
POLITECHNIKA WARSZAWSKA

WYDZIAŁ ELEKTRONIKI I TECHNIK INFORMACYJNYCH

INSTYTUT INFORMATYKI

Rok akademicki 2008/2009

PRACA DYPLOMOWA INŻYNIERSKA

Kacper Bąk

Certificateless Cryptography

Opiekun pracy
dr inż. Artur Krystosik

Ocena .

. .

Podpis Przewodniczącego

Komisji Egzaminu Dyplomowego

ABSTRACT

This paper presents project and implementation of certificateless cryptography, and it’s
relationship with public-key cryptography. The scheme comes from identity-based cryp-
tography and improves some of its weaknesses. Moreover, it enables sender to encrypt a
message when the only information she knowns is recipient’s identity (e.g. email address).
Additionally, users do not need certificates to bind identity with specific public key. Cer-
tificateless cryptography may be employed to provide transparent email encryption, which
is desirable in real-world security applications.

Software created for the purpose of this work provides both infrastructure (application
servers) and clients who wish to communicate confidentially. Users simulate email by send-
ing encrypted messages to each other. The paper describes software architecture, modules,
application-level protocols and tests.

Keywords: cryptography, certificate, CL-PKE, PKI, ID-PKC, IBE, ECC, PBC

KRYPTOGRAFIA BEZCERTYFIKATOWA

Praca przedstawia projekt i implementację kryptografii bezcertyfikatowej oraz jej miejsce
w kryptografii klucza publicznego. Opisywany schemat stanowi rozwinięcie kryptografii
opartej na tożsamościach. Cechą charakterystyczną jest możliwość zaszyfrowania wiado-
mości znając tylko daną tożsamość (np. adres email) odbiorcy, a także brak certyfikatów
dla użytkowników kryptosystemu. Kryptografia bezcertyfikatowa umożliwia realizację prze-
zroczystego szyfrowania poczty elektronicznej, co ma znaczenie w praktycznych realizac-
jach usług bezpieczeństwa.

Zaprojektowane oprogramowanie składa się zarówno z infrastruktury (odpowiednich ser-
werów) jak i z uczestników, którzy pragną zachować poufność komunikacji. Wiadomości
wymieniane między użytkownikami symulują pocztę elektroniczną. W pracy została opi-
sana architektura systemu, moduły, zastosowane protokoły i testy.

Słowa kluczowe: kryptografia, certyfikat, CL-PKE, PKI, ID-PKC, IBE, ECC, PBC

Serdeczne podziękowania
za okazaną pomoc i życzliwość
składam mojemu promotorowi
dr inż. Arturowi Krystosikowi

Contents

1 Introduction 1

2 Background 3

2.1 Problem Analysis . 3

2.1.1 Web of Trust . 4

2.1.2 Public-Key Infrastructure . 5

2.1.3 Identity-Based Encryption . 7

2.1.4 Certificate-Based Encryption . 10

2.1.5 Certificateless Cryptography . 11

2.2 Elliptic Curve Cryptography . 13

2.3 Pairings . 14

2.4 Certificateless Cryptography Algorithms 15

3 Project 17

3.1 Assumptions . 17

3.2 Requirements . 18

3.2.1 Global . 18

3.2.2 Public Parameters Server . 20

3.2.3 Key Generation Center . 21

3.2.4 The Sender . 22

3.2.5 The Receiver . 23

i

3.3 Design . 25

3.3.1 Architecture . 25

3.3.2 Data Flow . 27

3.3.3 Protocols . 30

3.4 Implementation . 32

3.4.1 Common . 32

3.4.2 Public Parameters Server . 33

3.4.3 Key Generation Center . 33

3.4.4 The Sender . 34

3.4.5 The Receiver . 34

3.5 Test . 35

3.5.1 Unit . 35

3.5.2 Functional . 37

3.6 Setup . 38

3.7 Configuration . 39

3.7.1 Public Parameters Server . 39

3.7.2 Key Generation Center . 39

3.7.3 The Sender . 40

3.7.4 The Receiver . 40

3.8 Conclusion . 41

3.9 Future Work . 41

Nomenclature 46

ii

Chapter 1

Introduction

There is no doubt that cryptography plays significant role in modern world. Wide use
of cryptography gives people access to confidential communication, electronic commerce
and secure data storage. While history of secrets goes back to Ancient Egypt and Rome,
it had strong impact on The Second World War and, perhaps, is even more important
now, in the era of globalisation.

The classical aim of cryptography was to make encrypted content unreadable to anyone
but the two parties who agreed to use some specific scheme. Nowadays, cryptography pro-
vides more sophisticated services, such as message integrity, authentication, time stamping
etc. If we consider communication secrecy, then we can divide cryptography into two ar-
eas: private-key (symmetric-key) and public-key (asymmetric-key) techniques. The first
has been in use since the ancient times, while the second appeared in the second half of
the 20th century.

Public-key cryptography (PKC) allows parties to set up secure transmission channel with
no prior exchange of secret keys. Each user generates a pair of keys called public and
private key. The former is used for encryption and the latter for decryption. This ground-
breaking idea solves the issue of key distribution and reduces the number of required
crypto-keys. In fact it shifts the problem of key distribution to the problem of binding
user with his key pair. This binding is really at the core of PKC security. Fortunately, in
practice, it is much easier to certify particular binding than to deliver the keys themselves.
There are several methods of which public-key infrastructure is the best known.

Public-key infrastructure (PKI) proves authenticity of users’ keys by means of certificates.
On the organizational level it is a set of authorities which handle digital certificates.
Although, PKI is often the choice, it has significant drawbacks. Firstly, the infrastructure
is heavy-weight and rather expensive. Moreover, certificates must be verified by users
(whether they match correct identity), but non-technical users usually have problems
with that. Another drawback is revocation of old/compromised keys. So called Certificate
Revocation Lists (CRL’s) might grow rapidly and become awkward to manage. This is
usually the case in big deployments of PKI.

Certificateless cryptography (CL-PKE) is an interesting alternative to traditional PKI. It
makes use of identities, which are users’ public keys formed of arbitrary strings, in place of

1

certificates. Besides, it’s infrastructure is lightweight and can be deployed at much lower
cost. Moreover, it offers transparent encryption, so that non-technical users could easily
secure their data.

The main aim of this work was implementation of certificateless cryptography in the
context of transparent email encryption. At the time of writing dissertation, there are
still no widely-available implementations of this scheme. As it will become apparent,
certificateless cryptography has got interesting properties and can provide flexibility not
found in currently employed methods.

2

Chapter 2

Background

The chapter introduces the field of public-key cryptography and outlines various problems
specific to this area. Furthermore, it discusses several methods of guaranteeing authentic-
ity of public-keys and indicates how certificateless cryptography relates to them. Besides
problem analysis, it also presents underlying mathematics of elliptic curve cryptography
(ECC) and pairing-based cryptography, which are crucial for understanding CL-PKE
scheme.

2.1 Problem Analysis

Providing authenticity of public keys is one of the hardest problems within public-key
cryptography. There are no obvious solutions for this issue, because all of them have
some drawbacks and limitations. Fortunately, there are several approaches to the stated
problem, and all of them concentrate around one idea: trust. Public-key cryptography is
used when two parties are not able to meet and exchange crypto-keys directly; which is
almost always the case in computer networks. So, if people do not know each other, how
can they know that certain key belongs to the person who claims so? The answer is that,
in general case, they cannot know this fact just from looking at the key. There must be
some other parties who know the two users and who are trusted by them. This crucial
observation leads to several different realizations of the trusted third party idea.

The two general approaches can be described as decentralized and centralized trusted
third parties. The former is somewhat similar to peer-to-peer networks, where every node
has equal capabilities and rights. The latter resembles traditional client-server model,
where server plays central role and provides services to clients.

There are universal questions concerning both models of trust. Even though, decentralized
trust might seem more fair and reliable, it may be vulnerable to manipulation and can
discriminate against new users. On the other hand, centralized trust relies on single points
of failure (servers) and might raise doubts whether particular party should be trusted, to
what extent, and finally, why. To conclude, one needs to decide which model of trust fits
better her needs and should be aware of far-reaching consequences of the decision.

3

2.1.1 Web of Trust

Web of trust is the most common implementation of decentralized trusted third party.
Its infrastructure is very simple, since there are no additional nodes besides users. Users
collect public keys of others and certify them if they are sure that particular key belongs
to particular person. When two parties do not know each other, they must know other
people who belong to trusted chain and can provide a link between the two parties. Of
course, every person in the chain must be trusted by the participants.

An example of web of trust can be found in Fig. 2.1. When Alice obtains Bob’s key, she
can verify that it really belongs to Bob. Alice trusts Isabel and Isabel trusts Bob, therefore
Alice can trust Bob. On the other hand, if Alice receives Andrew’s key, there is no way
in which she can bind Andrew with the key, since there is no one who trusts Andrew,
although Andrew trusts Alice, Bob and Adam.

Andrew

Alice

Julia

AdamIsabel

Bob

Figure 2.1: Sample web of trust.

Due to lack of single certificate authority users are made to collect public-keys and cer-
tificates on their own machines. The concept of web of trust is employed by OpenPGP
systems. This model of trust is very flexible and gives users much freedom when it comes to
certification. Every user decides himself whether to accept or reject certain key. OpenPGP
was initially meant to protect personal emails, but nowadays it is used to encrypt/sign
files and even the whole drives. It is especially popular among more advanced users coming
from academia or open source movement. Companies usually prefer centralized models,
and for this reason do not incorporate web of trust.

4

Advantages

Decentralization of trust and certificate management facilities make web of trust a very
reliable mechanism. It does not contain a single point of failure and does not require
expensive infrastructure since all operations are performed on users’ machines. Moreover,
flexibility of web of trust is beyond the scope of centralized systems. Highly appreciated
by freedom-fighters, provides strong cryptography for individuals with almost no cost in
terms of money.

