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ABSTRACT

The decision-making process in Product Line Engineering
(PLE) is often concerned with variant qualities such as cost,
battery life, or security. Pareto-optimal variants, with res-
pect to a set of objectives such as minimizing a variant’s cost
while maximizing battery life and security, are variants in
which no single quality can be improved without sacrificing
other qualities. We propose a novel method and a tool for
visualization and exploration of a multi-dimensional space
of optimal variants (i.e., a Pareto front). The visualization
method is an integrated, interactive, and synchronized set
of complementary views onto a Pareto front specifically de-
signed to support PLE scenarios, including: understanding
differences among variants and their positioning with respect
to quality dimensions; solving trade-offs; selecting the most
desirable variants; and understanding the impact of changes
during product line evolution on a variant’s qualities. We
present an initial experimental evaluation showing that the
visualization method is a good basis for supporting these
PLE scenarios.

Categories and Subject Descriptors

D.2.11 [Software Architectures]: Languages; D.2.13 [Re-
usable Software]: Domain engineering; F.4.1 [Mathema-
tical Logic]: Logic and constraint programming; F.4.3 [For-

mal Languages]: Decision problems; G.1.6 [Optimization]:

Constrained optimization; H.5.2 [User Interfaces]: Inter-
action styles
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1. INTRODUCTION

Product Line Engineering (PLE) is an approach to en-
gineering a family of different products with a shared ar-
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Figure 1: Decision Making Workflow in PLE.

chitecture and common components [5]. Individual product
variants are characterized by a selection of features from
the product family’s feature model [6]. For example, a pro-
duct line of mobile phones defines connectivity features such
as GSM and LTE (communication standards). A particular
variant of the product line may include the GSM feature but
exclude the LTE feature. Some features can contribute pos-
itively or negatively to the measurable qualities of a vari-
ant [1]. For example, LTE increases a phone user’s produc-
tivity but increases the phone’s cost. The challenge faced
by product-line engineers (herein, “engineers”) is discovering
which variants are optimal with respect to a set of objectives
(such as to mazimize productivity and to minimize cost) and
what trade-offs (e.g., productivity level versus acceptable
cost) to resolve when choosing among optimal variants.

In this paper, we consider the following workflow (Fig. 1).
In the first phase, Variability Modeling, the engineers create
a product line’s feature model. In our example, the fea-
ture model (expressed in Clafer [3]) describes the product
line MobilePhone with a set of features (Fig. 2a). Each line
defines a feature, and indentation indicates feature nesting
(e.g., GSM is a subfeature of Connectivity). The question
mark ? indicates optional features. The keyword xor in-
dicates exclusive-or feature groups (e.g., xor Bluetooth).
In Clafer models, features are mandatory by default unless
specified otherwise.

In the next phase, Measurement, the engineers define quali-
ty attributes and individual contributions of each feature.
They can define a single Feature concept with four quality
attributes (Fig. 2b) and then specify the exact contributions
for each Feature, like LTE (Fig. 2b). Alternatively, they
could define more specific concepts like SecurityFeature
or BatteryFeature for convenience. Performing the actual
measurement and discovering the exact values of individual
feature contributions is outside the scope of this paper [15].



abstract Feature

abstract MobilePhone productivity : integer

Connectivity batterylife : integer
xor Bluetooth security : integer
Bluetooth20EDR : Feature ? cost : integer

Bluetooth21EDR : Feature ?
Bluetooth40 : Feature ?
GSM : Feature
LTE : Feature ? LTE : Feature ?
WiFi : Feature ?
USB : Feature 7
xor Battery
LiBattery1150 : Feature ?
LiBattery1400 : Feature ?

abstract MobilePhone

[ productivity = 12 ]
[ batterylife = -15 ]
[ security -10 ]

[ cost = 44 ]

(a) Feature Model. (b) Feature Qualities.

abstract MobilePhone aPhone : MobilePhone

total_productivity = sum Feature.productivity << max aPhone.total_productivity >>
total_batterylife = sum Feature.batterylife << max aPhone.total_batterylife >>
total_security = sum Feature.security
total_cost = = sum Feature.cost

<< max aPhone.total_security >>
<< min aPhone.total_cost >>

(c) Variant Qualities. (d) Optimization Objectives.

