSize = 1]
79 [sender = DoorLockControl && receiver = PassDoorLockMotor]
80 rearRightLockCmd : FunctionConnector
81 [messageSize = 1]
82 [sender = DoorLockControl && receiver = RearRightPassDoorLockMotor]
83 rearLeftLockCmd : FunctionConnector
84 [messageSize = 1]
85 [sender = DoorLockControl && receiver = RearLeftPassDoorLockMotor]
86 // Door Lock Motor
87 DriverDoorLockMotor : FunctionalDevice
88 [implementation.hardware]
89 [baseLatency = 10]
90 PassDoorLockMotor : FunctionalDevice
91 [implementation.hardware]

30

92 [baseLatency = 10]
93 RearRightPassDoorLockMotor : FunctionalDevice
94 [implementation.hardware]
95 [baseLatency = 10]
96 RearLeftPassDoorLockMotor : FunctionalDevice
97 [implementation.hardware]
98 [baseLatency = 10]
99 // Gear Position Sensor

100 GearPositionSensor : FunctionalDevice
101 [implementation.hardware]
102 [baseLatency = 10]
103 gearPostion : FunctionConnector
104 [messageSize = 1]
105 [sender = GearPositionSensor && receiver = DoorLockControl]
106
107 // ----- Optional Fragments/Components --------//
108 // Speed Smart Lock FA Components
109 SpeedSmartLockFA : FunctionalAnalysis ?
110 SpeedSensor : FunctionalDevice
111 [implementation.hardware]
112 [baseLatency = 10]
113 speed : FunctionConnector
114 [messageSize = 1]
115 [sender = SpeedSensor && receiver = DoorLockControl]
116 // Central or Distributed Lock Switch
117 xor DoorLockButtonFA
118 IndividualLockSwitchFA : FunctionalAnalysis
119 DriverDoorLockButton : FunctionalDevice
120 [implementation.hardware]
121 [baseLatency = 10]
122 PassDoorLockButton : FunctionalDevice
123 [implementation.hardware]
124 [baseLatency = 10]
125 driverDoorLockReq : FunctionConnector
126 [messageSize = 1]
127 [sender = DriverDoorLockButton && receiver = DoorLockControl]
128 passDoorLockReq : FunctionConnector
129 [messageSize = 1]
130 [sender = PassDoorLockButton && receiver = DoorLockControl]
131 CentralLockSwitchFA : FunctionalAnalysis
132 CentralLockButton : FunctionalDevice
133 [implementation.hardware]
134 [baseLatency = 10]
135 centralDoorLockReq : FunctionConnector
136 [messageSize = 1]
137 [sender = CentralLockButton && receiver = DoorLockControl]
138
139 RemoteKeyAccessFA : FunctionalAnalysis ?
140 CentralRFAntenna : FunctionalDevice
141 [implementation.hardware]
142 [baseLatency = 10]
143 CentralRFReceiver : FunctionalDevice
144 [implementation.hardware]
145 [baseLatency = 10]
146 IDAuthentication : AnalysisFunction
147 [implementation.software]
148 [baseLatency = 4]
149
150 centralAntennaSignal : FunctionConnector
151 [messageSize = 1]
152 [sender = CentralRFAntenna && receiver = CentralRFReceiver]
153 centralReceiverMsg : FunctionConnector
154 [messageSize = 1]
155 [sender = CentralRFReceiver && receiver = IDAuthentication]
156 authenticationMsg : FunctionConnector
157 [messageSize = 1]
158 [sender = IDAuthentication && receiver = DoorLockControl]
159
160 PassiveKeyEntryFA : FunctionalAnalysis ?
161 DriverOutsideLFAntenna : FunctionalDevice
162 [implementation.hardware]
163 [baseLatency = 10]
164 DriverLFTransmitter : FunctionalDevice
165 [implementation.hardware]
166 [baseLatency = 10]
167 PassOutsideLFAntenna : FunctionalDevice
168 [implementation.hardware]
169 [baseLatency = 10]
170 PassLFTransmitter : FunctionalDevice
171 [implementation.hardware]
172 [baseLatency = 10]
173 InsideFrontLFAntenna : FunctionalDevice
174 [implementation.hardware]
175 [baseLatency = 10]
176 InsideCenterLFAntenna : FunctionalDevice
177 [implementation.hardware]
178 [baseLatency = 10]