Drawbacks

Web of trust requires a lot of trust between pairs of users, and consequently, might be
vulnerable to various manipulations. For example, let’s say there is a relation of trust
between Andrew and Isabel as in Fig. 2.1, and Alice did not verify Isabel’s key but
intentionally accepted a flawed one. Now the chain of trust is susceptible to attack since
someone can read Andrew’s message addressed to Isabel without their permission. This
problem could be solved by voting if there were more chains of trust between Andrew and
Isabel (bypassing Alice) or by using a separate channel so that Andrew can check Isabel’s
key.

What is more, users must spend their time and gain some knowledge on certification,
which often causes problems to newcomers, because it demands some experience and a
lot of care. Ease of use might be very problematic to non-technical people because users
have to perform the same tasks as servers in centralized schemes. According to a very
informative paper [14] only four out of twelve motivated and experienced email users
managed to correctly send encrypted email using PGP 5.0. Although the paper concerns
rather old version of software, the results are likely to stand as handling basic tasks (i.e.
encryption, publishing/getting keys, key verification) did not change much over time.

Finally, people who live in remote areas and do not have many friends, might seem less
credible, and thus discriminated. This can be problematic, because it can be hard for a
person to be trusted right away and fully benefit from using security software unless there
are other users who can introduce the person.

In conclusion, if cryptography is to be used by masses, it should be transparent and easy
to use. All of the mentioned issues can be, more or less, solved by centralized schemes,
such as public-key infrastructure.

2.1.2 Public-Key Infrastructure

Public-key infrastructure is the most popular solution for proving authenticity of public
keys. Similarly to web of trust, it applies certificates to confirm relation between user and
his public key. On the other hand, PKI’s model is centralized and hierarchical, composed
of special nodes called Registration Authority (RA) and Certificate Authority (CA), who
make up the infrastructure. The authorities are trusted third parties, which are not run
by ordinary users.

5

The role of RA and CA is as follows. Registration Authority collects requests from users
to issue digital certificate for their public keys. However, before CA can sign the key,
Registration Authority must verify credentials of the client. Upon successful verification,
Certificate Authority generates certificate, which contains user’s key, identity and CA’s
signature.

The fundamental question is: who granted CA the right to authorize users’ keys? Usually
it is another Certificate Authority, who is even more trusted. PKI forms hierarchical
structure in which CA’s keys are further signed by other CA’s. However, root Certificate
Authorities sign their keys themselves and for this reason those certificates are usually
deployed with software.

Advantages

Public-key infrastructure is well-known for its scalability and high level of security if used
correctly. PKI is able to guarantee privacy, authentication, integrity and non-repudiation
services to its users. It was deployed on large scale in many organizations and is the
most common cryptography-related feature on the Internet. Therefore, many issues were
precisely identified and addressed, such as:

• securing Certificate Authorities, which are PKI’s single points of failure,

• careful identity checking of the certificate holder to create valid certificate,

• moving from Certificate Revocation Lists to on-line status query mechanisms to
avoid computational and bandwidth overhead,

• naming semantics in certificates by moving from global to more local structures to
avoid name ambiguity,

Moreover, many people find public-key infrastructure relatively easy to use because they
do not have to perform tedious tasks, such as finding a link of trust or manual key
certification. In contrary to web of trust, a person who receives a newly created certificate
can forthwith fully benefit from using strong cryptography.

Drawbacks

Although, PKI works in practice, it has significant drawbacks. Evidently, PKI does not
solve many problems as it was expected to do. Firstly, the infrastructure is heavy-weight
and rather expensive, because requires trusted authorities to obey strict security policies.
These rules concern both digital and physical security measures to protect Certificate
Authority from compromise.

Moreover, certificates must be verified by users (whether they match correct identity), but
non-technical users usually fail to do it right. Even though the checking process is not that
complicated (e.g comparing web address with holder specified in certificate) many people

6

do not perform it. One solution is to make software do the checks but this approach has
its limitations in real-world settings. Perhaps another solution, yet more radical, would
be to completely abandon certificates as it happens in identity-based encryption.

Another drawback is certificate management and revocation of old/compromised keys.
The main problem of key validation is how to quickly check whether particular key is
up-to-date. Much of computational overhead comes from validation of full certification
paths. So called Certificate Revocation Lists are original mechanism utilized by Public-
Key Infrastructure. In practice, they might grow rapidly and become awkward to manage,
which is usually the case in big deployments of PKI. Alternatively, there exists an on-line
approach which moves much of the validation overhead from clients to dedicated servers
that constitute to additional infrastructure.

Finally, if certificate is to match particular person, it must contain personal details such
as name, surname, but in global world this still might not be precise enough, because
names can repeat. The problem can be resolved by leaning towards local namespaces and
providing more identity details. Unfortunately, the latter can lead to privacy compromise
and might not be accepted by individual users. A different approach might be to use
simple identities (e.g. email address) in place of proper names. More issues related with
PKI are described in [7].

A striking example of improper PKI deployment are SSL certificates, which are synonym
of secure e-commerce. First of all, in contrary to popular belief concerning web security,
they only guarantee that public key matches specified URL address. Companies often
outsource financial matters to other companies, and when user connects with the original
web-site, she is later redirected to SSL protected web-page whose holder field in certificate
does not match the original site. Users and web browsers accept this fact, even if it directly
contradicts the idea of SSL certificates. The next point in SSL discussion is the method of
certificate deployment. As mentioned earlier root certificates come with software, because
they cannot be reliably fetched over unsecured protocol. Therefore, web browsers usually
come with a set of certificates. The problem is, by default one downloads the browser
over unsecured HTTP protocol, which can result in man-in-the-middle attack both on
the browser and enclosed certificates. Producers of web browsers could easily resolve the
problem but they tend to ignore it. To sum up, issues with SSL do not lie in certificates
but rather in implementation of the PKI idea.

To conclude, public-key infrastructure automates many tasks which must be handled man-
ually by web of trust users. The best solution would be to make security-related features
totally transparent, so that people could use them without any particular knowledge or ex-
tra checks. Schemes which offer this kind of functionality can be built upon identity-based
cryptography (ID-PKC).

2.1.3 Identity-Based Encryption

Aims of public key infrastructure and identity-based encryption (IBE) are quite similar
but the way they approach certain problems are slightly different. First of all, users of
IBE can set public key to be an arbitrary, yet unique, string. Therefore, the key can be

7

something easily memorable like an email address or a phone number. Secondly, there are
no certificates binding user with his public key; Bob’s unique ID string guarantees that
no user besides him should be able to decrypt the content.

The above cryptosystem was firstly proposed by Shamir [13] in 1984 primarily to simplify
certificate management in email systems. Besides, IBE allows to implement transparent
data encryption in various communication systems, such as email or cellular telephony.
Although transparent encryption is not important from theoretical point of view, it is
a significant factor in real-world implementations. Usually non-technical users have no
knowledge on computer security and for this reason misuse security-related software.
Phishing, perhaps, is the best example of how to deceive average user and make him
reveal sensitive data even if the connection seems protected properly.

IBE relies on trusted third party, often called Private Key Generator (PKG), which is
responsible for generating secret keys corresponding to users’ public keys. PKG has its
own key pair called master public key and master private key (aka master key). The latter
is involved in the process of creating user’s private key from given identity.

The first practical implementation of IBE appeared in 2001 and was presented by Boneh
and Franklin (BF) [5]. The BF scheme makes use of pairings (namely the Weil pairing) over
elliptic curves and finite fields. Security of the scheme is based on elliptic curve analogue
of the computational Diffie-Hellman assumption, so the underlying mathematical problem
is hardness of finding discrete logarithms in finite cyclic groups.

PPS PKG

Alice@a.org Bob@b.org

Bob@b.org

Figure 2.2: Scheme of Identity-Based Encryption

8

Algorithms

Implementation of IBE cryptosystem relies on four randomized algorithms:

Setup Usually run by the PKG to create global public parameters and master key pair.
The algorithm takes security parameter k which determines strength of cryptosys-
tem. Public parameters P include a description of finite message space M and ci-
phertext space C. Public parameters P are uploaded onto Public Parameters Server
(PPS) and published. Master key s is kept secret and is known only to PKG.

Extract The algorithm is run by the PKG when one requests for her private key. Input
parameters are public parameters P , master secret s and identity string ID ∈ {0, 1}∗.
The function returns user’s private key d corresponding to given identity.

Encrypt The procedure is invoked by the sender to encrypt message using specified
identity. As input parameters takes public parameters P , identity ID and message
M ∈M. As output returns ciphertext C ∈ C.

Decrypt Executed by the receiver to decrypt message using corresponding private key.
Takes private key d, public parameters P , identity ID, ciphertext C as input and
outputs message M .

Advantages

IBE has several features not present in traditional PKI. First of all, users’ public keys
have very attractive form, which is much more user-friendly than numerical keys. Thanks
to identities, there is no need for certificates and heavy-weight authorities. In principle,
one could provide encryption services to every email user without any vetting. Moreover,
it is possible to encipher message even if the recipient has not generated key pair yet.
This approach reduces much of bandwidth and organizational overhead. In comparison
to PKI, revocation of keys is much easier because when recipient’s private key becomes
obsolete, the sender does not need to get a new certificate from Bob. Even if the private key
changes, corresponding identity stays the same, so the sender can be completely unaware
of revocation of receiver’s key.

Drawbacks

On the other hand, when Bob wants to decrypt the message, he firstly contacts PKG,
authenticates himself and then receives the corresponding private key. Trust placed in
PKG is very high since it works as a key escrow and is capable of decrypting all the
traffic. This property eliminates original IBE scheme from wide applications in big hostile
networks like the Internet. However, it is still usable in closed commercial environments.
Moreover, several modifications of IBE have appeared so far and fixed the above weakness.
The most notable are certificate-based encryption (CBE) and certificateless cryptography
(CL-PKE) schemes.

9

2.1.4 Certificate-Based Encryption

The primary goal of certificate-based encryption was to solve certificate revocation prob-
lem existing in traditional PKI. Certificate-based encryption was described by Gentry
in his paper [10]. The scheme is based on IBE, but eliminates some of its deficiencies,
such as presence of key escrow or compulsory confidential channel between user and Pri-
vate Key Generator. In fact, CBE combines the best features of PKI and identity-based
cryptography.

