
Logical Structure Extraction from Software
Requirements Documents
Rehan Rauf, Michał Antkiewicz, Krzysztof Czarnecki

Generative Software Development Lab
University of Waterloo, Waterloo, Canada

{rrauf,mantkiew,kczarnec}@gsd.uwaterloo.ca

Abstract—Software requirements documents (SRDs) are often
authored in general-purpose rich-text editors, such as MS Word.
SRDs contain instances of logical structures, such as use case,
business rule, and functional requirement. Automated recognition
and extraction of these instances enables advanced requirements
management features, such as automated traceability, template
conformance checking, guided editing, and interoperability with
requirements management tools such as RequisitePro. The vari-
ability in content and physical representation of these instances
poses challenges to their accurate recognition and extraction. To
address these challenges, we present a framework allowing 1) the
specification of logical structures in terms of their content, textual
rendering, and variability and 2) the extraction of instances
of such structures from rich-text documents. Our evaluation
involves 36 different logical structures identified in 43 SRDs
and shows that the intended content, style, and variability of
these structures can be specified in the framework such that
their instances can be extracted from the documents with high
precision and recall, both close to 100%.

Index Terms—Logical Structures; SRS; Requirements Extrac-
tion; Software Requirements Documents

I. INTRODUCTION

Requirements management (RM) tools store and manipu-
late software requirements at the level of logical structures
(LSs), such as functional requirement or use case. LSs are
hierarchies of logical components (LCs), such as actor and
main flow within use case. By knowing the LSs, these tools
can offer advanced features, such as fine-grained traceability,
guided editing, structured querying, and template conformance
checking [1]. Despite the availability of such tools, many
organizations still utilize general-purpose text editors, such
as MS Word, to write software requirements. To bridge the
gap between structured requirements and free text, RM tools
such as RequisitePro [2] provide capability to import entire
documents and link to requirements inside these documents.
The import process requires users to specify either regular
expressions or delimiter sequences for every structure to be
extracted. Import capabilities are limited to identifying atomic
requirements, in the form of sentences or paragraphs, and they
do not identify the individual LCs within the structures.

We propose a framework for the specification of LSs as
templates and the extraction of their instances from rich-
text documents. The framework provides an opportunity for
combining an open environment of generic and widely adopted
text editors with the advanced features offered by RM tools.

The research was conducted in the following three phases:

1) We collected requirements documents from different
sources, including industry.

2) We analyzed a randomly selected subset of documents
from our collection to identify requirements for LS
instance extraction and developed the framework.

3) We evaluated the framework on the entire collection of
documents.

In the studied document sample, we observed that LS
instances often follow common templates. Possible reasons
for the similarities include the use of same requirements
engineering method, the same author using the same template,
and an organization prescribing a common template.

We hypothesize that LS instances can be extracted by
finding elements in the documents matching a given template.
However, many challenges are involved in doing so.

A template has two aspects—the logical aspect and the
physical aspect. The logical aspect refers to the LCs of the LS
and the rules related to these LCs. They are often prescribed
by the software development process such as Rational Unified
Process [3]. For example, LCs of a use case include name,
actors, and main scenario. The physical aspect refers to the
physical representation of the LS in rich-text documents. For
example, a use case may be written as a table and its name
in the table’s top left cell or as a section and the name as a
part of the section’s title.

Fig.1 shows instances of two different use case templates
(left and right, respectively). The examples do not show actual
data from collected SRDs—but depict the variability observed
within and across the documents. The physical aspect of each
of the templates is clearly different. Fig.1a shows use cases as
sections of text; Fig.1b shows them as tables. The differences
in LCs are also evident. The LCs in Fig.1a are ID, Name,
Flow, and Extensions; the LCs in Fig.1b are Name, Actor,
Precondition, and Process Description. These differences stem
from different approaches to use cases, e.g., [3], [4].

Fig.1a and Fig.1b also depict examples of variations among
the instances of the same template. These variations fall into
two categories—logical variations and physical variations.
The logical variations include differences in the number and
type of LC instances across LS instances. For example, the LC
Extensions is missing in UC10 (Fig.1a). The logical variations
also include using different LCs to represent the same concept.
For example, use cases in Fig. 1b describe the main scenario
either as a list of steps or action-response pairs.

Fig. 1: Sample use cases

The physical variations can be accidental or designed. The
accidental variations are minor mistakes introduced when writ-
ing LS instances. These include spelling mistakes—such as
“Actar” instead of “Actor” in the second instance in Fig.1b—
and mistakes in applying font style (bold or italic) or size—
such as the unnecessary italicized section title in UC10. The
designed variations are intended. For example, UC1 specifies
extensions as a sub-section; UC2 specifies extension as a
text block—a paragraph that begins with an identifier and
a delimiter. The convention for writing IDs—either alpha-
numeric or numeric only—is another designed variation.

The framework allows users to create a template for the LS
of interest. The template specifies LCs, physical components
(PCs)—such as tables and lists—used to represent instances of
the LS, font style and size, and their variability. An Extraction
Tool (ET) uses the template to extract the instances from
documents.

To measure the applicability, effectiveness, and efficiency of
the framework, we created templates for 36 LSs and used them
to extract instances. The evaluation shows that the intended
content, style, and variability of these LSs can be specified in
the framework such that their instances can be extracted from
the documents with high precision and recall, both close to
100%, and extraction times ranging from a few milliseconds
to a few seconds.

The remainder of the paper is organized as follows. We dis-
cuss related work in Sec. II, explain the proposed framework
in Sec. III, present the evaluation in Sec. IV, and conclude in
Sec. VII.

