
Model-versioning-in-the-large: algebraic foundations and the tile notation

Zinovy Diskin, Krzysztof Czarnecki, Michal Antkiewicz
Generative Software Development Lab

University of Waterloo, Canada
{zdiskin, kczarnec, mantkiew}@gsd.uwaterloo.ca

Abstract

Model-versioning-in-the-large is concerned with com-
plex scenarios involving multiple updates and multiple repli-
cas of a model. The paper introducestile systemsas
rephrasing ofdouble categoriesin model versioning terms,
and shows that the tile language enables a very general for-
malization of versioning concepts. The formalization makes
the concepts amenable to algebraic analysis and provides
a convenient notation for version system designers. It also
allows one to formulate algebraic laws that a correct ver-
sioning system must or may want to satisfy.

1 Introduction

The majority of work in model versioning has focused on
what can be described asversioning-in-the-small: perform-
ing basic model versioning tasks on pairs of models. These
tasks include computing and visualizing the differences be-
tween models (e.g., [8, 9, 12, 13]) and, for optimistic sys-
tems [10, 11], replica synchronization. The latter includes
propagation of updates between replicas and conflict detec-
tion and reconciliation (e.g., [2, 14]).

Another perspective on model versioning is to consider
compositions of the basic versioning tasks, which we re-
fer to asversioning-in-the-large. Such compositions arise in
versioning scenarios involving multiple model updates and
multiple replicas.Replicasare concurrent copies of the same
model maintained by individual developers or teams. They
can be understood as trajectories of models in time. Points
in the trajectories, that is, snapshots of the same replica at
different time moments, areversions. Replicas and versions
together form a two-dimensional space in which model ver-
sioning scenarios unfold. Our goal is to provide an adequate
mathematical framework and a convenient notation for rea-
soning about this space and the scenarios populating it.

Our framework is based on the notion oftile, which
can be understood as a two-dimensional delta that captures
model differences across both replicas and versions (Fig. 1).

Tiles are the basic blocks of versioning-in-the-large and their
composition enables modeling of complex scenarios.

We call a universe of tiles closed under composition in
both dimensions atile system. Mathematically, the latter is
a rephrasing of the notion of adouble category, which has
been studied in category theory since the sixties (e.g., [7]).
As category theory is a powerful algebraic discipline, the
language of tiles brings algebraic foundations and machiner-
ies to model versioning; it also provides a convenient di-
agrammatic notation for describing complex scenarios. We
consider these two aspects of tile systems as the main contri-
butions of this paper. Applying tiles to concrete model ver-
sioning problems is our ongoing project; some results will
be presented in a forthcoming paper [5].

We demonstrate the utility of the tile framework for
model versioning with two applications. The first one is the
Pasting Lemma directly borrowed from category theory: it
says that although a complex tile can be composed from its
subtiles in different ways, the result of composition remains
the same. The second application goes beyond mere rephras-
ing of a known result. We show that reconciliation can be
understood as an operation on tiles, and its properties can be
specified algebraically via universally valid equations. Par-
ticularly, we formulate the compatibility of reconciliation
with tile compositions in precise algebraic terms.

2 Versioning-in-the-small: deltas aretiles

There are two sorts of deltas in optimistic versioning.
Time-deltas are relationships between two versions of the
same replica at different time moments. Replica-deltas are
relationships between two replicas at the same time moment.
We will refer to time-deltas asupdatesand to replica-deltas
as matches. Versioning scenarios comprise both types of
deltas; thus, their elementary unit is a square cell shown in
Fig. 1.

NodesA andB denote two replicas of the same model
maintained by two developers, say, Ann and Bob. Horizon-
tal arrow (match)m denotes relationship between the two
versions of the replicas at the momentt. It can be under-

Time

Replicas
A

A′ B′

B

u v

t

Ann Bob

t′

τ

m

m′

Figure 1. The space of model versioning

stood operationally as a specification of what is to be done
to transformA to B. It can be also understood declaratively
as a special relational structure specifying similarities and
discrepancies (conflicts) between the models.

