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Abstract. Modern automotive electric/electronic (E/E) architectures are
growing to the point where architects can no longer manually predict the
effects of their design decisions. Thus, in addition to applying an architecture
reference model to decompose their architectures, they also require tools for
synthesizing and evaluating candidate architectures during the design process.
Clafer is a modeling language, which has been used to model variable multi-
layer, multi-perspective automotive system architectures according to an ar-
chitecture reference model. Clafer tools allow architects to synthesize optimal
candidates and evaluate effects of their design decisions. However, since Clafer
is a general-purpose structural modeling language, it does not help the archi-
tects in building models conforming to the given architecture reference model.
In this paper, we present an E/E architecture domain-specific language (DSL)
built on top of Clafer, which embodies the reference model and which guides
the architects in correctly applying it. We evaluate the DSL and its implemen-
tation by modeling two existing automotive systems, which were originally
modeled in plain Clafer. The evaluation showed that by using the DSL, an eval-
uator obtained correct models by construction because the DSL helped prevent
typical errors that are easy to make in plain Clafer. The evaluator was also
able to synthesize and evaluate candidate architectures as with plain Clafer.

Keywords: architecture, modeling, optimization, synthesis, language engineering,
domain-specific language, DSL, Clafer, Meta-Programming System, MPS

1 Introduction

With the increasing number of intelligent automotive features and the push towards
autonomous cars, modern automotive electric/electronic (E/E) architectures are
becoming increasingly complex. The architects can no longer create and evaluate
candidate architectures manually to understand the effects of their design decisions.
Thus, architects require powerful modeling and reasoning tools to allow them to
synthesize candidate architectures given some design decisions and discover the correct
and optimal ones automatically.

One approach to conquering the complexity is using a reference model which pre-
scribes a certain way of decomposing the overall architecture into layers and capturing
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the crosscutting concerns, including variability and quality. We present such a reference
model in Section 2. Furthermore, in order to be able to automatically reason about an
E/E architecture (evaluate the effect of design decisions), the architecture must be rep-
resented using a formal modeling language which is supported by a scalable automated
reasoner. One such language is Clafer [1], and we introduce architectural modeling
using Clafer in Section 3. However, Clafer is a general-purpose structural modeling
language which does not provide the architectural concepts from the reference model
as first-class language constructs. Thus, to make the modeling and reasoning power of
Clafer available to practitioners who are not Clafer experts, we implemented an archi-
tecture domain-specific language (DSL) based on the reference model to guide users
in correctly and consistently applying the reference model (Section 4). Our implemen-
tation relies on the JetBrains MPS language workbench [2], whereby we implemented
Clafer as an MPS language and the Architecture DSL as an extension of Clafer in MPS.

We present the design of the Architecture DSL and how it addresses the challenges
of applying plain Clafer to architectural modeling in Section 5. We evaluate our work
by using the DSL to model two existing architectures of two automotive subsystems
which were previously modeled in plain Clafer [3]. The goal of the evaluation is to
see whether the DSL improves the modeling experience compared to plain Clafer
while still supporting the reasoning capabilities. We present the key observations and
discussion in Section 6. We briefly summarize the related work in Section 7, and
conclude the paper in Section 8.

2 A Reference Model for E/E Architecture Modeling

In this work, we use the reference model illustrated in Fig. 1, which is an adaptation of
the EAST-ADL [4] (details in [3]). The model is multi-layer and it prescribes dividing
the architecture into a feature model, a functional architecture, and a hardware
architecture. The feature model contains user-facing features, such as express up and
pinch protection in a power window system. These features are then implemented
using functions, which are subsequently deployed onto hardware (the block arrow).

The model is also multi-perspective: it supports multiple cross-cutting concerns, in-
cluding variability and quality. Variability crosscuts all layers of the architecture. For ex-
ample, an optional feature (e.g., express up) is implemented by functions and hardware
which also have to be optional as they are not needed when the feature is not selected.
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Fig. 1. An automotive E/E system architecture reference model. The block arrow denotes
the deployment of the functional analysis architecture to the hardware design architecture.
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Furthermore, there may exist alternative ways of realizing the feature as different func-
tions (e.g., different techniques of pinch detection), as well as alternative ways of deploy-
ing the functions onto hardware. Similarly, the quality perspectives may crosscut each
layer of the architecture. For example, the latency of end-to-end flows (from sensors to
actuators) depends on the functional connectors among the functions and functional
devices, as well as on the particular deployment of these connectors onto the com-
munication media (e.g., shared memory communication within an ECU vs. network
communication between ECUs). Some qualities may also be confined to a particular
layer, for example, hardware part cost only applies to the hardware design architecture.

