
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Clafer: Unifying Class and Feature Modeling

Kacper Bąk · Zinovy Diskin · Michał Antkiewicz · Krzysztof Czarnecki ·
Andrzej Wąsowski

Received: date / Accepted: date

Abstract We present Clafer (class, feature, reference),
a class modeling language with first-class support for
feature modeling. We designed Clafer as a concise nota-
tion for meta-models, feature models, mixtures of meta-
and feature models (such as components with options),
and models that couple feature models and meta-models
via constraints (such as mapping feature configurations
to component configurations or model templates). Clafer
allows arranging models into multiple specialization and
extension layers via constraints and inheritance. We
identify several key mechanisms allowing a meta-modeling
language to express feature models concisely. Clafer
unifies basic modeling constructs, such as class, associa-
tion, and property, into a single construct, called clafer.
We provide the language with a formal semantics built
in a structurally-explicit way. The resulting semantics
explains the meaning of hierarchical models whereby
properties can be arbitrarily nested in the presence of
inheritance and feature modeling constructs. The se-
mantics also enables building consistent automated rea-
soning support for the language: to date, we imple-
mented three reasoners for Clafer based on Alloy, Z3

Kacper Bąk
GSD Lab, University of Waterloo, Canada
E-mail: kbak@gsd.uwaterloo.ca

Zinovy Diskin
GSD Lab, University of Waterloo, Canada
E-mail: zdiskin@gsd.uwaterloo.ca

Michał Antkiewicz
GSD Lab, University of Waterloo, Canada
E-mail: mantkiew@gsd.uwaterloo.ca

Krzysztof Czarnecki
GSD Lab, University of Waterloo, Canada
E-mail: kczarnec@gsd.uwaterloo.ca

Andrzej Wąsowski
IT University of Copenhagen, Denmark
E-mail: wasowski@itu.dk

SMT, and Choco3 CSP solvers. We show that Clafer
meets its design objectives using examples and by com-
paring to other languages.

Keywords Language Design · Feature Modeling ·
OOM · Semantics · Unification

CR Subject Classification D.2.1 [Software Engi-
neering]: Requirements/Specifications—languages

1 Introduction

Both feature and meta-modeling have been used in
Software Product Line (SPL) engineering to model vari-
ability. Feature models can be seen as tree-like menus
of mostly Boolean, sometimes also numerical and tex-
tual, configuration options, augmented with cross-tree
constraints [45]. These models are typically used to
show the variation of user-relevant characteristics of
product variants within a product line. In contrast,
meta-models, usually represented as class models as ex-
pressed using Meta Object Facility (MOF) [54], specify
concepts representing more detailed aspects of prod-
ucts; including behavioral and architectural aspects. For
example, meta-models are often used to specify the
component and connector types of product line archi-
tectures and the valid ways of connecting them. The na-
ture of variability expressed by each type of models is
different: feature models capture selections from prede-
fined choices within a fixed tree structure; meta-models
support making new structures by creating multiple in-
stances of classes and connecting them via links.

Over the last decade, the distinction between fea-
ture models and meta-models has been blurred in the
literature due to (i) feature modeling extensions, such
as cardinality-based feature modeling [21,6], (ii) propos-
als to unify feature modeling notations into a useful

2 Kacper Bąk et al.

and widely applicable subset [58], and (iii) attempts
to express feature models as class models in the Uni-
fied Modeling Language (UML) [16,23]. In fact, a num-
ber of practitioners use UML-based representations to
model variability [11]. A key driver behind some of
these developments has been the desire to express both
configuration options and variability of component ar-
chitecture instantiations in one notation [19,37,38,32].
Cardinality-based feature modeling achieves this by ex-
tending feature models toward class modeling by in-
troducing multiple instantiation and references. It is
incomplete, however, because it does not offer inheri-
tance. Class modeling, which natively supports multiple
instantiation, references, and inheritance, enables fea-
ture modeling by a stylized use of containment (UML’s
composition) and the profiling mechanisms of MOF or
UML (e.g., as in [34]).

Both developments have notable drawbacks, how-
ever. An important advantage of feature modeling as
originally defined by Kang et al. [45] is its simplicity;
several respondents to a recent survey confirmed this
view [46]. Extending feature modeling with multiple in-
stantiation and references diminishes this advantage by
introducing additional complexity. Models that contain
significant amounts of multiply-instantiatable features
and references can be hardly called feature models in
the original sense; they are more of class models rather
than easy-to-use menus guiding configuration decisions.
On the other hand, whereas the model parts requiring
multiple instantiation and references are naturally ex-
pressed as class models, the parts that have feature-
modeling nature cannot be expressed simply in class
models, but rather clumsily simulated using compo-
sition hierarchy and certain modeling patterns. Even
worse, such a solution requires inconvenient model refac-
torings, while according to a recent survey [11], evolv-
ability of variability models is one of the main chal-
lenges faced by practitioners.

We present Clafer (class, feature, reference), a lan-
guage that unifies feature and class modeling. It can
naturally express feature models, while allowing for full
class modeling and relating both types of models. Clafer
supports: (i) class-based meta-models, (ii) object mod-
els, (iii) partial object models (with uncertainty), (iv) fea-
ture models with attributes and multiple instantiation,
(v) full and partial configurations of feature models,
(vi) mixtures of meta- and feature models and model
templates [18], (vii) first-order logic constraints. Clafer
also allows arranging models into multiple specializa-
tion and extension layers via constraints and inheri-
tance. On the other hand, by designing Clafer we wanted
to create a language that builds upon as few concepts
as possible and that is easy to learn. The main princi-
ple guiding our design was that “simple things (feature

models and simple constraints) should be natural and
simple while complex things (meta-models and complex
constraints) should be possible”.

In this paper, we present several contributions.
1. We identified several key mechanisms allowing a meta-

modeling language to express feature models con-
cisely; particularly, concept unification, instance com-
position and type nesting, and default singleton mul-
tiplicity.

2. We unify basic constructs of structural modeling:
class, association, and property (which includes at-
tribute, reference, and role), into a single construct,
called clafer. Such a construct has the characteris-
tics of a class (ability to nest and inherit properties
and other classes in it), an association (ability to
navigate over it), and an attribute (ability to store
single or multiple (set, bag) values of primitive types
in it).

3. Rich semantic capabilities are packed into very com-
pact syntax that makes class models concise. If nec-
essary, concrete uses of Clafer could introduce syn-
tax to distinguish among the various interpretations
of clafers, such as features, classes, components, as
well as, any domain-specific concepts.

4. We provide a mathematical model of Clafer’s syn-
tactical mechanism (meta-models and the overall ar-
chitecture) using formal class diagrams [29], which
is a structural modeling formalism based on cate-
gory theory and diagrammatic logic [31]. The for-
malism has allowed us to define semantics concisely
by specifying mappings between artifacts and oper-
ations over the artifacts and mappings. The struc-
tures of the syntactic and semantic domains are
aligned and made explicit rather than flattened and
hidden in a multitude of first-order logic formulas.
The main benefit of semantic unification is simplifi-

cation of analyses and tools that operate both on fea-
ture and class models, and mappings between them.
The language is supported by tools for model analy-
ses including consistency checking, instantiation and in-
stance completion [48,49], and single- and multi-objective
optimization [53]. Analyzes are performed by translat-
ing Clafer models into the input language of the under-
lying backend solvers (Alloy relational logic solver [40],
Z3 Satisfiability Modulo Theories (SMT) solver [26],
and Choco 3 Constraint Satisfaction Problems (CSP)
and Constraint Programming (CP) solver) [44]. The re-
sults of the analysis are translated back to Clafer. We
also provide a web-based suite of tools for working with
Clafer models and the backend solvers [3,52].

In the industrial context, support for variability is
needed when modeling product-line architectures using
such standards as AUTOSAR [56], EAST-ADL [17],
and SysML [35]. These standards do not require the

Clafer: Unifying Class and Feature Modeling 3

unification of feature and class modeling; however, they
point to the need of having both feature and architec-
tural models in a single, integrated system specification.
In fact, the first level of an EAST-ADL specification is
the technical feature model and AUTOSAR defines a
feature model interchange format [57] allowing for inte-
gration of external feature modeling tools and support
for adding variation points into AUTOSAR models.
The thesis by Padilla Gaeta demonstrates techniques
for adding variability to SysML models [33]. Further-
more, formal reasoning, such as constraint checking and
propagation, over such integrated specifications is re-
quired, which in turn, necessitates the integration of
the modeling languages and the supporting reasoners.
In contrast, by unifying feature and class models in
Clafer, we provide unified reasoning support for such in-
tegrated system specifications. For example, the thesis
by Murashkin demonstrates that Clafer can express and
optimize complex automotive electronic/electric archi-
tectural models that span three abstraction levels of an
architecture modeling standard EAST-ADL [51].

The paper is organized as follows. We introduce our
running example in Sect. 2. We define (i) the challenges
of representing the example using either only class mod-
eling or only feature modeling, (ii) the challenges of
mapping feature configurations to component and op-
tion configurations, and (iii) a set of design objectives
for Clafer in Sect. 3. We then present Clafer in Sect. 4
and show that it naturally supports unified feature and
class modeling. Section 5 explains the semantic founda-
tions of Clafer, and shows how it implements the uni-
fication idea. Section 6 describes Clafer syntax design
in more detail, and shows that a Clafer model is a hi-
erarchical view on a formal class diagram. We evaluate
the language analytically in Sect. 7 and demonstrate
that it satisfies the design objectives. We conclude in
Sect. 9, after having compared Clafer with related work
in Sect. 8. Our work is supported with a set of appen-
dices following the main body of the paper.

2 Modeling Variability in SPLs: An Example

Vehicle telematics systems integrate multiple telecom-
munication and information processing functions in an
automobile, such as navigation, driving assistance, emer-
gency and warning systems, hands-free phone, and en-
tertainment functions, and present them to the driver
and passengers via multimedia displays. Configurations
of a telematics system may differ among car models (see
Fig. 1). The bigger blue boxes indicate displays; the
smaller boxes in the middle indicate Electronic Con-
trol Units (ECUs) that control the displays. The car in
Fig. 1a has only one display for the driver. The car in
Fig. 1b has two displays: one for the driver and one for

the front-seat passenger; both displays are controlled by
the same ECU. The car in Fig. 1c has one display in the
front and one in the back; the displays are controlled
by separate ECUs. The car in Fig. 1d has a separate
display for each person in the car.

Figure 2 shows a variability model of a telematics
product line—our running example. The features of-
fered are summarized in the problem-space feature model
(Fig. 2a). It is a tree, whose root telematics refers to the
product to be configured. The children are the prod-
uct’s features related by the sub-feature relationship,
which expresses hierarchical dependencies. A feature
is either mandatory (indicated by a filled circle), e.g.,
channel, or optional (indicated by an empty circle), e.g.,
extraDisplay. A feature is, basically, a Boolean choice
(sometimes with a numerical or textual attribute) that
can be either selected or excluded when configuring a
concrete product. Mandatory features are always se-
lected, provided that their parent is also selected. Alter-
native choices are gathered under the xor-group chan-
nel, marked by the arc between edges. By default, each
channel has one associated display (as in Fig. 1c); how-
ever, we can add one extra display per channel (as
in Fig. 1d), as indicated by the optional feature ex-
traDisplay. Finally, we can choose large or small displays
(size). Any configuration allowed by the feature model
in the problem space (the left half of Fig. 2) must be
somehow realized in the solution space, whose model is
presented in the right half of the figure. The solution
space consists of three major parts.

The first one is a high-level abstract meta-model of
components making up a telematics system (Fig. 2b).
There are two types of components: ECUs and displays.
Each display has exactly one ECU as its server. All com-
ponents have a version.

Components themselves may have options, like the
display size or cache, which constitute the second part
of the solution space (Fig. 2c). We can also specify the
cache size and decide whether it is fixed or can be up-
dated dynamically. Thus, the solution space should in-

(a) (b) (c) (d)

Fig. 1: Sample configurations of a telematics system

4 Kacper Bąk et al.

Fig. 2: Telematics product line

clude a class model of component types and a feature
model of component options.

Moreover, the component meta-model in Fig. 2b is
too generic and is not well aligned with the actual prod-
ucts specified in the problem space. We want to add
more information to specialize and extend the compo-
nent model to create a particular template for prod-
ucts offered by the product line. A template fixes most
of the architectural structure, but leaves some points
of variability to match the variability offered by the
product line. Figure 2d shows an extension of the ab-
stract component model to serve as a template. The
abstract class plaECU (product line architecture ECU)
specifies that each ECU will have either one or two
plaDisplays. We specialize the component meta-model
by adding extra information via constraints: none of
the displays has cache, and we constrain the server ref-
erence in each plaDisplay, so that it points to its as-
sociated ECU. A concrete product must have at least
one ECU. Hence, there are two singleton subclasses,
ECU1 and ECU2 (with multiplicities 1..1), that serve as
a specification of objects. We choose to specify objects
by singleton classes because for ECU2 we need to extend
the base type with new property master that was not
specified in the high-level component class. Modeling
ECU2 instance as a singleton class solves this problem
(a more detailed discussion of modeling objects by sin-
gleton classes can be found in [14]).

We need to endow the class model with a variabil-
ity mechanism aligned with variability provided by the
feature model (from the solution space). One way of
doing this is to make the existence of some classes in

the template optional by annotating them with propo-
sitional formulas composed from features offered by the
feature model (so called presence conditions introduced
in Feature-Based Model Templates (FBMTs) [18]). In
Fig. 2d, class ECU1 is mandatory and class ECU2 is op-
tional, because its presence in the model is regulated
by the condition «dual», which refers to a feature from
Fig. 2a. The presence condition means that in a concrete
configuration ECU2 will be included if the feature dual
is selected; it will be removed otherwise. Thus, FBMTs
relate the problem-space feature configurations to the
solution-space component and option configurations. A
block-arrow in Fig. 2 represents this mapping. We will
provide a precise specification of the complete mapping
later in this paper.

The example motivates two issues of modeling vari-
ability in SPLs: 1) the necessity to merge feature and
class models in a single solution space, and 2) the need
to support relating (mapping) feature configurations
to component and option configurations. In the next
section, we will show that managing the issues is not
straightforward and challenging. Correspondingly, we
will refer to them as Problem 1 and Problem 2 .

3 Two Problems

3.1 Problem 1: Merging Feature and Class Models

The solution space in Fig. 2 contains a class-based meta-
model and a feature model. To capture our intention,
the models are connected via UML composition. As

Clafer: Unifying Class and Feature Modeling 5

Fig. 3: Cardinality-based feature model of components

the precise semantics of such notational mixture is not
clear, this connection should be understood only infor-
mally for now. Basically, we have two choices to model
components and options in a single notation: either en-
rich feature modeling to allow it to capture class mod-
eling, or encode feature models as class models. We will
consider them in the two consecutive subsections.

3.1.1 Class Modeling via Feature Modeling

Figure 3 shows the part of the model which represents
components. The model introduces a synthetic root fea-
ture; display and ECU can be multiply instantiated (as
indicated by the multiplicity *), but they cannot be ab-
stract; and display has a server subfeature representing
a reference to instances of ECU. Two subfeatures ver-
sion are added to display and ECU to match the meta-
model in Fig. 2b since feature models do not support
inheritance. Extending cardinality-based feature mod-
eling with inheritance would bring the notation very
close to class modeling, posing the question whether
class modeling should not be used for the entire solu-
tion space model instead. Furthermore, the semantics
of such an extended notation is unclear.

We may conclude that cardinality-based feature mod-
eling blurs the distinction between feature modeling
and class modeling. It encompasses mechanisms charac-
teristic of class modeling, such as multiple instantiation
and references, and could even be extended further to-
ward class modeling, e.g., with inheritance; however,
the result can hardly be called ‘feature modeling’ in its
classical sense, as it clearly goes beyond the original
scope of feature modeling [45].

3.1.2 Feature Modeling via Class Modeling

Figure 4 shows only the display option model, as the
component model remains unchanged (as in Fig. 2b). A

Fig. 4: Meta-model of display options

(a) Iteration 1

(b) Iteration 2

Fig. 5: Evolved meta-model of display options

subfeature is either an attribute (if it has no other sub-
features) or a class (if it has features) – we choose the
simplest suitable language construct. Subfeature rela-
tionships are represented either as property nesting or
as UML composition. Feature multiplicities correspond
to property multiplicities. The xor-group is encoded by
enumeration.

Representing a feature model as a UML class model
works reasonably well for our small example; however,
it does have several drawbacks:

1) Limited property nesting and model refactoring.
The feature model shows fixed as a property of size
by nesting. This intention is lost in the class model,
in which fixed is a property of cache rather than size;
particularly, if the attribute size was optional, the at-
tribute fixed could exist even if size was eliminated. To
fix this drawback, we could add an Object Constraint
Language (OCL) [55] constraint expressing the depen-
dency but hiding an important structural information
within constraints is not generally advisable.

A better solution would be to reify the attribute
size as a class contained in cache as shown in Fig. 5a, in
which the structural dependency is explicit. Note also
that in some cases, reification of attributes would natu-

6 Kacper Bąk et al.

rally be modeled using subclassing rather than contain-
ment. Suppose, for example, that we need to add an
optional property hd (high definition) to large displays.
A natural way to do this is shown in Fig. 5b, which is
again a substantial refactoring of the initial class model
from Fig. 4. In contrast, adding the property hd to the
feature model in Fig. 2a amounts to plain nesting the
feature hd under the feature large.