Ann and Bob work independently and at the momentt′

we have two updated versionsA′ andB′ with arrowsu and
v denoting the corresponding updates. Again, the updates
can be understood either operationally as edit sequences,
or declaratively as relational structures specifying what was
kept unchanged and what was modified during the update.

The four deltasm,m′, u, v are mutually related and we
need a special data format for storing the cell. We call this
format atile and denote it by a directed block-arrow (τ in
Fig. 1). We may interpretτ as an update of the match ar-
row m, or as a match between updatesu andv. In fact, τ
comprises both: it is a two-dimensional (2D) delta.

Node
(Model)

Horizontal Arrow
(Match spec)

Vertical Arrow
(Update spec)

Square
(Tile)

∂0 (src model)

∂1 (trg model)

h∂0 (src
match)

 ιh (identical match)

v∂0 (src update)

∂0 (src
model)

∂1 (trg
model) ιv (idle

update)
 ι (idle

2-update)
h∂1 (trg
match)

v∂1 (trg update)

 ι (identical 2-match)

Figure 2. Metamodel of tile structure

Fig. 2 provides the metamodel of the structure of tiles. It
defines four classes of objects constituting the tiles:nodes,
horizontalandvertical arrows, andsquares(we follow the
terminology used in category theory). Sometimes we will
refer to all these objects ascells: nodes are 0-cells, arrows
(of both types) are 1-cells and squares are 2-cells. We will
often writeh- andv-arrow for, respectively, horizontal and
vertical arrow.

Although the class names carry notational connotations
(node, arrow), the classes refer to abstract semantic rather
than syntactic objects. In the model versioning context,
these objects obtain concrete semantic interpretations: nodes
are models, h-arrows are matches, v-arrows are updates, and
squares are tiles (2D-deltas). The cells constituting a tile are

adjoint to each other in a special way, and their incidence re-
lations are specified by directed∂i-associations (i = 0, 1)
between classes; in Fig. 2 they are shown by straight ar-
rows. In fact,∂-arrows are totally defined functions (in the
UML jargon, they are associations with multiplicities 1 for
the directed ends and 0..* for the undirected ends). The∂0-
arrows points to the source (src) and∂1-arrows to the target
(trg) cells; optional prefixes ‘v’ and ‘h’ stand for, respec-
tively, ‘vertical’ and ‘horizontal’ source or target. Bentι-
arrows point to identity/idle objects assigned to cells; they
are neutral units for arrow and tile composition and will be
explained later in Section 3. In the versioning context, given
a modelA, the identity h-arrowιh(A) is the identity relation
on A interpreted as the identity match, and the idle v-arrow
ιv(A) is the idle update ofA, i.e., an update that does noth-
ing.1

We use the termtile in two senses: as a name for the ab-
stract construct (square) and as a name for a 2D-delta, com-
prising two matches and two updates. To keep the frame-
work general, we do not impose any specific restrictions
on what matches, updates, and tiles are. The only require-
ment is that any cell of dimensionn has uniquely defined
(n−1)-dimensional source and target cells, and a uniquely
defined identity cell of dimension (n+1) as shown by the
metamodel.

2.1 Example: relational tiles

Figure 3 presents a toy example illustrating the notion of
tile. Models are very simple structures consisting of objects
with attributes. Attributes have a name and a value. More-
over, each model in Fig. 3 has only one object. Model IDs
areA, B, A′, andB′. The primed IDs denote the updated
versions. Model element IDs use lettersP,Q for the objects
anda, b with subscripts for the attributes.

In the specifications of matches, similarity or “sameness”
of elements is denoted byx=y, whereas discrepancy or con-
flict is denoted byx6=y. In the specifications of updates,
preservation of elements is denoted byx↔y, whereas mod-
ification is denoted byx y. Matches and updates are, in
fact, binary relations between the models; these relations
are compatible with the structure of the models. Using the
set-theoretical notation, we may writem ⊂ A × B and
u ⊂ A× A′; however, keep in mind thatm andu are struc-
tures (similar toA andB) rather than merely sets of pairs
of elements. We also have the “sameness” sub-relations
m= ⊂ m andu↔ ⊂ u. Further,a6=b says that the pair of
elements(a, b) ∈ m but (a, b) /∈ m=, and similarlya a′

1Note that for any cellc of dimension|c| = n, we have|∂i(c)| =
n−1 and |ι(c)| = n+1. Correspondingly,∂s are not defined for 0-cells
(nodes) andiotas are not defined for 2-cells (squares). However, if higher
dimensions are needed, we can define the notion of higher-dimensional tiles
along the lines described above.