31

179 InsideRearLFAntenna : FunctionalDevice
180 [implementation.hardware]
181 [baseLatency = 10]
182 InsideLFTransmitter : FunctionalDevice
183 [implementation.hardware]
184 [baseLatency = 10]
185
186 driverTransMsg : FunctionConnector
187 [messageSize = 1]
188 [sender = DriverLFTransmitter && receiver = DriverOutsideLFAntenna]
189 passTransMsg : FunctionConnector
190 [messageSize = 1]
191 [sender = PassLFTransmitter && receiver = PassOutsideLFAntenna]
192 insideFrontTransMsg : FunctionConnector
193 [messageSize = 1]
194 [sender = InsideLFTransmitter && receiver = InsideFrontLFAntenna]
195 insideCenterTransMsg : FunctionConnector
196 [messageSize = 1]
197 [sender = InsideLFTransmitter && receiver = InsideCenterLFAntenna]
198 insideRearTransMsg : FunctionConnector
199 [messageSize = 1]
200 [sender = InsideLFTransmitter && receiver = InsideRearLFAntenna]
201
202
203 xor OutsideDoorHandleSensor
204 ButtonSensor
205 DriverDoorButtonSensor : FunctionalDevice
206 [implementation.hardware]
207 [baseLatency = 10]
208 PassDoorButtonSensor : FunctionalDevice
209 [implementation.hardware]
210 [baseLatency = 10]
211 CapacitiveSensor
212 DriverDoorCapacitiveSensor : FunctionalDevice
213 [implementation.hardware]
214 [baseLatency = 10]
215 PassDoorCapacitiveSensor : FunctionalDevice
216 [implementation.hardware]
217 [baseLatency = 10]
218
219 PKEControl : AnalysisFunction
220 [implementation.software]
221 [baseLatency = 4]
222
223 driverDoorHandleReq : FunctionConnector
224 [messageSize = 1]
225 [sender in (OutsideDoorHandleSensor.ButtonSensor.DriverDoorButtonSensor,
226 OutsideDoorHandleSensor.CapacitiveSensor.DriverDoorCapacitiveSensor) && receiver = PKEControl]
227 passDoorHandleReq : FunctionConnector
228 [messageSize = 1]
229 [sender in (OutsideDoorHandleSensor.ButtonSensor.PassDoorButtonSensor,
230 OutsideDoorHandleSensor.CapacitiveSensor.PassDoorCapacitiveSensor) && receiver = PKEControl]
231 driverPKEReq : FunctionConnector
232 [messageSize = 1]
233 [sender = PKEControl && receiver = DriverLFTransmitter]
234 passPKEReq : FunctionConnector
235 [messageSize = 1]
236 [sender = PKEControl && receiver = PassLFTransmitter]
237 insidePKEReq : FunctionConnector
238 [messageSize = 1]
239 [sender = PKEControl && receiver = InsideLFTransmitter]
240 doorLockControlReq : FunctionConnector
241 [messageSize = 1]
242 [sender = DoorLockControl && receiver = PKEControl]
243
244 abstract DoorLockDN : DeviceNodeClassification
245 //---------- Core Device Nodes ----------------//
246 DriverDoorLockMotorAssembly : DeviceNode
247 [type = EEDeviceNode]
248 [cost = 144]
249 [ppm = 20]
250 [replaceCost = 144]
251 [mass = 104]
252 PassengerDoorLockMotorAssembly : DeviceNode
253 [type = EEDeviceNode]
254 [cost = 144]
255 [ppm = 20]
256 [replaceCost = 144]
257 [mass = 104]
258 RearRightPassengerDoorLockMotorAssembly : DeviceNode
259 [type = EEDeviceNode]
260 [cost = 144]
261 [ppm = 20]
262 [replaceCost = 144]
263 [mass = 104]
264 RearLeftPassengerDoorLockMotorAssembly : DeviceNode
265 [type = EEDeviceNode]

32

266 [cost = 144]
267 [ppm = 20]
268 [replaceCost = 144]
269 [mass = 104]
270 TCM -> DeviceNode
271 BCM -> DeviceNode
272 EC -> DeviceNode
273
274 // ------- Optional Device Nodes ---------------//
275 // Speed Smart Lock Nodes
276 CombinationMeter -> DeviceNode ?
277
278 // Central or Individual Lock Nodes
279 xor DoorLockButtonDN
280 IndividualLockSwitchDN : DeviceNodeClassification
281 DriverLockPowerSwitch : DeviceNode
282 [type = EEDeviceNode]
283 [cost = 23]
284 [replaceCost = 23]
285 [ppm = 10]
286 [mass = 28]
287 PassLockPowerSwitch : DeviceNode
288 [type = EEDeviceNode]
289 [cost = 23]
290 [replaceCost = 23]
291 [ppm = 10]
292 [mass = 28]
293 CentralLockSwitchDN
294 CenterLockPowerSwitch : DeviceNode
295 [type = EEDeviceNode]
296 [cost = 23]
297 [replaceCost = 23]
298 [ppm = 10]
299 [mass = 28]
300
301 RemoteKeyAccessDN : DeviceNodeClassification ?
302 CentralRFAntennaModule : DeviceNode
303 [type = SmartDeviceNode]
304 [mass = 91]
305 [cost = 57]
306 [ppm = 50]
307 [replaceCost = 57]
308 [speedFactor = 10]
309
310 PassiveKeyEntryDN : DeviceNodeClassification ?
311 Transmitter : DeviceNode ?
312 [type = EEDeviceNode]
313 [mass = 397]
314 [cost = 239]
315 [ppm = 50]
316 [replaceCost = 293]
317 PassiveKeyModule : DeviceNode ?
318 [type = SmartDeviceNode]
319 [mass = 408]
320 [cost = 191]
321 [ppm = 50]
322 [replaceCost = 191]
323 [speedFactor = 50]
324 xor OutsideDoorHandleSensor
325 ButtonSensor
326 DriverDoorButtonHandleModule : DeviceNode
327 [type = EEDeviceNode]
328 [mass = 408]
329 [cost = 41]
330 [ppm = 10]
331 [replaceCost = 41]
332 PassDoorButtonHandleModule : DeviceNode
333 [type = EEDeviceNode]
334 [mass = 408]
335 [cost = 41]
336 [ppm = 10]
337 [replaceCost = 41]
338 CapacitiveSensor
339 DriverDoorCapacitiveHandleModule : DeviceNode
340 [type = EEDeviceNode]
341 [mass = 198]
342 [cost = 218]
343 [ppm = 10]
344 [replaceCost = 218]
345 PassDoorCapacitiveHandleModule : DeviceNode
346 [type = EEDeviceNode]
347 [mass = 198]
348 [cost = 218]
349 [ppm = 10]
350 [replaceCost = 218]
351 InsideFrontLFAntenna : DeviceNode
352 [type = EEDeviceNode]