These examples show a general drawback of ordi-
nary class modeling in the context of gradual model
development. Modeling properties by attributes is com-
pact, but disallows further nesting. On the other hand,
modeling properties by classes leads to bulky models;
even worse, there are several ways of such modeling,
which may be a problem for an inexperienced modeler.

2) Name clashes. By default, class diagrams offer a
single namespace for class names. Feature names, how-
ever, often repeat in different parts of the feature model,
e.g., the name size is used three times in Fig. 5a. Name
repetitions may easily lead to name clashes. For exam-
ple, if we make the enumeration Size a class, the name
of the new class would clash with the class size repre-
senting the display size; thus, we would have to rename
one of them, or use nested classes (Fig. 5b), which would
further complicate the model.

3) Limited support for groups. Converting an xor-
group to an or-group in feature modeling is simple: the
empty arc is replaced by a filled one. For example, size
(Fig. 2a) may become an or-group in a future version of
the product line to allow systems with both large and
small displays simultaneously. Such a change is tricky
in class models: we need to refactor size to a class with
two subtypes: small and large (Fig. 5b). Then we would
either allow one to two objects of type size and write
an OCL constraint forbidding two objects of the same
subtype (small or large), or use overlapping inheritance.

Thus, existing class modeling notations, e.g., UML
class diagrams, are inadequate for feature modeling, es-
pecially in the context of gradual model development
and evolution. Similar arguments apply to other exist-
ing class-based modeling languages, such as MOF and
Alloy, as well as, to most object-oriented programming
languages, such as Java and C++.

3.2 Problem 2: Mapping Features to Component
Configurations

Relating heterogeneous models by a mapping is a non-
trivial task. For example, a FBMT in Fig. 2 relates
a feature model, a class model (of components), and
(implicitly) their meta-models. As annotations, such as
«dual», change the class model itself, complicated syn-
tactic checks are needed to guarantee the correctness of
all template configurations. For example, when «dual»

is deselected and ECU2 is consequently removed, then
master may become a dangling association (because it
is mandatory and has no presence condition). Thus,
the configured template does not conform to the UML
meta-model for class diagrams. Verification of annota-
tive model templates is a non-trivial task and requires
specialized tools [24].

3.3 Toward a Solution

We conclude that a solution to the aforementioned is-
sues is to design a (class-based) meta-modeling language
with first-class support for feature modeling. We postu-
late that such a language should satisfy the following
design goals:

1. Provide a concise notation for feature modeling
2. Provide a concise notation for class modeling
3. Allow mixing of feature models and class models
4. Use a minimal number of concepts and have a uni-

form semantics

The last requirement is aimed at a language that unifies
the concepts of feature and class modeling as much as
possible, both syntactically and semantically. We see
the following advantages of unification: 1) the ability
to encode a variety of models, especially allowing flex-
ible mixing of feature and class models as shown by
the example, as well as, easy evolving of feature models
towards class models, if needed; 2) the ability to re-
late feature and class configurations via ordinary con-
straints; 3) a common infrastructure to support analy-
ses of these models; and 4) simplified implementation
of the tools. The next section presents Clafer—the lan-
guage designed to meet these requirements.

4 Clafer vs. the Two Problems

4.1 Clafer in a Nutshell

Clafer has a minimalistic syntax but rich semantics that
unifies class, association, and property (which includes
attribute, reference, and role) into a single construct
called clafer. Throughout the paper, if the word Clafer
begins with upper case, then it refers to the language,
otherwise it refers to the unifying concept or the corre-
sponding construct, or to a syntactical unit—a model
expressed using Clafer is built from clafers. For exam-
ple, Fig. 6a shows a sample Clafer model consisting of
two clafer declarations. First, a clafer display is declared,
then the declaration of the clafer server is nested under
the first declaration (display, implicitly, is nested under
the synthetic root clafer, i.e., ancestor of all clafers). A

Clafer: Unifying Class and Feature Modeling 7

display ∗

server→ ECU 1..1

(a) Clafer model (b) Rendering as a UML Class Di-
agram

Fig. 6: Clafer model and its meaning

clafer declaration includes multiplicities, and may op-
tionally contain a superclafer or a reference to a clafer
or both. In the example, the clafer display has the mul-
tiplicity *: there can be any number of instances of this
clafer. The clafer server refers to the clafer ECU (de-
fined elsewhere in the model) and it has multiplicity
1..1: each display has exactly one ECU server.

The clafer declaration (server) specifies a relation-
ship between its parent class (display) and its target
class (ECU), and it declares the following (cf. Fig. 6b):

1. A new class server and a bidirectional composition
association, which enables navigation to the intro-
duced class via the end server and back to the par-
ent/owner;

2. A unidirectional association dref (dereference) to
navigate to the target class from the new class;

3. A unidirectional association server* to navigate to
the target from the parent class (note that the *
mimics a dereferencing operator on server). By de-
fault, we assume that for any instance this of class
display, the equality this.server.dref=this.server* holds.
In fact, this condition means that the class server
can be considered as a reification of the association
server* in the sense of UML’s association classes.
Figure 6b uses the UML syntax for representing an
association class (the dashed line from the associa-
tion server* to the class server) to indicate this fact.

If a clafer has no reference (i.e., has neither class ECU
nor maps dref and server*), then it corresponds to pure
containment (server would be still contained by display).
We call clafers with references reference clafers, other-
wise they are basic clafers. We make these concepts
more precise in Sect. 5.

4.2 Solving Problem 1: Merging Feature and Class
Models

Let us model the running example using Clafer. In gen-
eral, a Clafer model consists of three types of con-
structs: clafers, constraints, and objectives. In this pa-
per, we are only concerned with clafers and constraints;
objectives are used in multi-objective optimization and
they are discussed elsewhere [53,51]. Each line in Fig. 7

1 abstract options
2 xor size
3 small ?
4 large ?
5 cache ?
6 size→ integer
7 fixed ?
8 [small && cache =⇒ fixed]

Fig. 7: Feature model of component options in Clafer

declares a new clafer (lines 1-7) or a constraint (in
square brackets, line 8). Clafers can be arbitrarily nested
(in the containment hierarchy) using indentation: the
clafer options is at the top level; the clafers size (line 2),
cache, and the constraint are nested under options; the
clafers small and large are nested under size; etc. Below
we discuss the Clafer model step by step. We provide
the full example in Appendix F for reference.

4.2.1 Feature Modeling

The Clafer model in Fig. 7 corresponds to the model of
display options in Fig. 2c. The clafer options is abstract
(cf. keyword abstract)—it has no direct instances, that
is, all its instances are instances of some other concrete
(i.e., non-abstract) clafer inheriting from it (similar to
abstract class in UML). One of the applications of ab-
stract clafers is to support reuse, as we will show shortly.

The clafer options contains a hierarchy of features
and a constraint. Each clafer can contain any number of
children clafers and constraints, shown by indentation.
Clafers can be preceded by group cardinality, which con-
strains the number of instances of children clafers. For
example, the keyword xor means that size allows either
small or large but not both (nor none of the two) as a
child instance.

Clafers are constrained by multiplicity constraints:
a multiplicity is an interval m..n, where m ∈ N, n ∈
N ∪ {∗},m ≤ n, assuming that i < ∗ for all i ∈ N.
A clafer can only have the number of instances l from
this interval: m ≤ l ≤ n. Besides direct notation m..n,
some syntactic sugar exists. For example, the clafer
cache is followed by the question mark ? (meaning 0..1),
i.e., cache is optional. By default the multiplicity for
clafers is 1..1, so size is mandatory; for top-level ab-
stract clafers it is 0..*, so there is no restriction on op-
tions. As the examples will show, such a design choice
smoothly integrates feature and class models.

Similarly to feature models, Clafer models have an
important property: an instance of a child clafer can-
not exist unless an instance of its parent also exists.
The clafer size→ int corresponds to a feature with an
attribute of type integer; it also nests another clafer

8 Kacper Bąk et al.

1 abstract comp
2 version→ integer
3

4 abstract ECU : comp
5

6 abstract display : comp
7 server→ ECU
8 ‘options // shorthand for options : options
9 [version ≥ server.version]

Fig. 8: Component meta-model in Clafer

fixed (cf. Fig. 2b). If cache is eliminated, then its chil-
dren size→ int and fixed are eliminated too.

4.2.2 Constraints

Constraints express dependencies among clafers or re-
strict numerical and textual values. For example, the
constraint in line 8 requires that a small display with
cache must have the cache of fixed size. The clafer small
is found within size; the full path inserted by the com-
piler will be this.size.small. Clafer constraints were in-
spired by Alloy. The latter notation is elegant, con-
cise, and expressive enough to restrict both feature and
class models. Similarly to Alloy and OCL, constraints
in Clafer can be either declared at the top-level or
nested under a clafer. Top-level constraints are global,
in a sense that they must hold for every instance of
the model. Nested constraints must only hold for ev-
ery instance of the context clafer (i.e., the clafer they
are nested under). We define Clafer constraints in Ap-
pendix D.

Each clafer introduces a namespace. For example,
the two different clafers named size exist in different
namespaces (one within options, and one within cache).
Names are path expressions, used for navigation like in
OCL or Alloy. Clafer has name resolution rules; they
are important when resolving clafer names used in con-
straints and clafer definitions. A name is resolved in the
context of a clafer using the following rules. First, it is
checked whether it is a special reserved name, such as
this or parent. Second, it is looked up in descendants
in the containment hierarchy in a breadth-first-search
manner. If it is not found, the algorithm searches within
the ancestor clafers. Otherwise, the name is looked up
in all top-level definitions. If the name cannot be re-
solved or it is ambiguous within one rule, an error is
reported.

4.2.3 Class-Based Meta-Modeling

Figure 8 shows a component meta-model (from Fig. 2b)
encoded in Clafer. Clafer version (line 2) corresponds
to the attribute of the class comp in Fig. 2b; and clafer

server (line 7) corresponds to the unidirectional asso-
ciation pointing to the class ECU in Fig. 2b. All con-
crete clafers are contained by their parents (the syn-
thetic root is a parent of top-level clafers). Clafers de-
clared using the arrow notation (version and server) are
reference clafers, i.e., they hold references to instances
(note that primitive types are clafers, too). All other
clafers are called basic clafers—they have no references.
Table 1 summarizes Object-Oriented Modeling (OOM)
and Clafer constructs. Although association reification
is a transformation in UML, in Clafer it is captured by
the concept of clafer, as associations are always reified.

Clafer supports single inheritance. If clafer A ex-
tends clafer B (written A : B), then every instance of A
is also an instance of B. In Fig. 8, clafer ECU inherits ver-
sion from comp. The clafer display additionally extends
comp by adding two clafers and a constraint stating that
display’s version cannot be lower than server’s version.
Inheritance in Clafer is non-overlapping (disjoint) and
covering by default.

Quotation (cf. ‘options in Fig. 8) is a syntactic sugar
for inheritance. Syntactically, quotation ‘A expands to
A : A. It introduces a clafer that extends another clafer
(defined elsewhere in the model) and reuses its name. In
the running example, quotation will effectively include
options from Fig. 7 as a part of display in Fig. 8.

While inheritance is about sharing a supertype, ref-
erence clafers enable sharing instances. An instance of
the reference clafer server will point to some instance
in the clafer ECU. In general, there may be several in-
stances of the clafer display that will reference the same
instance of ECU as their server.

Mixing class and feature models in Clafer is done
via inheritance or reference clafers. If a clafer has a su-
pertype, the supertype can be any clafer, regardless of
whether it plays the role of a feature or a class. Simi-
larly, any clafer can be the target of a reference clafer.
The concept of clafer is flexible. It can model (reified)
unidirectional associations, set- and bag-valued collec-
tions, and containment among clafers, which mitigates
the problems discussed in Sect. 3.

OOM Constructs Clafer Constructs
class

claferproperty
reified association
single inheritance single inheritance

containment clafer nesting
unidirectional association reference clafer

bag-valued bag
set-valued set
multiplicity multiplicity

Table 1: Corresponding constructs in OOM and Clafer

Clafer: Unifying Class and Feature Modeling 9

1 abstract plaECU : ECU
2 plaDisplay : display 1..2
3 [no cache]
4 [server = parent]
5

6 ECU1 : plaECU
7

8 ECU2 : plaECU ?
9 master→ ECU1

Fig. 9: Architectural template in Clafer

4.3 Solving Problem 2: Mapping Feature to
Component Configurations

Clafer can encode model templates in a way that con-
figurations are always syntactically correct. Figure 9 en-
codes the template from Fig. 2d in Clafer. The prede-
fined keyword parent points to one of the instances of
plaECU, which is either ECU1 or ECU2. Instead of mak-
ing existence of a class optional, it is assumed that the
class exists, but it has the multiplicity 0..1. Its presence
condition becomes a normal constraint that regulates
instantiation — as it is typically done in class model-
ing. The constraint can easily relate feature and class
models, because they are in a unified notation.

Having defined an architectural template, we can ex-
pose the variability points present in it as a product-line
feature model. Figure 10 shows this model (cf. Fig. 2a)
along with constraints coupling its features to the vari-
ability points of the template. The template in Fig. 9
allows the number of displays (plaDisplay under ECU1
and ECU2) and the size of every display to vary inde-
pendently. We want to further restrict the variability
as stipulated in the feature model; however, requiring
either all present ECUs to have two displays or all to
have no extra display, and either all present displays
to be small or all to be large. We opted to explain the
meaning of each feature in terms of the model elements
to be selected rather than defining the presence con-
dition of each element in terms of the features. Both
approaches are available in Clafer, however.

Constraints allow us to restrict the model to a sin-
gle instance (to configure it). Figure 11 shows top-level
constraints specifying a single product, with two ECUs,
two large displays per ECU, and all components in ver-
sion 1. The configuration corresponds to the one in
Fig. 1d. Instance generators [3] can automatically in-
stantiate the product line by deriving a configuration
of the architectural template as shown in Fig. 12.

Clafer offers the same syntax for specifying both
models and instances (configurations), and the latter
can be partial. Figure 12 shows a Clafer model that
encodes exactly one configuration that was previously

1 telematics
2 xor channel
3 single ?
4 dual ?
5

6 extraDisplay ?
7

8 xor size
9 small ?

10 large ?
11

12 [dual⇔ ECU2
13 extraDisplay⇔#ECU1.plaDisplay = 2
14 extraDisplay⇔ (ECU2 =⇒ #ECU2.plaDisplay = 2)
15 large⇔ !plaECU.plaDisplay.options.size.small
16 small⇔ !plaECU.plaDisplay.options.size.large]

Fig. 10: Feature model with mapping constraints

specified by constraints. The encoding is done by hierar-
chical redefinition among clafers — subclassing among
clafers and subclassing among references. For example,
in Fig. 9 the clafer plaDisplay is nested under plaECU,
thus in Fig. 12 the singleton clafer d1 subclasses plaDis-
play and is nested under e1. For reference clafers, the
target of the reference gets redefined. For example, in
Fig. 9 the clafer master points to ECU1 and is nested un-

1 [dual
2 extraDisplay
3 telematics.size.large]
4 [all c : comp | c.version = 1]

Fig. 11: Constraints specifying a single product

1 t1 : telematics
2 c1 : channel
3 d1 : dual
4 ed1 : extraDisplay
5 s5 : size
6 l5 : large
7 e1 : ECU1
8 d1 : plaDisplay
9 s1 : server→ e1

10 o1 : options
11 s1 : size
12 l1 : large
13 v1 : version→ 1
14 d2 : plaDisplay
15 s2 : server→ e1
16 o2 : options
17 s2 : size
18 l2 : large
19 v2 : version→ 1
20 v3 : version→ 1

21 e2 : ECU2
22 m1 : master→ e1
23 d3 : plaDisplay
24 s3 : server→ e2
25 o3 : options
26 s3 : size
27 l3 : large
28 v4 : version→ 1
29 d4 : plaDisplay
30 s4 : server→ e2
31 o4 : options
32 s4 : size
33 l4 : large
34 v5 : version→ 1
35 v6 : version→ 1

Fig. 12: A sample configuration (instance) in Clafer

10 Kacper Bąk et al.

Fig. 13: Architecture of Clafer syntax and semantics

der ECU2; in Fig. 12 the clafer m1 (line 16) subclasses
master, is nested under e2, and points to e1, which is a
subclass of ECU1 (line 1). Note that redefinition of basic
or reference clafers allows refining their multiplicities.

This capability of seamlessly expressing abstractions
(model) and examples (instances) in a single notation
is critical for effective example-driven modeling [9,2].

5 Anatomy of a Clafer Model and Its
Instantiation

This section discusses the basic ingredients of Clafer
syntax (details in Appendix C) and presents instanti-
ation of Clafer models which plays an important role
in model analyses. Many non-trivial model analyses
(e.g., checking model consistency) can be reduced to
the problem of finding a model instance by combina-
torial solvers. Therefore, instantiation of Clafer mod-
els is the primary functionality of the Clafer toolchain.
Furthermore, we give semantics to Clafer models via
instantiation (cf. Fig. 13).

The rich semantics of Clafer models is expressible in
a concise syntax. We designed the concrete syntax so
that it hides the complexity of its semantics. The mech-
anism is shown in Fig. 13. In the figure, the rounded
rectangles represent artifacts (e.g., Clafer Model), the ar-
rows type represent typing mappings (e.g., Type’), and
the chevrons represent transformations (e.g., Compile).
Another convention used in figures througout the pa-
per is that shaded shapes are assumed to exist, whereas
blank shapes are assumed to be fully derived.

