
Performance Prediction of
Configurable Software

Systems by Fourier Learning

Yi Zhang, Jianmei Guo,
Eric Blais, Krzysztof Czarnecki

2

Overview

● The Problem

● The Tool

● The Solution

● Evaluation

3

The Problem

● Given configurable software systems with
n (binary) features

● Each configuration is a set of features
● Each configuration has a performance

value, e.g. execution time
● Goal: Predict the performance of all

(valid) configurations by measuring a
(small) sample of configurations.

4

The Problem: Example

Feature_1 Feature_2 Feature_3 Performance

1 0 0 7.0

0 1 1 5.9

1 1 0 8.1

0 0 1 ?

... ?

1 1 1 ?

5

The Problem: Alternative

x
f(x)

x_1 x_2 x_3

1 0 0 7.0

0 1 1 5.9

1 1 0 8.1

0 0 1 ?

... ?

1 1 1 ?

6

The Problem: Alternative

● Given n, the number of features
● Configuration: bit vector
● Performance: f(x)
● Goal: Estimate f(x) for all

i.e. learn the function f

x∈{0,1 }
n

x∈{0,1 }
n

7

The Challenge

This is impossible
for arbitrary f !

f(101)
 has nothing to do with

 f(110)

8

The Good News:

Functions representing real

software systems

have structure.

9

The Tool: Fourier Analysis

Given a function:

Can write f as:

where:

f :{0,1 }
n
→ℝ

10

The Tool: Observations

● For a function

There are Fourier coefficients

● Knowing the coefficients is

equivalent to knowing the function itself.

f :{0,1 }
n
→ℝ

2n

11

The Tool: Example

x f(x)

0 0 3

0 1 2

1 0 4

1 1 1

f (x)=2.5⋅χ00(x)+1⋅χ01(x)

+0⋅χ10(x)+(−0.5)⋅χ11(x)0

12

The Tool: Fourier Analysis

f̂ (z)=
1

2n ∑
x∈{0,1}n

f (x)⋅χ z (x)

f̂ (01)=
1
4
(f (00)⋅χ01(00)+ f (01)⋅χ01(01)

+ f (10)⋅χ01(10)+ f (11)⋅χ01(11))

For example:

f̂ (01)=
1
4
(3−2+4−1)=1

13

The Good News:

Functions representing real

software systems

have structure

are Fourier sparse!

(when normalized)

i.e. many coefficients are (close to) 0.

14

The Problem: Final

● Given n, the number of features
● Configuration: bit vector
● Performance: f(x)
● Goal: Estimate f(x) for all

Estimate all (large) Fourier coefficients of f.

x∈{0,1 }
n

x∈{0,1 }
n

15

The Solution: Idea

Use to construct ĥ(z) h

Take random sample S:

f̂ (z)=
1

2n ∑
x∈{0,1}n

f (x)⋅χ z (x)

ĥ(z)≈
1
|S|

∑
x ∈S

f (x)⋅χ z (x) (*)

16

The Solution: Theorem
(Hoeffding)

Given f is Fourier-sparse, if S is
large, then h is close to f with high

probability.

17

The Solution: Theorem

Given is Fourier t-sparse,

with

samples, our estimation h can achieve:

with probability .

2

ϵ
2 ((n+1) log (2)+ log(

1
δ))

1−δ

f :{0,1 }
n
→ℝ

‖f−h‖2
<t⋅ϵ2

18

The Solution: Algorithm

1) User specify error bound and confidence level

2) Assume t = 1 (f is 1-sparse), and calculate
number of samples required

3) Take the measurements and calculate Fourier
coefficients using (*), obtain h

4) Take more samples and estimate the distance
between h and f

5) If not within the specified bound, increase t and
repeat

γ

19

Evaluation: Systems

Original systems too small.

|D| = # Total configurations.

20

Evaluation: Hybrid-systems

x y f(x*y)

x_1 x_2 y_1 y_2 f(x)+f(y)

0 0 0 0 3+2

0 0 0 1 3+4

0 0 1 0 3+1

...

1 1 1 1 5+3

System x*y

21

Evaluation: Systems

|D| = # Total configurations.

22

Evaluation: Results
1) Confidence level set to be 80%

2) Run 10 times for each setting

23

Evaluation: Comparison
1) SPLConqueror from Siegmund et. al.(2012)

uses feature interaction to predict performance.

2) CART from Guo et. al. (2013) uses machine
learning techniques.

SPLConqueror CART Fourier

Accuracy ~ 95% ~ 94% Arbitrary*

Sample Size Any

Sampling Specific Random Random

Error Control No No Yes

System Any Any Large

O(n2
) O(n ,1/ γ

2
)

24

Summary

1) Fourier learning predicts software performance
 with guaranteed accuracy and confidence level

2) May require large systems and run time may
be slow

3) Future: reduce exponential number of Fourier
coefficient estimations

4) Future: testing Fourier sparse-ness of systems

25

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