33

353 [mass = 198]
354 [cost = 57]
355 [ppm = 10]
356 [replaceCost = 57]
357 InsideCenterLFAntenna : DeviceNode
358 [type = EEDeviceNode]
359 [mass = 198]
360 [cost = 57]
361 [ppm = 10]
362 [replaceCost = 57]
363 InsideRearLFAntenna : DeviceNode
364 [type = EEDeviceNode]
365 [mass = 198]
366 [cost = 57]
367 [ppm = 10]
368 [replaceCost = 57]
369
370 abstract DoorLockPT : PowerTopology
371 dn -> DoorLockDN
372
373 // Motor Load Power
374 driverMotorLP : LoadPowerConnector
375 [length = 10]
376 [source = dn.BCM.dref && sink = dn.DriverDoorLockMotorAssembly]
377 passMotorLP : LoadPowerConnector
378 [length = 15]
379 [source = dn.BCM.dref && sink = dn.PassengerDoorLockMotorAssembly]
380 rearRightPassMotorLP : LoadPowerConnector
381 [length = 25]
382 [source = dn.BCM.dref && sink = dn.RearRightPassengerDoorLockMotorAssembly]
383 rearLeftPassMotorLP : LoadPowerConnector
384 [length = 30]
385 [source = dn.BCM.dref && sink = dn.RearLeftPassengerDoorLockMotorAssembly]
386
387 // Remote Key Access Device Power
388 centralRFModuleDP : DevicePowerConnector ?
389 [length = 10]
390 [source = dn.EC.dref && sink = dn.RemoteKeyAccessDN.CentralRFAntennaModule]
391
392 // Passive Key Entry Device Power
393 pkeModuleDP : DevicePowerConnector ?
394 [length = 4]
395 [source = dn.EC.dref && sink = dn.PassiveKeyEntryDN.PassiveKeyModule]
396 transmitterDP : DevicePowerConnector ?
397 [length = 5]
398 [source = dn.EC.dref && sink = dn.PassiveKeyEntryDN.Transmitter]
399 driverCapacitiveSensorDP : DevicePowerConnector ?
400 [length = 11]
401 [source = dn.EC.dref && sink = dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

DriverDoorCapacitiveHandleModule]
402 passCapacitiveSensorDP : DevicePowerConnector ?
403 [length = 16]
404 [source = dn.EC.dref && sink = dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

PassDoorCapacitiveHandleModule]
405
406 abstract DoorLockCT : CommTopology
407 dn -> DoorLockDN
408
409 // Busses
410 logicalLowSpeedBus : BusConnector ? // This is the logical bus connecting lower priority ECU’s such as in the body

domain
411 [type.LIN || type.LowSpeedCAN]
412 [length = 45]
413 [endpoint in (dn.BCM.dref, dn.RemoteKeyAccessDN.CentralRFAntennaModule, dn.PassiveKeyEntryDN.PassiveKeyModule)]
414 logicalHighSpeedBus : BusConnector // This is the logical bus connecting high priority ECU’s such as vehicle control
415 [type.HighSpeedCAN || type.FlexRay]
416 [length = 30]
417 [endpoint in (dn.BCM.dref, dn.TCM.dref, dn.CombinationMeter.dref)]
418
419 // Logical Discrete Wires
420 logicalBCMDriverMotorAssemblyDW : DiscreteDataConnector
421 [length = 12]
422 [endpoint = (dn.BCM.dref, dn.DriverDoorLockMotorAssembly)]
423 logicalBCMPassMotorAssemblyDW : DiscreteDataConnector
424 [length = 17]
425 [endpoint = (dn.BCM.dref, dn.PassengerDoorLockMotorAssembly)]
426 logicalBCMRearRightPassMotorAssemblyDW : DiscreteDataConnector
427 [length = 27]
428 [endpoint = (dn.BCM.dref, dn.RearRightPassengerDoorLockMotorAssembly)]
429 logicalBCMRearLeftPassMotorAssemblyDW : DiscreteDataConnector
430 [length = 32]
431 [endpoint = (dn.BCM.dref, dn.RearLeftPassengerDoorLockMotorAssembly)]
432 logicalBCMDriverLockPowerSwitchDW : DiscreteDataConnector ?
433 [length = 14]
434 [endpoint = (dn.BCM.dref, dn.DoorLockButtonDN.IndividualLockSwitchDN.DriverLockPowerSwitch)]
435 logicalBCMPassLockPowerSwitchDW : DiscreteDataConnector ?
436 [length = 19]

34

437 [endpoint = (dn.BCM.dref, dn.DoorLockButtonDN.IndividualLockSwitchDN.PassLockPowerSwitch)]
438 logicalBCMCenterLockPowerSwitchDW : DiscreteDataConnector ?
439 [length = 3]
440 [endpoint = (dn.BCM.dref, dn.DoorLockButtonDN.CentralLockSwitchDN.CenterLockPowerSwitch)]
441
442 logicalBCMDriverCapacitiveSensorModule : AnalogDataConnector ?
443 [length = 15]
444 [endpoint = (dn.BCM.dref, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

DriverDoorCapacitiveHandleModule)]
445 logicalBCMPassCapacitiveSensorModule : AnalogDataConnector ?
446 [length = 20]
447 [endpoint = (dn.BCM.dref, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

PassDoorCapacitiveHandleModule)]
448 logicalBCMDriverButtonSensorModule : AnalogDataConnector ?
449 [length = 15]
450 [endpoint = (dn.BCM.dref, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor.DriverDoorButtonHandleModule)]
451 logicalBCMPassButtonSensorModule : AnalogDataConnector ?
452 [length = 20]
453 [endpoint = (dn.BCM.dref, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor.PassDoorButtonHandleModule)]
454
455 logicalPKEModuleDriverCapacitiveSensorModule : DiscreteDataConnector ?
456 [length = 15]
457 [endpoint = (dn.PassiveKeyEntryDN.PassiveKeyModule, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

DriverDoorCapacitiveHandleModule)]
458 logicalPKEModulePassCapacitiveSensorModule : DiscreteDataConnector ?
459 [length = 20]
460 [endpoint = (dn.PassiveKeyEntryDN.PassiveKeyModule, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

PassDoorCapacitiveHandleModule)]
461 logicalPKEModuleDriverButtonSensorModule : DiscreteDataConnector ?
462 [length = 15]
463 [endpoint = (dn.PassiveKeyEntryDN.PassiveKeyModule, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor.