Figure 13 illustrates that a Clafer Model is typed over
and required to conform to the Abstract Syntax Tree (AST)
Meta-Model (cf. the constraint |=). Then, the Clafer Model
is compiled into an intermediate representation, a Multi-
Clafer Shape (MCS), which is typed over and created so
that it conforms to the MCS Meta-Model (cf. the con-
straint |=). The MCS structurally resembles the Clafer
Model and it is not yet a class diagram as class names
can repeat when classes play different roles. Therefore,

the MCS needs to be transformed into a Class Diagram
(CD), which is typed over and created so that it con-
forms to the CD Meta-Model. Roughly, the transforma-
tion glues classes with the same name playing different
roles into single classes.

At this point, the class diagram can be given to a
backend reasoner for instantiation, which creates an
Object Diagram (OD) typed over and required to conform
to the class diagram CD. Now, the object diagram must
be “claferized”, that is, transformed into an instance
Multi-Clafer Instance (MCI) typed over and conforming to
the MCS. In the MCI, objects are replicated so that they
can appear in the original positions, as before the glu-
ing. The instance MCI can now be decompiled into a
Clafer Instance. Note, that the Clafer Instance is transi-
tively typed over the AST Meta-Model, which explains
why instances in Clafer have the same notation as the
Clafer models - they have the same abstract syntax.
For example, compare the clafer options from Fig. 7 and
its instances o1-o4 in Fig. 12, lines 10, 16, 25, and 31,
respectively.

In our toolchain [3], the Clafer compiler first parses a
textual Clafer model into its abstract syntax tree Clafer
Model and then compiles it into an MCS. Next, the com-
piler transforms the MCS into an encoding of a class dia-
gram CD in the language of the chosen backend solver,
such as, Alloy, SMT-LIB, and Choco 3. The backend
solver then produces object diagrams OD which are in-
stances of the class diagram CD. Finally, these ODs are
translated back to Clafer syntax.

5.1 Clafers as Views onto Class Diagrams

Figure 14a shows a Clafer model where plaECU is a
top-level basic clafer with an unrestricted multiplicity.
The optional reference clafer master is contained within
plaECU and, simultaneously, has plaECU as a reference
target. Furthermore, it is possible to navigate from the
top-level plaECU to the one pointed to by master. Fig-
ure 14d shows an intuitive meaning of the model, i.e.,
a UML class diagram with a reified association being
a loop. This intuitive meaning is precisely captured in
Fig. 14b by an MCS that follows the concrete syntax of
Clafer. MCS defines Clafer models in terms of formal
class diagrams [29] (formal CDs or just CDs for short),
which we use as a notation for our semantic domain.
In general, an MCS is a tree-like structure composed
by joining Clafer Shapes (CSs). A single CS represents
a single clafer declaration. In the example, the MCS is
composed of only one CS.

A formal CD is a graph with additional labels en-
coding constraints. For the CD in Fig. 14b, the graph
encompasses three nodes and three edges, and the con-
straint labels denote multiplicities and a commutativ-

Clafer: Unifying Class and Feature Modeling 11

plaECU ∗

master→ plaECU ?

(a) Clafer model (b) MCS (c) Labeling as a graph mapping (d) UML Class Diagram

Fig. 14: (a) A Clafer model, (b) its compilation, (c) label extraction, (d) the rendering using reified association

ity constraint ([=]). Nodes of the graph (think of UML
classes) are interpreted as sets (of their instances). Edges
(think of UML associations) are interpreted as map-
pings, i.e., sets of links mapping elements from the source
set to the elements of the target set. The commutativity
constraint denotes that the mapping master* is the se-
quential composition ofmaster followed by dref. In fact,
this equality means that class master together with its
pair of associations (parent, dref) can be considered as
reification of association master* (which is shown by a
dashed line in the UML diagram in Fig. 14d).

We use the following notation for maps (edges). Pre-
defined maps, e.g., parent, are underlined. By default,
maps are partially defined and multi-valued, and are
denoted by arrows with a black triangle head, see, e.g.,
the shapes of arrows master and master* in Fig. 14b.
An open arrow head (e.g., arrow dref) means that the
map is single-valued: each instance of master points to
at most one instance of plaECU. A black bullet arrow
tail means that the map is total: each instance of master
points to at least one instance of plaECU. A black di-
amond arrow tail (arrow master) denotes containment
considered as a conjunction of two conditions: multi-
plicity 1 (there is one and only one instance of plaECU
for an instance of master) and existence dependency
(deletion of an instance of plaECU implies the deletion
of its nested instance of master). The first condition
is often referred to as non-sharing (and the multiplic-
ity is sometimes relaxed to 0..1). The second condition
is also referred to as cascade deletion. Although it is
not expressible in the CD formalism described in this
work (which does not have any means of expressing dy-
namic constraints), it is an important part of Clafer
semantics. Existence dependency can be formalized in
the framework of Class Diagrams with dynamic pred-
icates described in [30]. Our arrow notation for maps
is summarized in Tab. 2. Table 3 summarizes the dia-
gram predicates we use. They are formally defined in
Appendices A and B. We mark a non-constrained bag-
valued mapping with the label [bag] while being set-
valued is assumed by default and we hide the predicate
[set]. Note the difference between the arrow heads for a
general multi-valued mapping (a black triangle) and a
single-valued mapping (an open arrow-head).

Mapping Arrow Intended semantics
partial

bag-valued
No constraints.

partial
set-valued

f(a) is a set for all a ∈
A

total for any a ∈ A there is
b ∈ f(a).

single-valued for any a ∈ A there is
at most one b ∈ f(a).

inclusion A ⊂ B and f(a) = a.

containment for any b ∈ B there is
exactly one a ∈ A s.t.
f(a) = b.

Table 2: Notational conventions for maps

Notice, however, that the MCS in Fig. 14b is not
a valid class diagram, because it contains two classes
named plaECU. What is the meaning of this strange
diagram then? In contrast with class diagrams (where
names are unique), the Clafer model (and the corre-
sponding MCS) distinguishes two different roles that in-
stances of the class plaECU can play: (i) being the parent
of reference master, and (ii) being the target of the refer-
ence. What Fig. 14b actually encodes is a mapping from
a diagram of roles to a diagram of classes and associa-
tions, as shown in Fig. 14c. The source of the mapping
is the carrier graph of the diagram from Fig. 14b. The
target is a formal class diagram that makes the mean-
ing of the class diagram from Fig. 14d precise. Indeed,
as an object of class master is supposed to reify a master
link, such an object must have a source projection refer-
ence (to the source of the association) that returns the
source component of the link, and a target projection
reference (to the target of the association) that returns
the target component of the link. In Fig. 14c, these pro-
jection references are given respectively by parent and
dref associations (maps) in the target CD.

The mapping specified in diagram Fig. 14c (label)
consists of links assigning labels to roles; they are shown
with dashed lines. The two links targeting at the same
class plaECU show that class plaECU plays the two roles
of being both the parent and the target of associa-

12 Kacper Bąk et al.

Predicate Shape Intended semantics
name/symbol (elements a, a′, b, b′ range over A,B resp.)

inv maps f, g are mutually inverse iff their spans f∗, g∗ are such.

key fi(a) = fi(a′) for both i = 1, 2 implies a = a′.

= f∗.g∗ = h∗

cover for any b ∈ B there is a ∈ Ai s.t. b ∈ fi!(a) for i=1 or 2, or both.

disj f1!(a) ∩ f2!(a′) = ∅ for all a 6= a′.

mult-trg m ≤ |f(a)| ≤ n.

mult-src m ≤ |g(b)| ≤ n where g is the inverse of f .

Table 3: A signature of diagram predicates (the labels [bag] are omitted)

tion master. Note that the mapping preserves the graph
structure: it maps edges to edges so that their sources
and targets are respected. This preservation is an im-
portant condition to be respected by labeling.

We will say that Fig. 14c describes a view on the
class diagram, and call the mapping label. For a com-
plex Clafer model consisting of multiple clafers, the
role graph has the shape of multiple triangles joined
together into a hierarchical structure (see, for exam-
ple, Fig. 17c). Thus, a Clafer model is compiled into an
MCS, whose labeling encodes a mapping to a class di-
agram. We will again call this mapping label, and say
that it is extracted from the MCS. The mapping la-
bel is crucial for claferizing and decompiling of object
diagrams that instantiate the back-end class diagrams
into instances typed over MCS, in which different roles
played by the same object are explicit.

Below we consider Clafer syntax and MCS compila-
tion in more detail.

5.2 Clafer Shape

The diagram in Fig. 15a is a more detailed represen-
tation of the diagram in Fig. 14b. Nodes of the dia-
gram denote roles played by the involved classes, and
edges are roles played by mappings (unidirectional asso-
ciations). The bidirectional containment association is
split into two mappings, which are declared as mutually

(a) Clafer Shape (b) Class Diagram

Fig. 15: The CS and the corresponding CD of master

inverse (the predicate declaration [inv](master , parent),
which is visually shown by the label [inv] hung on the
two arrows). Furthermore, the diagram carries the mul-
tiplicities of the associationsmaster andmaster*, which
are equal because mapping dref is single-valued.

Thus, the diagram of roles is a graph endowed with
predicate labels declaring certain properties of the map-
pings involved. We will call such graphs DP-graphs,
meaning graphs with diagram predicates. In fact, formal
CDs are nothing but DP-graphs in some predefined sig-
nature of diagram predicates required to express static
semantics of UML class diagrams. Now we can say that
a single clafer declaration is compiled into a specific
DP-graph (formal CD) of a specific shape specified in
Fig. 16. We call this specific DP-graph a Clafer Shape,
and name its elements as shown in the figure.

The clafer shape has a standard visual layout: the
source class is always above the head class; the tar-
get class is to right of the head class. The head class
indicates the clafer introduced by the compiled decla-

Clafer: Unifying Class and Feature Modeling 13

Clafer Kind Clafer Model Clafer Shape

Basic telematics
extraDisplay m..n

Reference bag display
server � ECU m..n

Reference set display
server→ ECU m..n

Table 4: The meaning of a clafer declaration

Fig. 16: Clafer Shape (CS) (without labels)

ration; the source class relates the introduced clafer to
its parent in the containment hierarchy. The dref map
and the target indicate the target type of the reference.
Note that mappings dref and parent are always single-
valued. Among predicate declarations embodied into a
clafer shape, all but multiplicity m..n is automatically
assumed by default; multiplicity m..n is declared by the
user (and is assumed to be 1..1 unless explicitly stated
in concrete syntax to be otherwise).

5.3 Kinds of Clafers

There are two kinds of user-defined clafers: basic clafers
and reference (bag and set) clafers. We describe them
and specify their semantics via generic examples below.
Table 4 summarizes the discussion and shows sample
models and their CSs. Although, the figures use con-
crete names, such as display and server, the compilation
works analogically for any clafer of a given kind. Each
of the clafers can be either abstract or concrete.

5.3.1 Basic Clafers

They establish containment hierarchy among clafers by
nesting (same as composition in UML). An example is
shown in the first row of Tab. 4. A distinction of a basic
clafer’s shape is that the maps dref and target and the
target class are excluded.

5.3.2 Reference Bag Clafers

They correspond to bag-valued references, i.e., two or
more references from the same source instance can point
to the same target instance. The target clafer name
follows the double arrow symbol (�). For example,
there may be several connections from a display to
ECU. The second row of Tab. 4 illustrates a compila-
tion of the reference bag clafer server to a corresponding
CS. In fact, reference bag clafers follow the structure
of basic clafers, but additionally have the target class
(cf. Fig. 16). In reference bag clafers, the target map is
bag-valued, hence the annotation [bag] on server*.

5.3.3 Reference Set Clafers

They are set-valued references and their name is fol-
lowed by the arrow symbol (→). They are similar to
reference bag clafers, but the same source instance can-
not point to the same target instance multiple times.

The compilation of reference bag and set clafers to
CSs is similar, but the latter have an additional pred-
icate declaration [key](parent, dref) (cf. the last row of
Tab. 4). The predicate means that each instance this
of the head class is identified by a pair of instances

14 Kacper Bąk et al.

(this.parent, this.dref) from the source and target classes,
and hence “rows” in the “table” server are not dupli-
cated. Then navigation from the source to the target
results in a set-valued mapping. In the example, for a
given instance of display, each instance of server points
to a different instance of ECU, and the mapping server*
is set-valued. Conversely, if the target mapping is set-
valued, the pair of projections is a key.

5.3.4 Abstract Clafers

Abstract clafers define only a type (no direct instances).
We distinguish nested and top-level abstract clafers.
The CS of the former is the same as of previously de-
scribed clafers. Top-level abstract clafers, on the other
hand, have slightly different CSs: they have no parent
in the containment hierarchy, i.e., the CS excludes the
head class and the corresponding maps. When a top-
level clafer is declared abstract, then all its descendants
(in the containment hierarchy) are declared abstract by
default; this is the only case in which abstract clafers
are nested.

5.3.5 Predefined Clafers

There are several clafers that are predefined in the lan-
guage: the clafer Sing and a family Dom of clafers rep-
resenting primitive domains (e.g., int for integers, and
string for strings of characters). Sing is very important
although it does not appear in the concrete syntax.
Each Clafer model by default has Sing as the root of
the containment hierarchy, and hence Sing is the par-
ent of top-level concrete clafers. It also is important in
the context of top-level abstract clafers that have no
parent. The synthetic root embodies the concept of ex-
istence. In Clafer, being reachable from the synthetic
root is necessary for a clafer to exist when the model
gets instantiated. Sing only has a head class, which is
some predefined singleton class {*} also called Sing and
has neither a parent nor a target (see the upper trian-
gle in Fig. 17b). Any clafer in Dom is a child of Sing, its
head class is the class of the respective values (integers,
strings, etc.), and it does not have a target class.

5.4 Clafer Nesting

A Clafer model is a tree of clafer declarations. In con-
crete syntax, that hierarchy is expressed via indenta-
tion. For example, master is a child of plaECU in Fig. 17a.
Clafers can arbitrarily nest clafers irrespective of their
kind. In particular, reference clafers can nest clafers,
which corresponds to nesting properties under UML
association classes. In contrast to property nesting in
UML, clafers can be nested arbitrarily deeply, however.

Fig. 18: Inheritance among two CSs

Clafer nesting is realized through cojoining CSs which
then form an MCS. If a clafer B is a child of (nested un-
der) clafer A, then the head class of A is also the source
class of B, so that the CS of B is plugged into the CS
of A such that:

A.head = B.source

For example, Fig. 17b shows three cojoined CSs where
plaECU is a parent of master and Sing is a parent of
plaECU.

Section 5.1 showed that a single CS amounts to a
labeling mapping to a CD. Correspondingly, an MCS
amounts to a labeling mapping to a bigger CD. Fig-
ure 17c presents the extraction of this mapping for our
example. The mapping itself is specified in Fig. 17c’. The
CD, generated by the mapping label, demonstrates that
labeling glues together some nodes from the MCS.

5.5 Inheritance

Inheritance between two clafers is defined at the level
of their CSs and means their inclusion: the correspond-
ing classes in CS are related by inclusions, as in Fig. 18.
Inclusion maps are denoted by hollow-triangle heads,
which resemble UML notation for inheritance. Formally,
a map m with a hollow-triangle head means a predicate
declaration [incl](m). The idea of modeling subsetting
via inclusion maps is borrowed from category theory.
Figure 19 shows an example. The clafer master under
ECU2 specializes master under plaECU. Effectively, for
reference clafers inheritance is a redefinition. The redef-
inition for maps also holds due to commutativity con-
dition of maps: supers.head = head.superh. If a CS has
no target (is a basic clafer) or no parent (an abstract
clafer), then there is no inclusion between the missing
classes.

Inheritance among any types of clafers is allowed,
but it is subject to the following restrictions:

Clafer: Unifying Class and Feature Modeling 15

1 plaECU 0..∗

2 master→ plaECU 0..1

(a) Clafer model

ClassRole Label
Sing Sing

plaECU1, plaECU2 plaECU
master1 master

MapRole Label
parent1 parent1
plaECU1 plaECU
parent2 parent2
master1 master
master1* master*
dref1 dref

(b) Corresponding MCS (c’) Definition of the mapping label

(c) Corresponding MCS mapped via label defined in (c’) to a CD

(d) An MCI mapped via label* to a sample OD.

Fig. 17: Compilation of a Clafer model to an MCS, gluing into a CD, and instantiation

16 Kacper Bąk et al.

Fig. 19: An example of clafer inheritance

– a basic clafer cannot inherit from a reference clafer
(because the subtype would remove the reference);

– a bag clafer cannot inherit from a set clafer (because
the subtype would remove a constraint);

– if the super-clafer is not a top-level abstract clafer
(i.e., it has a parent), then both the sub- and super-
clafer must have the same parent in the contain-
ment hierarchy (because a clafer cannot have mul-
tiple parents).

When an abstract clafer A is a direct super type
of clafers B1, . . . ,Bn, then the constraints [cover] and
[disj] are declared in the MCS on the superh maps re-
lating head classes of B1, . . . ,Bn with their super classes.
That way all instances of an abstract clafer must be in-
stances of its concrete subtypes. Finally, observe that
the commutativity constraints enforce proper inclusions
of mappings as well. For example, in Fig. 19, the maps
master and dref of the inheriting clafer (master under
ECU2) are included in the corresponding maps of its
super clafer (master under plaECU).