2

Model A {
P : [a1: (name, Jo),

a2: (pho, 111),
a3: (age, 30)

]}

Matchm : A ⇒ B {
P=Q: [a1 = b1: (name=name, Jo=Jo),

a2 = b2: (pho=pho, 1116= 222),
a3 = b3: (age=age, 306=35)

]}

Model B{
Q: [b1: (name, Jo),

b2: (pho, 222),
b3: (age, 35)

]}
Updateu : A ⇒ A′{ P↔P ′:
[a1↔a′

1: (name↔name, Jo↔Jo),
a2↔a′

2: (pho hPho, 111↔111),
a3↔a′

3: (age↔age,30 31)
]}

Match/m∗ : A′ ⇒ B′ { // derived fromm, u, v
P ′=Q′: [a′

1 = b′1: (name=name, Jo6=Jon),
a′
2 = b′2: (hPho6=mPho, 1116= 222),

a′
3 = b′3: (age=age, 316=36)]}

Updatev : B ⇒ B′{Q↔Q’:
[b1↔b′1: (name↔name,Jo Jon)
b2↔b′2: (pho mPho,222↔222)
b3↔b′3: (age↔age,35 36)

]}
Model A′ {

P ′: [a′
1: (name, Jo),

a′
2: (hPho, 111),

a′
3: (age, 31)

]}

Matchm′ : A′ ⇒ B′ {
P ′=Q′: [a′

1 = b′1: (name=name, Jo6=Jon),

a′
3 = b′3: (age=age, 316=36)]}

Model B′ {
Q′: [b′1: (name, Jon),

b′2: (mPho, 222),
b′3: (age, 36)

]}

Figure 3. Example of relational tile

means(a, a′) ∈ u but (a, a′) /∈ u↔.

Given the matchm and the updatesu, v, we can compute
the match/m∗ between the updated models by relational
composition as shown in the middle part of Fig. 3 (following
UML, we denote derived elements by slash-prefix). In this
derived match specification, attributesa′

2 andb′2 appear to
be the same but with naming and value conflicts. However,
suppose that we know that “phone” in modelA refers to
homephone, whereas “phone” inB meansmobile phone.
Then it is not reasonable to consider these attributes to be
the same, and we need to revise the match as shown in the
bottom of Fig. 3: the paira′

2=b′2 is removed from match
m′ and, correspondingly, the two conflicts disappear (note
the empty row). Overall, the tile can be seen as an update
of matchm: the conflict of names Jo6=Jon appears inm′

because of the distinct updates(u: Jo↔Jo)6=(v: Jo Jon),
and the conflict of phone numbers disappears.

We stress that the match of the updated replicas is an in-
dependent (rather than derived) piece of data forming the
tile. In fact, tileτ specified in Fig. 3 can be decomposed as
shown in Fig. 4(a): we first compute match/m∗ and then
revise it coming to matchm′. The block-arrow∆m∗ in
Fig. 4(a) can be seen as a relation between matches/m∗

andm′ (in fact, as a 2-relation since matches are themselves
relations). In a similar way, we can decompose the tile hor-
izontally if we wanted to view it as a revision of the derived
update/u∗ towards updatev.

Thus, all components of the tile are essential and neither
one can be derived from others. The tile is a quadruple of
binary relations having “same”-subrelations and compatible
sources and targets; we call this data format arelational tile.
Note that the abstract definition admits existence of different
tiles with the same four boundary arrows; this generality is
not used in our example.