DriverDoorButtonHandleModule)]
464 logicalPKEModulePassButtonSensorModule : DiscreteDataConnector ?
465 [length = 20]
466 [endpoint = (dn.PassiveKeyEntryDN.PassiveKeyModule, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor.

PassDoorButtonHandleModule)]
467
468 logicalTransmitterDriverCapacitiveSensorModule : AnalogDataConnector ?
469 [length = 15]
470 [endpoint = (dn.PassiveKeyEntryDN.Transmitter, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

DriverDoorCapacitiveHandleModule)]
471 logicalTransmitterPassCapacitiveSensorModule : AnalogDataConnector ?
472 [length = 20]
473 [endpoint = (dn.PassiveKeyEntryDN.Transmitter, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

PassDoorCapacitiveHandleModule)]
474 logicalTransmitterDriverButtonSensorModule : AnalogDataConnector ?
475 [length = 15]
476 [endpoint = (dn.PassiveKeyEntryDN.Transmitter, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor.

DriverDoorButtonHandleModule)]
477 logicalTransmitterPassButtonSensorModule : AnalogDataConnector ?
478 [length = 20]
479 [endpoint = (dn.PassiveKeyEntryDN.Transmitter, dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor.

PassDoorButtonHandleModule)]
480
481 logicalPKEModuleTransmitter : DiscreteDataConnector ?
482 [length = 5]
483 [endpoint = (dn.PassiveKeyEntryDN.PassiveKeyModule, dn.PassiveKeyEntryDN.Transmitter)]
484
485 logicalBCMInsideFrontAntenna : AnalogDataConnector ?
486 [length = 13]
487 [endpoint = (dn.BCM.dref, dn.PassiveKeyEntryDN.InsideFrontLFAntenna)]
488 logicalTransmitterInsideFrontAntenna : AnalogDataConnector ?
489 [length = 1]
490 [endpoint = (dn.PassiveKeyEntryDN.Transmitter, dn.PassiveKeyEntryDN.InsideFrontLFAntenna)]
491 logicalBCMInsideCenterAntenna : AnalogDataConnector ?
492 [length = 6]
493 [endpoint = (dn.BCM.dref, dn.PassiveKeyEntryDN.InsideCenterLFAntenna)]
494 logicalTransmitterInsideCenterAntenna : AnalogDataConnector ?
495 [length = 4]
496 [endpoint = (dn.PassiveKeyEntryDN.Transmitter, dn.PassiveKeyEntryDN.InsideCenterLFAntenna)]
497 logicalBCMInsideRearAntenna : AnalogDataConnector ?
498 [length = 14]
499 [endpoint = (dn.BCM.dref, dn.PassiveKeyEntryDN.InsideRearLFAntenna)]
500 logicalTransmitterInsideRearAntenna : AnalogDataConnector ?
501 [length = 12]
502 [endpoint = (dn.PassiveKeyEntryDN.Transmitter, dn.PassiveKeyEntryDN.InsideRearLFAntenna)]
503
504
505
506 abstract DoorLockHA : HardwareArchitecture
507 dn -> DoorLockDN
508 pt -> DoorLockPT
509 ct -> DoorLockCT
510
511 abstract DoorLockDpl : Deployment
512 fa -> DoorLockFA
513 ha -> DoorLockHA

35

514
515 // Cylinder Switch Deployment
516 [fa.DriverDoorCylinderSwitch.deployedTo = ha.dn.DriverDoorLockMotorAssembly]
517 [fa.PassDoorCylinderSwitch.deployedTo = ha.dn.PassengerDoorLockMotorAssembly]
518
519 // Door Contacts Deployment
520 [fa.DriverDoorContact.deployedTo = ha.dn.DriverDoorLockMotorAssembly]
521 [fa.PassDoorContact.deployedTo = ha.dn.PassengerDoorLockMotorAssembly]
522 [fa.RearRightPassDoorContact.deployedTo = ha.dn.RearRightPassengerDoorLockMotorAssembly]
523 [fa.RearLeftPassDoorContact.deployedTo = ha.dn.RearLeftPassengerDoorLockMotorAssembly]
524
525 // Door Lock Sensors Deployment
526 [fa.DriverDoorLockSensor.deployedTo = ha.dn.DriverDoorLockMotorAssembly]
527 [fa.PassDoorLockSensor.deployedTo = ha.dn.PassengerDoorLockMotorAssembly]
528 [fa.RearRightPassDoorLockSensor.deployedTo = ha.dn.RearRightPassengerDoorLockMotorAssembly]
529 [fa.RearLeftPassDoorLockSensor.deployedTo = ha.dn.RearLeftPassengerDoorLockMotorAssembly]
530
531 // Door Lock Control Deployment
532 [fa.DoorLockControl.deployedTo = ha.dn.BCM.dref]
533
534
535 // Door Lock Motor Deployment
536 [fa.DriverDoorLockMotor.deployedTo = ha.dn.DriverDoorLockMotorAssembly]
537 [fa.PassDoorLockMotor.deployedTo = ha.dn.PassengerDoorLockMotorAssembly]
538 [fa.RearRightPassDoorLockMotor.deployedTo = ha.dn.RearRightPassengerDoorLockMotorAssembly]
539 [fa.RearLeftPassDoorLockMotor.deployedTo = ha.dn.RearLeftPassengerDoorLockMotorAssembly]
540
541 // Gear Position Sensor Deployment
542 [fa.GearPositionSensor.deployedTo = ha.dn.TCM.dref]
543
544 // Speed Sensor Deployment
545 [fa.SpeedSmartLockFA => (fa.SpeedSmartLockFA.SpeedSensor.deployedTo = ha.dn.CombinationMeter.dref)]
546
547 // Power Button Unlock Deployment
548 [fa.DoorLockButtonFA.IndividualLockSwitchFA => (fa.DoorLockButtonFA.IndividualLockSwitchFA.DriverDoorLockButton.

