
Bidirectional Transformations:
A Cross-Discipline Perspective

GRACE meeting notes, state of the art, and outlook

Krzysztof Czarnecki1,
J. Nathan Foster2,

Zhenjiang Hu3,
Ralf Lämmel4,

Andy Schürr5, and
James F. Terwilliger6

1 University of Waterloo, Canada
2 University of Pennsylvania, USA

3 National Institute of Informatics, Japan
4 Universität Koblenz-Landau, Germany

5 Technische Universität Darmstadt, Germany
6 Microsoft Research, USA

Abstract. The GRACE International Meeting on Bidirectional Trans-
formations was held in December 2008 near Tokyo, Japan. The meeting
brought together researchers and practitioners from a variety of sub-
disciplines of computer science to share research efforts and help create
a new community. In this report, we survey the state of the art and
summarize the technical presentations delivered at the meeting. We also
describe some insights gathered from our discussions and introduce a
new effort to establish a benchmark for bidirectional transformations.

1 Introduction

Bidirectional transformations (bx) are a mechanism for maintaining the consis-
tency of two (or more) related sources of information. Researchers from many dif-
ferent areas including software engineering, programming languages, databases,
and document engineering are actively investigating the use of bx to solve a
diverse set of problems, for example:

– Model-Driven Software Development : to compute and synchronize views of
software models [5, 93, 97, 113].

– Graphical User Interfaces: to maintain the consistency of a GUI and the
underlying application model in the model-view-controller paradigm [79].

– Visualization With Direct Manipulation: to visualize abstract data and ani-
mate algorithms [100].



– Relational Databases: to construct updatable views [10, 16, 27, 59].
– Data Transformation, Integration, and Exchange: to map data across para-

digms, merge it from multiple sources, and exchange it between sources [44,
47, 49, 57, 68, 82, 86].

– Data Synchronizers: to bridge the gap between replicas in different for-
mats [17, 41, 58].

– Macro Systems: to give feedback to the programmer (e.g., from a type
checker or a debugger) in terms of the original program elements prior to
macro expansion [23, 62].

– Domain-Specific Languages (DSLs): to translate between run-time values
of the object language (the DSL) and the corresponding values of the host
language in embedded interpreters [13, 88].

– Structure Editors: to provide convenient interfaces for editing complicated
data sources [54, 55, 75].

– Serializers: to mediate between external data (binary or sequential data
representations on the wire or the file system) and structured objects in
memory [32, 39].

Although researchers are actively working on bidirectional transformations in
several communities, so far there has been very little cross-discipline interaction
and cooperation. The purpose of the GRACE International Meeting on Bidirec-
tional Transformations (GRACE-BX), held in December 2008 near Tokyo, was
to bring together international elites, promising young researchers, and leading
practitioners to share problems, discuss solutions, and open a dialogue towards
understanding the common underpinnings of bx in all these areas.

This report summarizes the main results of the GRACE-BX meeting and
records the technical presentations that were delivered there. Section 2 surveys
the essential ideas and important papers in key disciplines of bx and describes the
specific work presented at the meeting. Section 3 identifies some of the common
themes and cross-links that emerged during the meeting. Section 4 describes the
beginning of an effort to develop a benchmark suite of canonical bidirectional
transformations for comparing the capabilities and characteristics of different
bx approaches, technologies, scenarios and implementations thereof. Section 5
concludes this report.

All of the material presented at the meeting is available at the GRACE-BX
website.7

2 Bidirectional Transformation Subcommunities

Bidirectional transformations are being used in a variety of disciplines including
programming languages, database management systems, model-driven engineer-
ing, and graph query and transformation systems. The precise details of how bx
7 http://grace.gsdlab.org/



work in each area vary greatly between disciplines, but there is general agree-
ment that a bx between two sources of information A and B (e.g., a database
source and view, two different software models or graph structures, or the input
and output of a program) comprises a pair of unidirectional transformations: one
from A to B and another from B back to A.8 In many cases, the flow of data
from A to B dominates the flow of data from B to A—i.e., A acts as a master
for B. In these cases, A is called the input (source, master) and B is called the
output (target, slave) of the bx. Consequently, the transformation from A to B
is often called the forward transformation and the transformation from B to A
is called the backward or reverse transformation.

In current practice, bx are usually implemented by programming (or specify-
ing) compatible forward and backward transformations in a unidirectional trans-
formation language. Recently, however, an exciting new approach has started to
be used in which bx are implemented in bidirectional transformation languages—
formalisms where every program (or specification) describes a forward and a
backward transformation simultaneously. A major advantage of this approach is
that the compatibility of the transformations can be guaranteed by construction.

In the rest of this section, we give a brief overview of uses of bx in each com-
munity and describe the presentations that were delivered at the GRACE-BX
meeting. We start with the area of bidirectional and reversible programming
languages, and continue with databases and data management, model-driven
engineering, graph query and graph transformation systems. We conclude this
section by describing presentations on novel applications of bx including cou-
pled grammar transformations and a system for computing updatable views of
configuration files.

2.1 Programming Languages

Recently, a number of researchers have investigated programming languages
where programs can be run both forwards and backwards. Broadly speaking,
these languages can be classified according to two features: the semantic laws
obeyed by programs and the mechanisms by which programs are made bidirec-
tional.

At the level of semantics, the key distinction is between bijectiveness and
bidirectionality. In bijective languages, the forward transformation denoted by
every program is an injective function, and the backward transformation is the
corresponding inverse. By contrast, in bidirectional languages, the forward trans-
formation can be an arbitrary function. Since the forward transformation may
discard information in general, the backward transformation typically takes two
arguments: an updated output as well as the original input. It weaves these two
together, yielding a new input where the information contained in the output
has been propagated and the discarded information from the input has been
restored. Bidirectional programs are typically required to obey “round-tripping”

8 Generalizations to more than two sources of information have also been studied, but
are beyond the scope of this report; see [61] for an example.



laws, which ensure that information is maintained by the transformation in each
direction.

Several mechanisms for equipping programs with a bidirectional semantics
have been investigated. In reversible models of computation, each step of com-
putation is invertible [116]. Although these models can only realize injective
functions, it has been shown that this does not represent a serious restriction—
arbitrary functions can be made injective by adding the information discarded
by the forward transformation, often called a complement, to its output. This
approach is often used in bidirectionalization of unidirectional transformations.
In general, there are many ways to represent the discarded information [12, 55,
77], and each results in a different backward transformation. Recently, semantic
approaches to bidirectionalization have also been explored [108].

Other languages do not require explicit reversibility at each step. For exam-
ple, programs in the languages biXid and XSugar, consist of pairs of intertwined
grammars [17, 58], and the transformations are obtained by parsing according to
the rules in one grammar and pretty printing according to the rules in the other.
Another approach, used in many bidirectional languages, is to have primitives
that denote two transformations and combining forms that preserve bidirection-
ality [15, 16, 42, 43, 84].

Presentations at the meeting

Holger Bock Axelsen gave two presentations on reversible models of computa-
tion. In his first talk, he described a general class of reversible abstract machine
architectures and instruction sets. The individual instructions and control logic
are both reversible and are based on a notion of reversible updates [9]. His second
presentation described a result in computability theory: structured programming
using a reversible flowchart language is as expressive as unstructured program-
ming [117]. The result uses the concept of r-Turing completeness: a model of
computation is r-Turing complete if it is capable of simulating Turing machines
cleanly—i.e., without generating any extraneous output data. Unlike classical
approaches [12], reversible flowcharts are r-Turing complete.

Kazutaka Matsuda described recent work on bidirectionalization—i.e., the
task of deriving suitably-related backward transformations from the program
describing the forward transformations. He described a method that, given a
program written in ordinary λ-calculus notation, produces a corresponding well-
behaved backward transformation [76]. The method derives “complement” func-
tions and also uses an injectivity analysis to produce a backward transformation
capable of handling a broad class of updates. Using a tupling transformation, the
technique can also be cleanly extended to situations where the forward transfor-
mation duplicates parts of the input [77].