The role of certificates in CBE is twofold, on one hand they authenticate public keys, but
on the other hand they act as decryption keys. The scheme provides both implicit and
explicit certifications, the former comes from certificates and the latter from identities.
Message decryption can be performed only if the recipient has got private key and valid
certificate from her Certificate Authority, because messages are doubly encrypted.

Users of certificate-based encryption generate own private/public keys and request cer-
tificates from CA’s. Certificate Authorities compute them from users’ identities, as it
happens in IBE, and deliver up-to-date certificates to clients. Since certificates can be
publicly known, they do not have to be transfered over protected connections. Addition-
ally, double encryption guarantees that neither client nor CA alone is capable of decrypting
the ciphertext. Similarly to IBE, users’ public keys can be arbitrary strings unique within
CA.

Algorithms

The four randomized algorithms making up CBE are as follows:

Setup Run by CA to create global public parameters and master key pair. The algorithm
takes security parameter k which determines strength of cryptosystem. The public
parameters P include a description of finite message spaceM and ciphertext space
C. Master key s is kept secret and is known only to CA.

Certify The algorithm is run by CA when client requests certificate for his identity.
Input arguments are public parameters P , master secret s, period i in which the
certificate is valid and identity string ID that contains user’s public key and any
necessary additional identifying information. The function returns certificate CertB
valid for given period.

Encrypt The procedure is invoked by the sender to encrypt message using specified iden-
tity. As input parameters takes public parameters P , identity ID, validity period i,
and message M ∈M. As output returns ciphertext C ∈ C.

Decrypt Executed by the receiver to decrypt message using corresponding private key.
Takes private key d, public parameters P , identity ID, certificate CertB and cipher-
text C as input and outputs message M .

10

Advantages

Certificate-based encryption is a serious alternative to traditional PKI model. It can sup-
ply lightweight infrastructure for public-key cryptography. CBE eliminates the need for
third-party queries on certificate status and hence can greatly reduce demand on extra
servers. CBE preserves remarkable features of both traditional public-key infrastructure
and identity-based encryption, i.e. no key escrow property, reasonable trust to trusted
third party, no confidential connection with CA and two modes of certification. Compu-
tational cost of key validation can be greatly reduced by application of subset cores, which
are described in the original CBE paper. Thanks to this technique, a single CA server can
handle all its clients.

Drawbacks

In comparison to IBE, user’s public keys are longer, because they contain both identity
and numerical part. Although, CBE removes third-party queries, it still requires online
connection with clients, who regularly ask for new certificates. In practice, CBE servers
would have to work non-stop to be able to provide certificates, which makes them vulner-
able to DoS attacks. Certificateless cryptography is somewhat similar to CBE in terms of
goals and implementation, but does not require continuous work.

2.1.5 Certificateless Cryptography

Certificateless cryptography (CL-PKC) was firstly presented by Al-Riyami and Paterson
in their paper [2]. The work was highly influenced by BF scheme and as a result is
an extension of the original IBE. CL-PKC eliminates the key escrow feature found in
the Private Key Generator. Instead, creation of private key is split between a user and
trusted third party called Key Generation Center (KGC). Consequently, user’s public key
is a pair composed of identity ID and public key PA. The key is no longer easily memorable
as in original IBE but the trust level placed on third party is much lower. It looks like
functionality of CL-PKC is somewhere between traditional certified PKI and identity-
based cryptography. Flexibility is one of the most significant attributes of certificateless
cryptography; in fact, it can be transformed into traditional PKI or IBE. Similarly to IBE,
mathematical foundations of CL-PKE come from elliptic curves and hardness of finding
discrete logarithms in finite groups.

Main features of CL-PKC include the lack of key escrow property, no certificates to guar-
antee authenticity of public keys, the use of identities and existence of trusted third party
which participates in key generation. To encrypt a message one needs public parameters,
recipient’s identity and public key. The use of identity in encryption prevents any other
party from decrypting the content even if one tries to forge the second part of public key.
Furthermore, the second part of public key (i.e. a point on elliptic curve) prevents KGC
from deciphering the message.

Public key distribution works as in PKI, user publishes his public key in a public directory

11

or attaches to outgoing emails. As long as KGC does not try to forge the key, all the
encrypted data are safe. This means that KGC must be as trusted as CA in traditional
public key infrastructure. However, any forbidden activity of KGC can be detected by
users. In practice no CA dares to publish fake keys since it puts the company out of
profitable business, so it is reasonable to assume that KGC behaves honestly. Hence, it is
possible to build secure transparent email encryption which allows non-technical users to
communicate confidentially.

In contrast to PKI, certificateless scheme does not require expensive infrastructure com-
posed of different kind of authorities. Similarly to IBE, only Key Generation Center and
Public Parameters Server are needed. The optimal choice is to place them per name space
such as DNS zone. These two servers shall cope with all the incoming traffic.

Algorithms

Certificateless public key encryption with chosen ciphertext security (in [2] referred to as
Full CL-PKE) is built upon seven randomized algorithms:

Setup Usually run by the KGC to create public parameters and master key pair. The
algorithm’s input is security parameter k which determines strength of cryptosys-
tem. The output consists of public parameters P = 〈G1,G2,GT , e, n, P, Ppub, H1,
H2, H3, H4〉, description of finite message space M = {0, 1}n and ciphertext space
C = G2×{0, 1}2n and master key s. Public parameters are uploaded onto PPS and
published afterwards. Master key s ∈ Z∗q is kept secret and is known only to KGC.

Partial-Private-Key-Extract The algorithm is run by the KGC when one requests for
her private key. Input arguments are public parameters P , master secret s and an
identity string IDA ∈ {0, 1}∗. The output is partial private key DA corresponding
to given identity.

Set-Secret-Value Run by user to generate a secret value xA. In general case public
parameters P and appropriate identifier ID are inputs of the algorithm.

Set-Private-Key The algorithm computes user’s private key SA ∈ G∗2 from public pa-
rameters P , partial private key DA and the secret value xA ∈ Z∗q .

Set-Public-Key The algorithm computes user’s public key PA from public parameters
P and secret value xA.

Encrypt Invoked by the sender to encrypt message using specified identity. Takes public
parameters P , identity IDA, public key PA = 〈XA, YA〉, message M ∈M and returns
ciphertext C ∈ C. Providing that the public key is corrupted, the algorithm returns
⊥.

Decrypt Executed by the receiver to decrypt message using the corresponding private key.
As input takes private key SA, public parameters P , identity IDA, ciphertext C ∈ C
and outputs message M . Providing that the message is corrupted, the algorithm
returns ⊥.

12

Advantages

Certificatelesss cryptography can supply one of the most flexible infrastructures for public-
key cryptography. It combines the best aspects of both traditional public-key infrastruc-
ture and identity-based encryption, such as lack of certificates, no key escrow property,
reasonable trust to trusted third party and lightweight infrastructure. Applications of
CL-PKE can be the same as for PKI and IBE, that is companies’ networks, the Internet
and consumer electronics devices. As with IBE, certificateless cryptography can be used
as underlying mechanism for transparent email/sms encryption.

Drawbacks

Even thought public keys are not as simple as in identity-based encryption, it is still
possible to fetch the numerical part of the key from given identity. To provide this kind of
service, CL-PKE would have to incorporate a kind of public-key directory, present in web
of trust. Furthermore, performed computations are rather complicated and expensive,
so there is desire for faster algorithms before real-world systems can be implemented.
Finally, original version of CL-PKE reduces certificates only for users, but preserves them
on connections with PPS and KGC servers. To completely eliminate certificates, servers
of the scheme would have to belong to hierarchical CL-PKE. Then, the public parameters
and key of root server would be deployed together with software (as root CA’s certificates
in PKI).

2.2 Elliptic Curve Cryptography

Elliptic curves have numerous applications within public-key cryptography, and for this
reason their own field is known as elliptic curve cryptography. They supply basic mech-
anisms for identity-based and certificateless public encryption schemes. Although elliptic
curves are objects described by general equation:

Y 2 = X3 + aX + b, (2.1)

they are typically defined over finite fields when used within cryptography. Elliptic curves
are attractive structures, because they allow to construct cryptosystems whose security
relies upon hardness of finding discrete logarithms (ECDLP). Having points P and Q,
where Q = kP , there is no efficient algorithm for finding k. The most significant advan-
tages of ECC include shorter keys and fewer computations than in other popular schemes
(RSA, DH), while preserving the same level of security. An overall comparison may be
found in Tab. 3.1, where k is RSA public-key bit-length and nq is length of corresponding
ECC key.

Elliptic curve over finite field is a set of points (x, y) ∈ Fq×Fq satisfying (2.1) plus a point
at infinity O being identity element. These points form a finite Abelian group (E(Fq),+)
with negation of point P = (x, y) being−P = (x,−y) and operation of addition dependent
on q, but holding the following properties:

13

• if Q = O then P +Q = P

• if Q = −P then P +Q = O

• if Q 6= P then P +Q = R ∈ E(Fq).

The above facts allow us to construct operation of point multiplication, that is, for given
k it is straightforward to compute point Q = kP , since:

kP = P + P + · · ·+ P︸ ︷︷ ︸
k

. (2.2)

However, what is really utilized by elliptic curve cryptography is the cyclic subgroup of
E(Fq), because for any point P the set {O, P, 2P, 3P, . . .} is a cyclic group. Of course
the subgroup is much smaller (as comparison of np and nq in Tab. 3.1 indicates). Elliptic
curve discrete logarithm problem is built on top of the cyclic subgroup.

The area of elliptic curves is unbelievably wide and certainly out of scope of this disserta-
tion. The above introduction shall be enough for understanding mathematical foundations
of certificateless cryptography. Basic algorithms required by the project are described in
book [4]. Furthermore, elliptic curves alone are not sufficient to construct identity-based
schemes. These schemes incorporate pairings, which are mappings between groups.

2.3 Pairings

Pairing-based cryptography is a field in which cryptosystems are constructed upon pair-
ings. Most of identity-based schemes, among which are IBE, CBE and CL-PKE, belong
to this area. Generally speaking, pairing is a map between elements of two groups and
a third group. In practice, it allows to solve certain problem in one group, even if the
problem is said to be hard in another group. More detailed information about pairings
and their applications in the context of elliptic curve cryptography can be found in [11].