deployedTo = ha.dn.DoorLockButtonDN.IndividualLockSwitchDN.DriverLockPowerSwitch)]
549 [fa.DoorLockButtonFA.IndividualLockSwitchFA => (fa.DoorLockButtonFA.IndividualLockSwitchFA.PassDoorLockButton.

deployedTo = ha.dn.DoorLockButtonDN.IndividualLockSwitchDN.PassLockPowerSwitch)]
550 [fa.DoorLockButtonFA.CentralLockSwitchFA => (fa.DoorLockButtonFA.CentralLockSwitchFA.CentralLockButton.deployedTo = ha

.dn.DoorLockButtonDN.CentralLockSwitchDN.CenterLockPowerSwitch)]
551
552 // Remote Key Access Deployment
553 [fa.RemoteKeyAccessFA => (fa.RemoteKeyAccessFA.CentralRFAntenna.deployedTo = ha.dn.RemoteKeyAccessDN.

CentralRFAntennaModule)]
554 [fa.RemoteKeyAccessFA => (fa.RemoteKeyAccessFA.CentralRFReceiver.deployedTo = ha.dn.RemoteKeyAccessDN.

CentralRFAntennaModule)]
555 [fa.RemoteKeyAccessFA => (fa.RemoteKeyAccessFA.IDAuthentication.deployedTo in (ha.dn.BCM.dref, ha.dn.RemoteKeyAccessDN

.CentralRFAntennaModule, ha.dn.PassiveKeyEntryDN.PassiveKeyModule))]
556
557 // Passive Key Entry Deployment
558 PassiveKeyEntryDpl ?
559 xor OutsideDoorHandleSensor
560 ButtonSensor
561 [ha.dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor && fa.PassiveKeyEntryFA.

OutsideDoorHandleSensor.ButtonSensor]
562 [fa.PassiveKeyEntryFA.OutsideDoorHandleSensor.ButtonSensor.DriverDoorButtonSensor.deployedTo = ha.dn.

PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor.DriverDoorButtonHandleModule]
563 [fa.PassiveKeyEntryFA.OutsideDoorHandleSensor.ButtonSensor.PassDoorButtonSensor.deployedTo = ha.dn.

PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor.PassDoorButtonHandleModule]
564 [fa.PassiveKeyEntryFA.DriverOutsideLFAntenna.deployedTo = ha.dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.

ButtonSensor.DriverDoorButtonHandleModule]
565 [fa.PassiveKeyEntryFA.PassOutsideLFAntenna.deployedTo = ha.dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.

ButtonSensor.PassDoorButtonHandleModule]
566 CapacitiveSensor
567 [ha.dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor && fa.PassiveKeyEntryFA.

OutsideDoorHandleSensor.CapacitiveSensor]
568 [fa.PassiveKeyEntryFA.OutsideDoorHandleSensor.CapacitiveSensor.DriverDoorCapacitiveSensor.deployedTo = ha.

dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.DriverDoorCapacitiveHandleModule]
569 [fa.PassiveKeyEntryFA.OutsideDoorHandleSensor.CapacitiveSensor.PassDoorCapacitiveSensor.deployedTo = ha.dn

.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.PassDoorCapacitiveHandleModule]
570 [fa.PassiveKeyEntryFA.DriverOutsideLFAntenna.deployedTo = ha.dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.

CapacitiveSensor.DriverDoorCapacitiveHandleModule]
571 [fa.PassiveKeyEntryFA.PassOutsideLFAntenna.deployedTo = ha.dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.

CapacitiveSensor.PassDoorCapacitiveHandleModule]
572
573
574 [fa.PassiveKeyEntryFA.DriverLFTransmitter.deployedTo in (ha.dn.PassiveKeyEntryDN.Transmitter, ha.dn.BCM.dref)]
575 [fa.PassiveKeyEntryFA.PassLFTransmitter.deployedTo in (ha.dn.PassiveKeyEntryDN.Transmitter, ha.dn.BCM.dref)]
576
577 [fa.PassiveKeyEntryFA.InsideFrontLFAntenna.deployedTo = ha.dn.PassiveKeyEntryDN.InsideFrontLFAntenna]
578 [fa.PassiveKeyEntryFA.InsideCenterLFAntenna.deployedTo = ha.dn.PassiveKeyEntryDN.InsideCenterLFAntenna]
579 [fa.PassiveKeyEntryFA.InsideRearLFAntenna.deployedTo = ha.dn.PassiveKeyEntryDN.InsideRearLFAntenna]
580 [fa.PassiveKeyEntryFA.InsideLFTransmitter.deployedTo in (ha.dn.PassiveKeyEntryDN.Transmitter, ha.dn.BCM.dref)]
581
582 [fa.PassiveKeyEntryFA.PKEControl.deployedTo in (ha.dn.BCM.dref, ha.dn.PassiveKeyEntryDN.PassiveKeyModule)]
583
584 // Power Topology Deployment

36

585 [ha.pt.pkeModuleDP <=> ha.dn.PassiveKeyEntryDN.PassiveKeyModule]
586 [ha.pt.driverCapacitiveSensorDP <=> ha.dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

DriverDoorCapacitiveHandleModule]
587 [ha.pt.passCapacitiveSensorDP <=> ha.dn.PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor.