Janis Voigtländer presented a different approach to bidirectionalization that
works purely semantically [108]. He described a higher-order function that takes
a (polymorphic) forward transformation as an argument and constructs an ap-
propriate backward function as a result. No special language for describing the



forward transformation is needed, and the function that calculates the back-
ward transformation does not inspect the program used to describe the forward
function. The work is inspired by relational parametricity [89] and uses free
theorems [111] to prove several round-tripping laws.

Meng Wang described an application of bidirectionalization for building al-
gebraic views [112]. In this context, a view is an abstraction of the actual imple-
mentation of an abstract data type that provides an interface that is convenient
for programmers to use and robust to changes [110]. Implementers of views
are typically required to come up with pairs of conversion functions that are
each other’s inverses, a condition that is difficult for programmers to check and
maintain. Using a bidirectionalization transformation, these properties can be
obtained automatically.

Nate Foster presented work on lenses [15, 16, 42] that addresses the problem
of handling inessential data in bidirectional transformations [43]. The foundation
of most bidirectional languages is rooted in “round-tripping” laws which require
that information be preserved in both directions. In practice, however, these laws
are too strong: realistic bidirectional transformations do not obey them “on the
nose,” but only modulo equivalence relations that capture the essential parts
of the data being manipulated. He described a general framework of quotient
lenses and gave a syntax and a type system for building and reasoning about
well-behaved quotient lenses.

Yingfei Xiong described Beanbag, a language for describing synchronization
policies for software models [114]. Whenever one part of a model is modified, the
Beanbag system computes the updates that need to be applied to the other parts
of the model (as well as to related models) to reach a consistent state. Beanbag
provides declarative syntax for describing inter-relations between models and
intra-relations within a single model.

2.2 Databases and Data Management

In database literature, the fundamental unit of data movement or transforma-
tion is the query, which leverages the structure of potentially large quantities of
data to provide declarative syntax, clean semantics, and efficient execution. The
specification of a transformation may occur at some higher level such as schema
matching, and is then compiled or converted into queries.

Until recently, most database research into bx studied whether an existing
transformation specified in a query language, e.g., SQL, Datalog, or XQuery, can
be “reversed” in some meaningful way, i.e., create a new transformation from the
target of the original transformation to its source, rather than starting with bidi-
rectionality by design, e.g., [27, 37]. A database transformation between models
M and M′ can be bidirectional in two ways: operationally (by transforming
both read and write operations on M into equivalent operations on M′) or by
instance (by determining to what degree instances of M can remain unaltered
when being transformed into an instance of M′ and back again).

Instance-at-a-time transformation is also known as data exchange in database
literature [95, 44]. The goal in data exchange is to transform instances of source



model S into instances of target model T in such a way that a set of constraints
ΣST that associate instances of S and T are satisfied. The constraints may be
specified in whatever query or logical language suits the models, such as tuple-
generating dependencies of first-order logic [38] or second-order logic [37] for
relations or tree-based pattern matching for XML [7]. For a mapping (S, T , ΣST )
to be bidirectional, the goal is to construct another mapping (T ,S, ΣT S) such
that composing the two is the identity mapping [37]. Such inverses may not
always exist, or may only be partial [8].

A concrete case of instance-at-a-time transformation is the cross-metamodel
mapping, where the source and target models of a transformation are in different
metamodels. In database research, the most common cases involve translating
between three metamodels in particular: objects (O), XML (X), and relations
(R) [68]. The O-R case has well-established commercially-available tools and ma-
ture research [20, 60, 81, 86]. The X-O and X-R cases are substantially more dif-
ficult, given the difference in the expressive power of the metamodels [69]. There
are several approaches to translating XML document instances into objects and
vice versa. The most common cases involve either constructing XML-like ob-
jects that support an XML-like interface [50, 80] or compiling an XML schema
into a canonical class representation that supports translation of instances in
either direction [65, 66, 73, 115]. A more recent research effort allows declarative
mappings to be specified between classes and XML schemas [82, 103].

The operational case is often called the view update problem: given a target
model T specified as a set of views over a source model S by a set of queries Q,
determine if it is possible to intercept updates to T and instead update S such
that re-running queries Q on S regenerates the updated instance of T exactly.
The update to S must be unambiguous, i.e., there can be exactly one way to do
it [27]. Research into the view update problem generally focuses on identifying
semantic or syntactic constraints on Q that can determine if a view defined using
Q is updatable, and if the exact method of update translation can be determined
strictly by examining syntax.

One area of research around updatable views pertains to what invariants
should be respected with respect to view updates. For instance, the constant
complement property suggests that not only should base data be unambiguously
updatable, but that data not referenced by the view should remain constant [10].

A recent development in bidirectional database transformations is the study
of smaller algebraic transformations with known properties. For instance, the
foundation of both relational lenses [16] and Both-as-View [78] is a collection
of atomic query transformations that are known to be bidirectional, from which
more complex transformations can be built.

In the proximity of bx, there is a data management scenario for co-evolution
of database schemas and database instances [48]. This is important when schema-
level transformations (e.g., schema refactorings) need to be coupled with instance-
level transformations so that existing instances can be adapted for use with a new
schema. Likewise, transformations of XML schemas and XML-document trans-
formations may be coupled [67]. Also, coupling is not limited to schema and



instance transformations. In addition, co-transformation of schema-dependent
programs may be an issue [22, 107]. These are all instances of the notion of
coupled transformations [14, 64, 106, 107].

Presentations at the meeting

Jácome Cunha covered HaExcel, which is a tool that correlates spreadsheets and
databases, and prevents update anomalies in spreadsheet tables [24]. HaExcel
uses data mining techniques to discover functional dependencies in spreadsheet
data. These functional dependencies can be exploited to derive a normalized
relational database schema. Finally, HaExcel applies data calculation laws to
the derived schema in order to reconstruct a sequence of refinement steps that
connects the relational database schema back to the tabular spreadsheet.

James Terwilliger presented two bidirectional frameworks; the first was Mi-
crosoft Entity Framework (EF), which serves as an object-relational mapping
tool and is publicly available as part of the .Net framework [20]. In EF, the de-
veloper specifies a declarative mapping between an extended entity-relationship
model and a relational database. This specification is then compiled into a pair
of views (one view for query transformation, one for update transformation) that
translates model operations into equivalent database operations [81].

Finally, James presented Guava, a system that treats the user interface of
a business application as an updatable view of that system’s database. Guava
encapsulates middleware operations like data pivoting, unpivoting, merging and
partitioning, tuple augmentation with environment data, and role-based security
into algebraic operators. Each operator translates queries, updates, and schema
modifications on its input into equivalent expressions on its output [101, 102].

2.3 Model-Driven Engineering

Model-driven engineering (MDE) promotes the use of formal or structured speci-
fications, which are referred to as models, with the goal of automating the deriva-
tion of implementations from such specifications. The approach involves many
kinds of related models, such as requirements, design, and test specifications,
and developers have to maintain complex relationships among the models and
code. Examples of such relationships are refinement of design models to code
and the conformance of models to their respective metamodels. Model transfor-
mations are mechanisms for establishing—and re-establishing, in the presence
of change—the relationships among models and code [26]. Bidirectional model
transformations are of particular interest if the related artifacts can be edited
independently [5, 98]. Such edits are necessary if different stakeholders require
viewing information in different specialized notations, possibly at different ab-
straction levels, or some of the related artifacts contain independent pieces of
information that cannot be derived from other artifacts or both.

The Object Management Group (OMG) acknowledged the importance of bx
to MDE by including a bx language in their Query View Transformation (QVT)



standard. Interestingly, Perdita Stevens analyzed the language from the view-
point of the round-tripping laws (Section 2.1), pointing out several weaknesses.
Other languages and systems to bidirectional model transformations have been
proposed; see [30, 45, 51, 113, 114] for some more recent discussions and contri-
butions.