II. RELATED WORK

Automated natural language (NL) analyses have been used
to validate requirements [5] [6] [7], disambiguate confus-

ing statements [8], and extract ontology [9]. Most of these
techniques work at the level of NL sentences without the
knowledge of LS instances and LCs to which the sentences
belong. Recently, tools are emerging that perform automatic
inspection at the level of LSs, like use cases. For example,
Text2Test [10] uses NL analysis to produce a semantic model
of a use case and report problems in the model at edit time.
The tool assumes use cases as input. Our framework does
not use NL analyses, but it can offer a front end for deeper
NL-based semantic analyses by locating LS instances within
documents and thus providing additional context for analyzing
sentences.

Document structure analysis includes two types of work.
Document physical layout analysis recognizes hierarchies of
physical components, such as pages, columns, paragraphs, and
textlines, in scanned documents. Document logical structure
analysis translates physical components into hierarchies of
logical components, such as titles, authors, abstracts, lists, and
sections (see [11] for a survey). Our framework is similar
to the latter body of work, as it also uses tree-grammar-like
specification to translate some physical hierarchies into logical
ones; however, our LSs are domain-specific, such as use
case or business object, and our PCs correspond to document
logical structures, such as sections and lists. Thus, the LS
template mechanism uses different physical components and
properties than models for document logical structure.

Nojoumian and Lethbridge extract document logical
structure—specifically, the hierarchy of headings—from the
PDF document specifying the UML standard [12]. Their
experience shows that the underlying physical representation
contains a lot of noise; they succeed by relying on a special
bookmark tag in PDF. Again, our LSs are domain-specific and

modeled declaratively.
We are not aware of any formal studies of LS instance

extraction from software requirements documents. However,
some commercial RM tools, such as Reqtify [13] and Req-
uisitePro [2], allow users to extract and import requirements
from rich-text documents. In Reqtify, an LS is a section with
a title matching a specific regular expression. Further, users
can specify a single LC nested in the LS using an additional
regular expression; no further nesting is possible. Reqtify
relies on predefined MS Word styles to recognize sections.
In RequisitePro, users specify an LS either as a section using
a particular MS Word style or set of keywords or as a text
passage delimited by two regular expressions. Although both
tools preserve section hierarchies during import, LS specifica-
tions have limited (Reqtify) or no nesting (RequisitePro).

(a) Requirement definition (b) Reference to a requirement

Fig. 2: Definition vs. reference

Because of the restrictions on LS specifications, documents
should be written with the target RM tool in mind to be
imported without time-consuming re-formatting. For example,
both tools are good at matching individual requirements for-
matted as paragraphs or sections, but the recognition of LCs
within these requirements is limited. For example, these tools
cannot identify individual flow items of a use case unless they
are prefixed by some identifier or formatted as sections or
using a special Word style. In our framework, they are simply
defined as a numbered list. Further, our framework supports
LSs with multiple LCs, variability, and a rich repertoire of
commonly found PCs, such as lists, text blocks, and tables,
without relying on predefined Word styles.

Another limitation of existing RM tools relates to their use
of regular expressions. For example, the regular expression
REQ-\d+*\\n\\n would match each definition of a require-
ment of this form and each reference (of this form) to the
requirement, as shown in Fig.2.

RequisitePro and Reqtify rely on using predefined Word
styles (Headings) to disambiguate between definitions and
references. The solution does not work when font styles and
sizes are used to imitate the predefined Word styles or authors
used a language different than English—we observed many
such cases in industrial documents. Finally, both tools do
not tolerate accidental physical variability—style mistakes or
misspelled identifiers lead to missed instances. Our framework
addresses all these problems.

The application of regular expressions for locating elements
is widely found in information retrieval (IR). In IR literature,
procedures for extracting relational content from web pages
are called wrappers [14]. Wrappers use known patterns to
locate and extract the required information. Automatic gener-
ation of wrappers from examples is called wrapper induction

[15]. Several wrapper induction systems exist [14], [16], [17],
[18], [19]; a tool survey [20] is also available.

Wrappers, which are sophisticated regular expressions, work
well for generated web pages; however, many factors limit
their practical use for LS instance extraction from manually
written rich-text documents. First, wrappers are regular expres-
sions over the underlying document representation, such as
HTML tags. Since web pages are usually generated by scripts
filling in data from databases, the generated HTML code is
uniform for all instances. However, when writing requirements
documents, authors often try to visually match the template,
which usually results in different underlying representations.
For example, similar looking MS Word documents may have
different underlying Office Open XML [21] tags. Therefore, a
wrapper trained on a set of instances may not be capable of
extracting all instances from documents occurring in practice.
Second, existing wrapper induction systems are limited in their
capability to efficiently handle missing and out-of-order LC
instances, and they require a large training set to capture all
possible variants. One could potentially directly change the
induced wrapper to take into account missing or out-of-order
LC instances; however, the internal representations of induced
wrappers we have examined are hard to modify since they are
not intended for human editing.

The framework proposed in this paper was inspired by
the work of Antkiewicz et al., which allows specifying con-
cepts provided by application programming interfaces (APIs)
of object-oriented frameworks and using these specifica-
tions to automatically extract their instances from application
code [22]. The main difference between the two works is the
type of artifacts they deal with. API concepts are specified
in terms of code mappings requiring static program code
analysis; LS templates are specified in terms of PCs of rich-
text documents and require specialized document queries.

III. FRAMEWORK FOR LS INSTANCE EXTRACTION

The analysis of sample SRDs and related work lead us
to the following requirements on an LS instance extraction
framework.

1) A single template should work with any document for-
mat, including Word, PDF, and HTML: An organization may
use multiple document formats. Even if all documents visually
conform to a single template, their underlying representations
may be radically different. A template defined at the level of
underlying representation would be different for each docu-
ment format. To be shared across different document formats,
templates should be defined at the logical level.

2) Templates should be specified in a human-readable form:
Human-readable form allows for easy modification to take
advantage of expert knowledge. For example, a user may know
that preconditions and postconditions in use cases are optional
LCs. Providing sample instances to capture all possible LC
combinations and orders is impractical since the number of
instances grows exponentially to the number of optional LCs.