Although pairing is a more general concept, its definition within cryptography is as follows.
Let G1,GT be cyclic groups of prime order q and G2 group where each element has order
dividing q. Moreover, groups G1,G2 are additive and GT is multiplicative. Then, we say
that map e : G1 ×G2 → GT is an admissible pairing if satisfies the following properties:

1. Bilinear: e(aP, bQ) = e(P,Q)ab for all P ∈ G1, Q ∈ G2 and a, b ∈ Z.

2. Non-degenerate: e(P,Q) = 1GT
for all Q ∈ G2 if and only if P = 1G1 , and similarly

e(P,Q) = 1GT
for all P ∈ G1 if and only if Q = 1G2

3. Computable: There is an efficient algorithm to compute e(P,Q) for any P ∈ G1, Q ∈
G2.

The above definition is sometimes called the asymmetric pairing. When groups G1 and
G2 are the same group, then we say that pairing is symmetric. Moreover, it may be hard

14

to find discrete logarithms in the three groups, but the Decision Diffie-Hellman problem
(DDH) might be easy in G1 and G2. The DDH problem is important from theoretical
point of view when it comes to security of pairing-based cryptosystems. The concrete
implementations of pairings usually involve modified Weil or Tate pairing. More about
the underlying problems and their precise mathematical discussions may be found in
[5, 2, 10, 11].

2.4 Certificateless Cryptography Algorithms

After basic introduction to elliptic curve cryptography and pairings one is ready to un-
derstand precise definitions of CL-PKE algorithms:

Setup The algorithm comprises the following steps:

1. Generate tuple 〈G1,G2,GT , e〉 where G1 and GT are groups of some prime order
q, order of each element belonging to G2 group divides q and e : G1×G2 → GT

is pairing. Preferably q is a Solinas prime, i.e. one of the form q = 2e2±2e1±1,
where e1 and e2 are exponents.

2. Choose random generator P of G1 group.

3. Choose random master key s from Z∗q and compute public key Ppub = sP

4. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗2, H2 : GT → {0, 1}n,
H3 : {0, 1}n × {0, 1}n → Z∗q and H4 : {0, 1}n → {0, 1}n, where n is length of
plaintexts.

Partial-Private-Key-Extract The following steps are performed to compute the par-
tial private key:

1. Map identity to point on elliptic curve by computing QA = H1(IDA) ∈ G∗2.
2. Compute the partial private key DA = sQA ∈ G∗2.

Set-Secret-Value The algorithm chooses random xA ∈ Z∗q .

Set-Private-Key Outputs user’s private key by computing SA = xADA = xAsQA.

Set-Public-Key The algorithm returns PA = 〈XA, YA〉 = 〈xAP, xAPpub〉 = 〈xAP, xAsP 〉.

Encrypt Message encryption runs as follows:

1. If the conditions XA, YA ∈ G∗1 and e(XA, Ppub) = e(YA, P) are satisfied, move
to the next step. Otherwise, return ⊥ and stop.

2. Compute QA = H1(IDA) ∈ G∗2.
3. Choose random σ ∈ {0, 1}n.

4. Compute r = H3(σ,M).

5. Compute the ciphertext C = 〈rP, σ ⊕H2(e(QA, YA)
r),M ⊕H4(σ)〉. Note that

the most complex operation is pairing e(QA, YA), but its value is constant for
given identity and public key, therefore it does not have be recomputed every
time.

15

Decrypt Ciphertext C = 〈U, V,W 〉 ∈ C decryption runs as follows:

1. Compute σ = V ⊕H2(e(SA, U)).

2. Compute M = W ⊕H4(σ).

3. Compute r = H3(σ,M) and continue if U = rP . Otherwise, return ⊥ and stop.

4. Return M .

16

Chapter 3

Project

The following chapter elaborates each step of software engineering with regard to cer-
tificateless cryptography project. The first stage contains assumptions, limitations and
intended scope. Later, requirements are gathered so that functionality of the system is
well-defined. When it is already known what to do, one thinks how to do, i.e. designs soft-
ware by outlining its architecture, main modules and data flow between programs. The
core stage of product development involves implementation and tests, which guarantee
that system is built and works as expected. The final step covers software deployment
and configuration.

3.1 Assumptions

Every new theoretical idea requires a real-world prototype in order to assess practical as-
pects of the solution. Therefore, implementation of certificateless cryptography presented
in this work can be classified as a proof-of-concept project. The project provides email-like
platform but for the sake of simplicity the sender and the receiver work in client-server
architecture with no proper email implementation.

Moreover, provided cryptosystem is open to anyone, so each user has the right to choose
identity himself. This is very similar to the way public email servers work. Consequently,
the solution does not require users to authenticate to trusted third party before obtaining
identities. These crucial assumptions make KGC less trusted and cryptosystem as a whole
can be more credible.

Implementation of the cryptosystem shall be configurable to adapt to various working
environments. Editable options must include elliptic curve parameters, servers’ ports,
addresses, logins and passwords and perhaps other technically important features.

Heavy mathematics involved in the scheme has its reflection in underlying libraries such as
GMP (GNU Multiple Precision Arithmetic Library) [9], PBC (Pairing-Based Cryptogra-
phy Library) [12] and OpenSSL (Open Secure Sockets Layer Library) [1]. These essential
components are assumed to work properly and with no significant bugs in the applied

17

context. Unfortunately earlier releases of GMP and PBC did not fulfil the requirement
and were carefully used in the project.

The last but perhaps the most important assumptions are security considerations. The
KGC server behaves honestly, that is, does not mount attacks against users. In practice it
means that KGC is forbidden to actively propagate false public keys. The nature of this
assumption is similar to one placed on Certificate Authority in public key infrastructure.
In addition, encrypted message sent by Alice to Bob is not altered in any way, so no
integrity techniques are applied to protect the data against this type of attacks.

3.2 Requirements

Most requirements for the project are basic prerequisites which make up workable model
without more advanced features or extensions. Of course, extra functionality is tempting
but usually is beyond the scope of a core problem. The gathered requirements come from
fundamental features of scalable and configurable IBE/CL-PKC cryptosystems described
in [2, 6, 3].

3.2.1 Global

General requirements refer to technical features which are valid across different software
parts (PPS, KGC, The Sender, The Receiver).

Connection with PPS Connection with PPS is always secured by Transport Layer
Security (TLS). Moreover, the subject name in the server certificate matches the
URL of PPS.

Secure Sockets Secure Sockets are provided by OpenSSL and Sockets libraries.

Certificate Format SSL certificates for servers are stored in PEM format.

Third-Party Libraries GMP and PBC libraries support computing mathematical for-
mulas defined in certificateless cryptography.

Code Portability Software can be compiled at least on the following platforms: MS
Windows, Linux, *BSD.

Security Parameter Cryptographic strength of the CL-PKE scheme depends on secu-
rity parameter k which corresponds to the modulus bit-size of comparable security
in Diffie-Hellman or RSA public-key cryptosystems. Value of security parameter has
influence on the choice of basic hash function and elliptic curve parameters: np (bit-
length of prime p determining the order of the base finite field Fp over which the
elliptic curve E(Fp) is defined) and nq (bit-length of prime q determining the order
of the cyclic subgroup in E(Fp). Table 3.1 shows valid possibilities. Although the
second column is not utilized by CL-PKE, it presents how security level determined
by k relates to strength of symmetric key cryptography.

18

k Bits of security np nq Hash function Hash function OID
1024 80 512 160 SHA-1 1.3.14.3.2.26
2048 112 1024 224 SHA-224 2.16.840.1.101.3.4.2.4
3072 128 1536 256 SHA-256 2.16.840.1.101.3.4.2.1
7680 192 3840 384 SHA-384 2.16.840.1.101.3.4.2.2
15360 256 7680 512 SHA-512 2.16.840.1.101.3.4.2.3

Table 3.1: Mapping between security parameter k and corresponding values

Solinas Prime Order of the cyclic subgroup in E(Fp) is a Solinas prime q, that is one
of the form q = 2e2 ± 2e1 ± 1, where e1 and e2 are exponents.

Groups Certificateless cryptography depends on specific groups to perform computa-
tions. Groups G1 and G2 are the same, and are in fact a group of points belonging
to elliptic curve E(Fp).

Elliptic Curve Elliptic curve over field Fp is given by equation Y 2 = X3 +X.

Pairing For the used Type A elliptic curve modified Tate pairing shall be applied. The
pairing is supplied by PBC library.

Basic Hash Function Basic hash function is used by CL-PKE specific H3, H4 functions.
Choice of the function depends on security parameter k and can be found in Tab.
3.1.

Identities Identities can be arbitrary ASCII strings composed of printable characters.

Format of Public Paramaters Data encoded in ASCII text format contain the follow-
ing lines:

q
exp2
sign1

exp1
sign0

H
[Px, Py]
[Ppubx, Ppuby]
KGCAddr

KGCPort

where:
q Solinas Prime, that is prime of the form:

q = 2exp2 + sign1 ∗ 2exp1 + sign0

H OID of basic hash function as specified in Tab. 3.1
Px, Py Coordinates of point P which is random generator of G1 group
Ppubx, Ppuby Coordinates of point Ppub which is system-wide public key
KGCAddr IP/URL address of KGC server
KGCPort Port on which KGC server is listening

File Storage of Public Parameters Public parameters are stored in ASCII text file.

19

3.2.2 Public Parameters Server

PPS stores publicly sharable cryptographic material which is called public parameters.
For every user of the system PPS is the first place to look for data describing the system.

Functional

Stores Public Parameters PPS is the only place with valid up-to-date public param-
eters. Public parameters include all of the information needed to encrypt/decrypt
message except for identities and users’ key pairs.

Server is Open to Anyone Like a public web server, provides content to any connected
client. Location of PPS is publicly known and available (preferably PPS per name
space such as a DNS zone).

PPS is Updatable by Key Generation Center Public parameters can be changed
by KGC. Any update of this type makes users recompute their keys. KGC authen-
ticates itself before providing new set of public parameters.