3 E/E Architecture Modeling in Clafer

Clafer [1] has been successfully applied in several automotive architecture case stud-
ies [5,3]. Here, we first briefly introduce the modeling and reasoning workflow when
using Clafer and next, we summarize the main challenges of using plain Clafer.

Clafer is a lightweight, general-purpose, textual, structural modeling language. In
Clafer, a model consists of clafers1. The name “clafer” comes from the words class,
feature, and reference because a clafer provides modeling capabilities of all these
language constructs. A clafer is like a class in that it can have instances, it can contain
other clafers which represent attributes, references, and contained classes, and it can
inherit the children from other clafers. A clafer is like an attribute and a reference in
that its instances can point to primitive values (e.g., integers) or instances of clafers.
A clafer is like a feature in that it has multiplicity restricting how many instances
of that clafer are allowed per instance of its parent (✶ - exactly one, ❄ - at most one,
✯ - any number, etc.). A clafer is like a feature group in that it has group cardinality
restricting how many instances of its children are allowed (♠✉① - at most one, ①♦r

- exactly one, ♦r - at least one, etc.). Clafer also provides a powerful constraint
language (first-order relational logic) and means of stating multiple optimization
objectives (e.g., minimize cost, maximize performance).

Furthermore, Clafer is supported by a set of tools [6], which include a scalable
and exact instance generator and optimizer. Given a model expressed in Clafer,
the instance generator can synthesize correct instances of the model. Furthermore,
if the model contains optimization objectives, the instance generator can perform
multi-objective optimization and generate a set of Pareto-optimal instances of the
model. Finally, Clafer MOO (Multi Objective Optimization) Visualizer [7] is a tool
for visually exploring the set of optimal instances and performing trade-off analysis.

All these capabilities make Clafer suitable for expressing architectural models,
which include representing variability and quality attributes, stating optimization
objectives, synthesizing (optimal and non-optimal) candidate architectures, and eval-
uating the impact of design decisions, and performing design space exploration [5,3].

Challenges with E/E Architecture Modeling using Plain Clafer Clafer is not
domain-specific for the E/E modeling domain: it does not provide the architectural

1 Throughout this paper if the word Clafer begins with an uppercase letter it refers to
the language while a lowercase one refers to the language construct.
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concepts from the reference model as first-class language constructs. Furthermore,
Clafer can only express the structure (metamodel) of the architectural concepts from
the reference model; Clafer and its general-purpose tools (compiler, instance generator,
visualizer) cannot guide users in correctly applying the reference model rules. For
example, Clafer will allow a user to leave references unconstrained and the instance
generator will produce instances not intended by the modeler.

This causes some challenges for model creators and model readers related to
applying and recognizing the modeling idioms needed for architectural modeling.
Thus, to make the modeling and reasoning power of Clafer available to practitioners
who are not Clafer experts, we implemented an Architecture DSL [8] which encodes
the reference model concepts and which guides the users in correctly and consistently
applying the reference model rules. We first present the overview of the implementa-
tion of the DSL in Section 4 followed by detailed design which addresses the challenges
of using plain Clafer in Section 5.

4 Overview of ClaferMPS

Instead of writing user manuals and relying on modeling idioms, we decided to formally
encode the reference model and its rules as an Architecture DSL. We implemented
the DSL using the Meta Programming System (MPS) [2] language workbench.

Meta Programming System (MPS) As a language workbench [9], MPS is a
tool which allows for efficiently developing domain-specific and general-purpose lan-
guages. MPS supports the definition of abstract syntax, textual, visual or tabular
concrete syntax, type system, various rules and constraints, transformations, and
code generators. All ingredients of powerful IDEs are also supported. MPS relies
on projectional editing, where users directly modify the abstract syntax through a
projected concrete syntax; no parsing is involved. This allows MPS to support a wide
range of notations [10] and various ways of language composition [11]. In particular, it
supports language extension, where additional language concepts are added to a base
language without invasively modifying this base language. MPS has been used to build
ecosystems of integrated languages in various domains including embedded software,
system specification, requirements engineering, safety and security analysis, insurance
contract specification, medical software and public benefits calculations [12,2].