3) The framework should tolerate minor errors like spelling
mistakes and style inconsistencies: Such mistakes occur in

Fig. 3: A template for use case instances from Fig.1a with mappings to the instances

practice and would likely increase the number of false nega-
tives during extraction. Capturing all possible variants of minor
spelling errors within regular expression is not feasible.

4) The framework should be easily extensible with new
LSs and presentations: Organizations and projects use many
different LSs and should be able to easily add new LSs and
new presentation variants.

The proposed framework consists of three parts: template
modeling, document queries, and an extraction tool (ET). ET
reads a template of an LS and uses pre-defined document
queries to extract PCs from input documents; it returns parts of
the documents that satisfy constraints specified in the template
as instances of the LS. We describe each part in the following
subsections.

A. Template Modeling

Fig. 3 and Fig. 4 present templates for extracting the use
case instances from Fig. 1a,b, respectively. The templates
are specified in Clafer, a powerful yet concise modeling
language [23]. Clafer was successfully used for modeling 58
feature models, 5 metamodels (including UML2), and one
feature-based model template. We refrain from explaining
the language; instead, we explain how the sample templates
specify the two LSs.

Line 1 in Fig. 3 declares an LS named UseCase1;
abstract indicates that UseCase1 is a template—as op-
posed to an instance. ID, Name, Flow, and Extensions are
LCs nested under UseCase1; FlowItem (line 12) is an LC
nested under Flow. Such representation directly corresponds
to the hierarchical structure of the documents.

Every LS and LC has a mapping, specifying the PC that
the LS or LC is represented by in the document. For example,

abstract UseCase2 : LogicalStructure1

‘TableMapping2

Name : LogicalComponent3

‘CellMapping4

[colIndex=15

rowIndex=1]6

Actor : LogicalComponent7

‘HCellBlockMapping8

[identText=“Actor”]9

Precondition : LogicalComponent ?10

‘HCellBlockMapping11

[identText=“Precondition”]12

xor Flow13

ProcDesc : LogicalComponent14

‘ColumnMapping15

[colTitleText = “Process Description”]16

Action : LogicalComponent17

‘ColumnMapping18

[colTitleText = “Action”]19

Response : LogicalComponent20

‘ColumnMapping21

[colTitleText = “Response”]22

MainScenario : LogicalComponent23

‘ColumnMapping24

[colTitleText = “Main Scenario”]25

Fig. 4: A template for use case instances in Fig.1b

‘SectionMapping (line 2) indicates that each UseCase1
instance maps to a section. Mappings have properties, which
can be constrained within brackets. For example, line 3 spec-
ifies the font style for the title of the section representing a
UseCase1 instance. Fig. 5 gives the definition of Bold12, as
an instance of the LSStyle template. Users can easily specify
additional styles by instantiating LSStyle and constraining
its properties. For example, Bold12 requires bold, no italic,
and a font size of 12. Font-size ranges can also be specified.

abstract LSStyle
bold ?
italic ?
fontSize : Int

(a)

Bold12:LSStyle
[bold]
[˜ italic]
[fontSize = 12]

(b)

Fig. 5: Definition of style Bold12

Templates specify variability using cardinalities. Optional
LCs are marked by ?; e.g., Extensions is optional (line
14). LCs representing one or more instances are marked by +
(see FlowItem in line 12). As usual, * specifies zero or more
instances. The group cardinality xor specifies alternatives.
For example, the xor in line 15 states that Extensions are
mapped to either a section (line 16) or a text block (line 18)—a
designed physical variation. Further, UseCase2 (Fig. 4) uses
xor (line 13) to define two alternative LCs for the use case
flow—a logical variation.

The framework assumes that every document consists of
three kinds of basic PCs: paragraph, cell (table cell), and
graphical object. All other PCs are composite and built from
the basic ones. For example, a list is a collection of enumerated
or bulleted paragraphs; a table is a collection of cells; a column
of a table is an arrangement of cells in a specific order; and
a text block is a paragraph with an identifier and a delimiter.

We identified a total of 15 PCs by choosing a random sam-
ple of 20 SRDs from our collection and manually inspecting
how their LSs were represented. We further analyzed these
PCs and defined a mapping for each of them, including their
parameters (e.g., see Fig. 6). These 15 mappings sufficed to
model all of the LSs we encountered in the evaluation of the
framework (see [24] for the full list). We hypothesize that only
a few more mappings will still need to be defined in the future.

abstract SectionMapping : Mapping
sectionTitleText:String?
sectionTitlePattern:String?
sectionTitleStyle->LSStyle?

Fig. 6: Definition of SectionMapping

Some mappings have a text pattern property for specify-
ing a regular expression that a PC must conform to. For
example, ID and Name both map to the section title via
SectionTitleMapping (Fig. 3, lines 5 and 8), and specify
patterns for matching and extracting only the relevant part of
the title using sectionTitlePattern. Similar to WHISK
[16], the patterns consist of three regular expressions: regex
{regex} regex. The sequence of the three expressions
need to be matched by the PC as a whole; the expression
within braces specifies the portion to which the LC maps to.
To simplify writing common patterns, the framework provides
predefined macros; e.g., ‘NUM’ expands into an expression
matching numbers. Thus, ID maps to “UC” followed by a
number, e.g., “UC 1”, and Name maps to the name following
the identifier, e.g., “Select Product Category”.