PPS Supplies Verbose Output Text output from PPS makes it possible to trace
changes in public parameters.

Configuration It is possible to set at least the following options: public parameters, file
with certificate in PEM format, corresponding password, login and password for
public parameters update, address and port of KGC.

Non-functional

Threads PPS runs as a single-threaded server, because sending public parameters is
probably more efficient than starting separate thread and handling request.

Server Configuration Basic options are stored in ASCII text file in the following for-
mat:

NThreads

PPSPort

Certfile
Certpass

where:
NThreads Number of threads in server’s threadpool. In present version this value

is always 0.
PPSPort Port on which PPS server is waiting
Certfile Path to PEM certificate
Certpass Password to certificate

KGC Login and Password Both strings can be composed of any set of printable ASCII
characters. There is no limit on size of the strings. The pair is stored in ASCII text
file in the following format:

20

login
password

3.2.3 Key Generation Center

KGC is at the heart of CL-PKC cryptosystem. Its responsibilities include issuing keys for
users, generation and update of public parameters.

Functional

Issues (Partial) Private Keys Main task of KGC is derivation of (partial) private keys
from users’ identities. Here identity is any, unique within KGC, string of characters.
The string is preferably, but not limited to, email address. The distinction between
partial private key and private key is that the former is used in CL-PKC system,
while the latter in identity-based encryption. Thus, KGC is a universal unit capable
of providing services for various cryptosystems.

Generates System Parameters KGC generates system parameters, that is public pa-
rameters together with master secret. Strength of the parameters depends on secu-
rity parameter k which corresponds to RSA modulus bit-length of comparable level
of security.

Updates Public Parameters Server PPS must always store the most up-to-date pub-
lic parameters. These parameters are supplied by KGC upon successful authentica-
tion to PPS.

Stores Master Secret KGC generates master secret along with public parameters. Mas-
ter secret is kept in confidence by Key Generation Center. It is used for computing
(partial) private keys from identity material.

Server is Open to Anyone Like a public email server, allows any user to register new
account and start using it immediately. KGC does not require user credentials au-
thentication which means that clients can choose ID’s of their preference (just like
a mail login). It would be preferable to have KGC per name space such as a DNS
zone.

KGC Supplies Verbose Output Text output from KGC makes it possible to trace
changes in public parameters and users obtaining (partial) private keys.

Configuration It is possible to set at least the following options: public parameters,
master key, file with certificate in PEM format, corresponding password, login and
password for public parameters update, address and port of PPS.

Non-functional

Encrypted and Authenticated Connection Connection with KGC is always secured
by Transport Layer Security (TLS). Moreover, the subject name in the server cer-
tificate matches the URL of the KGC.

21

Threads KGC runs nominally as a thread-pooled server with one governing thread and
two worker-threads. However, it is possible to increase/reduce the number of worker-
threads.

Server configuration Basic options are stored in ASCII text file in the following fashion:

Nthreads

KGCPort

Certfile
Certpass

where:
Nthreads Number of threads in server’s threadpool
KGCPort Port on which KGC server is waiting
Certfile Path to PEM certificate
Certpass Password to certificate

File Storage of Master Secret Numerical value of Master secret is stored in ASCII
text file in the following format:

s

PPS Address and Port The pair is stored in text file in the following format:

PPSAddr

PPSPort

where:
PPSAddr IP/URL of PPS server
PPSPort Port on which PPS server is waiting

3.2.4 The Sender

The sender (aka Alice) acts as a person who wishes to send an encrypted message to a
friend (aka Bob). To send such a message Alice asks Bob for his public key, downloads
public parameters from PPS, encrypts the message and sends it to Bob. To avoid unnec-
essary overhead related to POP3/SMTP protocols Alice connects to Bob directly over
unsecured channel.

Functional

Downloads Public Parameters Alice downloads public parameters before encryption
takes place. The parameters come from PPS which means that the sender must
know location of the server.

Retrieves Public Key from Bob The sender asks Bob for his public key (but not
identity). The key is de facto a point on elliptic curve defined in public parameters.

22

Encrypts Message Message encryption is the core operation of the project, and also
the most complicated. It is a well-known fact that symmetric cryptography is much
faster than public key cryptography in practical implementations. Therefore, it is
reasonable to employ hybrid encryption which combines strengths of each encryption
method. Symmetric encryption is used to cipher the message with a (pseudo)random
secret key called Content Encryption Key (CEK). Later, the CEK is protected by
public key cryptography. Effectively CL-PKC protects only CEK which is usually
much shorter than the message, and so it takes less time to encrypt the data. Alice
ciphers CEK with key computed from public parameters, Bob’s identity and cor-
responding public key. Along with the encrypted message enciphered CEK, Public
Parameters Server address and used identity are sent. These are needed in case Bob
possesses several identities.

Sends Message to Bob As stated previously, message is composed of encrypted con-
tent, CEK, PPS address and recipient’s identity. It is transmitted to Bob over un-
secured channel. Although in a real-world setting it could be email, here it is direct
connection in the client-server model.

Gets Input Data from User There are two compulsory input data: message content
and recipient’s identity. Both can be any printable strings of ASCII characters.

Supplies Verbose Output Text output from the sender makes it possible to trace pub-
lic parameters, Bob’s public key and encrypted message.

Non-functional

Connection with Bob Connection with Bob is not secured in any way. It works as a
public channel vulnerable to eavesdropping but no content manipulation.

Symmetric Encryption AES encryption algorithm is the choice for securing message
with 256-bit (pseudo)random key.

3.2.5 The Receiver

The receiver (aka Bob) is recipient of CL-PKC encrypted message sent by Alice. Firstly
Bob asks KGC for his partial private key, then generates private/public key pair and
shares the latter with Alice. Upon receiving the message he decrypts it and prints out the
content. Bob is not an email client and for simplicity acts a server waiting on incoming
messages.

Functional

Downloads Public Parameters Bob downloads public parameters to get the address
of KGC, and later to decrypt the message. The receiver must know location of the
PPS server.

23

Obtains (Partial) Private Key from KGC The receiver connects to KGC, presents
its identity and asks KGC to compute the (partial) private key. After successful
generation the key is transmitted to Bob.

Generates Key-Pair Bob creates public/private key pair from partial private key and
pseudo(random) value xA. Both keys are points on elliptic curve.

Shares Public Key on Demand Bob shares his public key with any client requesting
it. As it comes from certificateless cryptography, no certificate or authentication is
required to confirm association between the key and the owner.

Decrypts Message Decryption process is somewhat similar to message encryption but
includes one additional step. When Bob receives message, he looks for identity and
proper public parameters. Secondly, he decrypts Content Encryption Key using
public parameters, his identity and public key. The next step requires validation
of the decrypted key. After that, the receiver deciphers the content by means of
symmetric decryption algorithm.

Receives Message from Alice The message is composed of encrypted content, CEK,
PPS address and recipient’s identity. Bob receives the message over unsecured chan-
nel which is similar, when it comes to the level of trust, to POP3 email protocol. In
this setting, the receiver acts as a server waiting for incoming messages.

Supplies Verbose Output Text output from the receiver makes it possible to trace
public parameters, Bob’s key pair and decrypted message.

Configuration It is possible to set at least the following options: public parameters,
address and port of PPS, public/private key pair, (partial) private key.

Non-functional

Connection with KGC Connection with KGC is always secured by Transport Layer
Security (TLS). Moreover, the subject name in the server certificate matches the
URL of the KGC.

Connection with Alice Connection with Alice is not secured in any way. It works as a
public channel vulnerable to eavesdropping but no content manipulation.

Symmetric Encryption AES encryption algorithm is the choice for securing message
with 256-bit (pseudo)random key.

PPS Address and Port The pair is stored in text file in the following format:

PPSAddr

PPSPort

where:
PPSAddr IP/URL of PPS server
PPSPort Port on which PPS server is waiting

24

(Partial) Private Key Storage The key is stored in text file in the following format:

[DAx, DAy]

where:

DAx, DAy Coordinates of DA partial private key

Key-Pair Storage The private/public key pair is stored in the text file in the following
format:

[XAx, XAy]
[YAx, YAy]

where:
XAx, XAy Coordinates of XA public key
YAx, YAy Coordinates of YA private key

Server Configuration Basic options are stored in ASCII text file in the following fash-
ion:

ID
IDPass

BobPort

where:
ID Bob’s identity of user’s choice
IDPass Password for given identity (in case KGC required it)
BobPort Port on which Bob server is waiting

3.3 Design

Software requirements and specification find their reflection in design of a project. The
following section outlines proposed solution, i.e. software architecture, modularization,
data flow between applications and specification of employed protocols. Due to natural
software complexity, textual descriptions are supported by various diagrams which show
how particular units interact with each other.

3.3.1 Architecture

Nature of the project makes it network-oriented and as such is similar to email or www
services. The ultimate goal is to provide end-to-end data protection over networks, there-
fore it is obvious to follow client-server model to implement required services. The whole
system is composed of four software parts which run as stand-alone applications: Pub-
lic Parameters Server, Key Generation Center, The Sender and The Receiver. All the
applications, excluding The Sender, run as servers. Architecture of proposed solution is
depicted in Fig. 3.1.

25

Configuration

«standard»

«auth»«auth» «secure»

Configuration

Server

Client

Server

Configuration

«secure»

Client

ClientServer

Configuration

The Sender The Receiver

Key Generation CenterPublic Parameters Server

Figure 3.1: Deployment diagram of certificateless cryptography project

Basically, PPS stores public parameters which are used by every user of certificateless
cryptography. It acts as a web server but uses different protocol to transfer data. Inter-
nally PPS server runs as a single-threaded application. As handling each request can be
done very quickly, it is more efficient than starting separate thread to send public param-
eters. Occasionally, public parameters may be updated by Key Generation Center, which
sends packet with new parameters to PPS. Parameters are updated after successful au-
thorization, which is achieved by means of password. Besides logic, PPS contains module
responsible for storing current configuration, i.e. public parameters and server’s settings.