The model-transformation scenario for co-evolution of metamodels and mod-
els, where metamodel adaptations must be coupled with corresponding model
transformations [109], is closely related to bx. Such co-evolution is an instance
of the notion of coupled transformations [64, 106].

Presentations at the meeting

Davide Di Ruscio gave a presentation on co-evolution of metamodels and models.
This work is based on the axiom that metamodels must be considered one of the
basic concepts of MDE and, accordingly, they are expected to evolve during their
life cycle. As a consequence, models conforming to changed metamodels have to
be updated to preserve their well-formedness. The presented work deals with the
coupled transformation of metamodels and models by using higher-order model
transformations which take a difference model for the metamodel level as input
and produce a model transformation able to co-evolve the involved models as
output [21].

Antonio Vallecillo gave a presentation on correspondences in viewpoint mod-
eling for complex software systems. Viewpoint modeling is a technique for spec-
ifying software systems in terms of a set of independent viewpoints and corre-
spondences between them. Correspondences specify the relationships between
the elements in different views, together with the constraints that guarantee the
consistency among these elements. Correspondences are hard to specify due to
a lack of adequate notations, mechanisms, and tools. Also, specifications be-
come unmanageable when the number of elements in a system is large. The
presentation described efforts that are focused on the development of a generic
framework and a set of tools to represent correspondences [104], which are able
to manage and maintain viewpoint synchronization in evolution scenarios, as
reported in [36]. The approach is based on modeling correspondences both in-
tensionally and extensionally and the use of model transformation techniques to
connect these two specifications.

Andrzej Wasowski gave a short progress report on his efforts to develop a
flexible editing model for feature diagrams, including reversible editing steps and
editing of broken (inconsistent) models. The presented topics included seman-
tics for the editing process and algorithms for validation and guidance during
modeling, under inconsistency. The aim of this work is to (ultimately) build a
‘very intelligent’ and highly flexible editor for feature models.

Bernd Fischer gave a short presentation of his work in progress on model-
based code generation. The transformations used to generate code are funda-
mentally unidirectional because the generated code contains significantly more
details than the model from which it was generated. This makes it hard to mod-
ify the generated code without causing model and code to get out of sync. In



round-trip engineering, the direction of code generation it to be complemented
by an inverse transformation (which is known to be a hard problem). In con-
trast, the presentation proposed to employ aspect-oriented techniques to achieve
the desired code modifications by controlled modifications of the transformation.
The core insight is that the concepts from the generator’s domain model can be
used to systematically derive the required join points.

Krzysztof Czarnecki first presented ongoing work (with Michal Antkiewicz)
on an infrastructure for mapping domain-specific languages (DSLs) to code [2, 4,
6, 71]. The infrastructure supports extracting domain-specific models from code
as code views and bidirectional update propagation with conflict resolution.
The extraction and update propagation rely on declarative mapping definitions,
which relate elements of the DSL to structural and behavioral code patterns.
The mapping definitions can be executed bidirectionally thanks to predefined
code queries and code update transformations approximating the semantics of
the mappings. The second presentation outlined an ongoing effort (with Zinovy
Diskin and Michal Antkiewicz) to recast the design space of heterogeneous syn-
chronization [5] in terms of synchronizers with category-theoretic underpinnings.

Zinovy Diskin gave a presentation on the algebraic foundations of model man-
agement (work in progress). Model management scenarios are often described by
informal diagrams: nodes denote models and arrows are model transformations
(of different types). The goal of the work is to reveal diagrammatic algebraic
foundations underlying such diagrams and thus make the notation precise with-
out translating it into formula-based formalisms. Some general ideas can be
found in [29], and a recent promising application is described in [31].

2.4 Bidirectional Graph Transformation

The graph transformation research community, with its roots in the 1970’s, can
be considered today to be a special subarea of the model-driven engineering com-
munity. If we replace the terms “model”, “metamodel”, and “model transforma-
tion” by the related terms “graph”, “graph type/schema”, and “graph transfor-
mation”, then it becomes obvious that graph transformation languages and tools
are essentially model transformation languages and tools with a precisely defined
semantics. Roughly speaking, one can identify three different families of graph
transformations that either use category theory, non-standard logics, or set the-
ory as their foundation. For a survey of related activities, we refer the reader to
the LNCS Proceedings of the International Conference on Graph Transformation
ICGT, as well as the set of so-called graph grammar handbooks [33, 34].

One can distinguish at least two different sorts of bidirectional graph transfor-
mation approaches: (1) reversible graph transformation languages, which rewrite
a given input graph step by step into a new output graph, and (2) truly bidirec-
tional graph transformation languages, which manipulate pairs of graphs linked
together by means of so-called correspondence links. All graph transformation
languages that support the so-called “double pushout” category-theoretic graph
transformation approach can be classified as reversible transformation languages.
Conditions on rule application guarantee that all rewriting steps can be undone



by simply applying the involved rewrite rule with exchanged left- and right-
hand side [35]. Triple Graph Grammars (TGGs) [92, 94] as the descendants of
pair grammars [87] are a special brand of coupled grammars. They belong to the
class of bidirectional transformation languages [25]. Pairs of uni-directional for-
ward and backward transformations can be derived automatically from a given
TGG that defines a language of related pairs of graphs.

Presentations at the meeting

Andy Schürr gave a tutorial-style introduction to TGGs. TGGs are a bidirec-
tional model transformation formalism, where a single specification generates a
language of related graph tuples (pairs of models) together with an intermediate
correspondence graph (traceability link database). A single TGG specification is
used as input for a compiler that generates corresponding consistency checking,
traceability link creating, and forward/backward model transformation imple-
mentations. The TGG tutorial reviewed the history of TGGs and sketched their
formal definition relying on the theory of the algebraic/category-theoretic branch
of graph grammars. Finally, the meta-modeling tool MOFLON was presented.
MOFLON’s implementation of TGGs adopts the visual notation of QVT Rela-
tional, the OMG standard bidirectional model transformation language.

Soichiro Hidaka, Hiroyuki Kato, Shin-Cheng Mu, and Keisuke Nakano gave
presentations on different aspects of a functional approach to bidirectional graph
transformation. This work aims at the development of an algebraic framework
for bidirectional model transformation by integrating the state-of-the-art tech-
nologies on bidirectional tree transformations and the algebraic graph querying
language UnQL+ [52, 53], which is an extension of the known UnQL [18]. The
theoretical foundation of the work is related to the family of category-theoretic
graph transformations called algebraic graph transformations. The resulting bidi-
rectional graph transformation approach comes with a powerful automatic bidi-
rectionalization method for the automatic derivation of a backward graph trans-
formation from a given forward graph transformation. For this purpose, a bidi-
rectional semantics for an existing graph algebra based on structural recursion
called UnCAL is used, which has been well studied in the database community.
Hence, this work belongs to the class of reversible as well as to the class of truly
bidirectional graph transformation languages. Moreover, the algebraic frame-
work supports the systematic development of efficient large-scale bidirectional
model transformations in a compositional manner.

2.5 Further applications

GRACE-BX covered a number of presentations that we feel are best collected
in a list of “further applications”. It goes without saying that these applications
regularly interact with issues of programming languages for bx, data manage-
ment, or model-driven engineering.



Keisuke Nakano described the Vu-X approach to website construction that is
based on bidirectional transformations [85] (as opposed to unidirectional trans-
formations that simply translate data from a database into web content). Hence,
users can directly modify a generated website, and the modification is automati-
cally reflected in the database—without the need to update the database directly.
The Vu-X system is also implemented as a web server so that users can edit it
in WYSIWYG style within their web browsers.

Hui Song talked about runtime management of systems at the level of an
intuitive, high-level architecture model [56, 96]. Management agents use the ar-
chitecture model to monitor and control a running system. A key component
for architecture-based runtime management is the synchronizer that propagates
changes between the architecture model and the system state, and maintains
the correspondence between them. The presented approach supports automated
generation of such synchronizers based on bidirectional transformations.