2.2 2-Arrows and idle/identity arrows

Horizontal and vertical2-arrowsare two important spe-
cial cases of tiles. They are shown in Fig. 4(b1,b2). For
tile (b1), vertical arrows areidle updates, i.e., updates that
do nothing. In our example of relational tiles, their same-
relations are full diagonals and the change-relations are
empty. The tile then presents a revision of match specifi-
cation between two replicas as we discussed in the previ-
ous section. Essentially, the bottom “semi-tile” in Fig. 4(a)
is an abbreviation of a tile whose vertical arrows are idle
updates,1A′ : A′ ⇒ A′ and1B′ : B′ ⇒ B′ for the left and
right sides respectively. For tile (b2), horizontal arrows are
identitymatches that declare the two models to be the same.
In our example of relational tiles, their same-relations are
full diagonals and the conflict relations are empty. The tile
then presents a revision of an update between the same two
modelsA andA′.2

A

A′ A′

A

u vΔu

1A

1A’

(b2) horizontal 2-arrow
(revision of update)

A

A B

m

Δm1A

(b1) vertical 2-arrow
(revision of match)

m′

1B

BA

A′ B′

m

(a) decomposition
of tiles: τ = τ* Δm*

m′

B

/m*
τ*

u v

Δm*

Figure 4. Examples of 2-arrows

If updates are understood operationally as edit sequences,
thenu andv may be two different sequences with the same
result. If updates are understood declaratively as specifica-
tions of what is kept and what is changed, then there may be
different relationsu andv between the same two nodes. If
evenA andA′ are processed with the same tool and their el-

2In our context, ‘idle’ and ‘identity’ are synonyms, but we prefer to use
‘idle’ for updates and ‘identity’ for matches.

3

ements have universally unique IDs, there is still a room for
different update specifications between the same two mod-
els.3

3 Versioning-in-the-large: tile composition

The goal of this section is to give a precise definition of
tile systems. We begin with motivating considerations using
Fig. 5. Tilesτ andσ, for which v∂1(τ) = v∂0(σ), can be
composed horizontally. The resulting tileAC ′ is denoted by
τ ⊗ σ and has the following components:v∂0(τ ⊗ σ) =
u, v∂1(τ ⊗ σ) = w, h∂0(τ ⊗ σ) = m;n and h∂1(τ ⊗
σ) = m′;n′. Here ; denotes sequential composition of both
updates and matches.

time

replicas

A

A′ B′

Bm

u v

t

Ann Bob

t′

τ

A′′ B′′

u′

w

t′′

n′

C

v′

σ

Carol

C′

w′

C′′

σ′

τ ⊗ σ

σ′

n

m′

m′′ n′′

σ

τ′

τ′ ⊗σ′

τ

τ′

Figure 5. Composition of tiles

Thus, for horizontal tile composition⊗, matches are
composed sequentially, whereas updates are parallel. Simi-
larly, tilesτ andτ ′ that have a common intermediate match
m′ can be composed vertically to produce tileAB′′. The
tile is denoted byτ � τ ′ and has evident horizontal and ver-
tical sources and targets: updates are composed sequentially,
whereas matches are parallel.

Consequently, we have two binary operations on tiles:
horizontal⊗ and vertical� composition. It is reasonable to
require them to be associative (if tiles consist of binary re-
lational structures, their composition is indeed associative).
Moreover, both compositions have identity tiles shown in
Fig. 6(a1,b1). These tiles serve as units (neutral elements),
i.e., the following equalities hold for an arbitrary tileτ with
the sides(u, v, m,m′) as shown in Fig. 5, :

(1) 1u ⊗ τ = τ = τ ⊗ 1v and1m � τ = τ = τ � 1m′
.

Such idle tiles are assigned to every h-arrow and to every
v-arrow as specified by the bentι-arrows in Fig. 2 (2-match

3Suppose that Ann deleted some elementa but later, after many editing
steps, decided to restore it. Ann then creates a new elementa′ with the
same name and all other attributes. However, elementa′ has a new ID and
hence the “sameness” ofa anda′ must be explicitly declared inv.

