Performance Prediction of Configurable Software Systems by Fourier Learning

Yi Zhang, Jianmei Guo, Eric Blais, Krzysztof Czarnecki

Overview

- The Problem
- The Tool
- The Solution
- Evaluation

The Problem

- Given configurable software systems with *n* (binary) features
- Each configuration is a set of features
- Each configuration has a performance value, e.g. execution time
- **Goal:** Predict the performance of all (valid) configurations by measuring a (small) sample of configurations.

The Problem: Example

Feature_1	Feature_2	Feature_3	Performance
1	0	0	7.0
0	1	1	5.9
1	1	0	8.1
0	0	1	?
		•••	?
1	1	1	?

The Problem: Alternative

	f(v)		
x_1	x_2	x_3	I(X)
1	0	0	7.0
0	1	1	5.9
1	1	0	8.1
0	0	1	?
		•••	?
1	1	1	?

The Problem: Alternative

- Given *n*, the number of features
- Configuration: bit vector $x \in \{0,1\}^n$
- Performance: f(x)
- **Goal:** Estimate f(x) for all $x \in \{0,1\}^n$

i.e. learn the function f

The Challenge

This is impossible for arbitrary *f* !

f(101) has nothing to do with f(110)

The Good News:

Functions representing **real** software systems **have structure**.

The Tool: Fourier Analysis Given a function: $f: \{0,1\}^n \rightarrow \mathbb{R}$

Can write f as:

$$\chi_z(x) := \begin{cases} +1 & \text{if } \sum_{i=1}^n z_i x_i = 0 \mod 2\\ -1 & \text{if } \sum_{i=1}^n z_i x_i = 1 \mod 2 \end{cases}$$

The Tool: Observations

• For a function $f: \{0,1\}^n \rightarrow \mathbb{R}$ There are 2^n Fourier coefficients

Knowing the coefficients is
equivalent to knowing the function itself.

The Tool: Example

X	f(x)	
0	0	3
0	1	2
1	0	4
1	1	1

$$f(x) = 2.5 \cdot \chi_{00}(x) + 1 \cdot \chi_{01}(x)$$
$$+ 0 \cdot \chi_{10}(x) + (-0.5) \cdot \chi_{11}(x)$$

The Tool: Fourier Analysis $\hat{f}(z) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \cdot \chi_z(x)$

For example: $\hat{f}(01) = \frac{1}{\Delta} (f(00) \cdot \chi_{01}(00) + f(01) \cdot \chi_{01}(01))$ + $f(10)\cdot\chi_{01}(10)+f(11)\cdot\chi_{01}(11))$ $\hat{f}(01) = \frac{1}{4}(3-2+4-1) = 1$ 12

The Good News: Functions representing real software systems have structure are Fourier sparse! (when normalized)

i.e. many coefficients are (close to) 0.

The Problem: Final

- Given *n*, the number of features
- Configuration: bit vector $x \in \{0,1\}^n$
- Performance: f(x)
- Goal: Estimate f(x) for all $x \in \{0,1\}^n$

Estimate all (large) Fourier coefficients of f.

The Solution: Idea $\hat{f}(z) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \cdot \chi_z(x)$ Take random sample S: $\hat{h}(z) \approx \frac{1}{|S|} \sum_{x \in S} f(x) \cdot \chi_z(x)$ (*) Use $\hat{h}(z)$ to construct h

The Solution: Theorem (Hoeffding)

Given *f* is Fourier-sparse, if *S* is large, then *h* is close to *f* with high probability.

The Solution: Theorem Given $f: \{0,1\}^n \rightarrow \mathbb{R}$ is Fourier t-sparse, with

$$\frac{2}{\epsilon^2} \left(\left(n+1 \right) \log \left(2 \right) + \log \left(\frac{1}{\delta} \right) \right)$$

samples, our estimation *h* can achieve:

$$\|f-h\|^2 < t \cdot \epsilon^2$$

with probability $1-\delta$.

The Solution: Algorithm

- 1) User specify error bound γ and confidence level
- 2) Assume t = 1 (*f* is 1-sparse), and calculate number of samples required
- 3) Take the measurements and calculate Fourier coefficients using (*), obtain *h*
- 4) Take more samples and estimate the distance between h and f
- 5) If not within the specified bound, increase t and repeat

Evaluation: Systems

TABLE II.SUMMARY OF ORIGINAL SOFTWARE SYSTEMS

System	Domain	Lang.	D	n
Apache	Web Server	С	192	8
x264	Encoder	С	1,152	13
LLVM	Compiler	C++	1,024	10
Berkeley DB	Database	С	2,560	16
Berkeley DB	Database	Java	180	17

|D| = # Total configurations.

Original systems too small.

Evaluation: Hybrid-systems

System x*y

X		У		f(x*y)
x_1	x_2	y_1	y_2	f(x)+f(y)
0	0	0	0	3+2
0	0	0	1	3+4
0	0	1	0	3+1
	•••		•••	
1	1	1	1	5+3

Evaluation: Systems

TABLE III.SUMMARY OF CONSTRUCTED HYBRID-SYSTEMS

System	Component	D	n
А	Apache + $x264$	221184	21
В	LLVM + x264	1179648	23
С	x264 + x264	1327104	26
D	LLVM + LLVM	1048576	20

|D| = # Total configurations.

Evaluation: Results

- 1) Confidence level set to be 80%
- 2) Run 10 times for each setting

System	n	γ	Samples	mean	max
		0.2	24236 (11%)	0.083	0.084
A	21	0.15	43307 (20%)	0.081	0.081
		0.1	97440 (44%)	0.074	0.074
		0.2	26332 (2.2%)	0.035	0.036
В	23	0.15	46812 (4.0%)	0.026	0.026
		0.1	105326 (8.9%)	0.0068	0.0069
		0.2	29289 (2.2%)	0.084	0.085
C	26	0.15	52070 (3.9%)	0.084	0.084
		0.1	117156 (8.8%)	0.080	0.082
		0.2	23375 (2.2%)	0.074	0.080
D	20	0.15	41555 (4.0%)	0.034	0.037
		0.1	93497 (8.9%)	0.024	0.024

Evaluation: Comparison

- 1) SPLConqueror from Siegmund et. al.(2012) uses feature interaction to predict performance.
- 2) CART from Guo et. al. (2013) uses machine learning techniques.

	SPLConqueror	CART	Fourier
Accuracy	~ 95%	~ 94%	Arbitrary*
Sample Size	$O(n^2)$	Any	$O(n, 1/\gamma^2)$
Sampling	Specific	Random	Random
Error Control	No	No	Yes
System	Any	Any	Large

Summary

- 1) Fourier learning predicts software performance with guaranteed accuracy and confidence level
- 2) May require large systems and run time may be slow
- 3) Future: reduce exponential number of Fourier coefficient estimations
- 4) Future: testing Fourier sparse-ness of systems

Thank you.