David Lutterkort presented a configuration API for Linux systems called
Augeas [75]. Augeas parses configuration files in their native formats and trans-
forms them into a tree. Configuration changes are made by manipulating this
tree and saving it back into native configuration files. The string-to-tree trans-
formation is specified by lenses so that some details can be left out from the
tree level, but they are still preserved when writing back changes. For instance,
Augeas makes an effort to preserve comments and formatting in the textual
configuration files.

Kathleen Fisher presented recent work on PADS, a system for processing ad
hoc data sources (such as log files) [39]. The PADS compiler takes declarative
descriptions of data formats as input and generates a variety of software arti-
facts including a parser, an in-memory representation for the data, and a pretty
printer, among others. The presentation described a mechanism for generating
a suite of useful data processing tools, including a semi-structured query engine,
several format converters, a statistical analyzer, and data visualization routines
directly from ad hoc data, without human intervention [40]. The key technical
contribution is a multi-phase algorithm that automatically infers the structure
of an ad hoc data source and produces a format specification in the PADS data
description language. Programmers wishing to implement custom data analysis
tools can use such descriptions to generate printing and parsing libraries for the
data.

Ralf Lämmel talked about grammar transformations [63, 70]—specifically on
coupled grammar transformations and their applications in XML-data binding
and concrete/abstract syntax mapping. Grammar transformations are expressed
in terms (of sequences) of primitive combinators, which can be applied both to
grammars and instances (such as parse trees or documents). In the simpler, bet-
ter understood cases, these grammar transformations are information-preserving,
and an inverse is defined for each possible combinator. In more general cases such
as mapping a rich concrete syntax to a more abstract syntax, bidirectionality is
more difficult to achieve, subject to future work.



Zhenjiang Hu gave a presentation on the use of automatic function inversion
as a means to obtain divide-and-conquer parallel programs from sequential pro-
grams [83]. This approach allows programmers to use the often more intuitive,
sequential encoding style, while, under certain conditions, efficient parallel pro-
grams in the form of list homomorphisms can be derived automatically. These
parallel programs would be more difficult to develop by programmers in the
first place. The heavy lifting of the approach for the extraction of a list ho-
momorphism is the automatic derivation of weak right inverses from sequential
programs. Experimental results show the practical efficiency of the automatic
parallelization algorithm and demonstrate that the generated parallel programs
achieve good speedups.

3 Synthesis: key concepts and properties of BX

The meeting included two discussion plenary sessions: one on the terminology
and key concepts used across the represented communities and another on prop-
erties of bx. We briefly summarize the main discussion points in this section.

Lack of common and well-established terminology The participants generally
agreed that each represented community has developed its own terminology and
that there is little sharing of terms across disciplines. Moreover, central terms
such as “transformation” and “view” are overloaded. For example, “transforma-
tion” is sometimes used to mean “transformation specification”, “transformation
implementation”, or “transformation execution”. Likewise, although “view” has
a precise and well-established meaning in databases, it is used in a different way
in the programming languages community [110], and its meaning in MDE is not
clear.

Transformation vs. synchronization A hotly-debated topic was the distinction
between transformation and synchronization. All of the participants shared a
common understanding of transformations as executable operations on struc-
tured artifacts (data, models, programs) that establish well-defined relation-
ships between the inputs and outputs, but the definition of synchronization was
less clear. After discussion, a key difference was identified: synchronization (re-
)establishes relationships among (partial) replicas, i.e., semantically overlapping
artifacts that exist in parallel. Thus, although synchronization can be viewed
as a kind of transformation, such as transforming code to make it consistent
with an updated design, not all transformations do synchronization. For exam-
ple, the reversible edits presented by Wasowski (see Section 2.3) are bx but not
synchronizers since they relate two consecutive revisions of a single artifact be-
ing edited. It was also noted that, in general, transformations may take place
in spaces with multiple dimensions including revisions, replicas, languages, and
features [11, 31]. Exploring bx in these multidimensional spaces was proposed as
an important area for future work.



State-based vs. operation-based Many of the projects presented at the meeting
focused on using bx to propagate changes made to the source or target of the
transformation. These update translators fall into two distinct categories. In
state-based approaches, the update translator operates on the source and target
structures themselves. For example, to translate an update made to the tar-
get back to the source, the translator takes as an argument the post-update
state of the target (as well as the original state of the source) and calculates
an appropriately-modified source [15, 16, 41, 42]. By contrast, in operation-based
approaches, updates are expressed in a transformation language, and the update
translator propagates the updates themselves through the transformation. In ei-
ther case, update translation produces instances that are consistent with respect
to the bx [81, 102].

Properties of bx Several different properties of bx were discussed at the meet-
ing. The properties of the relation that captures when the source and target are
consistent—e.g., whether the relation is an injective source-to-target function
or a total target-to-source function or both, or even if the relation is a func-
tion in either direction at all—impact bx in fundamental ways. Most systems
stipulate that the transformations a bx comprises must obey the definitional
properties of correctness and hippocraticness [97] (these properties roughly cor-
respond to PutGet and GetPut laws in the lens framework [42]; for details of
this correspondence, see elswhere [30, 99]), with undoability [97] (corresponding
to PutPut for lenses [42]) as an optional property. The reversibility of a trans-
formation was discussed as an example of an operational property : not only must
the inverse exist, it must also be computable efficiently. Lastly, properties such
as incrementality [46], minimality of changes [19, 44], and preservation of recent
changes were classified as quality properties. Although these properties have in-
tuitive appeal, they are not well understood formally and are an important area
for further study.

Constructing bx Several different techniques for constructing bx were discussed
at the meeting. There are three main approaches. In the first approach, the
user programs the forward transformation and the backward transformation is
obtained (almost) for free, because the forward transformation either was built
from smaller primitives that are bidirectional (e.g., [78, 101, 102]) or can be made
bidirectional (e.g., [76, 108]). The second approach, used in lenses, is similar but
subtly different: the programmer specifies the backward transformation and ob-
tains the forward transformation for free (e.g., [16, 42]). In the third approach,
the user defines a mapping—i.e., the specification of the relation that captures
when the source and target are consistent—and the forward and backward trans-
formations are derived from the mapping automatically, possibly with additional
manual refinement (e.g., [6, 81, 93]). A related topic is the composition of bidi-
rectional translators, e.g., lenses and synchronizers, into larger systems ([30, 31,
41]).



4 Towards a BX benchmark

The GRACE-BX meeting clarified the need to have effective criteria for compar-
ing different bx approaches and assessing progress in the field. Benchmarks are
widely used in academia and industry as a framework for comparing compet-
ing approaches and technologies. Insightful examples of benchmark suites exist
for scenarios with cross-discipline application, including graph transformation
[105], query and transformation of XML [91], generic programming (query and
transformation of tree-shaped data) [90], and schema mappings [1].

Accordingly, the meeting included a discussion session on a potential bench-
mark suite for bidirectional transformations, codenamed BXBenchmark. The fol-
lowing goals of BXBenchmark were identified:

– Provide a platform for comparing expressiveness, usability, and efficiency of
different bx approaches and technologies.

– Catalog proven bx scenarios and interesting variations thereof (e.g., the ubiq-
uitous classes-to-tables mapping and variations thereof).

– Collect implementations of bx scenarios.
– Clarify the relevance of the scenarios across different approaches and tech-

nologies and thereby reveal commonalities and differences.

Organization of the benchmark suite

To help picturing the envisaged benchmark suite BXBenchmark, we sketch its
possible organization. At the top level, the suite is organized by a collection of
scenarios. Each scenario comprises components as described below. (We use the
ubiquitous classes-to-tables mapping as a running example.)

Name For instance: “Classes to Tables”.
Rationale For instance: “Cover a baseline scenario of model-driven develop-

ment with just a few modeling concepts for classes in the sense of the OO
paradigm and tables in the sense of the relational paradigm”.