Components of ClaferMPS Fig. 2 shows the components of our implementation.
The boxes with gray background represent existing tools. On the plain Clafer side
(right), we are using the Clafer compiler, which works with plain-text files, the instance
generator, and the visualizer [6,7].

On the MPS side (left), we build on top of MPS and use some utilities of
mbeddr [12] such as the module system and graphical notation. The boxes with a
pattern background represent the new components we developed: Clafer language,
which implements full Clafer and provides a textual syntax; and Architecture DSL,
which provides textual and graphical syntaxes. A model created in Architecture DSL
is first transformed into a model expressed in the Clafer language in MPS, from which
a plain-text Clafer model is generated. Generating a plain-text Clafer model allows us
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Fig. 2. ClaferMPS (left) and plain Clafer (right) tool stacks

to leverage the existing Clafer toolchain. We refer to both the Clafer implementation
in MPS and the Architecture DSL collectively as “ClaferMPS”.

5 E/E Architecture Modeling: Clafer vs. ClaferMPS

In this section, we demonstrate how the challenges of using plain Clafer for E/E
architectural modeling are solved with ClaferMPS by comparing both approaches.

5.1 Applying E/E Reference Model Concepts

Since Clafer does not have first-class support for the E/E reference model concepts,
we must define these abstractions first. In addition, both the reference model concepts
and the concrete model must be contained in the same file, because Clafer currently
lacks a module system. Listing 1.1 shows the feature modeling concepts feature model

and feature encoded as abstract clafers.

Listing 1.1. Feature modeling concepts
defined in plain Clafer

abstract FeatureModel
abstract Feature

Listing 1.2. Feature modeling (Clafer)
DWinSysFM : FeatureModel
manualUpDown : Feature
express : Feature ?
expressUp : Feature ?

Concrete feature models can then be created by extending the abstract clafers ❋❡❛✲

t✉r❡▼♦❞❡❧ and ❋❡❛t✉r❡ as shown in Listing 1.2 (the symbol ✿ indicates inheritance;
❄ indicates optionality). In Clafer, we use indentation to nest clafers (i.e., establish con-
tainment) and to indicate dependency that the feature ❡①♣r❡ss❯♣ requires ❡①♣r❡ss.

Similarly, the remainder of the reference model can be encoded in Clafer using
abstract clafers [3]. While this approach is valid for modeling E/E architectures, it is
limited by its inability to guide users in applying these concepts correctly. For example,
a plain Clafer alone cannot ensure that a feature can only be defined inside (i.e., nested
under) a feature model or another feature, because it is specific to the reference model.

In addition to being correctly nested, reference model concepts must also be
constrained properly. For example, Listing 1.3 shows the definition of the functional
analysis architecture concepts in plain Clafer. It consists of analysis function, func-

tional device, and function connector. The latter has two nested reference clafers
(indicated by ✲❃), which represent the connector’s endpoints (lines 14-15). Moreover,
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each functional analysis component or connector can be deployed into the hardware
architecture (lines 2 and 16, respectively). The concepts also include many constraints,
such as, that analysis functions can only be deployed to smart device nodes or that
function connectors should not be deployed to anything when their sender and receiver
are deployed to the same device node (e.g., the same ECU).

Listing 1.3. Encoding of functional analysis architecture concepts in plain Clafer
1 abstract FunctionalAnalysisComponent
2 deployedTo -> DeviceNode
3 latency -> integer
4

5 abstract AnalysisFunction : FunctionalAnalysisComponent
6 [deployedTo.type in SmartDeviceNode]
7 baseLatency -> integer
8 [latency = baseLatency*deployedTo.speedFactor]
9

10 abstract FunctionalDevice : FunctionalAnalysisComponent
11 [deployedTo.type in (SmartDeviceNode, EEDeviceNode)]
12

13 abstract FunctionConnector
14 sender -> FunctionalAnalysisComponent
15 receiver -> FunctionalAnalysisComponent
16 deployedTo -> HardwareDataConnector ?
17 [parent in this.deployedFrom]
18 [(sender.deployedTo.dref,receiver.deployedTo.dref) in (deployedTo.endpoint.dref)]
19 [(sender.deployedTo.dref = receiver.deployedTo.dref) <=> no this.deployedTo]
20 latency -> integer
21 messageSize -> integer
22 [latency = (if deployedTo then messageSize*deployedTo.transferTimePerSize else 0)]