5.6 Instantiation

Every Clafer model (e.g., Fig. 17a) is transformed to a
class diagram CD, such as the one in the right part of
Fig. 17c. An instance of the class diagram CD is an ob-
ject diagram OD typed over the CD. A sample instance
is shown in the right part of Fig. 17d. The instance,
however, needs to be unfolded into a multi-clafer-shaped
OD typed over given MCS, as shown in the left part
of Fig. 17d. We call such a multi-clafer-shaped OD an
Multi-Clafer Instance (MCI). Elements of an MCI are
object and link roles, which are labeled by real objects
and links in the corresponding OD. Similarly to how
the same class may play different roles in an MCS, the
same object can play different roles in an MCI. For ex-
ample, the object e1 from the example in Fig. 17 plays
three roles: an independent plaECU (shown by its po-
sition at the role box e1:plaECU), the master of object
e2 (e1:plaECU), and the master of itself (e1:plaECU).

(a) Definition (b) Derivation

Fig. 20: Clafer model instance

The mapping label* maps roles in an MCI to the OD’s
objects and links that perform these roles.

Figure 20a gives a general definition of an MCI. As
a Clafer model is a hierarchical view on a class dia-
gram, which is defined by a labeling mapping label:
MCS→CD, we consider an instance of a Clafer model
to be a structurally similar hierarchical view onto an
object diagram OD instantiating CD. That is, a Clafer
model instance is a graph MCI typed over the graph
MCS and labeled by elements of the OD (via map-
ping label* : MCI→OD) so that the square diagram in
Fig. 20a commutes.

Moreover, for a given label: MCS→CD and any in-
stance OD of the CD (shaded elements in Fig. 20b),
it is possible to generate a correct MCI and mappings
type* and label* (blank elements with blue frames) by
applying to them an operation Claferize (shown by a
chevron). There is a unique such MCI. In Sect. 6.3 we
will specify how this operation works.

6 Formal Semantics

We will specify Clafer’s syntax and semantics using
formal class diagrams (CDs), a.k.a. DP-graphs, as our
meta-meta-notation (which we have already briefly dis-
cussed in Sections 5.1, 5.2). That is, we will treat all
models and meta-models involved as formal CDs, and
mappings between them as structure-preserving map-
pings (morphisms) between formal CDs. (The adjective
’formal’ will often be skipped.) Hence, we will begin
with a precise description of CDs in the next section.
Then we discuss a formalization of Clafer’s syntactic
mechanism (Sect. 6.2), and finally consider instantia-
tion (Sect. 6.3).

6.1 Formal Class Diagrams and Their Instantiation

Figure 21a presents a simple UML class diagram D. An
abstract class Comp has two disjoint subclasses (note
the label [disj]), which are interrelated by a bidirectional
association. In addition, version numbers of displays
and their servers must satisfy a constraint [VC]: “the

Clafer: Unifying Class and Feature Modeling 17

(a) UML CD, D (b) Formal CD, FD

(c) Meta-model of formal class diagrams ([nd] and [ad] are Name Discipline and Arity Discipline constraints resp.)

Fig. 21: Formal Class Diagrams: an instance in UML (a), formal CD rendering (b), and the meta-model (c)

version number of the ECU serving a display must be
not lower than the display’s version number”, which
is written in the OCL format below the diagram. An
abstract meaning of this diagram in terms of sets and
mappings is that we have a set Comp partitioned into
two disjoint subsets, which are interrelated by two mu-
tually inverse mappings: server that maps displays to
ECUs, and display that maps an ECU to the displays it
serves. The attribute version can be also considered as
a mapping that assigns an integer to each component.
Finally, this configuration of sets and mappings must
satisfy the constraint [VC].

This meaning is accurately specified by a formal di-
agram FD in Fig. 21b. The latter is a directed graph
encompassing four nodes and five arrows, which in addi-
tion carries several predicate declarations (constraints)
shown in red square brackets. Thus, the diagram is a
pair FD = (Γ [FD], Φ[FD]) with the first component be-
ing the carrier graph, and the second one being the
set of constraints (we will also say formulas, hence, the
symbol Φ), which will be formalized shortly. We call
such formal diagrams formal CDs. We will first discuss
the carrier graph and its instantiation in Sect. 6.1.1,
and then proceed to constraints in Sect. 6.1.2. Although
multiplicities are constraints, we will discuss them in
Sect. 6.1.1. In Sect. 6.1.3 we give a formal definition of
formal CDs by specifying their meta-model. Formaliza-
tion of the set-and-mapping semantics of CDs involves
many details, which we present in Appendix B.1. In

the present section we will assume that the notions of a
set and a (partial multi-valued) mapping between sets
are intuitively understood; Appendix B.1 supports this
intuition with a system of formal definitions.

6.1.1 Instantiation of Formal CDs, I: The Graph
Structure.

Nodes in FD are to be interpreted as sets: JCompK, JIntK,
JECUK etc. We will often say “a component” for an
element of set JCompK, “an ECU” for an element of
JECUK etc. Arrows are to be interpreted by mappings
(functions) between sets, which map elements from the
source to sets of elements in the target. For example,
an ECU is mapped to a set (perhaps, empty) of the
displays it serves. We recall our convention about map-
pings that we have been using (cf. Tab. 2). If the map-
ping is defined for each element in the source (and re-
sults in a non-empty subset of the target), we call the
mapping total and denote it by arrow with a bullet tail.
If each element from the source, for which the map-
ping is defined, is mapped to a singleton, we say that
the mapping is single-valued and denote it by arrow
with an open-ended head. Thus, mapping server is par-
tial single-valued, and version is total single-valued. In
contrast, display is a general mapping, i.e., partial and
multi-valued.

Very important and very special mappings are in-
clusions, which are denoted by arrows with a hollow
triangle head — see arrows i1 and i2 in the diagram of

18 Kacper Bąk et al.

Fig. 21b. An inclusion between two sets can be defined
iff the source is a subset of the target; inclusion maps
each element of the source to itself, but now consid-
ered as an element of the target. For example, inclusion
i1 means that JECUK ⊂ JCompK and i1(e) = e for all
e ∈ JECUK. Thus, inclusion changes the role/type of
ECU object e: object i1(e) is a component with all its
ECU-properties forgotten. In this way inclusions model
inheritance. As there can be only one inclusion between
a subset and its superset, we can name all inclusions by
the same default name “isA” and omit it in concrete
visualizations of formal CDs. Labels i1, i2 in Fig. 21b
are IDs of the arrows rather than their names.

The discussion above can be summarized by saying
that an instance of formal class diagram FD is a mega-
mapping J..K : Γ [FD]→ SetMap from the carrier graph
of FD into a universe of sets and mappings, SetMap,
also arranged as a directed graph: nodes are sets and
arrows are mappings between sets. This mega-mapping
preserves the graph structure (nodes are mapped to
nodes and arrows to arrows so that their incidence is
preserved), and respects mappings’ properties: arrows
with bullet tails are mapped to total mappings in SetMap,
arrows with hollow-triangle heads are mapped to inclu-
sion mappings in SetMap, etc.

A mega-mapping J..K is practically equivalent to the
standard UML understanding of instantiation as hav-
ing an object diagram typed over a class diagram. In-
deed, sets JECUK etc. give us the objects, and mappings
JserverK etc. give us the links. If, for example, for an
object e ∈ JECUK, we have JdisplayK(e) = {d1, .., dn} ⊂
JDisplayK, then in the object diagram we create n links
from ECU e to displays d1, d2, ...dn, all typed by map-
ping display. We will also have a link from e ∈ JECUK
to e ∈ JCompK typed by i1, a link from e ∈ JCompK
to an integer JversionK(e), and so on. In this way, a
mega-mapping J..K gives rise to a directed graph GJ..K of
objects and links, and a typing mapping tJ..K : GJ..K →
Γ [FD], which again respects the graph structure. Con-
versely, an object diagram O with object-link graph GO

and typing mapping tO : GO → Γ [FD] gives rise to a
mega-mapping J..KO : Γ [FD]→ SetMap by defining

JECUKO = {n is a node (object) in GO : tO(n) = ECU},
JDisplayKO = {n is a node in GO : tO(n) = Display},
JserverKO = {a is an arrow (link) in GO : tO(a) = server}

and so on. An accurate formal definition of this con-
struction, and a proof of equivalence of the two ways of
instantiating formal class diagrams (via mega-mappings
into SetMap and typing), are known in category the-
ory under the name of theGrothendieck construction [10].

6.1.2 Instantiation of Formal CDs, II: The
Constraints.

We have already discussed multiplicities—simple con-
straints assigned to single arrows. However, the diagram
FD also has four constraints shown in square brack-
ets, which regulate instantiation of groups of arrows.
Three of them, [disj], [cover], and [inv] have a predefined
meaning and their names are written in small font; the
fourth, [VC], has a user-defined meaning specified by the
OCL expression in Fig. 21a (links from the label [VC] to
the four arrows, whose instantiation [VC] constrains, are
not shown in the diagram to avoid line clutter).

In the abstract syntax, the four constraints encode
the following expressions: [inv](server, display), [disj](i1,i2),
[cover](i1,i2), and [VC](server , i1, i2, version) of the for-
mat P (a1, ...an) with P a predicate name and a1...an

a list of arguments matching the predicate’s arity. The
predicate [inv] can be declared only for two arrows be-
tween two classes going in the opposite directions, [cover]
works for a group of arrows with a common target, and
[disj] has the same arity. We can use these arities to
check correctness of constraint declarations. Similarly,
multiplicities are constraints for a single arrow, and di-
agram FD actually declares several such constraints:
[single-valued](server), [total](version), [0..5](display), etc.,
and also [incl](i1), [incl](i2).

In contrast, the arity of the user-defined predicate
[VC] is given by the constraint declaration, and the ar-
ity condition is automatically true as soon as the ex-
pression is syntactically correct. In fact, any OCL, or
another constraint language, expression written over a
class diagram can be trivially considered as a respective
diagram predicate declaration of the aforementioned
format. Moreover, there exists a compact set of prede-
fined diagram predicates, which allows one to express
any FOL (and actually higher-order too) constraint as
a composition of these predefined predicates [47]. This
result may be useful for our future work on Clafer, but
we do not need it here. The Clafer compiler treats a
Clafer constraint expression as a property of the re-
spective configuration of classes and mappings, like it
is done in OCL.

Each predefined predicate has a certain semantics
in terms of sets and mappings (cf. Tab. 3). For exam-
ple, two mappings with a common target satisfy the
predicate [cover] iff any element in the target belongs to
the image of one of the mappings, or to both. The lat-
ter possibility is prohibited by predicate [disj]. Predicate
[inv] holds iff the two mappings are mutually inverse. For
example, for any ECU e and display d, e ∈ JserverK(d)
iff d ∈ JdisplayK(e). Semantics of user-defined predicates
is given by the user. Thus, a legal instance of diagram
FD is a mega-mapping J..K such that all constraints de-

Clafer: Unifying Class and Feature Modeling 19

clared in Φ[FD] are satisfied. Note that we have mod-
eled abstractness of class Comp by requiring the two
inclusions to be covering, i.e., stating that

JCompK = JECUK ∪ JDisplayK

and hence any component is either ECU or Display (but
not both because of the [disj] declaration). In contrast to
the UML class diagram in Fig. 21a, writing the name
Comp in italic in the formal CD is a pure decoration
without semantic meaning.

6.1.3 Meta-model

A meta-model of formal CDs is specified in Fig. 21c. It
is itself a formal CD, MCD, and any valid formal CD
should have a valid instance J..K : MCD → SetMap.
The meaning of the central part (dashed-framed) of the
formal CD is standard; we show how it works for our
formal CD FD in Fig. 21b. The latter is the following
instance of the meta-model (we denote names of meta-
classes in Small Capital font):

JClassK = {#Comp,#Int,#ECU,#Display},
JMapK = {#version, i1, i2,#server,#display},

where #xyz denotes the ID of the classifier named xyz.
This gives us the set JClassifierK = JClassK∪JMapK.
Mapping JnameK is defined as follows:

JnameK(#ECU) = “ECU” ∈ JStringK,
JnameK(#display) = “display” ∈ JStringK,

. . . ,

JnameK(i1) = JnameK(i2) = “isA” ∈ JStringK,

where JStringK is the set of all possible strings, and
string “isA” is the default name of all inclusions.

Definition of mappings JsoK and JtaK are also clear:

JsoK(#display) = #ECU,

JtaK(#server) = #ECU,

and so on. And JInclK={i1,i2} so that JInclK ⊂ JMapK
as required. It is also easy to check that mega-mapping
J..K is a correct graph morphism, and all multiplicities
are also respected.

Let us consider the meaning of the left part of the
meta-model (to the left of the dashed frame). Meta-
class SING is a singleton with a predefined (but op-
tional) instantiation by a class Sing, which, in turn,
is instantiated (optionally) by a predefined object *.
That is, for any formal CD F instantiating MCD, set
JSINGKF is (either empty or) the same fixed single-
ton class {Sing}; for any object diagram O instantiating

F , JSingKO is (either empty or) the same fixed single-
ton {*}. Meta-class SING is not instantiated in CD in
Fig. 21b, but in formal CDs generated by the Clafer
compiler, class Sing is always present as discussed in
Sect. 5.3.

Similarly, the meta-class Dom is instantiated by
(names of) predefined primitive-value domains like Int,
String, or Bool, which, in turn, are instantiated by pre-
defined sets of values. For example, for formal CD in
Fig. 21b, JDomK={#Int}, and instances of #Int are pre-
defined integer values. Thus, for a CD F , we have a set
of predefined classes JPredefKF , which have predefined
fixed names, say, JnameK(#Int) = “Int” ∈ JPredefStrK
and are common for all CDs. Constraint [nd] (read Name
Discipline) requires that names of predefined classes be
taken from predefined strings, and that names of user-
defined classes be taken outside predefined strings.

Finally, the right part of the meta-model defines for-
mulas. Meta-class Signature is instantiated by predi-
cates, which can be used in constraint declarations. For
the diagram in Fig. 21b,

JSignatureK = {[cover],[disj],[inv],[incl],[set],[VC]}
∪ {[m..n]:m ∈ N, n ∈ N ∪ {∗}}

although not all multiplicities are used. Meta-class For-
mula is instantiated by constraint formulas declared in
the CD, and the constraint [key] states that a formula
φ ∈ JFormulaK is uniquely determined by its predi-
cate symbol P = JpredK(φ) and its list of arguments
(a1, ..., an) = JargsK(φ) (we consider a list of formulas
as a bag/family of formulas indexed by natural num-
bers, see Appendix B.1.2). That is, a formula is actu-
ally a pair (P, (a1...an)), which we typically write as
P (a1...an). For example, for the diagram in Fig. 21b,
the set JFormulaK is

{[disj](i1, i2), [cover](i1, i2), [inv](#server,#display),
[incl](i1), [incl](i2), [0..5](#display),
[1..1](#version), [0..1](#server)
[VC](#server, i1 , i2 ,#version)}

plus three default declarations

{[set](#version), [set](#server), [set](#display)}.

Importantly, the list of arguments in the formula
P (a1, .., an) must match the arity of predicate symbol
P as it was discussed in Sect. 6.1.2. In detail, the map-
ping args is bag-valued, and the indexing set for a for-
mula φ (Appendix B.1.2) is the list of the arrows of the
arity graph of predicate pred(φ); a precise formal defi-
nition can be found in Appendix B.1.2. This condition
is encoded by a meta-constraint [ad] (read Arity Dis-
cipline), which is a part of the meta-model like other
meta-constraint declarations: [key](args, pred), [nd], etc.

20 Kacper Bąk et al.

Thus, legal instances of the meta-model Fig. 21c are
(formal) CDs or, synonymously, DP-graphs.

6.2 Formalizing Clafer Syntax

6.2.1 Architecture of Clafer’s syntactical mechanism

We already presented the syntactical mechanism of Clafer
in Fig. 13. There are three meta-models: Abstract Syn-
tax Tree (AST) Meta-Model, Multi-Clafer Shape (MCS) Meta-
Model, and Class Diagram (CD) Meta-Model. The MCS
meta-model includes the AST meta-model and extends
it with new properties of clafers. The MCS meta-model
also includes the CD meta-model but names its ele-
ments differently. We describe the meta-models in Sec-
tions 6.2.2 and 6.2.3, respectively.

Formally, all nodes at the model and meta-model
levels in Fig. 13 are CDs (i.e., DP-graphs) The vertical
arrows are graph morphisms typing elements in their
source graphs by elements in the target graphs. In ad-
dition, these typing mappings must satisfy constraints
declared in their target graphs (meta-models). We vi-
sualize this requirement by labeling the mapping with
the entailment symbol |=.

6.2.2 Abstract Syntax Tree

The AST meta-model (cf. Fig. 22) specifies the abstract
syntax of Clafer. The AST corresponds to a grammar
of Clafer models (cf. Fig. 27, Appendix C). We discuss
the meta-model starting from the left. Each clafer has a
name, some multiplicity and, optionally, a super-type.
The class BasicClafer stands for a basic clafer decla-
ration; RefClafer for reference clafer; and RefSet-
Clafer for reference set clafer. The map target spec-
ifies the target of a reference clafer, and the map ab-
stract indicates whether a clafer is abstract. The class
Dom represents a family of primitive domain clafers
(for example, clafer Int is a basic clafer whose parent is
synthetic root); the singleton class Sing represents the
synthetic root clafer. The map parent establishes the
containment hierarchy among Clafers. It is specified
for each clafer besides the synthetic root and top-level
abstract clafers: for any clafer C, if C.parent = ⊥ and
C 6= Sing, then C.abstract = true.