Metadata Based on an appropriate taxonomy of bidirectional transformations,
the scenarios are to be semantically annotated. To provide a simple example,
scenarios would be annotated as being graph- vs. string- vs. tree-based. (The
scenario of the running example is graph-based.) We discuss some elements
of an emerging taxonomy shortly.

Sample data Each scenario will be accompanied by a collection of types (or
classes, schemas, regular expressions, or other relevant metamodel informa-
tion) that model sample data for the scenario, as well as actual conformant
sample data. In addition, generators and mappers for metamodels and sam-
ple data may provide access to sample data across platform, format, and
programming paradigm while meeting constraints on size or others.

Configurations The term “configuration” is used here as a proxy for compre-
hensively describing the execution of a bidirectional transformation includ-
ing sample data (inputs and results), a description of updates and auxiliary
parameters such as size measures when data is generated.



Specialization Scenarios may be related by specialization. For instance, we
may think of “Classes to Tables” as an abstract scenario with fundamentally
different O/R mapping options as concrete specializations.

Any scenario can now be implemented by any number of implementations
using particular technologies. For instance, one technology may address the sce-
nario by describing both directions of the bx scenario separately, whereas another
technology may leverage a designated transformation language for bx. We also
need some way of documenting the assumed difficulty, feasibility, completeness,
or infeasibility of a specific implementation (option). To this end, the role of
metadata, as announced above, will be extended.

An emerging taxonomy for metadata

We expect this taxonomy to cover properties of bx that are useful in documenting
(by means of metadata) commonalities and differences between the different
scenarios, the different implementations thereof, the different bx approaches and
technologies. A few candidate properties are illustrated:

Injectivity Given a scenario, is the basic forward transformation injective? If
it is not injective, what other properties are possibly exploited to obtain a
useful backward transformation?

Kinds of changes Given a scenario or a bx approach, what kinds of changes are
needed or supported? For instance, one can distinguish updates vs. insertion
vs. deletion. When focusing on updates, one can distinguish structured vs.
primitive updates.

Synchronization orientation Given an implementation of a scenario or a
technology, is synchronization involved? If so, how can we further classify
and qualify the form of synchronization at hand? (For instance, do we face
synchronization based on a constraint mechanism?)

Semantics preservation Given a scenario that involves a sort of (program-
ming) language as the domain of the sources related by bx, does the bx
promise or require semantics preservation? (See the scenario “For-loop Desug-
aring” presented shortly.) Other programming language-related notions may
be similarly leveraged to contribute properties for taxonomy, e.g., type preser-
vation and dependency on flow analysis.

Some candidate scenarios for BXBenchmark

“Roman/Arabic Number Conversion” This is a trivial example which can
be used to provide a basic demonstration of any transformation technology.
The conversions are bijective and can be reasonably represented by a pair of
unidirectional transformations.

“Add Index to Address Book” (inspired by [55]) Given a simple collection
of addresses of persons (say represented as an XML tree), an index for the
names of the persons is added by the forward transformation. The redun-
dancy created by the extra name index triggers update challenges.



“Classes to Tables” This scenario (described earlier) is a baseline scenario of
model-driven development. Various technologies have readily addressed some
variant of it. It appears to be promising to try organizing all these variants.
Conceptually, it is an (O/R) mapping example which hence involves two
paradigms: the OO paradigm and the relational paradigm. Object models
and relational schemas may both be represented as graphs (with edges for as-
sociations or key constraints). In fact, whereas a tree-based approach suffices
for the previous scenario, a graph-based approach may be more appropriate
for the present scenario. (We view “Classes to Tables” as a representative
of the larger class of relatively direct metamodel transformations: WSDL
to/from EMF, BPMN to/from BPEL, EMF to/from XSD, UML sequence
to/from communication diagrams, etc.)

“Collapse/Expand State Diagrams” Starting from a hierarchical state di-
agram (involving some nesting), a flat view is to be provided, and any mod-
ifications on the flat view should be reflected eventually in the hierarchical
view. The basic flattening transformation is non-injective, and hence, the
view complement must be taken into account when mapping back the flat-
tened and possibly updated state diagram to a nested one.

“For-loop Desugaring” Given a tiny (imperative) programming language,
provide a syntax desugaring transformation, e.g., the translation of for-loops
to while loops. The desugared syntax is further subjected to a refactor-
ing transformation. The bidirectional transformation challenge is to be able
to revert desugaring even past refactoring. Just like the previous scenario,
desugaring is non-injective. The specific contribution of the scenario lies in its
well-understood interaction with programming language types and seman-
tics. Ideally, one would want to establish, by construction, that desugaring
and its reversion are type- and semantics-preserving. (A related but dis-
tinctive scenario, inspired by [28, 74], is the preservation of whitespace and
comments by transformations that abstract from whitespace and comments.)

“Round-trip Engineering for Java Applet Models and Code” (inspired
by [2, 3]) In the forward direction, JApplet framework use is expressed at
the modeling level in terms of a feature model, subject to a code-generating
interpretation of the model. In the backward direction, framework use is ex-
tracted from code by queries and presented as feature models. Updates may
be performed both on code and feature model. This scenario stands out with
its involvement of two rather distant abstraction levels: imperative OO code
vs. more grammatical and declarative feature models. This scenario is also
relatively challenging in that it requires flow analysis.

“Textual and Graphical Program Editor” Given (a subset of) a Java/C#-
like language, provide a capability for simultaneous editing in textual and
graphical mode. It is assumed that the graphical mode provides a limited
view on programs. For instance, it may be limited to types and relationships.
This scenario involves “Text to Model” and “Model to Text” components,
and thereby involves specific challenges such as layout preservation (of both
textual and graphical layout) and comment preservation (where we assume
that comments only appear in the textual representation). Further, this sce-



nario requires the ability to incrementally (locally) change the graphical view
in reply to local changes to the textual view, and vice versa.

“Reversible FFT” (inspired by [72, 116]) A Fast Fourier Transform is an effi-
cient algorithm to compute the Discrete Fourier Transform and its inverse.
Compared to the above scenarios, this scenario specifically involves a com-
putationally expensive problem.

Status and future prospects

An open source project has been created to host future efforts on BXBenchmark.9

The project is actively seeking contributors. Designated workshops or bird-of-a-
feather sessions and hackathons may be scheduled to make progress on the suite.
Work on the benchmark suite is likely to feature prominently at any follow-up
meetings.

5 Conclusion

Bidirectional transformation is a field of interest that spans many sub-disciplines
of computer science. The GRACE-BX meeting served as a useful checkpoint to
match capabilities and research efforts, and to examine differences in approaches
and assumptions. The references cited in this report constitute the beginnings
of a comprehensive bibliography of bx-related work across the sub-disciplines.
The new benchmark suite will continue the collaboration effort by allowing re-
searchers with different research aims to contribute solutions to common prob-
lems. In addition to the emerging benchmark, we will continue to foster collab-
oration between communities by applying for a Dagstuhl seminar. We may also
hold workshops at conferences as part of the effort to establish the benchmark.

Acknowledgments We would like to thank all the participants of the GRACE-BX
meeting for their contributions at the meeting and their input during the prepa-
ration of this report: Holger Bock Axelsen, Jean Bezivin, Jácome Cunha, Da-
vide Di Ruscio, Zinovy Diskin, Bernd Fischer, Kathleen Fisher, Soichiro Hidaka,
Robert Glück, Hiroyuki Kato, David Lutterkort, Kazutaka Matsuda, Shin-Cheng
Mu, Alfonso Pierantonio, Keisuke Nakano, Ali Razavi, Hui Song, Antonio Val-
lecillo, Janis Voigtläender, Yingfei Xiong, Meng Wang, and Andrzej Wasowski.

References

1. B. Alexe, W.-C. Tan, and Y. Velegrakis. STBenchmark: towards a benchmark
for mapping systems. Proceedings of the VLDB conference, 1(1):230–244, 2008.
See also http://www.stbenchmark.org/.

