
GSDLAB TECHNICAL REPORT

Configurator Semantics of the CDL language

Yingfei Xiong

GSDLAB–TR 2011–06–05 Jun 2011

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.

Configurator Semantics of the CDL language

Yingfei Xiong

Jun 2011

Abstract

This paper presents formal semantics of the Component Description
Language (CDL) language. Compared to the CDL semantics proposed
by Berger and She [BS10], this version focuses more on the behavior of
configurator and is more close to the implementation of a configurator.

1 Introduction

The Component Description Language [VD] is a variability modeling lan-
guage for embedded languages. Its semantics is first formalized by Berger
and She [BS10]. Their semantics mainly focuses on the configuration
space, and it is still difficult to understand the behavior of a configura-
tor and implement a configurator based on their semantics. Specifically,
there are the following problems if we try to understand the behavior of
a configurator from their semantics:

• Their semantics allows cyclic references. Cyclic references mean that
there could be arbitary equations in the code, and the configurator
has to solve these equations to understand the really allowed value.
For example, there could be the following code.

cdl_option x {

flavor data

calculated (x * x + 1)/2

}

Keyword calculated means the value of the feature is calculated
from the expression following. However, as the expression cycli-
cally refer to x again, we cannot directly calculate the value. Berger
and She’s semantics considers the expression as a constraint, and
by equation solving we can get x=1 in this case. However, equa-
tion solving is impossible for arbitrarily complex equations. Also,
calculated means that the value of the feature cannot be edited by
the user and should be determined by the configurator. If there is an
equation have no solution or more than one solution, their semantics
gives no rule of determining the value of x in those situations. The
current eCos configurator also does not support cyclic references,
and will freeze in most cases where cyclic references are presented.

1

• Their semantics does not distinguish the configuration errors from
disabled features. In CDL, users could declare two types of con-
straints on a feature: active if and requires. When the feature is
selected and a requires constraint is violated, the configuration con-
tains an error and the configurator should report this error. When
an active if constraint is violated, the declaring feature is auto-
matically disabled (removed from the configuration), and no error
is reported. Although the two types of constraints have the same
effect in constraining the configuration space, they exhibit quite dif-
ferent behavior in the configurator and should be distinguished in
configurator semantics.

• Their semantics does not clearly show which values are user-editable.
We have seen that calculated features are not user-editable. There
are also many other types of features that are not user-editable.
Berger and She’s semantics does not provide clear information about
this.

This paper presents a new version of CDL semantics. Compared to
Berger and She’s version [BS10], this version focuses on the configurator
behavior and addresses the above issues. In addition, this version presents
the full semantics of operators and functions, which was not presented in
Berger and She’s version [BS10].

2 Synatx

A CDL model consists of a set of packages, where each package is defined
by a set of programs in the CDL language. A package can be loaded to a
model or unloaded from a model at configuration time. So an important
question is whether we model this dynamic behavior of package changes.
In this paper we focus on only a fixed set of packages, and leaving dynamic
change of packages to future work.

To ease the definition of semantics, we consider an abstract syntax
instead of the concrete syntax of CDL. The abstract syntax is obtained
from Berger and She’s semantics [BS10].

Let Data is the union of the set of strings, integers and floats, String ⊂
Data be the set of strings, and ID ⊂ String be the set of all possible
feature identifiers. A CDL model is a tuple consisting of the following
components:

• Id ⊆ ID, the set of feature identifiers defined in the model,

• parent : Id → Id
⋃
{>}, a function mapping an identifier to its par-

ent, where > means the top feature,

• kind : Id → {package, component, option, interface}, a function
mapping an identifier to its base kind,

• flavor : Id → {none, bool, booldata, data}, a function mapping an
identifier to its flavor,

• activeIf : Id → 2Exp(ID), a function mapping an identifier to its
active if expressions,

2

• requires : Id → 2Exp(ID), a function mapping an identifier to its
requires expressions,

• calculated : Id → Exp(ID)
⋃
{⊥}, a function mapping an identifier

to its calculated expression, or ⊥ if no calculated is defined,

• legalValues : Id→ LExp(ID)
⋃
{⊥}, a function mapping an identifier

to its legal values expression, , or ⊥ if no legal values is defined,

• implements : Id → 2Id, a function mapping an identifier to the
interfaces it implements, and

• version : Id→ String, a function mapping an a package to its version
(denoted by a string), or ⊥ is the feature is not a package

where Exp(ID) is the set of goal expressions defined by the following gram-
mar:

e := id where id ∈ ID
| const where const ∈ Data
| e⊕ e where ⊕ ∈ {||,&&, implies, eqv, xor}
| e⊗ e where ⊗ ∈ {+,-, *, /, %, <<, >>,^,&, .}
| e� e where � ∈ {==,!=, <, >, <=, >=}
| !e
| ˜e
| e?e : e
| get data(id) where id ∈ ID
| is active(id) where id ∈ ID
| is enabled(id) where id ∈ ID
| is loaded(id) where id ∈ ID
| is substr(e, e)
| is xsubstr(e, e)
| version cmp(v1, v2) where v1, v2 ∈ String

and LExp(ID) is the set of list expressions defined by the following gram-
mar:

le := le unit le | le unit
le unit := e | e to e where e ∈ Exp(ID)

.
We write a.f for f(a) to reduce the number of parentheses.
There are also a few well-formedness rules over the syntax of the model.