Violating these constraints (e.g., deploying a function to a power device) will prevent
the instance generator from producing any instances; instead it will report the set of
mutually contradicting constraints, which then require model debugging. Furthermore,
even if no constraints are violated, the instance generator can still produce correct (i.e.,
satisfying all constraints) but invalid instances (i.e., not making sense in terms of the do-
main) because the model can be underconstrained. For example, if the reference clafers
on lines 14 and 15 for a function connector are not constrained to point to valid targets,
the instance generator will be free to choose any function as a target, which is likely to
result in a nonsensical architecture. Listing 1.4 contains a concrete example showing a
correct (with respect to the stated constraints) yet invalid Clafer declaration of ❧♦❝❛❧✲

❲✐♥❘❡q (the connector should only be allowed between the ❲✐♥❙✇✐t❝❤ and ❲✐♥❆r✲

❜✐t❡r functions) and Fig. 3 shows the resulting instances. This example is invalid since
it did not reflect the domain adequately. However, ✇✐♥❘❡q is an example of a correct
and valid function connector since the sender and receiver are properly constrained.

Listing 1.4. A valid and an invalid function
connector model example

1 WinSwitch : FunctionalDevice
2 WinArbiter : AnalysisFunction
3 [latency = 10]
4 WinControl : AnalysisFunction
5

6 // valid connector

7 winReq : FunctionConnector
8 [sender = WinArbiter]
9 [receiver = WinControl]

10

11 // underconstrained (invalid) connector

12 localWinReq : FunctionConnector

WinSwitch

WinArbiter

WinSwitch

WinArbiter

WinControl

WinControl

localWinReq

localWinReq

localWinReq

Fig. 3. Instances generated from Listing 1.4

ClaferMPS solution In order to minimize the need for writing constraints manually,
we have designed and implemented a DSL on top of Clafer (using MPS’ support for



7

language extension), which provides E/E architecture concepts as first-class concepts
to cover most of the reference model rules. Figure 4 shows a snippet of a functional anal-
ysis architecture modeled with the DSL. To ensure that users nest the reference model
elements correctly, we restrict the usage context of the reference model concepts. This
means that the DSL’s auto completion menu shows only those concepts that are valid
in the current context (i.e., analysis function is only shown in the context of functional

analysis architecture) which can be seen at location 2 in Fig. 4. If the user copy/pastes
an element into the wrong context, the error will be presented as shown in Fig. 4, 1 .

Fig. 4. ClaferMPS functional analysis example.

Next, the DSL syntax was designed to include values for all required reference
clafers (from the plain Clafer approach) for the different concepts. Using the earlier
example of function connectors, the DSL ensures that the user does not forget to set
the targets of the sender and receiver, which are mandatory in the syntax. Additionally,
the type system of the DSL ensures that the types of the chosen targets are correct,
otherwise an error is reported (Fig. 4, 3 ). Thus, the DSL eliminates many common
errors and minimizes the need for manually writing constraints and, consequently,
model debugging.

Finally, the DSL supports semantic error detection. A simple example of a se-
mantic rule can be formed from the constrains on lines 6 and 11 of Listing 1.3; it
states that a device node of type power can’t be given as a deployment target for an
analysis function or functional device. Checking such rules informs users that there
is a semantic error in the model (Fig. 6, 7 ).

5.2 Variability

In order to model more than one candidate architecture, the model must be augmented
with variability. In plain Clafer, variability is expressed using multiplicities, group
cardinalities, and reference clafers. For example, Listing 1.2 shows how variability can
be expressed for the feature ❡①♣r❡ss by using a clafer multiplicity of 0..1 (denoted
by ❄). In ClaferMPS, we chose to model variability the same way as in plain Clafer,
but using different keywords such as ♦♣t✐♦♥❛❧ to help architects.
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5.3 Quality Attributes

To evaluate quality of the candidate architectures, we need to annotate the different
reference model components with quality attributes. These attributes can then differ
among domains and even systems within a domain. For example, a power window
system might not consider security as a quality, whereas a door locks system might.