2. M. Antkiewicz. Framework-Specific Modeling Languages. PhD thesis, University
of Waterloo, Electrical and Computer Engineering, 2008.

9 https://sourceforge.net/projects/bxbenchmark/



3. M. Antkiewicz, T. T. Bartolomei, and K. Czarnecki. Automatic extraction of
framework-specific models from framework-based application code. In ASE ’07:
Proceedings of the twenty-second IEEE/ACM international conference on Auto-
mated Software Engineering, pages 214–223. ACM, 2007.

4. M. Antkiewicz and K. Czarnecki. Framework-Specific Modeling Languages with
Round-Trip Engineering. In Model Driven Engineering Languages and Systems,
9th International Conference, MoDELS 2006, Proceedings, volume 4199 of LNCS,
pages 692–706. Springer, 2006.

5. M. Antkiewicz and K. Czarnecki. Design Space of Heterogeneous Synchroniza-
tion. In Generative and Transformational Techniques in Software Engineering
II, International Summer School, GTTSE 2007, Revised Papers, volume 5235 of
LNCS, pages 3–46. Springer, 2008.

6. M. Antkiewicz, K. Czarnecki, and M. Stephan. Engineering of Framework-Specific
Modeling Languages. IEEE Transactions on Software Engineering, 2009. To
appear.

7. M. Arenas and L. Libkin. XML data exchange: Consistency and query answering.
Journal of the ACM, 55(2), 2008.

8. M. Arenas, J. Pérez, and C. Riveros. The recovery of a schema mapping: bringing
exchanged data back. In PODS ’08: Proceedings of the twenty-seventh ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
13–22. ACM, 2008.

9. H. B. Axelsen, R. Glück, and T. Yokoyama. Reversible Machine Code and Its
Abstract Processor Architecture. In Computer Science – Theory and Applications,
Proceedings, volume 4649 of LNCS, pages 56–69. Springer, 2007.

10. F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM
Transactions on Database Systems (TODS), 6(4):557–575, 1981.

11. D. S. Batory, M. Azanza, and J. Saraiva. The objects and arrows of computational
design. In Model Driven Engineering Languages and Systems, 9th International
Conference, MoDELS 2008, Proceedings, volume 5301 of Lecture Notes in Com-
puter Science, pages 1–20. Springer, 2008.

12. C. H. Bennet. Logical Reversibility of Computation. IBM Journal of Research
and Development, 17(6):525–532, 1973.

13. N. Benton. Embedded interpreters. Journal of Functional Programming,
15(4):503–542, 2005.

14. P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Coupled Schema Transforma-
tion and Data Conversion for XML and SQL. In Practical Aspects of Declarative
Languages, 9th International Symposium, PADL 2007, Proceedings, volume 4354
of LNCS, pages 290–304. Springer, 2007.

15. A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.
Boomerang: Resourceful lenses for string data. In Proceedings of ACM SIGPLAN–
SIGACT Symposium on Principles of Programming Languages (POPL 2008),
pages 407–419, Jan. 2008.

16. A. Bohannon, B. Pierce, and J. Vaughan. Relational lenses: a language for up-
datable views. In PODS ’06: Proceedings of the twenty-fifth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 338–347.
ACM, 2006.

17. C. Brabrand, A. Møller, and M. I. Schwartzbach. Dual Syntax for XML Lan-
guages. Information Systems, 33(4–5):385–406, 2008. Short version in DBPL
’05.



18. P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query language and algebra
for semistructured data based on structural recursion. VLDB Journal: Very Large
Data Bases, 9(1):76–110, 2000.

19. P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and an-
notations through views. In PODS ’02: Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages
150–158. ACM, 2002.

20. P. Castro, S. Melnik, and A. 0Adya. ADO.NET entity framework: raising the
level of abstraction in data programming. In SIGMOD ’07: Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pages
1070–1072. ACM, 2007.

21. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating Co-
evolution in Model-Driven Engineering. In 12th International IEEE Enterprise
Distributed Object Computing Conference, ECOC 2008, Proceedings, pages 222–
231. IEEE Computer Society, 2008.

22. A. Cleve and J.-L. Hainaut. Co-transformations in Database Applications Evo-
lution. In Generative and Transformational Techniques in Software Engineer-
ing, International Summer School, GTTSE 2005, Revised Papers, volume 4143 of
LNCS, pages 409–421. Springer, 2006.

23. R. Culpepper and M. Felleisen. Debugging macros. In GPCE ’07: Proceedings
of the 6th international conference on Generative programming and component
engineering, pages 135–144. ACM, 2007.

24. J. Cunha, J. Saraiva, and J. Visser. From spreadsheets to relational databases
and back. In PEPM ’09: Proceedings of the 2009 ACM SIGPLAN workshop on
Partial evaluation and program manipulation, pages 179–188. ACM, 2008.

25. K. Czarnecki and S. Helsen. Classification Of Model Transformation Ap-
proaches. In 2nd OOPSLA Workshop on Generative Techniques in the context of
Model Driven Architecture, 2003. Available at http://www.softmetaware.com/

oopsla2003/czarnecki.pdf.
26. K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-

proaches. IBM Systems Journal, 45(3):621–646, 2006.
27. U. Dayal and P. A. Bernstein. On the Correct Translation of Update Operations

on Relational Views. ACM Transactions on Database Systems (TODS), 7(3):381–
416, Sept. 1982.

28. M. L. V. de Vanter. Preserving the Documentary Structure of Source Code in
Language-Based Transformation Tools. In 1st IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM 2001), Proceedings, pages 133–
143. IEEE Computer Society, 2001.

29. Z. Diskin. Mathematics of generic specifications for model management. In
Rivero, Doorn, and Ferraggine, editors, Encyclopedia of Database Technologies
and Applications, pages 351–366. Idea Group, 2005.

30. Z. Diskin. Algebraic Models for Bidirectional Model Synchronization. In
Model Driven Engineering Languages and Systems, 11th International Confer-
ence, MoDELS 2008, Proceedings, volume 5301 of LNCS, pages 21–36. Springer,
2008.

31. Z. Diskin, K. Czarnecki, and M. Antkiewicz. Model-versioning-in-the-large: alge-
braic foundations and the tile notation. In Comparison and versioning of software
models. 3rd Int. Workshop affiliated with ICSE 2009, 2009. To appear in IEEE
Digital Library.

32. D. T. Eger. Bit Level Types, 2005. Unpublished manuscript. Available from
http://www.yak.net/random/blt/blt-drafts/03/blt.pdf.



33. Ehrig, Engels, Kreowski, and Rozenberg, editors. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 1. World Scientific Publishing,
1997.

34. Ehrig, Engels, Kreowski, and Rozenberg, editors. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 2. World Scientific Publishing,
1999.

35. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2006.

36. R. Eramo, A. Pierantonio, J. Romero, and A. Vallecillo. Change Management in
Multi-Viewpoint Systems using ASP. In Proceedings of 5th International Work-
shop on ODP for Enterprise Computing (WODPEC 2008), Sept. 2008.

37. R. Fagin. Inverting schema mappings. ACM Transactions on Database Systems
(TODS), 32(4), 2007.

38. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theoretical Computer Science, 336(1):89–124, 2005.

39. K. Fisher and R. Gruber. PADS: a domain-specific language for processing ad
hoc data. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 295–304. ACM, 2005.

40. K. Fisher, D. Walker, K. Zhu, and P. White. From dirt to shovels: fully automatic
tool generation from ad hoc data. In POPL ’08: Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 421–434. ACM, 2008.

41. J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pierce, and A. Schmitt.
Exploiting Schemas in Data Synchronization. Journal of Computer and System
Sciences, 73(4), June 2007. Short version in DBPL ’05.

42. J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Com-
binators for bidirectional tree transformations: A linguistic approach to the view-
update problem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(3), 2007.

43. J. N. Foster, A. Pilkiewcz, and B. C. Pierce. Quotient lenses. In ICFP ’08:
Proceeding of the 13th ACM SIGPLAN international conference on Functional
programming, pages 383–396. ACM, 2008.