Each mapping has a search scope. The default scope for LSs

is the entire document repository. The default scope for LCs is
that of its parent. Thus, the search scopes normally follow the
nesting hierarchy, as illustrated on the right of Fig. 3. For
example, the Flow (line 10) maps to a list of paragraphs
via ListMapping. The list will be located within the scope
defined by the mapping of the parent, i.e., SectionMapping
of UseCase1. Similarly, FlowItem maps to a paragraph via
ParagraphMapping in the scope defined by the mapping
of Flow, i.e., each flow item will be a paragraph in the list.

abstract NonFuncReq : LogicalStructure1

‘TableMapping2

‘SectionMapping3

[sectionTitlePattern = “*Appendix*”]4

[scope = SectionMapping]5

Fig. 7: Setting search scope

If needed, the search scope can also be specified explicitly,
using the parameter scope. This parameter is useful if the in-
stances of an LS must be written in specific sections of an SRD
and therefore the search scope must be limited accordingly.
Fig. 7 shows a fragment of a template for a non-functional
requirement whose instances are always given as tables in
appendices, i.e., sections containing the word Appendix in
their title. Line 5 sets the search scope to SectionMapping
defined on lines 3-4. The first mapping from the top (line 2)
is assumed as the mapping for NonFuncReq.

By default, the LCs are unordered, i.e., the order in which
they appear in the template does not influence the extraction
process. If order is important to distinguish one LS from
another, the ordered parameter of an LS or LC can be set
to interpret its children LCs as ordered.

B. Document Queries
Every mapping has a corresponding document query for

extracting the matching PC instances from input documents.
Each query supports all parameters of its mapping. We imple-
mented document queries for MS Word for the 15 mappings
we identified. Basic PCs can be extracted directly using
the Word API or by parsing the underlying OOXML. For
performance reasons, we use the Word API for paragraphs
and OOXML for tables.

(a) Numbering (b) Font style and indent

Fig. 8: Sample sections

We recognize composite PCs as arrangements of basic PCs.
We analyzed the same 20 documents as for mappings to

develop heuristics for the recognition. The heuristics use prop-
erties of basic PCs, such as font style, font size, indentation,
and cell coordinates

For example, a section is an arrangement of paragraphs,
tables, and graphics in a specific hierarchy. Among oth-
ers, section can be identified through paragraph numbering
(Fig. 8a) or font style and sizes and indentation (Fig. 8b). As
shown, sections can be embedded inside tables as well. The
procedure for identifying sections traverses each paragraph
serially, analyzing font style and sizes and numbering of each
paragraph and building a hierarchy of sections and subsections.

New document formats, such as PDF and HTML, can be
incorporated by providing mechanism for extracting only the
basic PCs and their properties—the heuristics for complex ele-
ments remain the same and hence need not be re-implemented.

C. The Extraction Tool

ET interprets a given template and executes document
queries for all documents in the given repository. It traverses
the template in a depth-first manner and, for each LS and LC
with a given mapping, it executes the corresponding document
query with the parameters given in the mapping and the search
scope as described in Sec. III-A. ET creates an instance of an
LS or an LC for every PC instance that matches the mapping
parameters. After recursively processing all children of the
given instance, ET returns the instance only if all cardinality
and other constraints, such as order, are satisfied; otherwise,
the instance is discarded.

To overcome accidental variations, ET uses similarity-based
matching for style parameters (e.g., sectionTitleStyle)
and text-valued parameters (e.g., sectionTitleText). A
template can specify a style-match threshold and a text-
match threshold, each in the range of 0–100, to determine the
exactness of style and text matching, respectively. For both
thresholds, a value of 100 specifies that an exact match is re-
quired, and, if no value is specified, a default of 80 is assumed.
This default worked worked well for most of the 43 documents
in our evaluation—only 5 out of 36 templates specified explicit
thresholds to address these few cases. Specifically, 2 templates
use 90 for text matching and 3 templates used 90 for style
matching.

ET’s text matching uses bi-gram similarity [25], computed
by breaking down the two strings being compared into bi-
grams and calculating the Dice coefficient, given as 2|B ∩
B′|/(|B|+ |B′|), where B and B′ are the sets of bi-grams in
the first and the second string, respectively.

Style matching uses the following coefficient: 1
3 ((b = b′)+

(i = i′)+ maxF−|f−f ′|
maxF), where b, b′ are bold parameters; i, i′

are italic parameters; and f, f ′ are font sizes of the two styles;
and maxF is the maximum font size. Note that x = x′ yields
1 if both parameters are the same and 0 otherwise. We used
maxF of 20 for all of the experiments.

The range for both coefficients is [0,1] and is scaled to
[0,100].

Selecting the threshold values depends on the style and text
parameters used in the template and their role in uniquely

identifying the LCs. If a template uses many style parameters
without accompanying text parameters, then the template’s
style-match threshold should be set to a higher value. If a tem-
plate relies on text identifiers, the text-match threshold has to
be high enough to distinguish between them. For example, the
text similarity between “preconditions” and “post-conditions”
is 69; thus, a template using these identifiers for its LCs needs
a text-match threshold of at least 70 to effectively distinguish
instances of the two LCs.

IV. EVALUATION

A. Analytical Evaluation

We now analyze the proposed framework in light of the
requirements from the beginning of Section III.

1) A single template should work with any document for-
mat, including Word, PDF, HTML: The templates are indepen-
dent of document formats. Only the infrastructure interpreting
them is aware of the formats. Adding a new format involves
implementing queries for the three basic PCs, as the queries
for the remaining PCs are defined in terms of the basic ones.

2) Templates should be specified in a human-readable form:
The templates are designed to be human-readable; both logical
and designed physical variations can be expressed concisely.

3) The framework should tolerate minor errors like spelling
mistakes and style inconsistencies: This requirement is
achieved by similarity-based style and text matching.

4) The framework should be easily extensible with new LSs
and presentations: The framework supports defining new tem-
plates and extending existing ones—directly or via inheritance.

B. Experimental Evaluation

The experimental evaluation aims at answering the follow-
ing questions:

1) Can we specify LSs and extract their instances from
real-world SRDs?

2) How efficient is the extraction?
3) How complex are the templates?
4) How do instances of an LS vary?
5) How does capturing variability affect the complexity of

a template?
6) How critical is the need for human-editable templates?
Set-up of the experiments: We used a total of 43

documents—24 from three industrial partners, 7 from a use-
case document repository [26], 6 student projects, and 6
downloaded from the Internet by searching with “Software
Requirements Specification”, “Software Requirements Docu-
ments”, or “SRS” as keywords.