In Clafer, quality attributes can be added to the reference model by nesting a
clafer under the component type as shown on line 3 of Listing 1.3. Then, in the
definitions of concrete components, the values can be defined using constraints as
shown on line 3 of Listing 1.4. The challenge with this approach is that users have
to directly modify the reference model and nest clafers appropriately without any
guidance. Additionally, these modifications can lead to inconsistencies in the reference
model over time or introduce subtle errors.

ClaferMPS solution In ClaferMPS, users do not need to edit the reference model;
instead, we provide a table shown in Fig. 5 whereby users define one or more integer-

valued quality attributes 2 for the chosen architectural concepts 1 . Then, a user can
immediately use the intention menu for a defined architectural concept (for example,
the device node ❙✇✐t❝❤) to add a value for that quality 3 , 4 . The intention menu
is a contextual menu that allows users to perform various modifications of the model.
Finally, quality attributes are properly inherited by subconcepts: the intention menu
shows both concept-specific and inherited attributes.

Additionally, since the quality attributes are separate from the reference model,
users can generate plain Clafer with or without the quality attributes. This allows the
users to validate their architectural model (i.e., ensure that their model captures all
possible candidates they intended to model) without taking the qualities into account.
In plain Clafer, such a task requires manually commenting out the quality attributes
in the reference model and all constraints which set their values. In Section 5.7, we
describe how the generation process supports this functionality.

5.4 Extensibility

In plain Clafer, since the reference model is a set of abstract clafers included in the
same file as the concrete system, users can perform arbitrary changes to the reference
model and use all capabilities of the language in unrestricted ways. It is both an

Fig. 5. User-defined quality attribute declarations for the architectural concepts (left). An
intention menu for assigning values of quality attributes to model elements (right).
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advantage for users who are Clafer experts as well as a disadvantage for non-expert
users because they lack guidance and they can suffer from common errors.

ClaferMPS solution As a result of building the Architecture DSL on top of the
Clafer language in MPS, clafers and constraints can be mixed with the architectural
elements. This is a common occurrence when a modeler wants to use Clafer’s
constraint language to write additional constraints that are not expressible using
the Architecture DSL. For example, Figure 6 shows a deployment specification of
a functional architecture ❲✐♥❙②s❋❆❆ to a hardware architecture ❲✐♥❙②s❍❆ 1 . The
concepts ❉❡♣❧♦②♠❡♥t and ❉❡♣❧♦② 1 belong to the Architecture DSL; however, the
element ♣❛tt❡r♥s 2 is simply a clafer which, in this case, is used to group rules for the
❞✐str✐❜✉t❡❞ 3 and ❝❡♥tr❛❧✐③❡❞ 4 deployment patterns. Also, the figure shows a
few constraints which go beyond what is expressible using the ❉❡♣❧♦② concept: some
of them must always hold because they are nested directly under deployment 5 , some
of them must only hold when an instance of the clafer ❝❡♥tr❛❧✐③❡❞ is present 6 .

Additionally, ClaferMPS still provides guidance when adding Clafer to an archi-
tectural model through auto-completion and type checking.

The ability to mix clafers and constraints with DSL elements allows for lightweight
extensibility of the reference model. In Figure 6, the intention of the modeler is to
specify a few alternative ❉❡♣❧♦②♠❡♥tP❛tt❡r♥s, which is a concept currently not avail-
able in the reference model. Thanks to MPS, organizations can modularly extend the
Architecture DSL by creating their own reference model which imports our reference
model and adds new concepts, such as the ❉❡♣❧♦②♠❡♥tP❛tt❡r♥. Next, they can create
a new DSL which extends our Architecture DSL and adds the ❉❡♣❧♦②♠❡♥tP❛tt❡r♥

as a first-class concept together with an editor, typing, and other rules. The ability to
mix clafers and constraints within the architectural models allows for working with
the proposed extension before formally implementing it as a DSL in MPS.

Fig. 6. Mixing clafers and constraints within a deployment (above the gray separator)
and an example of semantic error for an invalid function deployment target (below the
separator).



10

5.5 Modularity

E/E architecture models can be quite large. Currently, Clafer does not have a module
system and thus users have to define their model in a single, potentially large, text
file. The model then becomes cumbersome to navigate, especially when modeling
multiple subsystem architectures together.

