
Performance Prediction of 
Configurable Software

Systems by Fourier Learning

Yi Zhang, Jianmei Guo,
Eric Blais, Krzysztof Czarnecki



2

Overview
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● Evaluation
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The Problem

● Given configurable software systems with 
n (binary) features

● Each configuration is a set of features
● Each configuration has a performance 

value, e.g. execution time
● Goal: Predict the performance of all 

(valid) configurations by measuring a 
(small) sample of configurations.
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The Problem: Example

Feature_1 Feature_2 Feature_3 Performance

1 0 0 7.0

0 1 1 5.9

1 1 0 8.1

0 0 1 ?

... ... ... ?

1 1 1 ?
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The Problem: Alternative

x
f(x)

x_1 x_2 x_3

1 0 0 7.0

0 1 1 5.9

1 1 0 8.1

0 0 1 ?

... ... ... ?

1 1 1 ?
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The Problem: Alternative

● Given n, the number of features
● Configuration: bit vector 
● Performance: f(x)
● Goal: Estimate f(x) for all 

i.e. learn the function f

x∈{0,1 }
n

x∈{0,1 }
n
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The Challenge

This is impossible
for arbitrary f !

f(101)
 has nothing to do with

 f(110)



8

The Good News:

Functions representing real 

software systems

have structure.
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The Tool: Fourier Analysis

Given a function:

Can write f as:

where:

f :{0,1 }
n
→ℝ
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The Tool: Observations

● For a function

There are         Fourier coefficients

● Knowing the coefficients is

equivalent to knowing the function itself.

f :{0,1 }
n
→ℝ

2n
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The Tool: Example

x f(x)

0 0 3

0 1 2

1 0 4

1 1 1

f (x)=2.5⋅χ00(x )+1⋅χ01(x )

+0⋅χ10(x )+(−0.5)⋅χ11(x )0
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The Tool: Fourier Analysis

f̂ (z )=
1

2n ∑
x∈{0,1}n

f (x)⋅χ z (x)

f̂ (01)=
1
4
( f (00)⋅χ01(00)+ f (01)⋅χ01(01)

+ f (10)⋅χ01(10)+ f (11)⋅χ01(11))

For example:

f̂ (01)=
1
4
(3−2+4−1 )=1
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The Good News:

Functions representing real 

software systems

have structure

are Fourier sparse!

(when normalized)

i.e. many coefficients are (close to) 0.
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The Problem: Final

● Given n, the number of features
● Configuration: bit vector 
● Performance: f(x)
● Goal: Estimate f(x) for all              

Estimate all (large) Fourier coefficients of f.

x∈{0,1 }
n

x∈{0,1 }
n
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The Solution: Idea

Use            to construct  ĥ( z) h

Take random sample S:

f̂ (z )=
1

2n ∑
x∈{0,1}n

f (x)⋅χ z (x)

ĥ( z)≈
1
|S|

∑
x ∈S

f (x)⋅χ z (x) (*)
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The Solution: Theorem
(Hoeffding)

Given f is Fourier-sparse, if S is 
large, then h is close to f with high 

probability.
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The Solution: Theorem

Given                             is Fourier t-sparse,

with 

samples, our estimation h can achieve:

with probability            . 

2

ϵ
2 (( n+1) log (2)+ log(

1
δ ))

1−δ

f :{0,1 }
n
→ℝ

‖f−h‖2
<t⋅ϵ2
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The Solution: Algorithm

1) User specify error bound   and confidence level

2) Assume t = 1 (f is 1-sparse), and calculate 
number of samples required

3) Take the measurements and calculate Fourier 
coefficients using (*), obtain h

4) Take more samples and estimate the distance 
between h and f

5) If not within the specified bound, increase t and 
repeat

γ
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Evaluation: Systems

Original systems too small.

|D| = # Total configurations.
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Evaluation: Hybrid-systems

x y f(x*y)

x_1 x_2 y_1 y_2 f(x)+f(y)

0 0 0 0 3+2

0 0 0 1 3+4

0 0 1 0 3+1

... ... ... ... ...

1 1 1 1 5+3

System x*y
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Evaluation: Systems

|D| = # Total configurations.
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Evaluation: Results
1) Confidence level set to be 80%

2) Run 10 times for each setting
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Evaluation: Comparison
1) SPLConqueror from Siegmund et. al.(2012) 

uses feature interaction to predict performance.

2) CART from Guo et. al. (2013) uses machine 
learning techniques.

SPLConqueror CART Fourier

Accuracy ~ 95% ~ 94% Arbitrary*

Sample Size Any

Sampling Specific Random Random

Error Control No No Yes

System Any Any Large

O(n2
) O(n ,1/ γ

2
)



24

Summary

1) Fourier learning predicts software performance 
 with guaranteed accuracy and confidence level

2) May require large systems and run time may 
be slow

3) Future: reduce exponential number of Fourier 
coefficient estimations

4) Future: testing Fourier sparse-ness of systems
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Thank you.
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