The class Constraint represents user-defined con-
straints in Clafer models. The map context points to
the clafer in which a constraint was declared. The map
scope indicates a bag of clafers that each constraint
refers to (besides the context clafer). For example, group
cardinalities, such as the xor group cardinality in line
2 in Fig. 7, are simple constraints that relate a clafer
with its children. There, the constraint c relates the

Fig. 22: Clafer AST Meta-Model

clafer size with its children small and large; formally:

JcontextK(c) = size,

JscopeK(c) = {small, large}.

The constraint language of user-defined constraints is
specified in Appendix D. The language can be consid-
ered as a part of the meta-model.

6.2.3 Multi-Clafer Shape

The result of compilation is an MCS. The meta-model
in Fig. 23 defines the structure of an MCS. As discussed
in Sect. 5.2, in Fig. 16, each clafer actually declares a la-
beled clafer shape, i.e., a labeled graph of class and map
roles. The three leftmost vertical arrows (head, source,
and target) give three classes (i.e., class roles) that make
up the shape of a clafer: the head class is always present,
but the source (parent) and the target are optional de-
pending on the kind of clafer. The next four vertical
arrows in the middle (head, parent, dref, target) give
four maps (all optional) that make up a clafer shape.
The three rightmost vertical arrows give optional inclu-
sion maps, if the clafer has a supertype. For example,
the Clafer model in Fig. 17b amounts to the following
instance of the meta-model:

JSingK = ##Sing,

JClaferK = {##Sing,##plaECU,##master},
JparentK(##plaECU) = ##Sing,

. . .

JSINGK = #Sing,

JsourceK(##plaECU) = #Sing,

JheadK(##plaECU) = #plaECU1

. . .

where ##xyz refers to the clafer named xyz, and #xyz
refers to the class role named (labeled by) xyz.

MCS is augmented with diagram predicates over
maps, which are represented by class Formula and are

Clafer: Unifying Class and Feature Modeling 21

Fig. 23: MCS Meta-Model. It must satisfy the con-
straints from Tabs. 5–8.

defined as for formal CDs. The predicates natively ex-
press predefined constraints, and also user-defined con-
straints. The latter are translated by the compiler into
diagram predicates.

The meta-model as shown in Fig. 23 allows for any
configuration of ClassRoles and MapRoles. They
may form incorrect structures that are not CSs. The
meta-model is also underconstrained with respect to
containment and inheritance hierarchies of clafers (CSs
may be cojoined incorrectly). Hence, we augment the
metamodel with extra constraints to guarantee that its
instances are valid MCSs. There are four groups of con-
straints, all are given by conditional equations.

1) Incidence Equations define a correct graph struc-
ture of a CS, i.e., the correct incidence of nodes and
arrows. The constraints are specified in Tab. 5 in Ap-
pendix E: first, a description is given, then its formaliza-
tion follows. (To ease reading the formulas, we qualify
map names in the meta-model from Fig. 23 by their tar-
gets.) For example, the first row requires that the map
head_map in CS has the source class as a source (so)
and the head class as a target (ta).

2) Clafer Cojoining Equations specify the overlapping
of CSs. Clafers overlap iff there is parent-child relation-
ship between them, or when a clafer is another clafer’s
target. Table 6 in Appendix E lists the cojoining equa-
tions. For example, the first row requires that whenever
one clafer is a parent of another clafer, then its head
class plays the role of source class in the child’s CS.

3) Clafer Kind/Shape Discipline Equations specify the
structure of CSs of different kinds of clafers. Table 7 in
Appendix E lists the clafer kind equations. For example,
the first row specifies that the synthetic root clafer has
neither source nor target classes, nor super-type.

4) Naming Discipline Equations specify the Clafer nam-
ing economy mechanism: given a clafer C, names of all
elements in C’s shape are derived from C’s name, and
can be used for navigation over the hierarchy. These
constraints are also necessary for resolving targets of
reference clafers and supertypes. Table 8 in Appendix E
presents the naming constraints. For example, the equa-
tion from the first row requires that the head map in a
given CS has the same label as the head class.

6.2.4 Compilation: From Clafer Model to Multi-Clafer
Shape

A Clafer compiler recursively traverses a Clafer model
and builds a corresponding MCS. It takes a Clafer dec-
laration D, decodes into an Clafer Shape CS(D), and
labels the elements of the latter using the name pro-
vided by D and adding indices to ensure uniqueness
of identifiers, when the clafer names repeat. After pro-
cessing a declaration D, the compiler processes its chil-
dren one by one. Decoding of each child Di is regulated
by the Cojoining Equations (Tab. 6), so that shapes
CS(D) and CS(Di) are properly cojoined into an MCS.
And so on until the entire Clafer model is traversed. Al-
gebraically, compilation appears as an operation Com-
pile in Fig. 13, as we discussed earlier.

6.2.5 Gluing: From Multi-Clafer Shape to Class
Diagrams

A Clafer model provides: 1) a collection of classes and
maps, and 2) a view on this collection, arranging classes
into a hierarchy. The same class can play different roles
in the hierarchy: being a parent of one class (source), a
child of another class (head), or a reference class of an-
other (target). Thus, elements of an MCS are class and
map roles rather than instantiatable (real) classes and
maps. The latter are given by labels, and are instan-
tiated by, respectively, objects and links. In contrast,
roles are not instantiated, they impose a hierarchy on
real classes and maps. This idea is captured by the map-
ping between an MCS and a CD. It considers labeling in
an MCS as a formal graph morphism, from the graph of
class and map roles (MCS) to the graph of real classes
and maps (CD) formed by labels.

Importantly, the mapping label respects constraints:
a predicate declaration in an MCS is carried into the
corresponding declaration in the CD. Thus, the map-
ping label is a formal CD morphism.

6.3 Formalizing Instantiation

Figure 20a presents a definition of Clafer instances and
Fig. 20b shows their main feature — derivability from

22 Kacper Bąk et al.

the respective CD instances. Whereas the two model-
level artifacts are formal CDs (DP-graphs), the two
instance-level artifacts are merely graphs (Clafer model
instances, like ODs, do not carry constraints). All verti-
cal arrows are typing mappings that respect the graph
structure and satisfy the constraints (note the symbols
|=). The right “column” of models conforms to the stan-
dard MOF architecture of instantiation; the left column
is its counterpart for Clafer. All horizontal mappings
are also graph morphisms; in addition, the mappings
label respect constraints (are DP-graphs morphisms).
Chevron Claferize denotes an operation that completes
an instance of a CD, i.e., a pair (OD, type) to a Clafer
instance (MCI, type*) (which is traced to the original
instance via the mapping label*). Below we will often
refer to instances by their source graphs, and say “in-
stance OD” and “instance MCI”.

The operation Claferize recursively traverses an MCS
and OD and builds a corresponding MCI. It takes each
source class R from MCS, finds its instances O in OD,
such that label(R) = type(O), and, for each O, creates
a source object role in MCI. It then finds and adds
corresponding instances of the mappings head, source,
etc. If the mapping target is instantiated for a given
source object O, then it also adds the target object. Af-
ter processing the class role R, the operation processes
its children (pointed to by the mappping head) one by
one, for each instance O.

Let us illustrate how the operation Claferize works
based on the example from Fig. 17d. Note that in the
class diagram CD, the class plaECU plays two roles: the
source of the map master and the target of the map dref.
The Claferize constructs the MCI in such a way that the
diagram commutes, that is, type*.label = label*.type.

As we have seen in Sect. 6.1, an instance of a CD
can be seen as a mega-mapping J..K : CD → SetMap.
In the example, we have the instance JSingKOD={*},
JplaECUKOD={e1, e2}, Jmaster*KOD={m21, m11}, etc.
Sequential mapping composition label.J..KOD then yields
an instance of MCS. That is, for any element x of graph
MCS, we define JxK=Jx.labelKOD, which gives us a mega-
mapping J..K : MCI → SetMap. The latter can be
represented by a typed graph (due to the Grothendieck
construction discussed at the end of Sect. 6.1.1), which
we denote by MCI. In other words, we set JxKMCI =
Jx.labelKOD=x.label.J..KOD for all elements x of graph MCS.

Note that as the mapping label maps two different
roles into one class (JplaECU1KMCI = JplaECU2KMCI = {e1,
e2}), each object ei, i = 1, 2 may play two roles of be-
ing the source and the target of master links. Hence,
in the carrier graph MCI we have three clones of e1
(e1:plaECU1 as a source, and e1:plaECU2 as a target
played twice: once as a target of e1 and once as a tar-
get of e2) and one clone of e2 (only e2:plaECU1 as a

source, because e2 does not play the role of a target).
Other OD elements are not cloned because the mapping
label only glues together classes plaECU1 and plaECU2.
Mapping label∗0:MCI → OD provides traceability of
roles to objects, particularly, it glues together clones
into their original objects.

Note that graph MCI is properly typed over graph
MCS. It also satisfies all multiplicities declared in MCS
because the mapping label carries these predicates into
CD and the instance OD satisfies them.

7 Analytical Evaluation

We examine the extent to which Clafer meets its design
goals from Sect. 3.

1. Clafer provides a concise notation for feature model-
ing. This can be seen by comparing Clafer to TVL, a
state-of-the-art textual feature modeling language [15].
Figure 24 shows the TVL encoding of the feature
model from Fig. 7. Conciseness can be measured as
the number of elements used to encode a model. The
Clafer model has slightly fewer concepts than the
TVL model. Feature models in Clafer look very sim-
ilar to feature models in TVL, except that TVL uses
explicit keywords (e.g., to declare groups), braces for
nesting, and feature names must be unique.
Clafer’s language design reveals several key ingredi-
ents allowing a class modeling language to provide
a concise notation for feature modeling:
– Concept unification: The concept clafer unifies

basic constructs of structural modeling, such as
class, association, and property (which includes
attribute, reference, and role). Such a unifica-
tion enables arbitrary property nesting, which
allows us to concisely specify feature models in
a class modeling language. Neither UML nor Al-
loy provide this mechanism; there, associations
and classes are declared separately, and proper-
ties cannot be arbitrarily nested. Although UML
offers association classes, they cannot use prim-
itive domains as association ends.

1 Options group allof {
2 Size group oneof { Small, Large },
3 opt Cache group allof {
4 CacheSize group allof {
5 SizeVal { int val; },
6 opt Fixed
7 }
8 },
9 Constraint { (Small && Cache)→ Fixed; }

10 }

Fig. 24: Options feature model in TVL

Clafer: Unifying Class and Feature Modeling 23

– Instance composition and type nesting: Clafer
nesting accomplishes instance composition and
type nesting in a single construct. UML provides
composition, but type nesting is specified sepa-
rately (cf. Fig. 5b). Alloy has no built-in sup-
port for composition and thus requires explicit
parent-child constraints. It also has no signature
nesting, so name clashes need to be avoided us-
ing prefixes or alike.

– Default singleton multiplicity: All clafers that have
a parent in the containment hierarchy, are single-
tons by default. It allows one to specify manda-
tory features without declaring their multiplicity
explicitly in the concrete syntax. In UML and
Alloy, on the other hand, associations are multi-
valued by default.

– Group constraints: Clafer’s group constraints are
expressed concisely as intervals. In UML groups
can be specified in OCL, but using a lengthy
encoding, explicitly listing features belonging to
the group. The same applies to Alloy.

– Constraints with default quantifiers: Default quan-
tifiers on relations enable writing constraints that
look like propositional logic, although their un-
derlying semantics is FOL. For example, clafer
names in the last line in Fig. 7 would be preceded
by the quantifier some (cf. lines 11-13 in Fig. 26
in Appendix C). Name resolution rules further
contribute to the conciseness of constraints.

– Navigation over optional clafers: Navigation ex-
pressions of the form n1.n2 . . . nm encompass nav-
igation along the clafer hierarchy and occur in
constraints (e.g., in the last line of Fig. 8). Each
of the names ni may refer to a clafer of any
multiplicity; in particular, the clafer n1 may be
optional, whereas n2 mandatory. In Clafer and
Alloy, all navigation expressions uniformly eval-
uate to a set (either empty or not). In OCL,
however, one needs to explicitly check if navi-
gation over an optional element evaluates to an
empty set before proceeding to the next element.
Otherwise, the navigation results in an unde-
fined value indicating an error. Formally, uncon-
ditional mapping composition is defined in OCL
for only total mappings, whereas in Clafer and
Alloy one can compose partial mappings as well.

2. Clafer provides a concise notation for meta-modeling.
Figure 25 shows the meta-model of Fig. 8 encoded in
KM3 [43], a state-of-the-art textual meta-modeling
language. The most visible syntactic difference be-
tween KM3 and Clafer is the use of explicit key-
words introducing elements and mandatory braces
establishing hierarchy. Both models have the same
number of concepts. KM3, however, cannot express

1 class Comp {
2 reference version : integer
3 }
4

5 class ECU extends Comp {}
6

7 class Display extends Comp {
8 reference server : ECU
9 attribute options : Options

10 }

Fig. 25: Component meta-model in KM3

additional constraints in the model. They are spec-
ified separately, e.g., as OCL invariants.

3. Clafer allows one to concisely mix feature and meta-
models. Clafer integrates subclassing into hierarchi-
cal modeling. Clafers at any nesting level in the con-
tainment hierarchy can subclass other clafers. Inher-
itance among clafers is a semantically rich opera-
tion. For example, inheritance among two reference
clafers introduces two classes (head and target), four
maps (head, parent, dref, and head*), and three in-
clusions (heads, headh, and headt), with all the con-
straints regulating well-formedness of CS and inher-
itance. Using inheritance, one can reuse feature or
class types in multiple locations; reference clafers al-
low reusing both types and instances. Feature and
class models can be related via constraints.

4. Clafer tries to use a minimal number of concepts
and has uniform semantics. While integrating fea-
ture modeling into meta-modeling, our goal was to
avoid creating a language with duplicate concepts.
In Clafer, there is no distinction between class and
feature types; they are all clafers. Features are rela-
tions and, besides their obvious role in feature mod-
eling, they also play the role of attributes in meta-
modeling.
We also contribute a simplification to feature mod-
eling: Clafer has no explicit feature group construct;
instead, every clafer has a group cardinality to con-
strain the number of children. This is a significant
simplification; we no longer need to distinguish be-
tween grouping features (features used purely for
grouping, such as menus) and feature groups. The
grouping intention and grouping cardinalities are or-
thogonal: any clafer can be annotated as a grouping
feature, and any clafer may choose to impose group-
ing constraints on children. This idea has also been
adopted in the current draft of CVL [39].
Finally, both feature and class modeling have uni-
form semantics. Syntactic and semantic unification
in Clafer keeps the language small, allows for uni-
form representation of models, and also simplifies
development of tools for model analyses. Further,

24 Kacper Bąk et al.

unification has the potential of simplifying model
evolution as fewer special cases (concepts) need to
be considered. In general, however, syntactic unifi-
cation may also have some drawbacks, such as a lack
of correspondence between the modeler’s intent and
native support for that intent in the language, wors-
ened model comprehension, and less efficient model
analyses. On the other hand, one could easily in-
troduce two subclasses of clafer: class and feature,
allowing the user to state an intention explicitly.
All the tools, however, could still benefit from the
semantic unification by looking at instances of fea-
tures and classes as instances of clafer.

8 Related Work

Clafer builds on our several previous works, includ-
ing encoding feature models as UML class models with
OCL [23]; a Clafer-like graphical profile for Ecore, hav-
ing a bidirectional translation between an annotated
Ecore model and its rendering in the graphical syn-
tax [63]; and the Clafer-like notation used to specify
Framework-Specific Modeling Languages (FSMLs) [4].
Moreover, feature models have been characterized as
views on class diagrams (referred to as ontologies) in
[22]. None of these works provided a proper language
definition that unifies feature and class modeling, and
did not provide implementation like Clafer; also, they
lacked Clafer’s concise constraint notation. Although
we introduced Clafer earlier [13], our previous work
lacked precise semantics because semantic unification
posed a major challenge. In our current work, we pre-
cisely specify the unification on feature and class mod-
eling constructs and present Clafer’s semantics.

Cardinality-based feature models have been formal-
ized in [21] as context-free grammars, and in [50] us-
ing set theory. None of the works covers references, at-
tributes, and a constraint language that can deal with
multiply-instantiated features. Our work is more com-
plete in that sense and, in fact, subsumes cardinality-
based feature modeling, equipping it with inheritance.
Also, none of the works considers unification of feature
and class models, whereas we precisely show how it can
be done.

TVL is a textual feature modeling language [15]. It
favors the use of explicit keywords, which some software
developers may prefer. The language covers Boolean
features and features of other primitive types such as
integer. The key difference is that Clafer is also a class
modeling language with multiple instantiation, refer-
ences, and inheritance. It would be interesting to pro-
vide a translation from TVL to Clafer. The opposite
translation is only partially possible.