For any feature x ∈ Id, the following constraints must be satisfied. The
explanation of these constraints can be found in [BS10].

• x.flavor = none −→ x.calculated = ⊥
• (x.calculated 6= ⊥ ∨ x.flavor = bool) −→ x.legalValues = ⊥
• x.kind = interface −→ (x.flavor 6= none ∧ x.calculated = ⊥)

• x.kind 6= package −→ x.version = ⊥
• ∃y, y.parent = x −→ x.kind 6= option

Also, for the whole feature model, the following two constraints should be
satisfied.

• The parent relationship should form a tree, with > as the root.

• References in Exp(ID) and LExp(ID) should form no cycles (either
directly or indirectly).

3

3 Semantics

Let Bool be set {0, 1}. Given a CDL model (Id, parent, kind,flavor, activeIf,
requires, calculated, legalValues, implements, version), configurator seman-
tics explains the model to two sets: Var and Constraint, where Var is a
set of variables typed over Bool or Data, and Constraint is a set of con-
straints in Tcl language. A configuration of the model is an assignment
to Var conforming to the types of the variables. A correct configuration
is an assignment over which all constraints evaluate to 1. The variable
set also present the values that is user-editable. The configurator should
present the variables as editable fields in the user interface. Constraint
set Constraint also gives the granularity of error reporting. If a constraint
in Constraint evaluates to 0, the configurator should report an error.

To simplify the definitions, we define the semantics in two steps. First,
let us consider features that is not calculated and is not an interface. In
CDL, each feature has a boolean value and a data value. Depending on the
flavor of the features and whether the feature is calculated, some of values
are user-editable and some of the values are derived. The user-editable
values are mapped to variables. We define the variable set as a union of
denotation VarJxK over each feature x. We first give the definition where
x.calculated = ⊥ ∧ x.kind 6= interface.

Var =
⋃

x∈Id VarJxK

VarJxK =

{} x.flavor = none

{x bool : Bool} x.flavor = bool

{x data : Data} x.flavor = data

{x bool : Bool, x data : Data} x.flavor = booldata

To access the two values of a feature, we define another two denota-
tions. Denotation enabledJxK returns a Tcl expression for accessing the
Boolean value of a feature, and we first give its definition over feature x
where x.calculated = ⊥ ∧ x.kind 6= interface.

enabledJxK =

{
1 x.flavor = none ∨ x.flavor = data

x bool x.flavor = bool ∨ x.flavor = booldata

Similarly, denotation dataJxK returns the data value of feature x. We give
its definition where x.calculated = ⊥ ∧ x.kind 6= interface as below.

dataJxK =

{
1 x.flavor = none ∨ x.flavor = bool

x data x.flavor = data ∨ x.flavor = booldata

A feature in CDL can also be active or inactive. When a feature is
inactive, its is disabled on the configurator interface and the user cannot
change its variable(s). This behavior is modeled as denotation activeJxK.

activeJxK = pActiveJxK && eActiveJxK

pActiveJxK =

{
1 x.parent = >
effectiveJx.parentK x.parent ∈ Id

eActiveJxK =

{
1 x.activeIf = ⊥
exprJx.activeIfK x.activeIf 6= ⊥

4

Denotation effectiveJK is used to determine whether a feature is included
in a configuration or not. When a feature is not in the configuration, it is
not considered in the code generation, and we will always get zero when
we try to access its value through CDL expressions. A feature is included
in a configuration when it is both enabled and active.

effectiveJxK = activeJxK && enabledJxK

Denotation exprJK converts a CDL expression into a Tcl expression. It
is defined below.

exprJidK = effectiveJxK?dataJxK : 0 if id ∈ Id
exprJidK = 0 if id ∈ ID ∧ id /∈ Id
exprJconstK = const if const ∈ Data
exprJe1 ⊕ e2K = exprJe1K⊕ exprJe2K