ClaferMPS solution ClaferMPS provides a simple module system that allows users
to create modules, which export all contained definitions and which can import defini-
tions from other modules. The modules are combined together during the generation
process which we detail next in Section 5.7.

5.6 Presentation

The Clafer compiler can generate a static graphical representation of a model which
shows the inheritance hierarchy and references as shown in Fig. 7. This graphical
representation is complementary to the textual syntax which emphasizes clafer nesting;
however, it is not suitable for visualizing architectures.

Fig. 7. Snippet of the graph for door locks generated by Clafer compiler

ClaferMPS Solution In addition to textual syntax, the Architecture DSL provides
a graphical representation of E/E architectures. This allows for architects to visualize
the relationships and connections between different elements to ensure that their
model matches what they intended. Figure 8 shows snippets of a few kinds of di-
agrams expressed with the graphical notations of the DSL; the diagrams are fully
editable and, since they are projections of the same underlying model, they are always
synchronized with the textual representation. Users can switch between textual and
graphical projections and even view and edit both side-by-side.

The graphical editor is implemented using an MPS extension provided by the
mbeddr.platform2. It does not only provide basic rendering functionality but also a set
of helper tools such as automatic layout, alignment, and snapping, which reduce the
effort for manually arranging the diagram elements. However, some manual layouting
is still necessary.

In the Architecture DSL, diagrams focus on the structure and hide other informa-
tion such as quality attributes or plain clafers. This allows users to view the model

2 http://mbeddr.com/platform.html

http://mbeddr.com/platform.html
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Fig. 8. ClaferMPS Architecture DSL Diagrams

from a different perspective than offered by the textual representation. Additionally,
thanks to support for modularity, users can see a graphical projection of their current
module allowing them to work with a specific portion of the overall architecture.

5.7 Reasoning, Debugging, and Multi-Objective Optimization

The typical workflow when modeling in plain Clafer is to write a small model fragment
or temporarily comment out parts of a larger model irrelevant for the task at hand,
execute the compiler to check whether the model is correct (syntax, name, type
checking), execute the instance generator to validate the model (check that only
valid instances are produced), and repeat. Murashkin described such micro-level and
macro-level modeling patterns [5]. Next, users perform multi-objective optimization
and impact and trade-off analyses [6,3].

Furthermore, the modelers often validate the model logic without the quality
attributes, which requires commenting them out (cf. Section 5.3).

ClaferMPS Solution The current reasoning, debugging, and multi-objective opti-
mization tools require plain Clafer as input. Moreover, since Clafer tools do not have
a module system, all imported modules, quality attributes, and the reference model
must be combined into a single file.

Figure 9 shows how ClaferMPS generates plain Clafer. First, the Architecture
DSL takes the predefined reference model without quality attributes expressed in
Clafer in MPS (it contains Clafer code as shown in Listings 1.1 and 1.3, but written in
MPS). If the user chooses to include quality attributes, ClaferMPS weaves them into
the predefined reference model resulting in a reference model with quality attributes;
otherwise, the predefined reference model is used directly. Next, the DSL transforms
the modules expressed in the Architecture DSL into equivalent modules expressed
in Clafer in MPS, while preserving the import structure. If the user has configured
the DSL to exclude the quality attributes, ClaferMPS ignores all quality-related
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Fig. 9. Plain Clafer generation process

expressions during the transformation. Also, the resulting modules must now import
the reference model. Finally, Clafer in MPS generates plain Clafer files for every
module such that the resulting file contains all of its imported modules. For example,
the generated plain Clafer for the module B contains the module’s contents and the
reference model with or without the quality attributes, whereas the plain Clafer for
the module A has its contents as well as all contents of the module B.

This process allows the users to reason about, debug, and optimize each layer of the
architecture separately with or without quality attributes. While the users still need to
comment out unused parts of the reference model; their workload is greatly reduced.

6 Evaluation

The main goal of our work is make the modeling and reasoning power of Clafer
accessible to practitioners. To evaluate and improve ClaferMPS, we performed the
following exploratory case study. The objectives of the evaluation are to O1) obtain
feedback on usability of the DSL and tool support, O2) demonstrate expressiveness
of the DSL with respect to the case studies in the automotive body domain, and O3)
demonstrate support for modeling and analysis tasks, such as modular validation. First,
we take two existing automotive system architectures, power window and door locks,
which were previously modeled independently in plain Clafer by the second author [3].