Common Variability Language (CVL) is an Object
Management Group (OMG) proposal for a standard for
specifying and resolving variability [39]. CVL is being
designed by a working group whose members include
variability modeling tool vendors, industrial practition-
ers, and academics. In contrast with other works, CVL
models are not self-contained. CVL allows for intro-
ducing variability into any existing model that con-
forms to the MOF meta-model. In particular, it can be
used to create families of UML models. Clafer models,
on the other hand, are self-contained. They can spec-
ify variability over existing models, but both would be
encoded in Clafer (as in our running example). Simi-
larly to UML, CVL has explicit syntactical construc-
tions for different concepts. For example, depending on
feature type it is either choice (Boolean feature), clas-
sifier (feature with multiplicity), or parameter (feature
with attribute). In Clafer, the three concepts are unified
into clafer. CVL provides a constraint language that is
stratified into: 1) basic constraint language that speci-
fies propositional constraints; and 2) full constraint lan-
guage that provides full expressivity of OCL. Clafer has
one constraint language that is inspired by Alloy con-
straints. It has the same expressivity as FOL. Further-
more, it treats Boolean features as singleton clafers,
therefore navigation over clafers results in an empty
set, in the worst case. In CVL, navigation may re-
sult in an unknown value if an element does not ex-
ist. CVL is a diagrammatic language, while Clafer is
mostly textual (although graphical renderings exist).
Finally, CVL aims at modeling and resolving variabil-
ity, whereas Clafer excells in variabilty modeling and
analysis. It can be used as a back-end for analyses of
CVL models.

Kconfig and CDL [12] are languages for modeling
variability of operating systems: the Linux kernel and
eCos. They have a variety of constructs and mix vari-
ability with mechanisms to control how models are pre-
sented to users in a configurator. Clafer is general-purpose,
has one construct, and is user-interface agnostic. It can
express Kconfig and CDL models, except for the UI
aspects.

Asikainen and Männistö present Forfamel, a unified
conceptual foundation for feature modeling [6]. The ba-
sic concepts of Forfamel and Clafer are similar; both in-
clude subfeature, attribute, and subtype relations. The
main difference is that Clafer’s focus is to provide con-
cise concrete syntax, such as being able to define fea-
ture, feature type, and nesting by stating an indented
feature name. Also, the conceptual foundations of For-
famel and Clafer differ; e.g., features in Forfamel corre-
spond to Clafer’s instances, but features in Clafer are
both types and instances. Also, a feature instance in
Forfamel can have several parents; in Clafer, an instance

Clafer: Unifying Class and Feature Modeling 25

has at most one parent. These differences likely stem
from the difference in perspective: Forfamel takes a fea-
ture modeling perspective and aims at providing a foun-
dation unifying the many existing extensions to feature
modeling; Clafer limits feature modeling to its original
Feature-Oriented Domain Analysis (FODA) scope [45],
but integrates it into class modeling. Finally, Forfamel
considers a constraint language as out of scope, hinting
at OCL. Clafer comes with a concise constraint nota-
tion.

Nivel is a meta-modeling language, which was ap-
plied to define feature and class modeling languages [5].
It supports deep instantiation, enabling concise defini-
tions of languages with class-like instantiation seman-
tics. Clafer’s purpose is different: to provide a concise
notation for combining feature and class models within
a single model. Nivel could be used to define the ab-
stract syntax of Clafer, but it would not be able to
naturally support our concise concrete syntax.

In essence, Alloy [41] is a class modeling language
that reduces OOM to two primitives: signatures (typed
sets) and relations. The former correspond to classes;
the latter to associations. Alloy can encode and analyze
more conceptually complex UML class diagrams [1].
In the context of variability modeling, Alloy has the
same shortcomings as UML class diagrams (cf. Sect. 3).
Clafer, on the other hand, was designed to support vari-
ability modeling and hierarchical models.

As mentioned earlier, class-based meta-modeling lan-
guages, such as KM3 [43] and MOF [54] cannot ex-
press feature models as concisely as Clafer. Further-
more, Clafer covers the same scope as MOF, but is
based on fewer concepts, as a clafer represents classes,
attributes, and relationships.

Decision models group decisions and focus on prod-
uct derivation from a product family [20]. Notations
for specifying decision models include a tabular nota-
tion [61] and Synthesis [62]. Clafer models are more ex-
pressive, and therefore subsume decision models (mod-
ulo language features controlling UI aspects such as vis-
ibility). In fact, owing to unification, Clafer can encode
variability, class, and meta-models.

A rigorous approach to unification of different types
of associations based on mathematical operations with
mappings, particularly, tabulation, was proposed in [29].
Clafer develops this idea further by introducing: 1) in-
heritance among clafers, 2) the ability to arbitrarily
nest properties, 3) a naming discipline that compacts
syntax, and 4) the notion of multi-clafer shape and the
corresponding hierarchical view on Class Diagrams.

Formalization and unification of different views on
relationships and properties has been done in concep-
tual modeling, e.g., [65,25]. In contrast to our work,
they typically focus on complex semantic aspects rather

than seemingly simple tabular and navigational aspects,
and use first-order rather than diagrammatic logic and
algebra.

Refactoring of UML class diagrams is a practical ac-
tivity performed during model evolution [64,8]. We ac-
knowledge the importance of refactorings, but our idea
with Clafer is more radical: we conjecture that unifi-
cation of modeling concepts reduces the number of re-
quired model refactorings.

Formalization of conceptual modeling constructs within
a framework based on diagram predicates and opera-
tions over sets and mappings was proposed in [28,30].
The subsequent idea to interpret various diagrammatic
notation used in structural modeling as different visual-
izations of the same format of DP-graphs is developed
in [31] (where DP-graphs are called sketches). Particu-
larly, considering UML class diagrams as visualizations
of formal class diagrams is elaborated in [27,29]. Sev-
eral applications of DP-graphs to model-driven software
engineering are developed in [59,60]

Relating problem-space feature models and solution-
space models has a long tradition. For example, feature
models have been used to configure model templates
before [18,36]. That work considered model templates
as superimposed instances of a meta-model and pres-
ence conditions attached to individual elements of the
instances; however, Clafer implements model templates
as specializations of a meta-model. Such a solution al-
lows us treating the feature model, the meta-model, and
the template at the same meta-level, simply as parts
of a single Clafer model. This design allows us to el-
egantly reuse a single constraint language at all these
levels and to relate them. As another example, Janota
and Botterweck show how to relate feature and archi-
tectural models using constraints [42]. Again, our work
differs from this work in that our goal is to provide
such integration within a single language. Such inte-
gration is given in Kumbang [7], which is a language
that supports both feature and architectural models,
related via constraints. Kumbang models are translated
to Weight Constraint Rule Language (WCRL), which
has a reasoner supporting model analysis and instanti-
ation. Kumbang provides a rich domain-specific vocab-
ulary, including features, components, interfaces, and
ports; however, Clafer’s goal is a minimal uniform lan-
guage covering both feature and class modeling, and
serving as a platform to derive such domain specific
languages, as needed.

9 Conclusion

Clafer closes the gap between feature and class models
and provides improvements on both sides. We showed
how the essential modeling concepts can be unified both

26 Kacper Bąk et al.

syntactically and semantically, which allows for arbi-
trary property nesting and uniform representation of
feature and class models. Clafer subsumes cardinality-
based feature modeling with references. We are not
aware of other works that precisely define semantics of
such models. We provided semantics in a structurally
explicit way, as MCSs resemble models in concrete syn-
tax. Furthermore, the work on formal semantics gave
us new insights and helped to fix the language (e.g.,
clarified the meaning of reference clafers and naviga-
tion through the clafer hierarchy).

Our work contributes to the design of modeling no-
tations and model analyses. Clafer can encode rich struc-
tural models, e.g., domain models, variability models,
class models. Unified syntax and semantics allow using
a common infrastructure for reasoning on a large vari-
ety of models. We have implemented reasoning support
based on Alloy, Z3 SMT, and Choco 3 CSP solvers.

Our work intends to help modelers express and an-
alyze complex Software Product Lines. We have pre-
viously shown that a wide range of realistic feature
models, meta-models, and model templates can be ex-
pressed in Clafer and that useful analyses can be run
on them within seconds [13]. The recent thesis demon-
strates using Clafer for modeling the three levels of
EAST-ADL architecture on an example of complex au-
tomotive electronic/electric architecture and reasoning
over such an integrated model [51].

This work has also implications for programming
language design. Current OO programming languages
suffer from the same problems as UML class diagrams.
The need for arbitrary object nesting (declaring con-
tainment and the type of contained object) has been
recognized in, for example, JavaScript Object Notation
(JSON) and protocol buffers.

In the future, we would like to carry out empirical
studies to explore the benefits and disadvantages of con-
cept unification in practical modeling. Other promising
directions for future work include adding support for:
1) domain-specific abstractions in Clafer, 2) modular-
ity to provide visibility and variability interfaces, and
3) behavioral modeling to express the evolution of state
specified by Clafer models over time. Finally, we would
like to adapt Clafer and the tools to better support
architecture modeling, design exploration, and multi-
objective optimization, e.g., to find optiminal function-
to-hardware deployment and topology generation.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.:
UML2Alloy: A challenging model transformation. In:
Model Driven Engineering Languages and Systems (2007)

2. Antkiewicz, M., Bąk, K., Zayan, D., Czarnecki, K., Wą-
sowski, A., Diskin, Z.: Example-driven modeling using

clafer. In: First International Workshop on Model-driven
Engineering By Example (2013). URL http://ceur-ws.org/
Vol-1104

3. Antkiewicz, M., Bąk, K., Murashkin, A., Liang, J.,
Olaechea, R., Czarnecki, K.: Clafer Tools for Product Line
Engineering. In: Proceedings of the 17th International Soft-
ware Product Line Conference co-located workshops (2013)

4. Antkiewicz, M., Czarnecki, K., Stephan, M.: Engineering
of framework-specific modeling languages. Software Engi-
neering, IEEE Transactions 35(6) (2009)

5. Asikainen, T., Männistö, T.: Nivel: a metamodelling lan-
guage with a formal semantics. Software and Systems Mod-
eling 8(4) (2009)

6. Asikainen, T., Männistö, T., Soininen, T.: A unified con-
ceptual foundation for feature modelling. In: Software
Product Line Conference, 10th International (2006)

7. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: A do-
main ontology for modelling variability in software product
families. Advanced Engineering Informatics 21(1) (2007)

8. Astels, D.: Refactoring with UML. In: Proceedings of the
3rd International Conference eXtreme Programming and
Flexible Processes in Software Engineering (2002)

9. Bąk, K., Zayan, D., Czarnecki, K., Antkiewicz, M., Diskin,
Z., Wąsowski, A., Rayside, D.: Example-driven modeling.
model = abstractions + examples. In: New Ideas and
Emerging Results (NIER) track of the 35th International
Conference on Software Engineering (2013)

10. Barr, M., Wells, C.: Category theory for computing science,
vol. 10. Prentice Hall New York (1990)

11. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M.,
Czarnecki, K., Wąsowski, A.: A survey of variability mod-
eling in industrial practice. In: Proceedings of the Sev-
enth International Workshop on Variability Modelling of
Software-intensive Systems (2013)

12. Berger, T., She, S., Lotufo, R., Wąsowski, A., Czarnecki,
K.: Variability modeling in the real: a perspective from
the operating systems domain. In: Proceedings of the
IEEE/ACM international conference on Automated soft-
ware engineering (2010)

13. Bąk, K., Czarnecki, K., Wąsowski, A.: Feature and meta-
models in Clafer: mixed, specialized, and coupled. In: Soft-
ware Language Engineering (2010)

14. Bąk, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wą-
sowski, A.: Partial Instances via Subclassing. In: Software
Language Engineering (2013)

15. Classen, A., Boucher, Q., Heymans, P.: A text-based ap-
proach to feature modelling: Syntax and semantics of TVL.
Science of Computer Programming 76(12) (2011)

16. Clauß, M., Jena, I.: Modeling variability with UML. In:
Young Researchers Workshop at GCSE (2001)

17. Consortium, A., et al.: EAST-ADL domain model specifi-
cation, nov 28, 2013, version 2.1.12

18. Czarnecki, K., Antkiewicz, M.: Mapping features to mod-
els: A template approach based on superimposed variants.
In: Generative Programming and Component Engineering
(2005)

19. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.:
Generative programming for embedded software: An indus-
trial experience report. In: Generative Programming and
Component Engineering (2002)

20. Czarnecki, K., Grüenbacher, P., Rabiser, R., Schmid, K.,
Wąsowski, A.: Cool features and tough decisions: A com-
parison of variability modeling approaches. In: Proceedings
of the sixth international workshop on variability modeling
of software-intensive systems (2012)

21. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing
cardinality-based feature models and their specialization.
Software process: Improvement and practice 10(1) (2005)

Clafer: Unifying Class and Feature Modeling 27

22. Czarnecki, K., Hwan, C., Kim, P., Kalleberg, K.: Feature
models are views on ontologies. In: Software Product Line
Conference, 10th International (2006)

23. Czarnecki, K., Kim, C.H.: Cardinality-based feature mod-
eling and constraints: A progress report. In: International
Workshop on Software Factories (2005)

24. Czarnecki, K., Pietroszek, K.: Verifying feature-based
model templates against well-formedness ocl constraints.
In: Proceedings of the 5th international conference on Gen-
erative programming and component engineering (2006)

25. Dahchour, M., Pirotte, A., Zimányi, E.: Generic relation-
ships in information modeling. Journal on Data Semantics
IV 3730 (2005)

26. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In:
Tools and Algorithms for the Construction and Analysis of
Systems, pp. 337–340 (2008)

27. Diskin, Z.: Visualization vs. specification in diagrammatic
notations: A case study with the UML. In: Diagrams (2002)

28. Diskin, Z., Cadish, B.: Variable sets and functions frame-
work for conceptual modeling: Integrating ER and OO via
sketches with dynamic markers. In: Object-Oriented and
Entity-Relationship Modeling (1995)

29. Diskin, Z., Easterbrook, S., Dingel, J.: Engineering Associ-
ations: From Models to Code and Back through Semantics.
In: Objects, Components, Models and Patterns (2008)

30. Diskin, Z., Kadish, B.: Variable set semantics for keyed
generalized sketches: Formal semantics for object identity
and abstract syntax for conceptual modeling. Data and
Knowledge Engineering 47 (2003)

31. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal
arrow foundations for visual modeling. In: Diagrams (2000)

32. Felfernig, A., Friedrich, G.E., Jannach, D.: UML as domain
specific language for the construction of knowledge-based
configuration systems. International Journal of Software
Engineering and Knowledge Engineering 10(04) (2000)

33. Gaeta, J.A.P.: Modeling and implementing variability in
aerospace systems product lines. Master’s thesis, University
of Waterloo (2014)

34. Gomaa, H.: Designing software product lines with UML.
Addison-Wesley Boston, USA; (2004)

35. Group, O.M.: Systems Modeling Language (SysML)
(2012). http://www.omg.org/spec/SysML/1.3/

36. Heidenreich, F., Kopcsek, J., , Wende, C.: FeatureMapper:
Mapping Features to Models. In: Companion of the 30th
international conference on Software engineering (2008)

37. Hubaux, A., Boucher, Q., Hartmann, H., Michel, R., Hey-
mans, P.: Evaluating a Textual Feature Modelling Lan-
guage: Four Industrial Case Studies. In: Software Language
Engineering (2010)

38. Hubaux, A., Xiong, Y., Czarnecki, K.: A user survey of con-
figuration challenges in Linux and eCos. In: Proceedings of
the Sixth International Workshop on Variability Modeling
of Software-Intensive Systems (2012)

39. IBM, Thales, FOKUS, F., TCS: Proposal for Common
Variability Language (CVL) Revised Submission (2012)

40. Jackson, D.: Alloy: A lightweight object modelling nota-
tion. ACM Transactions on Software Engineering and
Methodology 11(2) (2002)

41. Jackson, D.: Software Abstractions: Logic, Language, and
Analysis. The MIT Press (2011)

42. Janota, M., Botterweck, G.: Formal approach to integrat-
ing feature and architecture models. In: Fundamental Ap-
proaches to Software Engineering (2008)

43. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Spec-
ification. In: Formal Methods for Open Object-Based Dis-
tributed Systems (2006)

44. Jussien, N., Rochart, G., Lorca, X., et al.: Choco: an
open source java constraint programming library. In:

CPAIOR’08 Workshop on Open-Source Software for Inte-
ger and Contraint Programming (OSSICP’08) (2008)

45. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.:
Feature-oriented domain analysis (FODA) feasibility study.
Tech. Rep. CMU/SEI-90-TR-21, CMU (1990)

46. Kang, K.C.: FODA: Twenty years of perspective on fea-
ture modeling. In: Proceedings of the Fourth International
Workshop on Variability Modelling of Software-intensive
Systems (2010)

47. Lambek, J., Scott, P.J.: Introduction to higher-order cate-
gorical logic, vol. 7. Cambridge University Press (1988)

48. Liang, J.: Correcting Clafer Models with Automated Anal-
ysis. Tech. Rep. GSDLab-TR 2012-04-30, GSD Lab, Uni-
versity of Waterloo (2012)

49. Liang, J.: Solving Clafer models with Choco (GSDLab-TR
2012-12-30) (2012)

50. Michel, R., Classen, A., Hubaux, A., Boucher, Q.: A formal
semantics for feature cardinalities in feature diagrams. In:
Proceedings of the 5th Workshop on Variability Modeling
of Software-Intensive Systems (2011)

51. Murashkin, A.: Automotive electronic/electric architec-
ture modeling, design exploration and optimization using
Clafer. Master’s thesis, University of Waterloo (2014)