Key Generation Center application is more complicated than PPS, because it can work
either as client or server. KGC switches to client mode during setup of cryptosystem. At
this stage public parameters are uploaded onto PPS and master key is saved by KGC.
Setup is done only when new parameters need to be generated (in practice very seldom).
In nominal mode KGC is a server computing (partial) private keys from users’ identities.
Due to relatively expensive operation of point multiplication, which produces user’s key,
server sends these tasks to threadpool. The threadpool contains a constant number of
threads, which are responsible for generating the key and sending it back to the user.
This method of program execution allows to simultaneously accept requests and generate
keys. Yet another module is configuration which manages server’s settings.

Another server is implemented in The Receiver module (aka Bob). Its presence is justified

26

by simulation of electronic mail. In this nominal mode Bob receives messages directly
from The Sender, decrypts them and prints out the output on screen. Additionally, The
Receiver can run in client mode to generate own key pair. Again, client mode is used only
when public parameters got updated or Bob needs new keys. As with previously described
servers, The Receiver contains configuration unit responsible for managing application’s
settings.

The last software part is Alice application also called The Sender. It acts as a client who
firstly receives public parameters from PPS, later obtains Bob’s public key and finally
sends encrypted data. Configuration module is relatively simple is not meant to supply
any data persistence.

Most connections shall be secure to some extent. Properties of connections are marked in
Fig. 3.1. Authenticated ones have <<auth>> writing. This kind of connections ensures that
non-altered data come from certain source. When connection is described by <<secure>>
label, then it has to preserve authenticity, integrity and confidentiality (because carries
sensitive data, such as passwords or keys). If there is no need for additional security,
then <<standard>> applies. Unsecured connection relies on TCP protocol to transfer
data. In current implementation of certificateless cryptography certificate management is
pushed upward, that is, certificates concern the whole domains instead of single users. If
connection is not a standard one, then it is protected by Transport Layer Security (TLS)
offered by OpenSSL library.

3.3.2 Data Flow

Network-orientation of the project can be confusing if described only in words. A well-
known object method of software engineering is to present data flow in sequence diagrams.
The diagrams not only show interactions between processes but also the order of oper-
ations. It is reasonable to depict only the core elements of the project which are not
self-explanatory.

System Parameters Setup

Setup of system parameters is the first task to do to initialize certificateless cryptography
platform. Administrator runs Public Parameters Server, which is waiting for packet with
public parameters. Key Generation Center is responsible for generating public parameters
and master key (altogether called system parameters). Strength of system parameters
depends on security parameter k. When the parameters are ready, KGC sends proper
packet to PPS. PPS sets new parameters after successful authentication of the packet
and sends back confirmation (or error message). The whole process is depicted in Fig. 3.2.

27

Administrator

System Parameters Setup

1. Administrator runs KGC in setup
 mode.
2. KGC creates new System Parameters.
3. System Parameters are generated.
4. KGC sends Public Parameters packet
 to PPS.
5. PPS sets Public Parameters.
6. PPS sends confirmation packet
 to KGC.

sendInfoPacket

sendPubParamSetPacket

generate

create systemParam:SystemParam
setup

kgc:KGC pps:PPS

Figure 3.2: Sequence diagram of system parameters setup

User’s Key Pair Setup

To become a member of CL-PKE scheme each user must generate own key pair: public and
private key. The Receiver (aka Bob) application is run by user in setup mode to compute
the keys. Firstly, Bob contacts Public Parameters Server and obtains public parameters
which include KGC address. In the next step he sends key-request with his identity to
KGC. After that, KGC generates partial private key and sends back to Bob. The Receiver
is now ready to choose random secret value and compute corresponding private and public
keys. Figure 3.3 presents steps involved in the described process.

Similarly to original IBE scheme, there is a confidential channel with KGC to obtain
partial private key. If the communication was not secure, the attacker could wiretap the
partial private key and mount an attack against identity owner. The attack might be as
follows: setup false key pair and publish public key in a directory. Any sender using the
given key and identity would encrypt message only readable to the attacker, but not the
owner.

Confidential Communication

Confidential communication is the main service provided by the project. There are two
users who want to send secure messages. Application named Alice sends message to Bob,
who acts as recipient. Bob prints out decrypted message so that user can read the output.
The whole activity starts with user typing the message and identity she intends to use.
Next, Alice fetches Bob’s public key and encrypts the message using Content Encryption
Key and symmetric algorithm. When she is done, encrypted CEK is attached to encrypted
data. She sends the packet to Bob, who reverses the activities. Firstly, he decrypts CEK
and after that, decrypts the message. The interaction between user and applications is
shown in Fig. 3.4.

28

sendPubParamPacket

sendPubParamReqPacket

setPublicKey

setPrivateKey

setSecretValue

User

User's Key Pair Setup

1. User runs Bob in setup mode.
2. Bob requests Public Parameters
 from PPS.
3. PPS sends Public Parameters.
4. Bob requests (partial) private key
 from KGC.
5. KGC generates the key.
6. KGC sends the key.
7. Bob sets secret value.
8. Bob computes private key.
9. Bob computes public key.

sendKeyPacket

sendKeyReqPacket

generate

kgc:KGC

setup

bob:Bob pps:PPS

Figure 3.3: Sequence diagram of user’s key pair setup

decryptMsg

decryptCek

sendPubKeyReqPacket

encryptCek

encryptMsg

alice:Alice

Confidential Communication

sendPubKeyPacket

sendMsgPacket

genCek

User
1. Alice receives user's message.
2. Alice requests public key from Bob.
3. Bob sends public key to Alice.
4. Alice generates content encryption
 key (CEK).
5. Alice encrypts message with CEK.
6. Alice encrypts CEK with Bob's ID
 and public key.
7. Alice sends encrypted message.
8. Bob decrypts CEK with his private
 key.
9. Bob decrypts message with CEK.

message

bob:Bob

Figure 3.4: Sequence diagram of confidential communication

29

3.3.3 Protocols

TCP is the underlying protocol of the platform. However, TCP does not provide any level
of data security in the sense of confidentiality or authenticity. Therefore, some links make
use of TLS protocol to protect sensitive data. Transport layer is medium used for carrying
applications’ data but it is the application, that defines format of the data. Organized
chunks of data are called packets. In general case the two types of packets are: binary
or textual. The project makes use of textual packets, because they are more universal,
work well with GMP and PBC libraries, can be easily modified and are more scalable.
Certificateless cryptography utilizes the following application-level packets:

Public Parameters
Name : PubParamPacket
Direction : PPS → {Alice,Bob}
Content : Public Parameters
Description : Sent by PPS on client’s request.

Public Parameters Request
Name : PubParamReqPacket
Direction : {Alice,Bob} → PPS
Content :
Description : Client requests public parameters packet.

Set Public Parameters
Name : PubParamSetPacket
Direction : KGC → PPS
Content : Public Parameters, KGC login and password
Description : Contains up-to-date public parameters. PPS requires valid login

and password to set up new public parameters.

(Partial) Private Key
Name : KeyPacket
Direction : KGC → Bob
Content : (Partial) Private Key
Description : KGC sends generated (partial) private key.

(Partial) Private Key Request
Name : KeyReqPacket
Direction : Bob → KGC
Content : Identity and optional password
Description : User requests (partial) private key for his identity.

Public Key
Name : PubKeyPacket
Direction : Bob → Alice
Content : Public Key
Description : Sent by Bob when Alice requests public key.

Public Key Request

30

Name : PubKeyReqPacket
Direction : Alice → Bob
Content :
Description : Alice requests public key packet.

Message
Name : MsgPacket
Direction : Alice → Bob
Content : Encrypted message
Description : Alice sends CL-PKE encrypted message to Bob.

Information
Name : InfoPacket
Direction : PPS → {KGC,Alice,Bob}
Content : Result of operation execution
Description : Alice requests public key packet.

All the packets and the way they are interchanged between processes are depicted in data
flow diagram in Fig. 3.5.

PPS

Alice Bob

KGC

PubParam,
Info

PubParamReq

PubParamReq

PubParam,
Info

PubParamSet

KeyKeyReq

PubKey

PubKeyReq,
Msg

Info

Figure 3.5: Data Flow Diagram of packets.

31

3.4 Implementation

The main aim of software engineering is to create application according to requirements.
This stage focuses on specific tools such as programming languages, libraries and compo-
nents which allow to quickly produce software of high quality.

Certificateless cryptography is implemented in conformity with object-oriented paradigm.
This method focuses on data modelling and constructing data-centric software. Moreover,
it hides technical details, so that large parts of code can be reused thanks to well-defined
interfaces.

The project itself is written in C++ language, but prototypes of several functions were
built in Haskell. The latter supported test-related activities, which are described in Sec.
3.5. C++ was chosen as the main language, because it provides object-oriented paradigm
and generic programming which make it easy to develop software on relatively high level
of abstraction. Besides, the language is known for its outstanding performance compared
to other popular object-oriented languages, such as Java or Ruby. Moreover, C++ works
well with underlying C libraries: GMP, PBC and OpenSSL. Another library, i.e. Sockets,
supplied event-driven abstraction of the sockets mechanism.

On the other hand, programming in C++ itself is certainly slower than programming
in Ruby or other modern language, because developer still needs to tackle with manual
memory management or separating header files from implementation. Moreover, weak
typing mechanism does not prevent programmer from making mistakes, which results in
non-easily detectable bugs and long time spent on application debugging. Anyway, the
cost of programming in C++ is perhaps still lower than the cost of creating/binding
existing libraries to other languages when there is no reference code.

The whole project of certificateless cryptography is meant to use only free libraries and
mechanisms, such as BSD sockets, GMP, PBC, OpenSSL and Sockets. This approach
allows to create low-cost project relying on well-tested, universal and common compo-
nents. Furthermore, thanks to rich documentation and great deal of resources/examples
available on the Internet, many coding problems can be solved quickly and reliably.

3.4.1 Common

Even though architecture of certificateless cryptography defines four applications, there
is a rich common base of classes, methods, functions which implement essential algo-
rithms, hash functions, synchronization facilities and wrappers of low-level procedures.
The Common module aggregates the following pieces of code:

• Certificateless cryptography algorithms and data structures.