A

A′ A′

A

u u

1A’
(b1) Horizontal

identity

B
1AA

A B

m

(a1) Vertical
identity

m

1 m 1u1B1A

BA

A B

m

m

1 m

C
n

n

1 n

C

A′ A′

A

(a2) 1m ⊗ 1n = 1m;n

A
u

1A’

1A

1u

A′′ A′′

v v

1A”

1v

u

(b2) 1u 1v = 1u;v

(ab) 11A =11A

A

A

A

A1A

1A

1A

1A

1C1A

Figure 6. Identity/idle tiles

means a match of updates and 2-update is a revision of
match). Also, idle v- and h-arrows are assigned to every
node. Further, formation of idle tiles is compatible with
tile composition Fig. 6(a2, b2) and with identity arrows
Fig. 6(ab).

Finally, if we have four tiles with common intermediate
matches and updates as shown in Fig. 5, we can compose
them in two different ways. We can first compose two pairs
of tiles horizontally, and then compose the results vertically
coming to the tileAC ′′

(1) = (τ⊗σ)�(τ ′⊗σ′). Alternatively,
we may first compose vertically and then horizontally pro-
ducing the tileAC ′′

(2) = (τ � τ ′)⊗ (σ� σ′). When tiles are
composed from relational structures, it can be proved that
AC ′′

(1) = AC ′′
(2) [5]. Thus, for our tile systems, we should

require the followinginterchange law:

(2) (τ ⊗ σ)� (τ ′ ⊗ σ′) = (τ � τ ′)⊗ (σ � σ′).

Definition. An (abstract) tile systemis a four-sorted alge-
braic structure consisting ofnodes, h-arrows, v-arrowsand
tiles. Every h- and v-arrow is assigned two nodes called
its sourceand target, and every nodeN is assignedidle h-
arrow andidle v-arrowas shown by the metamodel in Fig. 2.
These idle arrows are loops:∂0(ιh(N)) = N = ∂1(ιh(N))
and∂0(ιv(N)) = N = ∂1(ιv(N)).

Every tile is assigned two h-arrows (h-sourceand h-
target) and two v-arrows (v-sourceandv-target) such that
the incidence relations between the cells hold.4 Every h-
arrow is assignedv-idle tile, and every v-arrow is assigned
h-idle tile (see the metamodel in Fig. 6), which are 2-loops.5

H-arrows can be composed; their composition is associa-
tive; and h-idle arrows act as units. V-arrows can be com-
posed; their composition is associative; and v-idle arrows

4These relations are geometrically evident but for the formally minded
reader, they are as follows:∂i(h∂i(τ)) = ∂i(v∂i(τ)), i = 0, 1 and
∂i(h∂j(τ)) = ∂j(v∂i(τ)), i = 0, 1, j = 0, 1 andi 6= j.

5To make looping explicit, glue together the horizontal sides of tile (a1)
and the vertical sides of tile (b1).

4

act as units. Tiles can be composedhorizontallyandverti-
cally; both compositions are associative; and h- and v-idle
tiles act as the respective units. Finally, for any four tiles
related as shown in Fig. 5, the interchange law (2) holds. In
terms of category theory, the definition above says that an
abstract tile system is adouble-category[7].

The main result on double categories providing algorith-
mic applications is the following lemma.
Pasting Lemma [3]. In any double category having so
calledfactorization, composition of compatible tiles in any
order gives the same result.

An illustrating example is shown in Fig. 7: to ease read-
ing the equalities, the symbol of v-composition is omitted.
Factorization means, roughly, that if a boundary arrow of a
tile is composed (e.g., the left side of tileσ3), then the tile
can be presented as the composition of the corresponding
smaller tiles (σ3 = τ13τ23 not shown in the figure). The ma-
jority of tile systems appearing in mathematical practice do
have factorizations [3]; this class also includes relational tile
systems of model versioning [5].

τ11
τ12

 σ
3

 σ
1

τ22

τ32
τ33

{(τ11⊗τ12)[σ1⊗ (τ22 τ32)]}⊗(σ3τ33) =

(τ11σ1)⊗(τ12τ22τ32)⊗(σ3τ33) =

(τ11σ1)⊗{[(τ12τ22)⊗σ3](τ32⊗τ33)}

Figure 7. Application of Pasting Lemma

The distinction between sequential and parallel composi-
tion of one-dimensional deltas is not new, e.g., [2]. However,
our analysis shows that in optimistic replication, composi-
tion of deltas is actually two-dimensional and mixed: either
updates are composed sequentially while matches are paral-
lel (vertical composition), or matches are composed sequen-
tially while updates are parallel (horizontal composition).