52. Murashkin, A., Antkiewicz, M., Rayside, D., Czarnecki, K.:
Visualization and Exploration of Optimal Variants in Prod-
uct Line Engineering. In: Proceedings of the 17th Interna-
tional Software Product Line Conference (2013)

53. Olaechea, R., Stewart, S., Czarnecki, K., Rayside, D.: Mod-
eling and multi-objective optimization of quality attributes
in variability-rich software. In: Proceedings of the Fourth
International Workshop on Nonfunctional System Proper-
ties in Domain Specific Modeling Languages (2012)

54. OMG: Meta Object Facility (MOF) Core Specification
(2011)

55. OMG: OMG Object Constraint Language (OCL)2.4 (2014)
56. Partnership, A.D.: Automotive open system architec-

ture (autosar), release 4.1 (2013). http://www.autosar.org/
specifications/release-41/

57. Partnership, A.D.: Feature model exchange format
(2013). https://www.autosar.org/fileadmin/files/releases/4-1/
methodology-templates/templates/standard/AUTOSAR_TPS_
FeatureModelExchangeFormat.pdf

58. Reiser, M.O., Kolagari, R.T., Weber, M.: Unified feature
modeling as a basis for managing complex system fami-
lies. In: Proceedings of the First International Workshop on
Variability Modelling of Software-intensive Systems (2007)

59. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisa-
tion of the copy-modify-merge approach to version control
in MDE. The Journal of Logic and Algebraic Programming
79(7) (2010)

60. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal
approach to the specification and transformation of con-
straints in MDE. The Journal of Logic and Algebraic Pro-
gramming 81(4) (2012)

61. Schmid, K., John, I.: A customizable approach to full life-
cycle variability management. Science of Computer Pro-
gramming 53 (2004)

62. Software Productivity Consortium Services Corpora-
tion: Reuse-driven software processes guidebook, version
02.00.03. Tech. Rep. SPC-92019-CMC (1993)

63. Stephan, M., Antkiewicz, M.: Ecore.fmp: A tool for editing
and instantiating class models as feature models. Tech.
Rep. 2008-08, University of Waterloo (2008)

64. Sunyé, G., Pollet, D., Traon, Y.L., Jézéquel, J.M.: Refac-
toring UML models. In: UML – The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools (2001)

65. Wand, Y., Storey, V., Weber, R.: An ontological analysis
of the relationship construct in conceptual modeling. ACM
Transactions on Database Systems 24(4) (1999)

28 Kacper Bąk et al.

A Notation and Terminology

A.1 Mappings

By a mapping f from a source set A to a target set B we un-
derstand a function that sends each element of A to a collection
(perhaps, empty) f(a) of elements of B. We say that f ismulti-
valued. The most general collection we consider is a bag (or
a family, or an indexed set) of elements – precise definitions
are in Sect. B.1. We call a mapping set-valued, if all bags
f(a) are actually sets (UML then annotates the mapping with
marker “unique”). A set-valued mapping is single-valued, if
all non-empty sets f(a) are singletons.

A mapping is total if all bags f(a) are not empty; otherwise
it is strictly partial. An underspecified mapping, which may
be total but not necessarily, is called partial. Thus, totality and
strict partiality are constraints that a general (partial) mapping
may satisfy. Following a common practice, we often say partial
instead of strictly partial. Note that according to the definition
above, a single-valued mapping can be partial.

A set-valued mapping is inclusion if its source is a subset
of the target, A ⊂ B, and for all A ∈ A, f(a) = a (but a on the
right of equality is considered as an element of B). An inclusion
of A into itself is the identity mapping idA : A→ A.

A set-valued mapping is containment if its inverse is total
and single-valued.

A.2 Shapes and Fonts

We use the following terminology and conventions to formally
specify models and meta-models. Boxes (called classes) rep-
resent sets, boxes with rounded edges represent primitive do-
mains (e.g., Integer), arrows (called maps) represent mappings
between sets. Names of classes in models are written in Serif
font, whereas names of classes in meta-models are written in
Small Capital font. Names of maps are in italic font. If a
class or map name is predefined then it is underlined. Diagram
predicates are [red and enclosed in brackets]. For multiplicities we
skip the braces and write numbers (e.g., 1), or number ranges
(e.g., 1..1). Derived elements are shown as blue and blank.

B Semantics and syntax of DP-graphs (formal
CDs)

In the OO modeling view, the world consists of objects and
links between them. We typically collect objects into sets, and
links into mappings between these sets. Taken together, objects,
links, sets, and mappings, constitute a huge universe denoted
by SetMap. A particular OO model (class diagram) specifies a
small fragment of the universe; usually, by describing a diagram
of sets and mappings involved in the fragment, and properties
they must satisfy. Here, we outline the basics of a mathematical
framework, in which such OO-modeling can be formally spec-
ified. We first consider semantics, i.e., the universe SetMap
as such, in Sect. B.1–B.3, and then proceed with syntactical
means for specifying fragments of SetMap (Sect. B.4). We as-
sume that the basic notions of naive set-theory (set, subset, an
ordered pair etc., and (single-valued) function, injection, bijec-
tion, etc.) are known.

B.1 Semantic universe: Mappings

We give two definitions: relational (a mapping is a span of func-
tions), and navigational or functional (a mapping is a multi-
valued function as in Sect. A.1). Then we show that both es-
sentially define the same construct called a mapping.

B.1.1 Multi-relations or Spans.

Let A and B be sets. By a mapping from A to B we can un-
derstand a set of labeled links, i.e., triples (a, b, `) with a ∈ A,
b ∈ B, and ` ∈ L a label taken from some predefined set L of
link IDs, so that multiple links between the same a and b are
possible. The following definition makes the idea precise.

Definition 1 (span) A multi-relation or a span, r : A 9 B,
is a triple (Lr, sr, tr) with Lr a set, and sr, tr two totally de-
fined single-valued functions from Lr as shown in the following
diagram:

(span) A
sr←− Lr

tr−→ B.

Set Lr is the head, functions sr, tr are the source and target
legs, and sets A,B are the source and target feet of the span.

We will denote the set of all spans fromA toB by Span(A,B).

To ease reading formulas, we will align them with the geometry
of diagram (span) and write a = sr.` to denote application of
function sr to ` ∈ Lr, which results in a ∈ A, and similarly
`.tr = b denotes tr applied to ` with result b ∈ B. The triple
(a, `, b) is then called an r-link ` from a to b.

It is easy to see that a span r : A 9 B gives rise to a total
single-valued function r̂ : Lr → A × B (even if r is strictly
partial), and conversely, any such function gives us a span with
sr = r̂.p and tr = r̂.q where p : A ← A × B and q : A × B →
B are projection functions. (Totality of r is equivalent to left-
surjectivity of r̂, i.e., surjectivity of sr.) Any relation r ⊂ A×B
is a span, whose head is r and legs are projections restricted
to r. Hence, the set of all relations Rel(A,B) is included into
Span(A,B).

A span r ∈ Span(A,B) can be seen as a multi-relation,
i.e., a relation with possible repetitive pairs of elements (links).
We can eliminate repetitive links by considering the image of
Lr, i.e., set Lr!

def= r̂(Lr) ⊂ A × B, which consists of pairs of
elements, i.e., is a binary relation. It gives rise to a reduct span
r!, whose head is Lr!, and legs are restrictions of projections p, q
above to set Lr!. Thus, we have a function !A,B : Span(A,B)→
Rel(A,B); the subindex will be omitted if it is clear from the
context.

We will also need the notion of span isomorphism, in which
the number of links matters, not their IDs.

Definition 2 Two spans r1, r2 : A 9 B are considered iso-
morphic, r1 ∼= r2, iff there is a bijection between their heads
commuting with legs.

B.1.2 Multi-valued functions.

By a mapping from A to B we can also understand a function
that sends each element of A to a collection (perhaps, empty)
f(a) of elements of B. Hence, we first need to define collections.

Definition 3 (families or bags) Let X be a set. A family
of X’s elements is given by an indexed set I and a function
x : I → X, for which we prefer to write xi for the value x(i),
i ∈ I. Correspondingly, the graph of function x, i.e., the set
{(i, xi)| i ∈ I} is denoted by exprression {{xi| i ∈ I}}, where

Clafer: Unifying Class and Feature Modeling 29

double-brackets indicate that repetitions (say, xi = xj for i 6= j)
are possible. In the UML parlance, such double-bracketed ex-
pressions are often called bags, and we also use this term. How-
ever, formally, a bag is a family, i.e., the graph of the indexing
function of the family.

The set of all bags of X’s elements is denoted Bag(X).

Note that an ordinary subset A of X can be seen as a bag
{{aa| a ∈ A}}={(a, a)| a ∈ A}, which is the graph of inclusion
A into X. Thus, the powerset of X, Set(X), is included into
Bag(X).

Any bag/family x ∈ Bag(X) can be compressed to its car-
rier set by eliminating repetitions, i.e., by taking the image
{xi| i ∈ I} of the indexing function. We denote the resulting
set by x! ⊂ X. We thus have a function !X : Bag(X)→ Set(X);
the subindex will be omitted if it is clear from the context.

Definition 4 A multi-valued (mv) function, f : A � B, is a
single-valued total function f : A → Bag(X). Given a ∈ A, we
will denote the indexing function of family f(a) as fa : Iaf → B.

By composing f with !X , we obtain the set-valued reduct of f ,
function f ! : A→ Set(X).

Like for span isomorphism, what maters is the number of
indices rather than their IDs.

Definition 5 Two mv-functions f1, f2: A� B are considered
isomorphic, f1 ∼= f2, if for each a ∈ A, there is a bijection
between the indexing sets ιa : Iaf1 → Iaf2 commuting with the
indexing functions fia, that is, ιa.f2a = f1a.

B.1.3 Spans and functions together: Mappings

Given a span r : A 9 B, we can build a multi-valued function
r∗ : A� B by defining for a given a ∈ A,

1) the index set Iar∗ = s−1
r (a) ⊂ Lr, and

2) for a link ` ∈ Iar∗ considered as an index, r∗a(`) = `.tr
(see Def.4 for the notation used).

In a slightly different notation,

r∗(a) = {{b`| ` ∈ Iar∗ and `.tr = b`)}}
= {(`, b`)| ` ∈ Iar∗ and `.tr = b`},

(1)

Given any mv-function f : A � B, we build a span f∗ :
A9 B by defining

1) the set of links Lf∗ =]{Iaf | a ∈ A} (where] denotes
disjoint union), and

2) for any link ` ∈ Lf∗ , sf∗ (`) = a iff ` ∈ Iaf , and tf∗ (`) =
fa(`).

Theorem 1 For any span r : A9 B, r∗∗ ∼= r and r!∗ = r∗!.
For any mv-function f : A� B, f∗∗ ∼= f and f !∗ = f∗!.

Proof . Straightforward checking
Thus, spans and mv-functions are two equivalent ways of

specifying a unidirectional association between two sets. We can
use either of them to make technicalities easier. We thus use a
loose term “mapping” as a reference to either a span, or an
equivalent mv-function. For example, working with set-valued
functions is convenient, and this is how we have interpreted non-
bag arrows in our formal CDs. However, if we need to consider
instantiation in the classical UML sense via typed graphs, direct
linking and, hence, spans, may be a better choice. As for bag-
valued functions, working with them is technically much simpler
in the span representation.

For a puristically oriented reader, we can define a mapping
in the Clafer spirit as a pair (r, f) with r : A 9 B a span
and f : A � B an mv-function with r∗ ∼= f (or, equivalently,
f∗ ∼= r).

B.1.4 Set-valued mappings.

Given an mv-function f : A� B and an element a ∈ A, suppose
that the indexing function fa : Iaf → B (see Def. 4) is injective.
Then the bag f(a) does not have repetitions, indexes can be
forgotten, and the bag can be seen as a subset of B. If all
indexing functions are injections, then all bags f(a) can be seen
as subsets, and f ∼= f ! : A → Set(B). We then say that f is a
set-valued function.

It is easy to see that in the span representation, the coun-
terpart of set-valued functions are relations. A mapping/span
r : A9 B is a relation iff each element/link ` ∈ Lr is completely
identified by the pair (sf .`, `.tf).
Theorem 2 A span r : A9 B is a relation iff its navigational
counterpart, mv-function r∗ : A� B, is set-valued.

B.2 Semantic universe: Operations on mappings

B.2.1 (Sequential) Mapping Composition.

For set-valued mappings, f : A � B, g : B � C, their com-
position is an ordinary functional composition: for any a ∈ A,
a.f.g = (a.f).g, where for a set X ⊂ B, X.g def=

⋃
x∈X x.g.

For the general case of bag-valued mappings, it is much
easier to define composition for the span representation. Given
two consecutive spans q : A 9 B, r : B 9 C, their composition
q.r : A9 C is defined as follows. The head

Lq.r
def= {(`, `′) ∈ Lq × Lr : `1.tq = sr.`2},

and the legs are defined by setting

sq.r.(`, `′) = sq.`, and (`, `′).tq.r = `′.tr,

which is a straightforward generalization of the ordinary bi-
nary relation composition for the general span case. It is easy
to see that if spans are relations and hence functions q∗, r∗
are set-valued, two definitions of composition coincide (up to
isomorphism).

Note that composition of set-valued mappings can be bag-
valued. For example, suppose that A = {a}, B = {b1, b2}, C =
{c}, and mappings are defined functionally: f∗(a) = {b1, b2},
and g∗(b1) = g∗(b2) = {c}. Then f.g consists of two links,
`1 = (ab1, b1c) and `2 = (ab2, b2c), so that (f.g)∗(a) is a bag
{{c`1 , c`2}}.

With so defined mapping composition, we can check that
given a span f : A 9 B, its navigational counterpart f∗ is
actually the composition s−1

f .tf . Although functions sf and tf
are always set-valued, their composition can be bag-valued as
demonstrated by the example above. Think of B as the head
Lβ of some span β with sβ = (f∗)−1, and tβ = g∗. Then
β∗ = s−1

β .tβ = f.g.

B.2.2 Inversion.

Given a set-valued function f : A � B, its inverse is a set-
valued function g : A� B such that the equivalence

a ∈ g.b⇔ a.f 3 b

holds for any a ∈ A and b ∈ B. For the general case of bag-
valued functions, we again resort to spans.

Given a span r : A9 B, its inverse r−1 : A8 B is defined
as follows: Lr−1 = Lr, sr−1 = tr and tr−1 = sr. That is, the
inverse of mappings uses the same span but swaps the roles of
its legs. If spans are relations, both definitions coincide. It is
evident that r−1−1 = r.

30 Kacper Bąk et al.

B.3 Semantic universe: Configurations of mappings
and their properties

Table 3 presents several important properties of mapping con-
figurations, which we call diagram predicates. The left column
gives their names, the middle one specifies their arities, i.e.,
configurations of mappings that may have the property, and
the right column provides semantics.

B.4 Syntax: DP-graphs

An OO model specifies a fragment of the universe by describ-
ing a diagram of sets and mappings involved in the fragment,
and properties they must satisfy. That is, a model appears as a
graph with diagram predicate declarations (a DP-graph) that
describe properties. Formal CDs used in the paper are DP-
graphs, whose nodes are called classes, arrows are maps (=
unidirectional associations), and predicate declarations are con-
straints imposed on classes and maps. Hence, semantics of a for-
mal CDs is given by interpreting its classes as sets, and maps as
mappings such that the constraints are satisfied. Here we spec-
ify syntax and semantics of DP-graphs/formal CDs formally.

B.4.1 Graphs

Definition 6 (Graphs and their moprhisms.) A (directed
multi)graph G consists of a set of nodes GN , a set of arrows
GA, and two total single-valued functions src, trg:GA → GN
giving each arrow its source and target.

A graph morphism (mapping) f : G1 → G2 is a pair of
functions fN : G1N → G2N and fA: G1A → G2A such that the
incidence of nodes and arrows is preserved: for any arrow a ∈
G1A, src(fA(a)) = fN (src(a)) and trg(fA(a)) = fN (trg(a)).

B.4.2 DP-Graphs

Definition 7 (Signature.) A (diagram predicate) signature is
a set Σ of predicate symbols together with assignment to each
label P ∈ Σ its arity shape – a graph Gar(P).

Definition 8 ((Diagram) formulas.) Given a diagram pred-
icate signature Σ and a graph G, a (diagram) formula over
G is a pair (P, args) with P ∈ Σ a predicate symbol, and
args : Gar(P) → G a graph morphism binding formal param-
eters in the arity graph by the actual arguments — elements
of graph G. Assume the arity graph Gar(P) has a finite set
of arrows α1...αn, and does not have isolated nodes. Then a
formula can be encoded by an expression P (a1...an) where
ai = args(αi), i = 1..n. In other words, a formula is a pair (P,a)
with P a predicate symbol and a a bag of arrows of the carrier
graph, whose indexing set is the arity graph Gar(P) (note that
the indexing function must be a correct graph morphism – this
constraint was called [ad], arity discipline, in Sect. 6.1.3.

Definition 9 (DP-Graph) A DP-graph is a pair S = (G,Φ)
with G a carrier graph, and Φ a set of formulas over G (here
S stands for specification, or sketch — a family of categorical
constructs similar to DP-graphs).

Definition 10 (DP-Graph Morphisms.) A DP-graph mor-
phism (mapping) f : S1 → S2 is a morphism of the carrier
graphs, f : G1 → G2, compatible with formulas in the following
way.