• Basic and advanced hash functions.

• Standard and secure sockets both for clients and servers.

• Windows/POSIX mechanisms of synchronization and threading.

32

• Application-level packets (described in Sec. 3.3.3).

• Configuration modules of applications.

• Generic utilities for parsing application parameters, wrapping up libraries and data
conversions.

Gathering these facilities in one place makes development of target applications easier and
more reliable. It is a good practice of object-oriented paradigm to wrap up shared methods,
so that that the code is more concise, parts of software fit well with each other and
interfaces are clear. Besides this, final applications benefit from having similar structure
and alike constructions. All of these support creating self-documenting code which is easy
to understand and maintain.

3.4.2 Public Parameters Server

PPS contains the following components:

Configuration Manages server’s configuration and is responsible for loading, storing
and sharing setup data. One global instance of the class is valid across the PPS
application. Besides basic parameters of SSL sockets it also keeps CL-PKE public
parameters, login and password required for public parameters update.

PPS Server Socket The server socket module contains business logic of PPS by han-
dling incoming packets among which the most important are Public Parameters
Request and Set Public Parameters. In response to the first packet sends public pa-
rameters or information signaling that no parameters are set up. The second packet
invokes validation of login and password upon which new parameters are saved.
Whatever the result, PPS sends packet with feedback to KGC. The server socket
uses Sockets library and overloads methods which handle certain events (reception
of packets).

PPS Main The main module holds application’s entry point and setup routines. It can
be run either in setup or normal mode. The former takes input parameters and saves
them in configuration files. The latter creates server socket and makes it wait for
incoming events.

3.4.3 Key Generation Center

KGC contains the following components:

Configuration Manages server’s configuration and is responsible for loading, storing
and sharing setup data. One global instance of the class is valid across the KGC
application. It keeps basic parameters of SSL sockets, address and port of PPS, login
and password for public parameters update.

33

KGC Server Socket Its primary role is (partial) private key generation by means of
Partial-Private-Key-Extract algorithm. The server socket handles only one type
of packet, namely Key Request which later invokes the mentioned algorithm. Every
request is sent to the Threadpool component, so that both keys and requests can
be handled simultaneously. Similarly to PPS, the server socket uses event-driven
Sockets library.

KGC Client Socket This module is used only in setup mode when KGC wishes to
generate and publish public parameters. On successful connection to PPS, sends
Set Public Parameters packet and in case of any error prints out message with
details.

Threadpool Runs fixed number of threads which take key generation tasks and after
serving them block on internal queue. A single task computes (partial) private key
from user’s identity and sends it back to client.

KGC Main As with PPS, the main module contains application’s entry point and setup
routines. It may run in setup or normal mode. The setup mode implements CL-PKE
Setup algorithm, makes use of KGC Client Socket and saves configuration data in
files. In the other mode, KGC runs server socket and handles incoming requests.

3.4.4 The Sender

The Sender contains the following components:

Configuration Manages client’s configuration and is responsible for loading and sharing
setup data. One global instance of the class is valid across The Sender application.
The module keeps addresses and ports of PPS and Bob servers.

Alice Client Socket This core component performs Encrypt function specific to certifi-
cateless cryptography. Firstly sends Public Key Request to Bob in order to obtain
recipient’s public key. When the key is already received, client socket reads identity
and message from the standard input, encrypts message and sends data to Bob
afterwards. Having sent the packet, closes connection with The Receiver.

Alice Main The main component is the place where application’s entry point is kept.
The application firstly sets up configuration data, later fetches public parameters
from PPS, and finally runs client socket module.

3.4.5 The Receiver

The Receiver contains the following components:

Configuration Manages configuration and is responsible for loading, storing and sharing
setup data. One global instance of the class is valid across the Bob application.
Besides basic parameters of SSL sockets it also keeps address and port of PPS,
current public parameters and public/private key pair.

34

Bob Server Socket The server socket component handles packets coming from Alice,
that is Public Key Request and Message. In fact, the latter implements CL-PKE
Decrypt algorithm which is invoked whenever encrypted message arrives. After mes-
sage decryption, its content is printed out so that user can read the text.

Bob Client Socket The module is responsible for communication with KGC and pro-
vides the following CL-PKE routines: Set-Secret-Value, Set-Private-Key and
Set-Public-Key. On start, the component connects to KGC and sends Key Re-
quest to obtain (partial) private key. After reception of the Key packet, Bob gener-
ates key pair and closes connection. In case of error, shows message explaining the
problem. The client socket makes use of the Sockets library to make up protected
communication channel with KGC.

Bob Main Organizes global flow of control and contains application’s entry point. Sim-
ilarly to KGC, may be run in either setup or normal mode. The former reads input
parameters, obtains public parameters, generates key pair and stores data in con-
figuration files. The latter runs server socket and waits in infinite loop for incoming
events.

3.5 Test

Tests are integral part of every serious software project; they usually come in two flavours:
unit and functional. As mentioned earlier, some supporting code was written in Haskell.
Haskell is a pure functional programming language offering very high level of abstrac-
tion and interactive environment (at least in GHC implementation). It works great as a
prototyping and supporting tool, since the programmer does not need to concentrate on
low-level details, but the algorithms themselves. Thanks to interactive environment it is
possible to quickly generate valid public parameters or any other values useful for testing
and debugging C++ code. Moreover, Haskell helped me with understanding implementa-
tion of ECC-related algorithms and detecting mistakes in SignedWindowDecomposition
algorithm in [6].

The set of selected tests covers a great deal of code and verifies several aspects of final
software, i.e. correctness of cryptographic algorithms, application of basic libraries, pro-
tocols, functionality of the system. Therefore, it is justified to assume that certificateless
cryptography project works properly when all tests terminate with success.

3.5.1 Unit

Unit tests are meant to verify code of small units which are usually classes or sets of func-
tions. Test vectors are one of the most reliable method used for verifying correctness of
implemented cryptographic algorithms. They are set of input/output data characteristic
to specific procedure. Usually they are provided by authors of the function or renowned
organizations. Sometimes when there is no implementation of theoretical idea there might
be no test vectors, which complicates process of testing. It is partly the case of certificate-
less cryptography. At the time of writing this dissertation there is still no widely-available

35

implementation of CL-PKE, and for this reason it is not possible to test the whole scheme.
However, thanks to implementations of identity-based cryptography testing of common
algorithms is feasible. Sample unit tests incorporating vectors are described below.

Function hashToRange

Hash to range procedure hashes string s onto element belonging to set {0, 1, . . . , n − 1}.
The hash is computed by provided basic hash function hashFcn. The vector comes from
[6] document.

Input
s = 54:68:69:73:20:41:53:43:49:49:20:73:74:72:69:6e:67:20:77:69

:74:68:6f:75:74:20:6e:75:6c:6c:2d:74:65:72:6d:69:6e:61:74:6f
:72
(“This ASCII string without null-terminator”)

n = 0xffffffffffffffffffffefffffffffffffffffff
hashFcn = 1.3.14.3.2.16 (SHA-1)

Output
v = 0x79317c1610c1fc018e9c53d89d59c108cd518608

AES-256 Algorithm

Text messages are encrypted with symmetric algorithm, namely 256-bit version of AES.
Although, it is provided by well-tested OpenSSL library, the whole function is built upon
several OpenSSL procedures. Therefore, it is desirable to verify whether they are used in
CL-PKE project correctly. The test vector comes from [8] document.

Input
plaintext = 0x00112233445566778899aabbccddeeff
key = 0x000102030405060708090a0b0c0d0e0f101112131415161718191a1b

1c1d1e1f

Output
ciphertext = 0x8ea2b7ca516745bfeafc49904b496089

CL-PKE Implies ID-PKC

Certificateless cryptography is easily transformable into identity-based encryption, i.e. by
setting secret value xA = 1 and computing private/public keys accordingly. Following this
idea, CL-PKE should accept any test vectors valid for identity-based cryptography.

36

CL-PKE Scheme

Another test checks if certificateless cryptography works, i.e. executes each of algorithms
and verifies the final result. Firstly, generates system parameters for security parameter
k = 1024. Later, creates recipient’s key pair and encrypts fixed message M under cer-
tain identity ID, its public key and global public parameters. The ciphertext C is then
decrypted using the same ID and corresponding private key. Finally the output M ′ is
compared with original message M . Although this kind of test is much weaker than test
vectors, it is reasonable to build it when there are no known test vectors for given scheme.

3.5.2 Functional

Functional tests help to assess software from user’s point of view. In practice user runs
executable version of software and performs various activities which are directly visible
and verifiable. This kind of tests allows to validate behaviour of many functions which are
coupled with each other and provide expected functionality. As the tests are performed by
humans, they are well-defined and strict so that user with no prior experience is capable
of checking results.

System Parameters Setup

1. Run PPS by executing pps command.

2. Run KGC by executing kgc --setup=1024 command, which creates system param-
eters with security parameter k = 1024.

3. Check whether public parameters shown by PPS are the same as these of KGC.

4. If parameters are equal, then the test is passed.

User’s Key Pair Setup

1. Run PPS by executing pps command.

2. Assuming that system parameters are generated, run KGC by executing kgc com-
mand.

3. Run Bob by executing bob --setup.

4. Check whether (partial) private key shown by KGC is the same as this of Bob.

5. Check whether Bob application prints out public and private key (two points).

6. If (partial) private keys are equal and Bob showed key pair, then the test is passed.

37

Confidential Communication

1. Run PPS by executing pps command.

2. Assuming that system parameters are generated, run KGC by executing kgc com-
mand.

3. Assuming that key pair is generated, run Bob by executing bob command.

4. Run Alice by executing alice command.

5. Check whether public parameters shown by Alice are the same as these of PPS.

6. Check whether public key shown by Alice is the same as this of Bob.

7. Type ID: bob@domain.org.

8. Type message: Hello Bob! and press enter twice.

9. Check whether message shown by Bob is the same as this of Alice.

10. If public parameters, public key, message are equal in mentioned applications, then
the test is passed.

3.6 Setup

Setting up CL-PKE cryptosystem is rather a simple process. Firstly, administrator should
generate two certificates in PEM format (using OpenSSL package). One certificate is for
Public Parameters Server and another one for Key Generation Center. Note that certifi-
cateless cryptography is about lack of certificates for users, not for core servers. Generated
PEM files shall be called respectively pps.pem and kgc.pem. Administrator should put
these files into directories with pps and kgc applications. Of course the described settings
might be overridden by updating certain configuration files (described in Sec. 3.7).

