

three cases of feature-based variability modeling in industry

thorsten berger, divya nair, ralf rublack, joanne m. atlee, krzysztof czarnecki, andrzej wasowski

variability is everywhere

variability adds complexity

code

76	<pre>check_range(unsigned long vstart, unsigned long vend,</pre>				
77	unsigned long kstart, unsigned long kend)				
78	{				
79	unsigned long vaddr, kaddr;				
80					
81	#ifdef DEBUG_CHECK_RANGE				
82	<pre>srm_printk("check_range: V[0x61x:0x61x] K[0x61x:0x61x]\n"</pre>				
83	vstart, vend, kstart, kend);				
84	#endif				
85	/* do some range checking for detecting an overlap */				
86	<pre>for (vaddr = vstart; vaddr <= vend; vaddr += PAGE_SIZE)</pre>				
87	{				
88	kaddr = (find_pa(vaddr) PAGE_OFFSET);				
89	if (kaddr >= kstart && kaddr <= kend)				
90	{				
91	#ifdef DEBUG_CHECK_RANGE				
92	<pre>srm_printk("OVERLAP: yaddr 0x%lx kaddr 0x%lx"</pre>				
93	" [0x%lx:0x%lx]\n",				
94	vaddr, kaddr, kstart, kend);				
95	#endif				
96	return 1;				
97	}				
98	}				
99	return 0;				
00	}				

requirements

tests

architecture

variability modeling

(toy) feature model

survey findings

large diversity of tools

industry lacks guidance

Berger, Rublack, Nair, Atlee, Becker, Czarnecki, Wasowski: A Survey of Variability Modeling in Industrial Practice. VaMoS. 2013

quantitative \rightarrow qualitative

among 42 survey participants

conducted 8 semi-structured interviews (1-1.5h)

this paper: 3 described/analyzed in-depth

research questions

practices?

benefits?

challenges?

subject selection

development scales	small (2 developers)	large (60 developers)	ultra-large (100 teams)
domains	eCommerce	industrial appli- cations/energy	automotive
product line adoption	reactive	extractive	proactive
	consulting company (≤50 employees)	component producer (≤25,000 employees)	car manu- facturer (≤150,000 employees)

MODELING CONTEXT

home-grown generator/preprocessor

B: component producer

~1,100 features

power electronics firmware

C: car manufacturer

BENEFITS

configuration / code generation?

Berger, She, Lotufo, Wasowski, Czarnecki: A Study of Variability Models and Languages in the Systems Software Domain. In: IEEE Transactions on Software Engineering, volume 39.12, 2013

organization of knowledge!

resembles perceived benefits of MDD*

B: The first one is that it's visible, you see the features that you had in the code before.

B: Actually, you see the features of the whole product line. Before, they saw features of the specific products.

scoping, collaboration, and visualization

C: To agree between the R&D organization and with the product planning organization over the content of each product.

B: The same functionality was implemented twice [...] They implemented the same features.

PRACTICES

who edits the models?

centralized model governance

B: We have a colleague who [...] really has the domain knowledge.

B: Whenever we have an issue, we try to organize a workshop or a meeting.

C: On the top level, it's centralized, [maintained by] a central group.

bad news for distributed modeling

how to build the hierarchy?

result of domain analysis (top-down) and evolution (bottom-up)

constraints?

evolution?

primarily addition / rare removal

stable model hierarchies

versioning of the model, not individual features

JUSTAHEAD

CHALLENGES

short-term versus long-term benefit

organizational pushback in a matrix organization

developer motivation and organization

B: Developers are used to working for a long time on the same abstraction level.

C: We have a lot of dependencies between teams, so it's quite difficult for the teams to work autonomously.

SUMMARY

key take-aways

benefits

organization of knowledge collaboration configuration

pragmatic practices centralized governance versioning of the model limited constraint modeling

challenges

acceptance of abstraction layer organizational pushback dependencies between teams

future work

static analysis infrastructure (FarCE) to recover constraints (*)

incremental adoption of product lines (**)

study feature identification and coordination dynamics

investigate other units of variability

study failed attempts

*) Nadi, Berger, Kästner, Czarnecki: Mining Configuration Constraints: *Static Analyses and Empirical Results*. ICSE. 2014 **) Antkiewicz, Ji, Berger, Czarnecki, Schmorleiz, Lämmel, Stanciulescu, Wasowski, Schäfer: *Flexible Product Line Engineering with a Virtual Platform*. ICSE/NIER. 2014

thanks for your attention

three cases of feature-based variability modeling in industry

thorsten berger, divya nair, ralf rublack, joanne m. atlee, krzysztof czarnecki, andrzej wasowski