PassDoorCapacitiveHandleModule]
588 [ha.pt.centralRFModuleDP <=> ha.dn.RemoteKeyAccessDN]
589 [ha.pt.transmitterDP <=> ha.dn.PassiveKeyEntryDN.Transmitter]
590
591 // Communication Deployment
592 [fa.driverCylReq.deployedTo = ha.ct.logicalBCMDriverMotorAssemblyDW]
593 [fa.passCylReq.deployedTo = ha.ct.logicalBCMPassMotorAssemblyDW]
594
595 [fa.driverContactSignal.deployedTo = ha.ct.logicalBCMDriverMotorAssemblyDW]
596 [fa.passContactSignal.deployedTo = ha.ct.logicalBCMPassMotorAssemblyDW]
597 [fa.rearRightPassContactSignal.deployedTo = ha.ct.logicalBCMRearRightPassMotorAssemblyDW]
598 [fa.rearLeftPassContactSignal.deployedTo = ha.ct.logicalBCMRearLeftPassMotorAssemblyDW]
599
600 [fa.driverLockPosition.deployedTo = ha.ct.logicalBCMDriverMotorAssemblyDW]
601 [fa.passLockPosition.deployedTo = ha.ct.logicalBCMPassMotorAssemblyDW]
602 [fa.rearRightPassLockPosition.deployedTo = ha.ct.logicalBCMRearRightPassMotorAssemblyDW]
603 [fa.rearLeftPassLockPosition.deployedTo = ha.ct.logicalBCMRearLeftPassMotorAssemblyDW]
604
605 [fa.driverLockCmd.deployedTo = ha.ct.logicalBCMDriverMotorAssemblyDW]
606 [fa.passLockCmd.deployedTo = ha.ct.logicalBCMPassMotorAssemblyDW]
607 [fa.rearRightLockCmd.deployedTo = ha.ct.logicalBCMRearRightPassMotorAssemblyDW]
608 [fa.rearLeftLockCmd.deployedTo = ha.ct.logicalBCMRearLeftPassMotorAssemblyDW]
609
610 [fa.gearPostion.deployedTo = ha.ct.logicalHighSpeedBus]
611
612 [fa.SpeedSmartLockFA => (fa.SpeedSmartLockFA.speed.deployedTo in (ha.ct.logicalHighSpeedBus))]
613
614 [fa.DoorLockButtonFA.IndividualLockSwitchFA => (fa.DoorLockButtonFA.IndividualLockSwitchFA.driverDoorLockReq.

deployedTo = ha.ct.logicalBCMDriverLockPowerSwitchDW)]
615 [fa.DoorLockButtonFA.IndividualLockSwitchFA => (fa.DoorLockButtonFA.IndividualLockSwitchFA.passDoorLockReq.deployedTo

= ha.ct.logicalBCMPassLockPowerSwitchDW)]
616 [fa.DoorLockButtonFA.CentralLockSwitchFA => (fa.DoorLockButtonFA.CentralLockSwitchFA.centralDoorLockReq.deployedTo =

ha.ct.logicalBCMCenterLockPowerSwitchDW)]
617
618 [fa.RemoteKeyAccessFA => (no fa.RemoteKeyAccessFA.centralAntennaSignal.deployedTo)]
619 [fa.RemoteKeyAccessFA => (fa.RemoteKeyAccessFA.centralReceiverMsg.deployedTo in (ha.ct.logicalLowSpeedBus))]
620 [fa.RemoteKeyAccessFA => (fa.RemoteKeyAccessFA.authenticationMsg.deployedTo in (ha.ct.logicalLowSpeedBus))]
621
622 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.driverTransMsg.deployedTo in (ha.ct.

logicalTransmitterDriverCapacitiveSensorModule, ha.ct.logicalTransmitterDriverButtonSensorModule, ha.ct.
logicalBCMDriverCapacitiveSensorModule, ha.ct.logicalBCMDriverButtonSensorModule)]

623 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.driverPKEReq.deployedTo in (ha.ct.logicalPKEModuleTransmitter, ha.ct.
logicalLowSpeedBus)]

624 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.passTransMsg.deployedTo in (ha.ct.
logicalTransmitterPassCapacitiveSensorModule, ha.ct.logicalTransmitterPassButtonSensorModule, ha.ct.
logicalBCMPassCapacitiveSensorModule, ha.ct.logicalBCMPassButtonSensorModule)]

625 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.passPKEReq.deployedTo in (ha.ct.logicalPKEModuleTransmitter, ha.ct.
logicalLowSpeedBus)]

626 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.insideFrontTransMsg.deployedTo in (ha.ct.
logicalTransmitterInsideFrontAntenna, ha.ct.logicalBCMInsideFrontAntenna)]

627 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.insideCenterTransMsg.deployedTo in (ha.ct.
logicalTransmitterInsideCenterAntenna, ha.ct.logicalBCMInsideCenterAntenna)]

628 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.insideRearTransMsg.deployedTo in (ha.ct.
logicalTransmitterInsideRearAntenna, ha.ct.logicalBCMInsideRearAntenna)]

629 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.insidePKEReq.deployedTo in (ha.ct.logicalPKEModuleTransmitter, ha.ct.
logicalLowSpeedBus)]

630 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.driverDoorHandleReq.deployedTo in (ha.ct.
logicalPKEModuleDriverButtonSensorModule, ha.ct.logicalPKEModuleDriverCapacitiveSensorModule, ha.ct.
logicalBCMDriverButtonSensorModule, ha.ct.logicalBCMDriverCapacitiveSensorModule)]

631 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.passDoorHandleReq.deployedTo in (ha.ct.
logicalPKEModulePassButtonSensorModule, ha.ct.logicalPKEModulePassCapacitiveSensorModule, ha.ct.
logicalBCMPassButtonSensorModule, ha.ct.logicalBCMPassCapacitiveSensorModule)]