Our evaluation considers all LSs that had at least four
instances within the 43 documents, giving us a total of 36 LSs.
We classified instances as a single LS if they represented the
same requirement concept like use case or functional require-
ment and followed the same template, as illustrated in Fig. 1.
We usually found such instances within the same document.
Some documents from a single source also shared templates,
however. Nine industrial documents contained just a single
use case instance each; all of them used the same template.

Four industrial documents contained multiple use cases each,
using three different templates. Another eleven industrial doc-
uments contained system features (one document), functional
and non-functional requirements (eight documents, using two
templates for functional requirements), or performance re-
quirements (two documents and one template). Eighteen non-
industrial documents contained multiple use cases each; seven
of these documents additionally contained functional and non-
functional requirements and data objects. One non-industrial
document contained functional requirements only. Each non-
industrial document used separate templates.

We created 36 templates, one for each LS mentioned above.
Our goal was to develop templates that capture the complete
logical structure of each instance that is recognizable through
document structure. For example, the actual template for the
instances in Fig. 1b also recognized each cell within the
“Action” and “Response” columns; deeper analysis, such as
at the level of individual actions and responses, would require
NL analysis techniques. We did not capture accidental physical
variations in the templates; these variations are intended to be
handled by the similarity-based matching.

Fig. 9: Highlighting of UC 2 (Fig. 1a) after extraction using
template from Fig. 3

The development was iterative. For each LS, we selected a
few instances and created an initial template for them. We ran
ET and manually inspected the results to find false negatives
and positives. ET outputs the results (instances, document
name, and character locations) to an XML file. To aid the
manual inspection, ET also highlights the instances in the
original Word documents, using alternating colors for each LC
instance (Fig. 9). Subsequently, we refined the initial template
to include the false negatives and exclude the false positives.
We continued the refinement until we reached the maximum
recall and precision for each template.

ET and the document queries are implemented in C#. We
ran all experiments on a laptop with a Core Duo 2 @2.26 GHz
processor and 4GB of RAM, under Windows.

The following subsections discuss the experiments investi-
gating the research questions and the results. We refer to the
templates by their labels, T1–T36.

1) Can we specify LSs and extract their instances from
real-world SRDs?: To answer this question, we measured
the precision and recall for each of the 36 templates. For a
template modeling a given LS, we measured two precisions:
1) precisionLS is the fraction of retrieved instances that are
actually instances of the given LS and 2) precisionLC is the
fraction of retrieved instances of the given LS that also had
all their LCs recognized correctly. Recall is the fraction of all
the instances of a given LS that were retrieved.

Using the 36 templates, ET extracted a total of 942 LS

instances from the 43 documents. The average size of instances
per template ranged approx. from 20 to 2,700 words. For each
template, we ran the ET on a repository containing all the
documents that used that template. The size of the search
space—total number of words in the document repository—
for each template ranged approx. from 1,500 to 26,800 words.

The recall was 100% for 33 templates and 97%, 95%
and 83% for T21,19,24, respectively. One instance of T21
(business rule), was missed since, likely by mistake, parts of its
body used 18pt font instead of the normal 11pt; this difference
was beyond the style-match threshold. For T19 (use case), a
single instance was missed because one of its mandatory LCs
could not be recognized: the LC identifier was missing. A
single instance was missed for T24 (use case) because the
section could not be identified—the section heading did not
use different font style or numbering.

PrecisionLS was 100% for all templates except one. T7
(functional requirement) had precisionLS of 87% because a
glossary item had the same style and parameters as a functional
requirement.

PrecisionLC was 100% for 34 templates and 86% for T27
and T34. Both failures were due to PC recognition. Four
instances of T27 (system feature) had one of their LCs
(functional requirement) partially retrieved because of manual
line wrapping, which introduced additional paragraphs. One
instance of T34 (use case) had one LC (alternative flow)
missing because the sub-section could not be recognized.

2) How efficient is the extraction?: The extraction time de-
pends on many factors, including number of instances, number
of LCs, search space, size of extracted instances (extraction
space), and mappings used in the template; however, the
search and extraction spaces affected the extraction time the
most. Fig. 10 shows the extraction times on y-axis (excluding
the time it takes to load documents into memory) for each
template (lower x-axis) sorted by the sum of its search and
extraction space sizes on x-axis. The extraction time for most

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

3
3

3
0

3
1 9

1
1

1
2

3
4 7

3
5

2
6 8

2
9

2
4

1
0

2
8 6 2 4

3
2

2
5 5

1
3 1 3

2
7

3
6

1
5

1
9

2
0

1
8

2
1

1
6

1
7

2
2

1
4

2
3

2
2

4
9

2
8

8
7

3
0

2
2

3
0

5
2

3
0

6
8

3
1

5
2

3
2

8
8

3
4

2
5

3
4

3
1

3
4

5
6

3
7

3
9

4
2

2
4

4
7

6
4

4
7

6
8

4
8

8
6

5
1

1
5

5
6

4
4

6
4

4
1

7
1

1
8

7
8

8
5

7
9

2
3

8
1

7
2

8
6

5
9

1
0

5
4

5

1
0

8
1

0

1
2

4
1

6

1
5

0
8

3

1
9

5
2

7

2
3

6
9

5

2
5

0
6

1

2
8

9
7

1

2
9

2
4

0

3
2

3
9

7

3
4

8
8

8

3
7

3
0

6

4
8

5
3

5

E
x
tr

a
c
ti
o

n
 t

im
e

 (
m

s
)

Template #

Total size (no. of words)

Fig. 10: Extraction times sorted by total size (search space +
extraction space)

templates was less than 2 seconds, which is good for practical
purposes. The longest time, 12 seconds, was for T14, whose
115 instances were spread across 5 documents. Another factor
affecting the extraction time is the number of LCs: T14 has
13; T23 has only 7.