Note that any graph morphism f : G1 → G2 translates for-
mulas overG1 into formulas overG2: any formula φ = P (a1..an)

1 abstract 0..∗ options 0..∗ {
2 abstract 1..1 size 1..1 {
3 abstract 0..∗ small 0..1 {}
4 abstract 0..∗ large 0..1 {}
5 }
6 abstract 0..∗ cache 0..1 {
7 abstract 0..∗ size→ integer 1..1 {
8 abstract 0..∗ fixed 0..1 {}
9 }

10 }
11 [some this.size.small &&
12 some this.cache =⇒
13 some this.cache.size.fixed]
14 }

Fig. 26: Desugared Clafer model.

in Φ1 (with ai = αi.args) is translated into a formula over G2,
f(φ) = P (a1.f, ..., an.f)—indeed, args.f : Gar(P) → G2 is a
graph morphism. Then we require that all translated formulas
were declared in Φ2: f(φ) ∈ Φ2 for all φ ∈ Φ1.

B.5 Syntax and semantics together

A major idea of categorical logic [10] is to treat semantic uni-
verses syntactically, that is, in our case, as DP-graphs. In-
deed, the universe SetMap can be seen as a huge (categori-
cians would say big) DP-graph: its nodes are sets, arrows are
mappings, and formulas are true statements about sets and
mappings. For example, if A and B are sets (nodes in graph
Γ [SetMap]), and f , g are mappings between them (i.e., ar-
rows in Γ [SetMap]) going in the opposite direction, then, if
mappings f and g are mutually inverse, i.e., (f, g) |= [inv], then
we add formula [inv](f, g) to set Φ[SetMap]. Thus, the big set
of formulas Φ[SetMap] consists of all valid statements about
all possible configurations of sets and mappings matching pred-
icate arities. Then an instance of a DP-graph S can be seen
as a DP-graph morphism J..K : S → SetMap. An immediate
consequence of such an arrangement is the following result:

Theorem 3 Any DP-graph morphism f : S1 → S2 gives rise to
a function between the respective sets of instances, JfK : JS1K←
JS2K, where JSiK denotes the (big) set of all instances of DP-
graph Si.

Proof . As a correct instance of S2 is a correct graph morphism,
J..K : S2 → SetMap, its composition with f gives us a correct
instance of S1.

C Clafer Concrete Syntax

Conciseness is an important goal for Clafer; therefore, it pro-
vides syntactic sugar for common constructions. Figure 26 shows
the model from Fig. 7 in a desugared notation, in which the
defaults (e.g., multiplicities) are inserted into clafer declara-
tions. Each declaration starts with group cardinality, followed
by name, optional supertype, then by optional clafer’s target,
and ends with multiplicity (see Fig. 27). The desugared notation
shows that all clafers nested in an abstract clafer are abstract by
default. There are also different kinds of clafers: basic (have no
reference target), reference set (name followed by ’→’ symbol,
and reference bag (name followed by ’�’ symbol); not shown.

Clafer: Unifying Class and Feature Modeling 31

〈Clafer〉 ⇒ 〈Abs〉 〈GCard〉 string 〈Super〉 〈Target〉 〈Card〉
〈Elements〉
〈Abs〉 ⇒ | abstract
〈Elements〉 ⇒ {〈ElList〉} 〈ElList〉 ⇒ | 〈Element〉 〈ElList〉
〈Element〉 ⇒ 〈Clafer〉 | 〈Constraint〉
〈Super〉 ⇒ | : string
〈Target〉 ⇒ | 〈Kind〉 string
〈Kind〉 ⇒ → | �
〈GCard〉 ⇒ | xor | or | mux | opt | 〈NCard〉
〈Card〉 ⇒ | ? | + | * | 〈NCard〉
〈NCard〉 ⇒ integer .. ExInteger
〈ExInteger〉 ⇒ * | integer

Fig. 27: BNF grammar of Clafer (no constraints).

Clafer multiplicity is given by an interval m..n. Clafer pro-
vides syntactic sugar similar to syntax of regular expressions:
? (optional) denotes 0..1; * denotes 0..∗; and + denotes 1..∗. By
default, clafers have multiplicity 1..1.

Group cardinality is given by an interval m..n, with the
same restrictions on m and n as for multiplicities, or by a key-
word: xor denotes 1..1; or denotes 1..∗; opt denotes 0..∗; and mux
denotes 0..1; further, each of the keywords makes children op-
tional by default. For example, xor on size (line 2) states that
only one child instance of either small or large is allowed. No
explicit group cardinality stands for 0..∗, except when it is in-
herited from clafers supertype.

D Clafer Constraint Language

The Clafer constraint language is essentially borrowed from Al-
loy [41]. The two most significant differences are name resolu-
tion rules and the default some quantifier before clafer names.
Both developments contribute to conciseness of the constraints
defined over hierarchical models. Constraints are logical expres-
sions composed of terms and logical operators. Terms either re-
late values (integers, strings) or are navigational expressions.
The value of navigational expression is always a set, therefore
each expression must be preceded by a quantifier, such as no
(requires set to be empty), one (requires set to have one ele-
ment), lone (requires set to have at most one element), or some
(requires the set to be non-empty). Lack of explicit quantifier
(Fig. 7) stands for some (Fig. 26).

Although the constraints are specified over Clafer models,
we define their semantics over Class Diagrams (our semantic
domain). A formal class diagram of Clafer model is composed
of classes, maps, and constraints. An instance of class diagram
is an object diagram that is composed of objects and links;
it must satisfy constraints defined over CD. Each constraint
is defined in context of a class. The context corresponds to
defining constraints nested under clafers, because in a CS the
head class represents the clafer. If in a Clafer model constraint is
defined at top-level, then in the corresponding MCS and CD it is
defined in the context of synthetic root. The constraint language
used in Clafer allows one to define new diagram predicates of
shapes spanning several Clafer shapes and whose semantics is
expressible in first-order logic.

D.1 Grammar

Figure 28 shows grammar of the core constraint language. The
full constraint language has additional syntactic sugar, but any
constraint may be desugared to the core constraint language. In
the first production in Fig. 28 var represents variables bound by
quantifiers. In the production with binary operators, ⊕ is one

〈Exp〉 ⇒
all var : 〈SetExp〉 | 〈Exp〉 universal quantification
| 〈Exp〉 && 〈Exp〉 conjunction
| ! 〈Exp〉 negation
| 〈Exp〉 ⊕ 〈Exp〉 binary operators
| # 〈Exp〉 set cardinality
| 〈SetExp〉 set expression
〈SetExp〉 ⇒
〈SetExp〉 ⊗ 〈SetExp〉 set operators
| 〈SetExp〉 . 〈SetExp〉 relational join
| Name reserved/map name

Fig. 28: BNF grammar of core Clafer constraints

of <,=,+,− (logical comparison, equality, addition, and sub-
traction, respectively). In the production with set operators, ⊗
is one of ++,−−,&, in (set union, difference, intersection, and
subsetting, respectively). The last production Name represents
names of head maps that correspond to clafer names, or is one
of reserved names. When Names form a sequence n1.n2 . . . nm,
we call such as an expression a navigation. The dot between
names indicates relational join.

D.2 Name Resolution Rules

Name resolution rules disambiguate names of clafers used in
constraints. The rules are needed as clafer names may repeat
in Clafer model. The rules are applied during compilation of
Clafer model to MCS; thus MCS and CD have all names prop-
erly resolved. The rules are similar to CVL rules [39], as the
latter were inspired by Clafer. A name is resolved in the con-
text of a clafer (top-level constraints are defined in the context
of synthetic root) as follows:

1. Reserved names. Check if it is a special name: such as
parent, dref, and this. The latter indicates object for which
the constraint is evaluated. Further, primitive domains also
use reserved names, int for integers, and string for strings.

2. Binding. Check if name is introduced by a local variable
(used in constraints with quantifiers).

3. Descendants. Look up the name in descendant clafers of the
context clafer in breadth-first search manner. If a clafer has
supertype, take into account inherited clafers.

4. Targets. Similar to the previous step but additionally take
into account clafers reachable via references.

5. Ancestors. Search in the ancestors clafers starting from the
parent clafer of the context and up. For each ancestor, look
up the name using the rules Descendants and, if necessary,
Targets.

6. Top level. Search in other top-level clafers. For each clafer
apply rules Descendants and, if necessary, Targets.

7. Error. If the name cannot be resolved or is ambiguous
within a single step, the constraint is not well-formed and
an error is reported.

For navigations (expressions of the form n1.n2 . . . nm) the
name resolution rules are applied to resolve n1 first. Once it
is resolved, subsequent clafers (n2.n3 . . . nm) are resolved by
applying only rules Reserved names, Descendants, and Error.
Note that n1 becomes the context clafer for resolving n2, and
n2 becomes the context for n3, etc. A fully resolved name is a
navigation that starts with this, i.e., is of the form this.c2 . . . cm.

32 Kacper Bąk et al.

D.3 Type Rules

The type system is specified in a series of formal rules.

statementA

statementB

The above rule says that if A holds, then B follows.

D.3.1 Expressions

Universal quantification. In the rule below the environment env
is extended by specifying that the type of var is SetExp.

env, var :: SetExp ` Exp :: Boolean
env ` all var : SetExp | Exp :: Boolean

Conjunction.
env ` Exp1 :: Boolean env ` Exp2 :: Boolean

env ` Exp1 && Exp2 :: Boolean

Negation.
env ` Exp :: Boolean
env ` !Exp :: Boolean

Comparison.
env ` Exp1 :: τ env ` Exp2 :: τ
env ` Exp1 ⊕ Exp2 :: Boolean

,

where ⊕ ∈ {<,=}.
Arithmetic operator.

env ` Exp1 :: τ env ` Exp2 :: τ
env ` Exp1 + Exp2 :: τ

, where ⊕ ∈ {+,−}.

Set cardinality.
env ` Exp :: τ

env ` #Exp :: Integer
Set expression. env ` Exp :: τ

D.3.2 Set Expressions

Set operators.
env ` Exp1 :: τ env ` Exp2 :: τ

env ` Exp1 ++ Exp2 :: τ
,

where ⊕ ∈ {++,−−,&}.

Subsetting.
env ` Exp1 :: τ env ` Exp2 :: τ
env ` Exp1 in Exp2 :: Boolean

Relational join.
env ` Exp1 :: τ × υ env ` Exp2 :: υ × φ

env ` Exp1.Exp2 :: τ × φ
env ` Exp1 :: τ env ` Exp2 :: τ × υ

env ` Exp1.Exp2 :: υ
Reserved/map name.

env ` this :: τ
env ` Name :: τ × υ

D.4 Semantics

The semantics assumes that: 1) navigation paths have already
been resolved to specific clafers (head classes), and 2) all expres-
sions are correctly typed. A constraint is specified in the context
of a class, and is evaluated in the context of each instance (ob-
ject) of that class. We call the latter context an environment.
For an object o we initialize environment to be env = {this 7→ o}

Env = Var→ Value
Value = P(Object) ∪ P(Link)
Environment maps variables to values, which are either sets

of objects or links. Note that a single object would be repre-
sented as a singleton set.

A constraint is a Boolean-valued expression. The semantics
uses two interpretation functions:

JKE : Exp→ Env→ Boolean ∪ P(Object)
JKS : SetExp→ Env→ Value
The former function interprets abstract syntax elements of

expressions for a given environment and evaluates to a Boolean
value or a set of objects. A set of objects is always a singleton.
In particular, values of primitive domains (e.g., integer) are en-
coded as singletons. Analogically, the latter function interprets
set expressions, which are either sets of objects or links.

D.4.1 Semantics of Expressions

Universal quantification. For universal quantification the ex-
pression Exp has to hold for each instance of SetExp. It is
done by extending the environment with a mapping from
from var to an instance.
Jall var : SetExp | ExpKE env=

∧
{JExpKE (env⊕ var 7→ v)|v ∈

JSetExpKS env}
Conjunction.

JExp1 && Exp2KE env= JExp1KE env∧ JExp2KE env
Negation. J!ExpKE env= ¬ JExpKE env
Less than. JExp1 < Exp2KE env= JExp1KE env< JExp2KE env
Equality. JExp1 = Exp2KE env= (JExp1KE env= JExp2KE env)
Subsetting.

JExp1 in Exp2KE env= JExp1KE env⊆ JExp2KE env
Addition. JExp1 + Exp2KE env= JExp1KE env+ JExp2KE env
Subtraction. JExp1 - Exp2KE env= JExp1KE env− JExp2KE env
Set cardinality. J#ExpKE env= | JExpKE env|
Set expression. Although set expressions are also expressions,

they must be quantified to evaluate to a Boolean value.
JSetExpKE env= JSetExpKS env

D.4.2 Semantics of Set Expressions

Union. JExp1 ++ Exp2KS env= JExp1KS env∪ JExp2KE env
Difference. JExp1 – – Exp2KS env= JExp1KS env\ JExp2KE env
Intersection. JExp1 & Exp2KS env= JExp1KS env∩ JExp2KE env
Relational join. Relational join (the dot operator) joins two re-

lations. In our formal CDs all navigational expressions start
with the this keyword, which is then followed by names of
maps (clafer names): Name. The this keyword indicates an
object; it can be viewed as a unary relation. Furthermore,
all other relations are binary, thus the final result of each
navigation expression is always a set of objects. If any of
the components of the navigational expression evaluates to
an empty set, the final result is also an empty set.
JExp1.Exp2KS env=
{(x, z)|∃y((x, y) ∈JExp1KSenv ∧ (y, z) ∈JExp2KSenv)}

Reserved/map name. It refers to names of maps in formal CD.
JNameKS env= env(Name)

E MCS Constraints

Each Multi-Clafer Shape is only valid if it satisfies incidence
constraints (defined in Tab. 5), clafer kind/shape discipline con-
straints (defined in Tab. 7), clafer cojoining constraints (defined
in Tab. 6), and naming discipline constraints (defined in Tab. 8).

Clafer: Unifying Class and Feature Modeling 33

Description Constraints
The map head_map goes from class (role)
source_class to class head_class. Analogical
constraints hold for the maps parent_map,
dref_map, and target_map.

this.head_map.so = this.source_class
this.head_map.ta = this.head_class

Table 5: Incidence constraints in the context of Clafer, which the MCS meta-model in Fig. 23 must satisfy

Description Constraints
The class source_class of given CS is a class
head_class of the parent CS. Analogical con-
straints hold for cojoining CS with the CS of its
target.

this.source_class = this.parent.head_class
this.target_class = this.target.head_class

In case of subclassing between two clafers, there
exists an inclusion between the head classes of
the two CSs. Analogical constraints hold for maps
supers and supert if the corresponding source and
target classes exist in both CSs.

this.super 6= ⊥ =⇒
this.superh.so = this.head_class
this.superh.ta = this.super.head_class

Table 6: Clafer cojoining MCS constraints in the context of Clafer, which the MCS meta-model in Fig. 23 must
satisfy

Description Constraints

The CS of Sing has only the class Sing as head
and does not participate in inheritance.

this ∈ Sing =⇒
this.source_class = ⊥
this.target_class = ⊥

this.super = ⊥

The CS of Dom is a basic clafer whose parent is
Sing.

this ∈ Dom =⇒
this.source_class = Sing

this.target_class = ⊥
this.super = ⊥

Basic clafers have a source_class but no tar-
get_class. Analogical constraints apply to refer-
ence clafers.

this ∈ BasicClafer =⇒
this.source_class 6= ⊥
this.target_class = ⊥

Top-level clafers, that are not a synthetic root,
are abstract.

this.parent = ⊥ ∧ this 6= Sing =⇒
this.abstract = true

Table 7: Clafer kind constraints in the context of Clafer, which the MCS meta-model in Fig. 23 must satisfy

Description Constraints
The map head has the same name as the class
head. this.head_map.label = this.head_class.label

The map parent is named “parent”. Analogical
constraints holds for the map dref.

this.parent_map.label = "parent"

The map target (if defined) has name derived
from the name of the class head by concatenating
the name with *.

this.target_map.label =
concat(this.head_map.label, *)

There is one distinguished element of String
named “Sing”. Analogical constraints hold for
other predefined clafers, such as “int” and “string”.

this ∈ Sing ⇐⇒ this.head_class.label = "Sing"

Table 8: Naming constraints in the context of Clafer, which the operation Compile must satisfy

34 Kacper Bąk et al.

F Full Telematics Model

Below is the running example of telematics system modeled in
Clafer.

abstract options
xor size

small ?
large ?

cache ?
size→ integer

fixed ?
[small && cache =⇒ fixed]

abstract comp
version→ integer

abstract ECU : comp

abstract display : comp
server→ ECU
‘options // shorthand for options : options
[version ≥ server.version]

abstract plaECU : ECU
plaDisplay : display 1..2

[no cache]
[server = parent]

ECU1 : plaECU

ECU2 : plaECU ?
master→ ECU1

// feature model for the specific PL

telematics
xor channel

single ?
dual ?

extraDisplay ?

xor size
small ?
large ?

[dual⇔ ECU2
extraDisplay⇔#ECU1.plaDisplay = 2
extraDisplay⇔ (ECU2 =⇒ #ECU2.plaDisplay = 2)
large⇔ !plaECU.plaDisplay.options.size.small
small⇔ !plaECU.plaDisplay.options.size.large]

[dual
extraDisplay
telematics.size.large]