if ⊕ ∈ {||, &&,+,-, *, /, %, <<, >>,^, &,==,!=, <, >, <=, >=}
exprJe1 implies e2K = !exprJe1K || exprJe2K
exprJe1 eqv e2K = exprJe1K&&exprJe2K || !exprJe1K&&!exprJe2K
exprJe1 xor e2K = !exprJe1 eqv e2K
exprJe1.e2K = concat exprJe1K exprJe2K
exprJ!eK = !exprJeK
exprJ˜eK = ˜exprJeK
exprJe1?e2:e3K = exprJe1K?exprJe2K:exprJe3K
exprJget data(id)K = dataJidK if id ∈ Id
exprJget data(id)K = 0 if id ∈ ID ∧ id /∈ Id
exprJis active(id)K = activeJidK if id ∈ Id
exprJis active(id)K = 0 if id ∈ ID ∧ id /∈ Id
exprJis enabled(id)K = enabledJidK if id ∈ Id
exprJis enabled(id)K = 0 if id ∈ ID ∧ id /∈ Id
exprJis loaded(id)K = 1 if id ∈ Id
exprJis loaded(id)K = 0 if id ∈ ID ∧ id /∈ Id
exprJis substr(e1, e2)K = substr(concat " " exprJe1K " ", exprJe2K)
exprJis xsubstr(id)K = substr(exprJe1K, exprJe2K)
exprJversion cmp(v1, v2)K = string compare toVer(v1) toVer(v2)

where toVer(v) =

{
v.version v ∈ Id
v v /∈ Id

substr(e1, e2) = (string first e2 e1) >= 0

We have seen how Var is defined and a few auxiliary denotations for
accessing different states of features. Now let us see how Constraint is
defined. Basically, Constraint is translated from the requires constraints
and legal values.

Constraint =
⋃

x∈Id

(reqConstrsJxK ∪ legalValConstrsJxK)

where reqConstrsJxK and legalValConstrsJxK are defined as follows.

reqConstrsJxK = {effectiveJxK→ exprJreqK | req ∈ x.requires}
legalValConstrsJxK = {lexprJx, x.legalV alK | x.legalValues 6= ⊥}

5

Denotation lexprJK converts a list expression into a Tcl expression.

lexprJx, le unit leK = lexprJx, le unitKlexprJx, leK
lexprJx, e1 to e2K = exprJxK >= exprJe1K && exprJxK <= exprJe2K
lexprJx, eK = exprJxK = exprJeK

Now we come to the second step of semantics definition and are ready
to take into account calculated features and interfaces. These two types
of features both have their values determined by other features and are
not user-editable. The value of a calculated feature is determined by its
calculated expression. The value of an interface is the number of im-
plementing features that are effective. To take them into our definitions,
we need to complete three previously partial definitions: VarJK, enabledJK,
and dataJK. But before that, let us defined a denotation for the expres-
sion returning the calculated value of a feature. For any feature x where
x.calculated 6= ⊥ ∨ x.kind = interface, we have the following definition.

calculatedValJxK ={
exprJx.calculatedK x.calculated 6= ⊥
Σ∀y,x∈y.implementseffectiveJyK?1 : 0 x.kind = interface

Now we are ready to complete our definitions. For calculated features
and interfaces, we create no variables.

VarJxK = {} if x.calculated 6= ⊥ ∨ x.kind = interface

Their boolean values and data values are determined by their calculated
values and their flavors. For any feature x where x.calculated 6= ⊥ ∨
x.kind = interface, we have the following definitions.

enabledJxK =

{
1 x.flavor = data

calculatedValJxK?1:0 x.flavor = bool ∨ x.flavor = booldata

dataJxK =

{
1 x.flavor = bool

calculatedValJxK x.flavor = data ∨ x.flavor = booldata

Putting the two parts together, we have the full semantics of the CDL
language.

4 Related Work

The semantics in this paper is used in the analysis of real world CDL
constraints [PNX+11]. A simplified description of the semantics is also
presented in that paper. To ease understanding, some of the denota-
tions in this paper is presented as variables in that paper. For example,
activeJnK appears as a variable, n active, and a new constraint converted
from the definition of activeJnK is added. So that descriptions gives more
variables and constraints, but the essential configuration spaces are the
same.

6

5 Conclusion

This paper has presented the configurator semantics of CDL, addition-
ally modeling the configurator behavior that is not presented in [BS10].
Specifically, the three problems mentioned in the introduction have been
addressed as follows.

• Cyclic references are explicitly disallowed on the syntax level.

• Each semantic constraint corresponds to a configuration error. The
active if constraints are not directly translated into semantic con-
straints (but their effect on the configuration space is kept).

• Each semantic variable corresponds to a user-editable value. No
user-uneditable variable is created and the user cannot change any-
thing beyond the variables.

Acknowledgment

Thanks to Thorsten Berger and Steven She for their first version of CDL
semantics, and to Thorsten Berger for his insightful comments on the
draft of this paper.

References

[BS10] Thorsten Berger and Steven She. Formal semantics of the cdl
language. www.informatik.uni-leipzig.de/~berger/cdl_

semantics.pdf, 2010.

[PNX+11] Leonardo Passos, Marko Novakovic, Yingfei Xiong, Thorsten
Berger, Krzysztof Czarnecki, and Andrzej Wasowski. A study
of non-boolean constraints in variability models of an embed-
ded operating system. In FOSD’11: 3rd International Work-
shop on Feature-Oriented Software Development, 2011.

[VD] B. Veer and J. Dallaway. The eCos component
writer’s guide. ecos.sourceware.org/ecos/docs-latest/

cdl-guide/cdl-guide.html.

7