The models for power window and door locks contain approximately 600 and 900
lines of Clafer and they encode 203,753,368 and 2,028 variants, respectively.

Next, we asked the second author (to whom we refer to as “the evaluator”) to recre-
ate both models in ClaferMPS and record his experience; the raw and detailed notes
(40 pages) are available for the record [13]. The evaluator first modeled a single-door
power window system, then he generalized it to a two-door system, and then he mod-
eled the door-locks system. Finally, we discussed the notes with the evaluator, analyzed
them, and extracted the main observations which we present here.= The evaluator
raised issues, reported bugs, made observations, and provided requirements. Some of
the bugs and requirements were subsequently implemented in an iterative approach.

Case study completeness Overall, the evaluator was able to completely model
both case studies in ClaferMPS, generate equivalent but slightly different plain Clafer
model when compared to the original model, and perform the same kinds of analyses
using the Clafer toolchain as before [5,3].
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Graphical projection The evaluator frequently used the graphical projection to
validate connections and he has actually discovered wrong connections once. In fact,
the graph view was beneficial whenever references are used. Also, the graphical
projection was useful for showing containment and ownership. However, the current
graphical projection has a few shortcomings: the automatic layout sometimes requires
manual rearrangement, and the evaluator could not view only a few selected elements
because the projection always displays the entire module. The evaluator provided
many observations about the advantages as well as suggestions for improving the
graphical projection, including the ability to visualize a selected subset of elements.

In MPS, the evaluator divided the original single file plain Clafer models into
many modules which was essential when working with such large models. Additionally,
smaller modules make the graphical projection more useful and usable. The built-in
“jump to definition” mechanism of MPS supports navigation across the modules.

Modeling, debugging, verification, and validation workflow In ClaferMPS,
the evaluator relied more on the Architecture DSL to create a more correct-by-
construction model because the DSL enforces the proper structure and checks for
typical errors during editing; this made the creation of the model faster in ClaferMPS.
However, through the use of the Architecture DSL, the evaluator still created an
invalid model, initially, by forgetting to assign some quality attributes and setting
references to invalid targets. ClaferMPS helped with debugging, and finding such
mistakes, because the evaluator no longer had to manually comment out fragments
of a large model as ClaferMPS automatically generates code for every module and its
imports, with or without the quality attributes. This allowed for testing each layer in
isolation as well as testing the module logic while omitting quality attributes. In some
situations, however, the evaluator still had to comment out the unused fragments
of the reference model. For example, in order to test the functional architecture layer
in isolation, the evaluator had to comment out the ❞❡♣❧♦②❡❞❚♦ reference, which
induces a dependency on hardware architecture. As a result, we have implemented
the separation of the deployment from the other layers and weaving of the deployment
when needed during code generation; it has reduced the need for commenting out as
above but can be improved further in the future to not require commenting out any
portions of the model or reference model. Finally, the evaluator set up partial test
modules which contain only a partial system and a subset of layers, which allowed
testing the individual layers in isolation. These partial test modules allowed for testing
and verifying logic associated with a specific layer of the system.

Autocomplete The evaluator ranked autocomplete as the top feature of ClaferMPS
because it prevents naming mistakes and helps in correctly selecting nested elements
based on their type and the rules of the reference model. Although, autocomplete could
also be provided for plain Clafer, it would not be able to interpret nesting constraints.

Inconsistencies between the reference model used in both case studies
and reference model evolution Chronologically, ClaferMPS was developed after
the first version of the power window case study and the Architecture DSL was based
on the reference model from that case study. The door locks case study was developed
later and subsequently the power window case study was revised. In our evaluation,
we observed that not only the reference models between the two case studies were
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slightly different but also the Architecture DSL was initially outdated. Eventually,
we made all three reference models consistent.

This demonstrates the typical organizational problem which occurs when people
apply a supposedly common reference model but are free to adjust it slightly in
every project: the organization cannot easily enforce the consistent application of
the reference model. By encoding the reference model in the DSL, providing limited
extensibility, and enforcing domain-specific rules, the DSL ensures the consistent
application of the reference model.

On the other hand, having a DSL creates the typical “schema migration” problem
when a reference model evolves and the user models must be co-evolved consistently
with the DSL. We observed this when we updated the DSL to be consistent with
the reference model used in the power window case study. The architectural models
became broken and the evaluator had to manually redo these broken parts. In practice,
this problem is usually mitigated by versioning the reference model and providing
migration scripts.