4 Reconciliation as a tile operation

A typical situation of optimistic model versioning is
shown in the upper-middle cell in Fig. 8 (cf. [6, Fig. 1]).
An original modelO is concurrently updated by two teams,
which results in two different and possibly conflicting repli-
casA, B.

The upper-right cell in Fig. 8 rephrases the situation as
a tile. Since new elements may be introduced in both repli-
cas, a correct matchm : A → B is not derivable from update
specificationsu andv. The reason is that potential “same-
ness” of the new elements across the replicas needs to be ex-
plicitly asserted. Hence, the matchm : A → B presents an
independent piece of input for reconciliation. On the other

Non-tile view Tile view

Input

Output

A B

O

A! B!

A B

O O
u v

m
τ

A! B!

A B
u! v!τ!

m!

m
R

Figure 8. Reconciliation schemas

hand, the history of obtaining versionsA,B from the ances-
torO matters for conflict resolution; hence the reconciliation
procedure should know the updatesu andv. Thus, the input
for the reconciliation operation is given by the entire tile.

A reconciliation policy (e.g., [6, 14]) allows some of
the conflicts specified bym to be resolved automatically,
whereas resolving the remaining conflicts may require hu-
man input. A common approach is to leave such conflicts
for future reconciliation and to allow the replicas todiverge,
i.e., to remain different after synchronization [6].

The lower-middle cell in Fig. 8 shows the divergent case
of mergingA andB, which results in partially reconciled
and partially conflicting replicasA! andB!. The correspond-
ing tile is shown in the lower-right cell. In addition toA! and
B!, the tile also includes the updatesu! andv! that relate the
updated replicasA! andB! to A andB, respectively, and the
non-identity matchm! : A! → B!. The update and reconcil-
iation cycle can be repeated by applying new updatesu′ and
v′ to A! andB!, and then applying reconciliation on the new
tile A!B!A!′B!′. Thus, reconciliation can be viewed as an
algebraic operation mapping tiles to tiles,! : Tiles → Tiles,
such thath∂0(τ !) = h∂1(τ) for any tileτ . The latter condi-
tion means that reconciliation works vertically.

An important requirement on a reasonable reconciliation
policy is its compatibility with horizontal tile composition,
that is, the following equation should hold for any two hori-
zontally adjacent tilesτ ,σ (Fig. 5):

(3) (τ ⊗ σ)! = τ ! ⊗ σ!

Another useful requirement is history independence,
which is captured by the equation

(4) (τ � τ ′)! = τ ′!

that holds for any two vertically adjacent tilesτ ,τ ′. This
equation can be seen as a general pattern for formulating the
history independence laws for synchronization systems [4].

5 Application scenario

Figure 9 shows a simple example of using the tile nota-
tion. The diagram presents a precise formal specification:
nodes are models and arrows are relations between them or-
ganized in tiles. At the same time, this formal specification

5

is intuitive and can be easily understood. On Monday, Ann
and Bob started to work concurrently with the same model
O (note the top identity h-arrow). On Tuesday, their repli-
cas were automatically reconciled (as denoted by the vertical
block-arrow of reconciliation operation). Bob’s reconcilia-
tion result was copied to Carol (note the horizontal-identity
2-arrow1v!), who continued to work concurrently with Ann
and Bob. On Wednesday, Ann’s and Bob’s replicas were
again reconciled, Bob continued to work with the model
while Ann finished. On Thursday, Bob and Carol reconciled
their replicas, which finished the week. When such scenar-
ios comprise a big amount of tiles, Pasting Lemma turns out
a useful result.

time

authorsMon

Ann Bob Carol

Tue

Wed

Wed+

• •

••Tue+ •

• •R
• •

••

1v!