632 [fa.PassiveKeyEntryFA => fa.PassiveKeyEntryFA.doorLockControlReq.deployedTo in (ha.ct.logicalLowSpeedBus)]
633
634
635 //-------------------- Door Lock System Model ----------------------------//
636 DoorLockSys : System
637 DLockFM : FeatureModel
638 Basic : Feature
639 IndividualLockSwitch : Feature ? // This feature is to determine if the driver and passenger should have

individual door lock switches or use a central lock switch.
640 SpeedSmartLock : Feature ? // This feature is if the door should lock when the car is above a certain speed.
641 RKA : Feature ? // Remote Key Access
642 PKE : Feature ? // Passive Key Entry
643 xor OutsideDoorHandleSensor
644 ButtonSensor : Feature
645 CapacitiveSensor : Feature
646 [PKE => RKA]
647 DLockFA : DoorLockFA
648 [DoorLockButtonFA.IndividualLockSwitchFA <=> DLockFM.Basic.IndividualLockSwitch]
649 [SpeedSmartLockFA <=> DLockFM.Basic.SpeedSmartLock]
650 [RemoteKeyAccessFA <=> DLockFM.RKA]
651 [PassiveKeyEntryFA <=> DLockFM.PKE]

37

652 [PassiveKeyEntryFA.OutsideDoorHandleSensor.ButtonSensor <=> DLockFM.PKE.OutsideDoorHandleSensor.ButtonSensor]
653 [PassiveKeyEntryFA.OutsideDoorHandleSensor.CapacitiveSensor <=> DLockFM.PKE.OutsideDoorHandleSensor.

CapacitiveSensor]
654
655 // Timing Chains
656 DriverSwitchToControl -> integer
657 [if (DLockFM.Basic.IndividualLockSwitch) then (
658 this = DoorLockButtonFA.IndividualLockSwitchFA.DriverDoorLockButton.latency +
659 DoorLockButtonFA.IndividualLockSwitchFA.driverDoorLockReq.latency/1000
660) else (
661 this = DoorLockButtonFA.CentralLockSwitchFA.CentralLockButton.latency +
662 DoorLockButtonFA.CentralLockSwitchFA.centralDoorLockReq.latency/1000
663)]
664 DriverContactToControl -> integer = DriverDoorContact.latency + driverContactSignal.latency/1000
665 DriverLockSensorToControl -> integer = DriverDoorLockSensor.latency + driverLockPosition.latency/1000
666
667 DriverSwitchToMotor -> integer
668 [if (DLockFM.Basic.IndividualLockSwitch) then (
669 this = DoorLockButtonFA.IndividualLockSwitchFA.DriverDoorLockButton.latency +
670 DoorLockControl.latency +
671 DriverDoorLockMotor.latency +
672 ((driverLockCmd.latency + DoorLockButtonFA.IndividualLockSwitchFA.driverDoorLockReq.latency)/1000)
673) else (
674 this = DoorLockButtonFA.CentralLockSwitchFA.CentralLockButton.latency +
675 DoorLockControl.latency +
676 DriverDoorLockMotor.latency +
677 ((DoorLockButtonFA.CentralLockSwitchFA.centralDoorLockReq.latency + driverLockCmd.latency)/1000)
678)]
679
680 ControlInputDifference -> integer
681 [ControlInputDifference = (max(DriverSwitchToControl.dref, DriverContactToControl.dref, DriverLockSensorToControl.

dref)
682 - min(DriverSwitchToControl.dref, DriverContactToControl.dref, DriverLockSensorToControl.dref))]
683
684 PassiveKeyCapacitiveSensorToMotor -> integer ?
685 [if (DLockFM.PKE.OutsideDoorHandleSensor.CapacitiveSensor) then (
686 PassiveKeyCapacitiveSensorToMotor = PassiveKeyEntryFA.OutsideDoorHandleSensor.CapacitiveSensor.

DriverDoorCapacitiveSensor.latency +
687 PassiveKeyEntryFA.PKEControl.latency +
688 PassiveKeyEntryFA.DriverLFTransmitter.latency +
689 PassiveKeyEntryFA.DriverOutsideLFAntenna.latency + 50 +
690 RemoteKeyAccessFA.CentralRFAntenna.latency +
691 RemoteKeyAccessFA.CentralRFReceiver.latency +
692 RemoteKeyAccessFA.IDAuthentication.latency +
693 DoorLockControl.latency +
694 DriverDoorLockMotor.latency +
695 ((PassiveKeyEntryFA.driverDoorHandleReq.latency + PassiveKeyEntryFA.driverPKEReq.latency + PassiveKeyEntryFA.

driverTransMsg.latency +
696 RemoteKeyAccessFA.centralAntennaSignal.latency + RemoteKeyAccessFA.centralReceiverMsg.latency +
697 RemoteKeyAccessFA.authenticationMsg.latency + driverLockCmd.latency)/1000))
698 else (no PassiveKeyCapacitiveSensorToMotor)]
699
700 // Timing Constraints
701 // Driver lock switch to driver motor timing constraint
702 [(DLockFM.Basic.IndividualLockSwitch && DoorLockRequirements.TimingRequirements.BasicIndividualSwitchLatency) => (
703 DriverSwitchToMotor <= DoorLockRequirements.TimingRequirements.BasicIndividualSwitchLatency
704)]
705 // Central lock switch to driver motor timing constraint
706 [(no DLockFM.Basic.IndividualLockSwitch && DoorLockRequirements.TimingRequirements.BasicCentralSwitchLatency)=> (
707 DriverSwitchToMotor <= DoorLockRequirements.TimingRequirements.BasicCentralSwitchLatency
708)]
709 // Switch Unlock Input Synchronization Timing Constraint
710 [DoorLockRequirements.TimingRequirements.SwitchUnlockInputSynchLatency => (
711 ControlInputDifference <= DoorLockRequirements.TimingRequirements.SwitchUnlockInputSynchLatency
712)]
713 // Passive Key Capacitive Sensor to Motor Timing Constraint
714 [(DoorLockRequirements.TimingRequirements.PKELatency && DLockFM.PKE.OutsideDoorHandleSensor.CapacitiveSensor) => (
715 PassiveKeyCapacitiveSensorToMotor <= DoorLockRequirements.TimingRequirements.PKELatency
716)]
717
718 // Timing Margins
719 BasicIndividualSwitchLatencyMargin -> integer ?
720 [if DoorLockRequirements.TimingRequirements.BasicIndividualSwitchLatency then (BasicIndividualSwitchLatencyMargin