44. A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan. Peer data exchange.
ACM Transactions on Database Systems (TODS), 31(4):1454–1498, 2006.

45. H. Giese and R. Wagner. From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling, 8(1):21–43, 2009.

46. T. J. Green, Z. G. Ives, and V. Tannen. Reconcilable differences. In ICDT ’09:
Proceedings of the 12th International Conference on Database Theory, Proceed-
ings, pages 212–224. ACM, 2009.

47. T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update Exchange with
Mappings and Provenance. In Proceedings of the 33rd International Conference
on Very Large Data Bases, VLDB 2007, pages 675–686. ACM, 2007.

48. J.-L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon. Schema Transformation
Techniques for Database Reverse Engineering. In Entity-Relationship Approach -
ER’93, 12th International Conference on the Entity-Relationship Approach, Pro-
ceedings, volume 823 of LNCS, pages 364–375. Springer, 1994.

49. A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer
Data Management Systems. In Proceedings of the 19th International Conference
on Data Engineering, ICDE 2003, pages 505–516. IEEE Computer Society, 2003.



50. M. Harren, M. Raghavachari, O. Shmueli, M. Burke, R. Bordawekar, I. Pechtchan-
ski, and V. Sarkar. XJ: facilitating XML processing in Java. In WWW ’05: Pro-
ceedings of the 14th international conference on World Wide Web, pages 278–287.
ACM, 2005.

51. T. Hettel, M. Lawley, and K. Raymond. Model Synchronisation: Definitions for
Round-Trip Engineering. In Theory and Practice of Model Transformations, First
International Conference, ICMT 2008, Proceedings, volume 5063 of LNCS, pages
31–45. Springer, 2008.

52. S. Hidaka, Z. Hu, H. Kato, and K. Nakano. A Compositional Approach to Bidirec-
tional Model Transformation. In New Ideas and Emerging Results Track of 31st
International Conference on Software Engineering (ICSE 2009, NIER Track),
May 2009. To appear.

53. S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Towards Compositional Approach to
Model Transformation for Software Development. In 24th Annual ACM Sympo-
sium on Applied Computing, Mar 2009.

54. Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing struc-
tured documents based on bidirectional transformations. In PEPM ’04: Proceed-
ings of the 2004 ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation, pages 178–189. ACM, 2004. See [55] for a journal
version.

55. Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing struc-
tured documents based on bidirectional transformations. Higher-Order and Sym-
bolic Computation, 21(1-2):89–118, 2008. See [54] for a short version.

56. G. Huang, H. Mei, and F. Yang. Runtime recovery and manipulation of soft-
ware architecture of component-based systems. Automated Software Engineering,
13(2):257–281, 2006.

57. G. Karvounarakis and Z. G. Ives. Bidirectional Mappings for Data and Up-
date Exchange. In 11th International Workshop on the Web and Databases,
WebDB 2008, Proceedings, 2008. Available at http://webdb2008.como.polimi.

it/images/stories/WebDB2008/paper35.pdf.

58. S. Kawanaka and H. Hosoya. biXid: a bidirectional transformation language for
XML. In ICFP ’06: Proceedings of the eleventh ACM SIGPLAN international
conference on Functional programming, Proceedings, pages 201–214. ACM, 2006.

59. A. M. Keller. The Role of Semantics in Translating View Updates. Computer,
19(1):63–73, 1986.

60. A. M. Keller, R. Jensen, and S. Agarwal. Persistence software: bridging object-
oriented programming and relational databases. In SIGMOD ’93: Proceedings of
the 1993 ACM SIGMOD international conference on Management of data, pages
523–528. ACM, 1993.

61. A. Königs and A. Schürr. MDI - a Rule-Based Multi-Document and Tool In-
tegration Approach. Journal of Software and System Modeling, 5(4):349–368,
December 2006. Special Section on Model-based Tool Integration.

62. S. Krishnamurthi, Y.-D. Erlich, and M. Felleisen. Expressing Structural Prop-
erties as Language Constructs. In Programming Languages and Systems, 8th
European Symposium on Programming, ESOP’99, Proceedings, volume 1576 of
LNCS, pages 258–272. Springer, 1999.

63. R. Lämmel. Grammar Adaptation. In FME 2001: Formal Methods for Increas-
ing Software Productivity, International Symposium of Formal Methods Europe,
Proceedings, volume 2021 of LNCS, pages 550–570. Springer, 2001.



64. R. Lämmel. Coupled Software Transformations (Extended Abstract).
In First International Workshop on Software Evolution Transformations,
Nov. 2004. 5 pages; available online at http://homepages.cwi.nl/~ralf/

CoupledSoftwareTransformations/.
65. R. Lämmel. LINQ to XSD. In Proceedings, PLAN-X 2007, Programming Lan-

guage Technologies for XML, An ACM SIGPLAN Workshop collocated with
POPL 2007, pages 95–96, 2007. http://www.plan-x-2007.org/plan-x-2007.

pdf.
66. R. Lämmel. Style normalization for canonical X-to-O mappings. In PEPM ’07:

Proceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 31–40. ACM, 2007.

67. R. Lämmel and W. Lohmann. Format Evolution. In Proceedings of 7th Inter-
national Conference on Reverse Engineering for Information Systems (RETIS
2001), volume 155 of books@ocg.at, pages 113–134. OCG, 2001.

68. R. Lämmel and E. Meijer. Mappings Make Data Processing Go ’Round. In Gen-
erative and Transformational Techniques in Software Engineering, International
Summer School, GTTSE 2005, Revised Papers, volume 4143 of LNCS, pages 169–
218. Springer, 2006.

69. R. Lämmel and E. Meijer. Revealing the X/O impedance mismatch (Changing
lead into gold). In Spring School on Datatype-Generic Programming, Lecture
Notes, volume 4719 of LNCS, pages 285–367. Springer, 2007.

70. R. Lämmel and V. Zaytsev. An Introduction to Grammar Convergence. In
Integrated Formal Methods, 7th International Conference, IFM 2009, Proceedings,
volume 5423 of LNCS, pages 246–260. Springer, 2009.

71. H. Lee, M. Antkiewicz, and K. Czarnecki. Towards a Generic Infrastructure for
Framework-specific Integrated Development Environment Extensions. In 2nd In-
ternational Workshop on Domain-Specific Program Development (DSPD), in as-
sociation with GPCE 2008, 2008. http://www.labri.fr/perso/reveille/DSPD/
2008.

72. J. Li. Low noise reversible MDCT (RMDCT) and its application in progressive-
to-lossless embedded audio coding. IEEE Transactions on Signal Processing,
53(5):1870–1880, 2005.

73. Liquid XML. http://www.liquid-technologies.com/.
74. W. Lohmann and G. Riedewald. Towards Automatical Migration of Transforma-

tion Rules after Grammar Extension. In 7th European Conference on Software
Maintenance and Reengineering (CSMR 2003), Proceedings, pages 30–39. IEEE
Computer Society, 2003.

75. D. Lutterkort. Augeas–A Configuration API. In Proceedings of the Linux Sym-
posium, Ottawa, ON, pages 47–56, July 2008.

76. K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization
transformation based on automatic derivation of view complement functions. In
ICFP ’07: Proceedings of the 12th ACM SIGPLAN international conference on
Functional programming, pages 47–58. ACM, 2007.

77. K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalizing
Programs with Duplication through Complementary Function Derivation. JSSST
Journal: Computer Software, 26(2), 5 2009. In Japanese. To appear.

78. P. McBrien and A. Poulovassilis. Data Integration by Bi-Directional Schema
Transformation Rules. In 19th International Conference on Data Engineering,
ICDE 2003, Proceedings, pages 227–238. IEEE Computer Society, 2003.

79. L. Meertens. Designing Constraint Maintainers for User Interaction. Manuscript,
available at http://www.kestrel.edu/home/people/meertens, June 1998.