Required knowledge of Clafer The evaluator stated that using the Architecture
DSL requires basic understanding of object-orientation and navigation between objects
by following the references. Building and using advanced models, such as the ones
in our case studies, requires the ability to write propositional logic constraints and
navigating among objects. Familiarity with constraint languages such as OCL, Alloy,
or Clafer is very helpful to be able to create non-trivial architectural models. While
a user could model an E/E architecture in ClaferMPS without a good understanding
of Clafer, knowledge of Clafer is needed for debugging the models or creating ones
with interesting variants.

Threats to Validity A threat to the internal validity of our exploratory evaluation
is that some of the development of ClaferMPS was performed in response to the
evaluator’s bug reports, issues, and requirements. This has not introduced any bias
since the design of the DSL was originally based on the evaluator’s case studies and
the iterative process allowed completing the evaluation and ensuring that the DSL
actually covers the entire scope of the case studies.

A threat to the external validity of our evaluation is that it was performed by
a single person, who is an expert Clafer user, and therefore the observations cannot
be generalized. It is possible that non-expert users of Clafer who are familiar with
the reference model would not be capable of modeling the two case studies in the
Architecture DSL. However, the evaluator was a novice user of MPS and his observa-
tions are likely to be valid for other users. In the future, we are planning to conduct
a more extensive evaluation with many users with diverse backgrounds.

7 Related Work

Aleti et al. surveyed over 180 works concerning architecture optimization in the
domains of information systems and embedded systems [14]. The surveyed methods,
along with other related works [15,16,17,18,19,20], considered different design deci-
sions or degrees of freedom (i.e., variability points) for hardware selection, deployment
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of software to hardware, task scheduling, redundancy allocation, communication
topology design, hardware component placement, and wireharness sizing and routing.
They also considered different design constraints such as memory capacity, functional
dependencies, co-location restrictions, among many quality constraints such as mass,
cost, and reliability. Lastly, these optimization works considered a number of different
objectives such as performance, reliability, cost, mass, and energy consumption.

The majority of these works, however, only considered a handful of design deci-
sions, constraints, and objectives where, in our work, we can consider a design decision
for each reference model component. Additionally, in our MPS models, we were able
to reason about mass, parts cost, warranty parts cost, and latency as in [5,3] since
ClaferMPS is an extension of Clafer. In this work, we also consider decisions made
about the features and their impact on the other layers of the system (functional and
hardware) in E/E architectures which was first introduced by Murashkin [5].

Additionally, the works surveyed in [14] only consider the equivalent of the func-
tional analysis architecture, device node classification, and the network buses in
the communication topology. In other works that consider both the functional and
hardware layers of the architecture as well as a graphical projection of the architecture,
such as AF3 [21], OSATE [22], and PreeVision [23], they do not allow for express-
ing variability about almost any component in the model along with a supporting
reasoner, as we do.

8 Conclusion

We presented the design and implementation of an Architecture DSL for modeling
automotive E/E architectures. The goal of the DSL is to make the reasoning power
of Clafer accessible to practitioners by guiding them in the correct application of
the reference model, minimizing the need for writing constraints, and automatically
generating plain Clafer files that can be used with the existing Clafer toolchain. This
paper reports on the progress towards that goal.

This work opens up new possibilities in the design exploration of automotive
architectures. As has been previously demonstrated in plain Clafer [5,3], architects can
now include design decisions and alternatives about any element in their architectural
model, automatically synthesize candidate architectures to see the impact of their
decisions, enrich the model with quality attributes and multi-objectively optimize the
model to find the set of Pareto-optimal candidates and explore the tradeoffs among
them. This work is also applicable to modeling automotive product-line architectures
and synthesizing concrete architectures for products.

In the future, we would like to address the remaining limitations and requirements
uncovered by our evaluation, such as reference model slicing to eliminate the need for
commenting out unused fragments of the reference model, separation of variability sim-
ilar to the quality attributes and deployment, and integration of the instance generator
and support for working with the candidate architectures to provide a smooth work-
flow within MPS. We would also like to perform experimental evaluation with external
users to assess the practicality of the approach and the required expertise in Clafer.
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