= (DoorLockRequirements.TimingRequirements.BasicIndividualSwitchLatency - DriverSwitchToMotor))
721 else (no BasicIndividualSwitchLatencyMargin)]
722 BasicCentralSwitchLatencyMargin -> integer ?
723 [if DoorLockRequirements.TimingRequirements.SwitchUnlockInputSynchLatency then (BasicCentralSwitchLatencyMargin =

(DoorLockRequirements.TimingRequirements.SwitchUnlockInputSynchLatency - DriverSwitchToMotor))
724 else (no BasicCentralSwitchLatencyMargin)]
725 SwitchUnlockInputSynchLatencyMargin -> integer ?
726 [if DoorLockRequirements.TimingRequirements.SwitchUnlockInputSynchLatency then (
727 SwitchUnlockInputSynchLatencyMargin = (DoorLockRequirements.TimingRequirements.SwitchUnlockInputSynchLatency -

ControlInputDifference))
728 else (no SwitchUnlockInputSynchLatencyMargin)]
729 PKELatencyMargin -> integer ?
730 [if DoorLockRequirements.TimingRequirements.PKELatency then (PKELatencyMargin = (DoorLockRequirements.

TimingRequirements.PKELatency - PassiveKeyCapacitiveSensorToMotor))

38

731 else (no PKELatencyMargin)]
732
733 DLockHA : DoorLockHA
734 DLockDN : DoorLockDN
735 [BCM = Car.BCM]
736 [TCM = Car.TCM]
737 [EC = Car.EC]
738 [CombinationMeter => CombinationMeter = Car.CombinationMeter]
739 [DoorLockButtonDN.IndividualLockSwitchDN <=> DLockFM.Basic.IndividualLockSwitch]
740 [CombinationMeter <=> DLockFM.Basic.SpeedSmartLock]
741 [RemoteKeyAccessDN <=> DLockFM.RKA]
742 [PassiveKeyEntryDN <=> DLockFM.PKE]
743 [PassiveKeyEntryDN.OutsideDoorHandleSensor.ButtonSensor <=> DLockFM.PKE.OutsideDoorHandleSensor.ButtonSensor]
744 [PassiveKeyEntryDN.OutsideDoorHandleSensor.CapacitiveSensor <=> DLockFM.PKE.OutsideDoorHandleSensor.

CapacitiveSensor]
745 DLockPT : DoorLockPT
746 [dn = DLockDN]
747 DLockCT : DoorLockCT
748 [dn = DLockDN]
749 [dn = DLockDN]
750 [pt = DLockPT]
751 [ct = DLockCT]
752 DLockDpl : DoorLockDpl
753 [fa = DLockFA]
754 [ha = DLockHA]
755 [DLockFM.PKE <=> PassiveKeyEntryDpl]
756
757 DoorLockRequirements
758 TimingRequirements
759 BasicIndividualSwitchLatency -> integer ?
760 BasicCentralSwitchLatency -> integer ?
761 SwitchUnlockInputSynchLatency -> integer ?
762 PKELatency -> integer ?
763
764 Car
765 BCM : DeviceNode
766 [type = SmartDeviceNode]
767 [mass = 408]
768 [cost = 261]
769 [ppm = 50]
770 [replaceCost = 261]
771 [speedFactor = 10]
772 TCM : DeviceNode
773 [type = SmartDeviceNode]
774 [mass = 204]
775 [cost = 117]
776 [ppm = 50]
777 [replaceCost = 117]
778 [speedFactor = 10]
779 CombinationMeter : DeviceNode ?
780 [type = SmartDeviceNode]
781 [mass = 198]
782 [cost = 649]
783 [ppm = 50]
784 [replaceCost = 649]
785 [speedFactor = 10]
786 EC : DeviceNode
787 [type = PowerDeviceNode]
788 [mass = 0]
789 [cost = 0]
790 [ppm = 10]
791 [replaceCost = 0]
792
793 totalCarMass -> integer = sum(DeviceNode.mass) + sum(HardwareConnector.mass)/1000
794 totalCarCost -> integer = sum(DeviceNode.cost) + sum(HardwareDataConnector.cost)/1000
795 totalCarWarrantyCost -> integer = sum(DeviceNode.warrantyCost)/1000
796
797 // Optimization Goals:
798 // Comment out these goals if optimization should not be perfromed (no other modifications are necessary)
799 // << minimize totalCarMass >>
800 // << minimize totalCarCost >>
801 // << minimize totalCarWarrantyCost >>

	Introduction
	Background
	Types of clafers and inheritance
	Instance generation

	Clafer multiplicity and group cardinality
	References
	Writing Basic Constraints
	Working with Integers
	Optimization Objectives

	Reference Model for E/E System Architecture
	Feature Model
	Functional Analysis Architecture
	Device Node Classification
	Communication Topology
	Power Topology
	Variability Perspective
	Mass, Parts Cost, & Warranty Parts Cost Perspectives
	Latency Perspective

	Power Window Case Study
	Single Door: Driver
	Feature Model
	Functional Analysis Architecture
	Device Node Classification
	Power Topology
	Communication Topology
	Deployment

	Two Door: Driver & Front Passenger
	Generalizing the Core Elements
	Extending for the Passenger System

	Quality Attributes & Timing Analysis
	Normalizing the Quality Attributes
	End-to-End Latency Constraints

	Door Locks Case Study
	Feature Model
	Functional Analysis Architecture
	Device Node Classification
	Power Topology
	Communication Topology
	Deployment
	Quality Attributes & Timing Analysis

	Techniques for Modeling Complex Systems in Clafer
	Conclusion
	References
	Appendix A: Reference Model
	Appendix B: Generalized Power Window
	Appendix C: Two Door Power Window
	Appendix D: Central Door Locks