3) How complex are the templates?: We measure the
complexity of a template by its length, as number of lines.

Many factors determine the template size, including number of
LCs, amount of variability, extent to which details about the LS
are modeled (depth, style), and kind of mappings and number
of parameters used (assuming one parameter per line). Fig.11
shows the number of LCs (upper x-axis) and the template size
(y-axis) for each template (lower x-axis).

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

2
5

2
1

2
2

2
9

3
0

3
5 4 7

1
1

2
4

2
6 8

2
8 5

1
2 2

3
3 9

2
7

3
4

1
8

3
6

1
5

1
7

1
9

2
0

2
3 1 3

1
3

1
6

3
2 6

1
0

1
4

3
1

1 2 2 2 2 2 3 3 3 3 3 4 4 5 5 6 6 8 8 8 9 9 1
0

1
0

1
0

1
0

1
0

1
1

1
1

1
1

1
1

1
1

1
2

1
2

1
3

1
4

N
o

.
o

f
lin

e
s

Template #

No. of LCs

Fig. 11: Size of the templates sorted by no. of LCs

Fig.11 shows that template size is approximately propor-
tional to the no. of its LCs. The maximum template size was
52 lines, still acceptable for human viewing.

4) How do instances of an LS vary?: We inspected each LS
and their instances to analyze their variability. The variability
falls into three categories: 1) LCs with variable cardinality—
?, +, *; 2) LCs with designed physical variations—having
alternative mappings or regular expressions or both; and 3)
accidental variations found in the instances of LCs. The
accidental variations include spelling and style differences
relative to the spelling and style used in the majority of the
instances. The 36 LSs had total of 254 LCs; 55 LCs had
variable cardinality and 8 had designed physical variations—
two using xor. Only one template used alternative LCs (flow,
action-response description) to capture the same conceptual
LC. Total of 24 LSs had at least one LC with variable
cardinality, typically ?. We also found 29 occurrences of
accidental spelling or style differences, indicating the need to
overcome such mistakes.

5) How does capturing variability affect the complexity of
the template?: We conducted the following experiment to in-
vestigate this aspect. For each LS, we selected three instances:
a random (using a random number generator) instance, most
complete instance (with the most LCs present), and most
incomplete instance (with the least LCs present). For each
case (random, complete, incomplete), we created a template
to capture that instance (the initial template) and compared
it with the template that has maximum recall and precision
(the final template); we recorded the changes in size and the
performed refinements.

Fig.12 shows the difference in size (y-axis) of the initial
and final template for the most complete, random, and most
incomplete case for each LS (lower x-axis), sorted by the
size change in the random case. The difference is shown as
percentage of the size of the initial template (upper x-axis).
LSs whose instances had no variability are omitted. The size-
change is dependent on the type of modifications. The largest
change occurred when the initial template did not contain

 0

 5

 10

 15

 20

 25

 30

3

2
1

3
0

3
1

3
4

1
0

1
6 4

1
9 5 8

1
3

2
7

2
8 6

1
5

2
0 1

3
6

1
8

2
3

3
2 9

1
7

1
4

4
3

1
0

1
1

4
3

3
6

4
7

4
0

1
3

4
4

2
0

1
3

4
0

3
1

1
6

4
4

3
7

4
0

3
9

2
7

3
2

2
8

4
6

3
3

3
6

3
4

%
 o

f
lin

e
s
 e

d
it
e

d
 a

n
d

/o
r

a
d

d
e

d

Template #

No. of lines in the initial template

Best case
Random case

Worst case

Fig. 12: Change in size of templates after refinement

optional LCs that had to be added during the refinement. In
T14, 3 LCs had to be made optional (an addition of ? to 3
lines), 2 LCs had to be added (an addition of 8 lines), and one
alternating mapping was added (an addition of 3 lines) in the
random case.

The nature of edits between the initial and final templates
for the random case were i) ? added: 34; ii) LC added: 18; iii)
mapping modified: 5; iv) cardinality adjusted: 4; v) mapping
added: 3. Most of these edits were an addition of the single
character ? to make an LC defined in the initial template
optional. The second most-frequent edits were to add a missing
LC.

Fig.12 and the nature of edits shows that the size of the
templates did not change significantly when capturing the
variability; most of the edits required to capture variability
were easy to make.

6) How critical is the need for human-editable templates?:
To motivate the case for human-editable template, we investi-
gated how many sample instances would be required as input
to an induction system—a system that induces templates from
examples—to completely capture the variability for an LS. For
a given LS, we created and subsequently refined a template for
an increasing number of randomly chosen instances (starting
from one instance) until the template reached the maximum
precision and recall. We recorded the number of instances
it took to get to the final template. The whole process was
repeated five times for each LS in the set of 36.

Fig. 13 shows the median number of instances needed to get
to the final template over the five repetitions (y-axis) for each
LS (lower x-axis), sorted by the total number of instances of
the given LS (upper x-axis).

 0

 5

 10

 15

 20

 25

1
1

1
2

3
3 7 4

2
4

3
5

3
4

1
5

3
0

3
1 2

2
3

2
6

2
9

3
2 9 8

2
5 6

1
0 1

1
9 5

1
6

2
7

1
7

3
6

1
3

2
0

1
8

2
1 3

2
8

1
4

2
2

4 4 4 5 6 6 6 7 8 8 8 9 9 9 1
0

1
1

1
2

1
3

1
4

1
5

1
7

1
8

2
0

2
1

2
1

2
1

2
2

2
8

2
9

2
9

3
0

3
3

3
7

3
7

1
1

5

2
9

6

M
e

d
ia

n
 #

 o
f

in
s
ta

n
c
e

s
 r

e
q

u
ir
e

d

Template #

Total # of instances

Fig. 13: Median # of instances required for induction

Some templates, e.g., T19, T17, T3, and T14, require a
significant number of sample instances to fully capture the
variability present in all of their instances. For T19 and T17,
the number of sample instances constitutes almost 50% of the
total number of instances, which makes template induction
impractical. Given that most of the variability is due to
optional LCs, which can be considered expert knowledge, it
would be more practical to induce the templates from a few
examples, and then edit it to add the variability.