Thu •

•

•
R

••

v!

v

Thu+

m!

m

v!

OO
1O

R

Figure 9. Use case of tile machinery

We can zoom into each element of the tile diagram to
obtain a corresponding structure, such as a model, rela-
tion, or tile. Formally, it means that we have a mapping
: T ×R → Tiles between two tile systems.6 Given two
replica IDs A,B and two time momentst, t′, the value
#(t, t′, A, B) is a tile comprising four model versions with
matches and updates between them.

Importantly, mapping# must be compatible with alge-
braic structure of tiles, i.e., vertical and horizontal compo-
sition and identities, and hence be atile system homomor-
phism. In fact, a model versioning systemis an implementa-
tion of a tile system homomorphism. This brief formulation
encodes several important algebraic conditions that a correct
implementation must satisfy.

6 Conclusion

The paper shows that the algebraic structure of tile sys-
tem a.k.a double-category is well suited for formally mod-
eling version management concepts in a very general and

6The source of# is a trivial partial-order tile system formed by Cartesian
product of two posets: a poset of time momentsT , as usual for modeling
time in distributed environments, and a posetR of replica IDs.

metamodel-independent way. Reformulation of versioning
constructs in the tile language makes them amenable to alge-
braic manipulations and provides a convenient notation for
versioning-system designers. Unexpectedly, this reformula-
tion allowed us to revise some basic concepts, such as se-
quential and parallel composition of deltas, and make them
more precise. Our reformulation also reveals several impor-
tant algebraic laws that a correct versioning system should
or may want to satisfy. The tile framework may also provide
useful guidance in designing new algorithms for model ver-
sioning, particularly in the context of incremental updates.

Whereas our discussion focused on the two-dimensional
space of model versioning, other aspects of versioning, such
as model heterogeneity and metamodel evolution, or fea-
tures [1], may bring new dimensions. This generalization
may require the constructs and setting of higher-dimensional
category theory, which would lead to a higher-dimensional
algebra of model versioning.

References

[1] D. Batory, M. Azanza, and J. Saraiva. The objects and arrows
of computational design. InMoDELS, pages 1–20, 2008.

[2] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Managing
model conflicts in distributed development. InMoDELS,
pages 311–325, 2008.

[3] R. Dawson and R. Pare. General associativity and general
compostion for double categories.Cahiers de topologie et
géoḿetrie diff́erentielle cat́egoriques, 34:57–79, 1993.

[4] Z. Diskin. Algebraic models for bidirectional model syn-
chronization. InMoDELS, pages 21–36, 2008.

[5] Z. Diskin, M. Antkiewicz, and K. Czarnecki. Declarative
metamodel-independent definitions of model matches and
updates: Relational tile systems. In preparation.

[6] J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pierce,
and A. Schmitt. Exploiting schemas in data synchronization.
J. Comput. Syst. Sci., 73(4):669–689, 2007.

[7] G. Kelly and R. Street. Review of the elements of 2-
categories. InCategory Seminar, Sydney 1972/73, Lecture
Notes in Math., 420, pages 75–103, 1974.

[8] Y. Lin, J. Gray, and F. Jouault. DSMDiff: A Differentiation
Tool for Domain-Specific Models.European J. of Informa-
tion Systems, 16:349–361, 2007.

[9] D. Ohst, M. Welle, and U. Kelter. Differences between ver-
sions of UML diagrams. InESEC/FSE, pages 227–236,
2003.

[10] Y. Saito and M. Shapiro. Optimistic replication.ACM Com-
put. Surv., 37(1):42–81, 2005.

[11] G. L. Thione and D. E. Perry. Parallel changes: Detecting
semantic interferences. InCOMPSAC, pages 47–56, 2005.

[12] C. Treude, S. Berlik, S. Wenzel, and U. Kelter. Difference
computation of large models. InESEC/FSE, pages 295–304,
2007.

[13] Z. Xing and E. Stroulia. UMLDiff: an algorithm for object-
oriented design differencing. InASE, pages 54–65, 2005.

[14] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei.
Towards automatic model synchronization from model trans-
formations. InASE, pages 164–173, 2007.

6