Having prepared the certificates, administrator runs pps application with --setup option
to generate basic configuration. Next, the pps command should be run with no additional
parameters. The PPS server is waiting for initial public parameters. Now operator starts
kgc application with option --setup=k, where k is valid security parameter described
in Tab. 3.1. KGC generates system parameters, sets up the PPS server and terminates.
After that, kgc application shall be run again, but without parameters. Both servers are
ready and are waiting for incoming requests.

The two running servers form infrastructure of certificateless cryptography. One of the
users, namely Bob, generates his public/private key pair. It is achieved by starting bob
program with --setup option. The application terminates after successful creation of the
keys. Because the receiver acts as a server, user shall start it by typing bob command.

At this point the cryptosystem is set up and user can encrypt and send some message by
means of alice program.

38

3.7 Configuration

Configuration of different software parts allows user to adapt the software according to
own preferences. All the data are stored in ASCII text files. This way of keeping data
fits better to implemented system than external database. Basically, there is no need
to use additional software just to save up to several kilobytes of data. Moreover, text
files are platform independent and make it possible to update parameters by hand. Each
application’s configuration files are kept in the same directory as application.

3.7.1 Public Parameters Server

.ppsppconfig Contains public parameters stored according to Format of Public Pa-
rameters requirement.

.ppsservconfig Contains options of PPS server stored according to Server Configu-
ration requirement.

.ppsauthconfig Contains authentication data used for remote public parameters update.
The configuration is stored according to KGC Login and Password requirement.

Command line allows to set the following options when executing pps:

Option Description
--setup Indicates setup mode
--port=PPSPort Override PPS port
--login=Login Override login for public parameters update
--pass=password Override password for public parameters update
--certfile=Certfile Override path to PEM certificate file
--certpass=Certpass Override password to certificate

3.7.2 Key Generation Center

.kgcppconfig Contains public parameters stored according to Format of Public Pa-
rameters requirement.

.kgcspconfig Contains master secret stored according to File Storage of Master Se-
cret requirement.

.kgcservconfig Contains options of KGC server stored according to Server Configu-
ration requirement.

.kgcclientconfig Contains parameters of connection with PPS stored according to
PPS Address and Port requirement.

Command line allows to set the following options when executing kgc in normal mode:

39

Option Description
--nthreads=NThreads Override number of threads in pool
--certfile=Certfile Override path to PEM certificate file
--certpass=Certpass Override password to certificate

Additionally, in setup mode the following options can be set:

Option Description
--setup=k Generate system parameters of given security level
--port=KGCPort Override KGC port
--ppsport=PPSPort Override PPS port
--ppsaddr=PPSAddr Override PPS address
--ppslogin=login Override login for public parameters update
--ppspass=password Override password for public parameters update

3.7.3 The Sender

The Sender (alice) does not use any configuration files. However, command line allows
to set the following options when executing alice:

Option Description
--ppsport=PPSPort Override PPS port
--ppsaddr=PPSAddr Override PPS address
--bobport=BobPort Override Bob port
--bobaddr=BobAddr Override Bob address

3.7.4 The Receiver

.bobppconfig Contains public parameters stored according to Format of Public Pa-
rameters requirement.

.bobqidconfig Contains partial private key stored according to (Partial) Private Key
Storage requirement.

.bobpkconfig Contains Bob’s public and private key stored according to Key-Pair
Storage requirement.

.bobconfig Contains options of Bob application stored according to Server Configu-
ration requirement.

.bobclientconfig Contains parameters of connection with PPS stored according to
PPS Address and Port requirement.

Command line allows to set the following options when executing bob in setup mode:

Option Description
--setup Indicates setup mode
--ppsport=PPSPort Override PPS port
--ppsaddr=PPSAddr Override PPS address

40

Summary

3.8 Conclusion

Certificateless cryptography is a promising solution improving several weaknesses of public
key infrastructure and identity-based encryption. Although the scheme is rather complex,
it allows to hide many details so that end-users are not concerned with manual handling
data security. Some applications of CL-PKE scheme may include email, cellular telephony,
world wide web and corporate networks.

In comparison to other schemes, such as web of trust, traditional public key cryptography,
identity-based encryption and certificate-based encryption, certificateless cryptography is
a flexible and secure cryptosystem. The only practical problem might be relatively high
computational cost, but it is improving as new mathematical propositions appear.

The final solution fulfills requirements, is a quality product and was delivered on time.
These factors count as success according to goals of software engineering. The code is
rather easy to extend and read, so it is possible to add new features and apply improve-
ments. On the other hand, if I could start the project again and had the same knowledge
as now, I would try to write every piece of code in Haskell instead of C++. The biggest
disadvantage of C++ is that the language is very error-prone, and thus programmer has
to spend considerable amount of time on debugging. It is very probable that creating
library bindings or applying existing interfaces from C to Haskell would take less time
than looking for bugs in C++ code.

All in all, the project provided me with rare opportunity of combining the most interest-
ing fields of computer science: information security, software engineering and functional
programming, which altogether create a bridge between theory and practice. Nevertheless,
the project is not at all closed and it can be extended further.

3.9 Future Work

One of fundamental assumptions was that the project is a proof-of-concept, and conse-
quently its functionality is highly limited. On the other hand, internal complexity and
need for external libraries made the project quite a big undertaking. Due to limited time
for the work, some features were not included into initial specification, but could be added
in subsequent releases of software.

41

Perhaps one could expect certificateless cryptography to completely eliminate the need
for certificates. In present version certificates are still required for KGC and PPS servers
to provide secure connections with clients. To address this issue, the project would have to
transform into hierarchical certificateless cryptography, where servers belong to tree-like
structure. Then, a server of one name space (e.g pw.edu.pl) becomes a client of another
name space (i.e. edu.pl). However, the root server (that is “.”) does not have any parent
and therefore its public parameters shall be built in software as it happens with SSL
certificates.

Moreover, it would be a good idea to introduce certificateless cryptography into commonly
used real-world applications, such as Mozilla Thunderbird email client. A simple plug-in
might provide transparent encryption for millions of users all around the world. Besides,
it could encourage other programmers to provide faster and more secure solutions related
with electronic mail.

Furthermore, current version of the project does not provide any public directory server
which would store users’ public keys and send keys corresponding to given identities. This
kind of application would be a fundamental factor of transparent data encryption.

Finally, created software still has some bottlenecks, especially when it comes to gener-
ation of system parameters for big value of security parameter k. Furthermore, many
cryptographic operations shall be optimized so that average encryption/decryption time
is similar to that of RSA algorithm. Besides, neither The Sender nor The Receiver caches
data such as pairing values, and it is another point where optimizations are possible.

42

Bibliography

[1] OpenSSL: The Open Source toolkit for SSL/TLS. URL: www.openssl.org.

[2] Sattam S. Al-riyami, Kenneth G. Paterson, and Royal Holloway. Certificateless public
key cryptography. pages 452–473. Springer-Verlag, 2003.

[3] G. Appenzeller, L. Martin, and M. Schertler. Identity-based Encryption Ar-
chitecture. Internet-Draft (Expired: May 2008), nov 2007. Available at
http://tools.ietf.org/id/draft-ietf-smime-ibearch-06.txt.

[4] Ian F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography. Cam-
bridge University Press, New York, NY, USA, 1999.

[5] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil
Pairing. In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pages 213–229, London, UK, 2001. Springer-
Verlag.

[6] X. Boyen and L. Martin. Identity-Based Cryptography Standard (IBCS) #1: Su-
persingular Curve Implementations of the BF and BB1 Cryptosystems. RFC 5091
(Informational), dec 2007. Available at http://www.ietf.org/rfc/rfc5091.txt.

[7] Carl Ellison and B. Schneier. Ten Risks of PKI: What You’re not
Being Told about Public Key Infrastructure, 2000. Available at
http://www.schneier.com/paper-pki.html.

[8] FIPS. Advanced Encryption Standard (AES). NIST, nov 2001. Available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[9] Free Software Foundation, Inc. GMP: The GNU Multiple Precision Arithmetic Li-
brary, 2006. Available at http://gmplib.org/.

[10] Craig Gentry. Certificate-based encryption and the certificate revocation problem.
In EUROCRYPT, pages 272–293, 2003.

[11] Ben Lynn. On the Implementation of Pairing-Based Cryptography. PhD thesis,
Stanford University, 2007.

[12] Ben Lynn. PBC: Pairing-Based Cryptography Library, 2008. Available at
http://crypto.stanford.edu/pbc/.

[13] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of
CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

43

[14] Alma Whitten and J. D. Tygar. Why Johnny can’t encrypt: A usability evaluation
of PGP 5.0. In 8th USENIX Security Symposium, 1999.

44

Appendices

45

Nomenclature

BF Identity-based encryption Boneh and Franklin scheme

CA Certificate Authority

CBE Certificate-Based Encryption

CEK Content Encryption Key

CL-PKC Certificateless Public-Key Cryptography

CL-PKE Certificateless Public-Key Encryption

CRL Certificate Revocation List

DDH Decision Diffie-Hellman problem

DH Diffie-Hellman

DoS Denial of Service

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

GMP GNU Multiple Precision Arithmetic Library

IBE Identity-Based Encryption

ID Identity

ID-PKC Identity-Based Public-Key Cryptography

KGC Key Generation Center

MITM Man-In-The-Middle

PBC Pairing-Based Cryptography

PEM Privacy-enhanced Electronic Mail

PGP Pretty Good Privacy

PKC Public-Key Cryptography

PKG Private Key Generator

46

PKI Public-Key Infrastructure

PPS Public Parameters Server

RA Registration Authority

SSL Secure Sockets Layer

TLS Transport Layer Security

47