V. THREATS TO VALIDITY

We now discuss the threats to internal and external validity
of the presented results and the measures taken to minimize
such threats.

A. Threats to Internal Validity

Measuring precision and recall requires a reference of what
constitutes a false positive and a false negative. We used our
own judgment as a reference, which represents a potential
bias. The judgement involved deciding the level of detail that
should be recognized in an instance and whether a particular
instance was properly recognized according to that level or
not. We strived to recognize as much detail as explicit in the
document structure and we carefully inspected the highlighted
documents (and the XML output in cases of overlapping
coloring for nested structures) to detect the false positives
and false negatives. During the process, we found it relatively
easy to judge with high confidence whether a particular LS
or LC was correctly recognized. Additionally, we repeated the
process, reliably obtaining the same results.

Template size depends on the modeling strategy, formatting,
and line counting. A given LSs can be modeled in more than
one way; for example, tables can be decomposed first by rows,
then by columns, or vice versa. Also, templates may be for-
matted differently and their lines can be counted differently. To
minimize this threat, we used consistent modeling strategy and
formatting. Every LS, LC, mapping, and parameter constraint
were defined in a single line. Furthermore, we excluded empty
lines and comments from the calculation of template size.

B. Threats to External Validity

The sample SRDs may not be representative. On the other
hand, over half of the SRDs were real-world documents from
three of our industry partners. We also included documents
from other sources. Overall, they contained quite a variety
of LSs and presentation styles. We hypothesize that similar
structures will be found across documents from other industrial
and academic sources.

Another threat relates to the design of the study. Ideally,
the data set for the study should be divided into two separate
sets—the training set and the evaluation set. In the study, we
used a randomly chosen subset of the data set to develop
the approach and presented results over the entire data set,
including the results for documents that were used for the
initial development and those that were used later. The results
show equal levels of precision and recall between the two,

indicating that the identified mappings and the extraction
process were equally applicable to the documents not used
for development.

VI. LIMITATIONS AND FUTURE WORK

The main assumption underlying the presented framework
is that a consistent structure with slight variations is followed
across the instances of an LS, which allows for specifying
a template based on a few sample instances coupled with
expert knowledge. The framework will bring little value when
instances of a given LS are inconsistent in style and structure.
However, such a case is unlikely in an industrial environment.

A. Document Queries

We assume that document queries can be written for all
presentations. The accuracy of document queries depends
heavily on the correctness of the identification of composite
PCs. The heuristics for identification of composite PCs fail in
some cases for two broad reasons: the document not having
enough style/structure to distinguish between the different PCs
and the applied style/structure not matching the parameters of
heuristics.

The first case, when the document contains unstructured
text, requires NL text-segmentation approaches to determine
the boundaries of semantically related information [27]. This
solution, which relies on a probabilistic model built on
domain-specific examples to classify the passages, would not
be as robust as relying on style/structure and it would require
extensive training on different examples for different LSs.

In the second case, the identification heuristics for PCs that
use the style/structure information can be machine learnt from
a large set of sample PCs rather than being hand-coded, as in
works on determining PCs in HTML documents that are not
defined using proper tags [28], [29]. The probabilistic models
learnt from examples are then used for structur extraction from
text. Domain-specific vocabulary along with structural cues
can also be used improve section recognition [30].

These techniques could be used in future to improve PC
recognition of the presented framework.

B. Learning Templates from Sample Instances

Although Clafer provides an easy and powerful notation to
write LS templates, it may not be feasible for non-technical
users to write templates from scratch. Since inducing a com-
plete template requires a large number of sample instances that
cover all kinds of variations, we envision a tool that would
induce an initial template based on a few instances, refine the
template given more instances, and offer a natural interface
for editing the template.

In the envisioned tool, the user would first declare a new
LS and highlight LCs in the documents. The tool would
automatically build a template with appropriate LC identifiers
and mappings. An inspiration for such a system is Thresher
[31], which is a browser plug-in for learning and extracting
required information from arbitrary websites. The induction
of the template from examples involves determining the LCs,

LC cardinality, alternate mapping groups, and inducing pattern
parameters, such as sectionTitlePattern. Techniques
similar to [32] can be used to determine the LCs and mapping
groups. A wrapper induction system like WHISK can be used
to identify the pattern parameters.

VII. CONCLUSION

We presented a framework for the specification of logical
structures (LSs) and extraction of their instances from rich-
text documents. The framework satisfies the requirements for
a practical LS instance extraction framework and performs
well in the experiments we conducted.

Applications. In general, the framework makes structured
content of rich-text documents accessible for further automatic
processing.

Rich-text document import. The framework lays a solid
foundation for development of better import capabilities for
requirements management tools, which are currently severely
limited. To our knowledge, many organizations struggle with
document import having to manually restructure and reformat
their documents to enable automated import.

Template conformance checking. The framework can be
used to implement document validators that can be used
for template conformance checking and enforcement in or-
ganizations. For example, many organizations strive to unify
the format and contents of software requirements documents
across different projects.

Requirements management tools’ features. The framework
opens many possibilities for implementing typical features
of RM tools, such as guided (structured) editing and def-
use traceability recovery, directly in general-purpose rich-text
editors. The ability to locate LS instances could also be used
for referencing and navigating from code and tests.

Semantic annotation. LS instance extraction can be thought
of as semantic annotation of rich-text documents, that is,
assigning meaning in terms of the LSs and LCs to the
matched parts of the documents. Such semantically annotated
documents can be used as a source of knowledge in many
knowledge extraction and management applications, including
further context-sensitive semantic analysis of text.