80. E. Meijer, B. Beckman, and G. Bierman. LINQ: reconciling object, relations and
XML in the .NET framework. In SIGMOD ’06: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pages 706–706. ACM,
2006.

81. S. Melnik, A. Adya, and P. Bernstein. Compiling mappings to bridge applica-
tions and databases. In SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 461–472. ACM, 2007.

82. R. Miller, M. Hernández, L. Haas, L. Yan, C. Ho, R. Fagin, and L. Popa. The Clio
Project: Managing Heterogeneity. ACM SIGMOD Record, 30(1):78–83, 2001.

83. K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and M. Takeichi. Automatic inver-
sion generates divide-and-conquer parallel programs. In PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language design and
implementation, pages 146–155. ACM, 2007.

84. S.-C. Mu, Z. Hu, and M. Takeichi. An Algebraic Approach to Bi-directional
Updating. In Programming Languages and Systems: Second Asian Symposium,
APLAS 2004, Proceedings, volume 3302 of LNCS, pages 2–20. Springer, 2004.

85. K. Nakano, Z. Hu, and M. Takeichi. Consistent Web Site Updating based on
Bidirectional Transformation. In 10th IEEE International Symposium on Web
Site Evolution (WSE 2008), Oct. 2008.

86. J. Oliveira. Transforming Data By Calculation. In Generative and Transfor-
mational Techniques in Software Engineering II, International Summer School,
GTTSE 2007, Revised Papers, volume 5235 of LNCS, pages 134–195. Springer,
2008.

87. T. W. Pratt. Pair Grammars, Graph Languages and String-to-Graph Transla-
tions. In Journal of Computer and System Sciences, volume 5, pages 560–595.
Academic Press, 1971.

88. N. Ramsey. Embedding an interpreted language using higher-order functions and
types. In IVME ’03: Proceedings of the 2003 workshop on Interpreters, virtual
machines and emulators, pages 6–14. ACM, 2003.

89. J. Reynolds. Types, abstraction and parametric polymorphism. In Information
Processing 1983, Proceedings, pages 513–523. Elsevier, 1983.

90. A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and B. Oliveira.
Comparing libraries for generic programming in Haskell. In Haskell ’08: Proceed-
ings of the first ACM SIGPLAN symposium on Haskell, pages 111–122. ACM,
2008.

91. A. Schmidt, F. Waas, M. Kersten, D. Florescu, I. Manolescu, M. Carey, and
R. Busse. The XML Benchmark Project. Technical report, CWI, Amsterdam,
The Netherlands, Apr. 2001. Technical Report INS-R0103. Available at http:

//www.xml-benchmark.org/.

92. A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In
Mayr and Schmidt, editors, Proceeding of WG’94 Workshop on Graph-Theoretic
Concepts in Computer Science, pages 151–163, 1994.

93. A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In
International Workshop Graph-Theoretic Concepts in Computer Science, volume
903 of LNCS. Springer, 1995.

94. A. Schürr and F. Klar. 15 Years of Triple Graph Grammars - Research Challenges,
New Contributions, Open Problems. In 4th International Conference on Graph
Transformation, Proceedings, volume 5214 of LNCS, pages 411–425. Springer,
2008.



95. N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum. EXPRESS:
A Data EXtraction, Processing, amd REStructuring System. ACM Transactions
on Database Systems (TODS), 2(2):134–174, 1977.

96. H. Song, Y. Xiong, Z. Hu, G. Huang, and H. Mei. A Model-Driven Framework for
Constructing Runtime Architecture Infrastructures. Technical report, National
Institute of Informatics, Japan, Dec. 2008. Technical Report GRACE-TR-2008-
05. Available at http://grace-center.jp/en/rsc_tr.html.

97. P. Stevens. Bidirectional Model Transformations in QVT: Semantic Issues and
Open Questions. In International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS 2007), Proceedings, volume 4735 of LNCS, pages
1–15. Springer, 2007.

98. P. Stevens. A Landscape of Bidirectional Model Transformations. In Generative
and Transformational Techniques in Software Engineering II, International Sum-
mer School, GTTSE 2007, Revised Papers, volume 5235 of LNCS, pages 408–424.
Springer, 2008.

99. P. Stevens. Towards an Algebraic Theory of Bidirectional Transformations. In
Graph Transformations, 4th International Conference, ICGT 2008, Proceedings,
volume 5214 of LNCS, pages 1–17. Springer, 2008.

100. S. Takahashi, S. Matsuoka, K. Miyashita, H. Hosobe, and T. Kamada. A
Constraint-Based Approach for Visualization and Animation. Constraints,
3(1):61–86, 1998.

101. J. Terwilliger, L. Delcambre, and J. Logan. Querying through a user interface.
Data & Knowledge Engineering, 63(3):774–794, 2007.

102. J. F. Terwilliger. Graphical User Interfaces as Updatable Views. PhD thesis,
Portland State University, 2009.

103. J. F. Terwilliger, S. Melnik, and P. A. Bernstein. Language-integrated querying
of XML data in SQL server. PVLDB, 1(2):1396–1399, 2008.

104. A. Vallecillo. A Journey through the Secret Life of Models. In Model Engineering
of Complex Systems (MECS), number 08331 in Dagstuhl Seminar Proceedings,
2008. http://drops.dagstuhl.de/opus/volltexte/2008/1601.

105. G. Varró, A. Schürr, and D. Varro. Benchmarking for Graph Transformation. In
VLHCC ’05: Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 79–88. IEEE Computer Society, 2005.

106. S. Vermolen and E. Visser. Heterogeneous Coupled Evolution of Software Lan-
guages. In Model Driven Engineering Languages and Systems, 11th International
Conference, MoDELS 2008, Proceedings, volume 5301 of LNCS, pages 630–644.
Springer, 2008.

107. J. Visser. Coupled Transformation of Schemas, Documents, Queries, and Con-
straints. ENTCS, 200(3):3–23, 2008.

108. J. Voigtländer. Bidirectionalization for free! (Pearl). In POPL ’09: Proceedings of
the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 165–176. ACM, 2009.

109. G. Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In ECOOP
2007 - Object-Oriented Programming, 21st European Conference, Proceedings, vol-
ume 4609 of LNCS, pages 600–624. Springer, 2007.

110. P. Wadler. Views: a way for pattern matching to cohabit with data abstraction.
In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 307–313. ACM, 1987.

111. P. Wadler. Theorems for free! In FPCA ’89: Proceedings of the fourth interna-
tional conference on Functional programming languages and computer architec-
ture, pages 347–359. ACM, 1989.



112. M. Wang and J. Gibbons. Translucent Abstraction: Safe Views through Bidi-
rectional Transformation, 2008. Available from http://www.comlab.ox.ac.uk/

files/711/Bidi.pdf.
113. Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards automatic

model synchronization from model transformations. In ASE ’07: Proceedings of
the twenty-second IEEE/ACM international conference on Automated software
engineering, pages 164–173. ACM, 2007.

114. Y. Xiong, H. Zhao, Z. Hu, M. Takeichi, H. Song, and H. Mei. Beanbag:
Operation-based Synchronization with Intra-relations. Technical Report GRACE-
TR-2008-04, Center for Global Research in Advanced Software Science and En-
gineering, National Institute of Informat iontics, Japan, dec 2008. http://grace-
center.jp/downloads/GRACE-TR-2008-04.pdf.

115. XML Beans. http://xmlbeans.apache.org/.
116. T. Yokoyama, H. B. Axelsen, and R. Glück. Principles of a Reversible Program-

ming Language. In CF ’08: Conference on Computing Frontiers, Proceedings,
pages 43–54. ACM, 2008.

117. T. Yokoyama, H. B. Axelsen, and R. Glück. Reversible Flowchart Languages and
the Structured Reversible Program Theorem. In Automata, Languages and Pro-
gramming, Proceedings, Part II, volume 5126 of LNCS, pages 258–270. Springer,
2008.