Structured query. Directly related to semantic annotation
is the ability to answer semantic queries directly from doc-
uments. For example, “select all use cases in which actor A
participates and which refer to business rule B” or “select all
use cases without a precondition”.

Analysis of product line requirements. The framework can
be used to implement document comparison at the LC level,
which can be used for analysis of the commonality and
variability in the requirements among products.

Acknowledgments Thanks to Dan Berry, Charlie Clarke,
and Chrysanne DiMarco for valuable discussions. This re-
search was supported in part by the Ontario Research Fund.

REFERENCES

[1] R. Sud and J. Arthur, “Requirements management tools: A quantitative
assessment,” Virginia Tech, Tech. Rep. TR-03-10, 2003.

[2] P. Zielczynski, Requirements management using IBM R© Rational R©

RequisitePro R©. IBM Press, 2007.
[3] P. Kruchten, The Rational Unified Process: An Introduction, Third

Edition. Addison-Wesley Professional, December 2003.
[4] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2001.
[5] V. Gervasi and B. Nuseibeh, “Lightweight validation of natural language

requirements: A case study,” RE, pp. 140–148, 2000.
[6] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami, “An Automatic Quality

Evaluation for Natural Language Requirements,” REFSQ, 2001.
[7] S. Nanduri and S. Rugaber, “Requirements validation via automated

natural language parsing,” HICSS, pp. 362–368, 1995.
[8] W. Wilson, L. Rosenberg, and L. Hyatt, “Automated analysis of require-

ment specifications,” ICSE, pp. 161–171, 1997.
[9] L. Mich, “NL-OOPS: from natural language to object oriented require-

ments using the natural language processing system LOLITA,” Nat.
Lang. Eng., vol. 2, pp. 161–187, 1996.

[10] A. Sinha, S. Sutton Jr., and A. Paradkar, “Text2Test: automated inspec-
tion of natural language use cases,” ICST, pp. 155–164, 2010.

[11] M. A. Song, R. A. Azriel, and K. B. Tapas, “Document structure analysis
algorithms: A literature survey,” SPIE Electronic Imaging 5010, pp. 197–
207, 2003.

[12] M. Nojoumian and T. C. Lethbridge, “Extracting document structure
to facilitate a knowledge base creation for the UML superstructure
specification,” ITNG, pp. 393–400, 2007.

[13] Reqtify, 2010 (accessed October 17, 2010). [Online]. Available:
http://www.geensoft.com/en/article/reqtify

[14] N. Kushmerick, “Wrapper induction for information extraction,” Ph.D.
dissertation, University of Washington, 1997.

[15] ——, “Wrapper induction: Efficiency and expressiveness,” AI, vol. 118,
no. 1-2, pp. 15–68, 2000.

[16] S. Soderland, “Learning information extraction rules for semi-structured
and free text,” Mach. Learn., vol. 34, no. 1-3, pp. 233–272, 1999.

[17] I. Muslea, S. Minton, and C. Knoblock, “A hierarchical approach to
wrapper induction,” AGENTS, pp. 190–197, 1999.

[18] S. Zheng, R. Song, J. Wen, and C. L. Giles, “Efficient record-level
wrapper induction,” CIKM, pp. 47–56, 2009.

[19] H. Garcia-Molina Cho, J. Hammer, H. Garcia-Molina, C. J., R. Aranha,
and A. Crespo, “Extracting semistructured information from the web,”
Wrkshp. on Mangmnt. of Semistruct. Data, pp. 18–25, 1997.

[20] S. Kuhlins and R. Tredwell, “Toolkits for generating wrappers—a survey
of software toolkits for automated data extraction from web sites,” LNCS,
pp. 184–198, 2003.

[21] F. Miller, A. Vandome, and J. McBrewster, Office Open XML. Alpha
Press, 2009.

[22] M. Antkiewicz, K. Czarnecki, and M. Stephan, “Engineering of
framework-specific modeling languages,” TSE, vol. 35, pp. 795–824,
2009.

[23] K. Bak, K. Czarnecki, and A. Wasowski, “Feature and meta-models in
Clafer: Mixed, specialized, and coupled,” SLE, 2010.

[24] R. Rauf, “A framework for logical structure extraction from software
requirements documents,” Master’s thesis, University of Waterloo,
2011. [Online]. Available: http://hdl.handle.net/10012/5710

[25] R. Angell, G. Freund, and P. Willett, “Automatic spelling correction
using a trigram similarity measure,” Info. Proc. & Mangmt., vol. 19, pp.
255–261, 1983.

[26] Use Cases Database (UCDB), 2010 (accessed October 17, 2010).
[Online]. Available: http://www.se.cs.put.poznan.pl/knowledge-base/
software-projects-database/use-cases-database-ucdb

[27] J. Yamron, I. Carp, L. Gillick, S. Lowe, and P. van Mulbregt, “A
hidden Markov model approach to text segmentation and event tracking,”
Acoustics, Speech & Signal Proc., vol. 1, pp. 333–336, 1998.

[28] K. Lerman, L. Getoor, S. Minton, and C. Knoblock, “Using the structure
of web sites for automatic segmentation of tables,” SIGMOD, pp. 119–
130, 2004.

[29] M. Yoshida and K. Torisawa, “A method to integrate tables of the world
wide web,” Web Doc. Analysis, 2001.

[30] P. Cho, R. Taira, and H. Kangarloo, “Automatic section segmentation of
medical reports,” AMIA Annual Symposium, pp. 155–159, 2003.

[31] A. Hogue and D. Karger, “Thresher: Automating the unwrapping of
semantic content from the World Wide Web,” WWWC, pp. 86–95, 2005.

[32] K. Czarnecki, S. She, and A. Wasowski, “Sample spaces and feature
models: There and back again,” SPLC, pp. 22–31, 2008.