Figure 2: Feature Modeling with Quality - Example.

Next, the engineers define variant’s quality attributes by an
arbitrary constraint: just a sum of all individual feature
contributions (Fig. 2¢) or, if necessary, a more complex for-
mula accounting for feature interactions. Finally, the engi-
neers define optimization objectives (Fig. 2d).

In the third phase (Fig. 1), Multi-objective Optimization,
the engineers compute a set of non-dominated optimal va-
riants—a Pareto front—with respect to the stated optimiza-
tion objectives. Throughout the paper, we refer to such
variants as Pareto-optimal, or just optimal variants. In
this phase, one can use a multi-objective optimizer such
as ClaferMoo [11]. ClaferMoo takes a model with quality
attributes and objectives as an input, performs a multi-
objective optimization, and generates the set of optimal vari-
ants: in our example, 16 variants. Now the engineer must
decide which of the optimal variants to actually produce.

Optimizers like ClaferMoo only focus on Pareto front com-
putation without supporting its exploration: the final step
in the workflow (Fig. 1) still requires tool support due to
the following challenges. First, the engineers need a global
view of the Pareto front to observe the variants in relation to
each other, quality ranges, and feature occurrence frequency.
Next, they need to perform a trade-off analysis and filter the
variants according to the desired features and quality values.
Finally, they need to explore and understand the impact of
changes during product line evolution that can cause Pareto
fronts to change, e.g., some previously optimal variants may
become sub-optimal when the feature model evolves.

To address these challenges, we propose a method and
a tool for interactive Pareto front visualization and explo-
ration. The tool, called ClaferMoo Visualizer', accepts an
attributed feature model with quality attributes and opti-
mization objectives, invokes ClaferMoo to solve the opti-
mization problem, and presents the engineers with a graphi-
cal user interface (GUI) in which they can explore a Pareto
front. The GUI is a web-based, integrated, interactive, and
synchronized set of complimentary views onto a Pareto front.
The visualizer could be used with Pareto-front computation
tools other than ClaferMoo.

As the initial evaluation of our Pareto-front visualization
and exploration tool, we performed a small controlled ex-
periment. The evaluation confirmed that both the visual-
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Figure 3: The Bubble Front Graph and Objectives views for
the mobile phone example. The graph shows all 16 gener-
ated variants. The six variants fit the quality target range
with security less than 20 and cost within [125..145].

ization method and the tool are effective in helping parti-
cipants perform a set of tasks. Additionally, the evaluation
revealed new functional requirements for the tool which we
have subsequently implemented.

Our paper describes examples of Pareto front exploration
with supporting visualizations, the experimental evaluation,
the related work in this area, and our work’s conclusions.

2. VISUALIZATION AND EXPLORATION

This section considers the Visualization and Exploration
phase of the workflow in the context of our mobile phone
example and our users—product line engineers. We pro-
pose the Bubble Front Graph as a visualization to give the
engineer a global view for exploring the Pareto front.

2.1 Bubble Front Graph

The Bubble Front Graph (Fig. 3) represents each variant
as a bubble.? The graph uses four representations: horizon-
tal axis X (bottom), the vertical axis Y (left), bubble color
Z (top) and bubble size T' (right) to visualize up to four
quality dimensions simultaneously.

In our example (Fig. 3), productivity is represented as
a vertical coordinate (Y); batterylife is represented as a
horizontal coordinate (X); security is represented as a color
(Z); and cost is represented as a size (7).

The Bubble Front Graph (Fig. 3) shows all 16 variants
that ClaferMoo has generated for our example. The in-
terpretation of bubble representations depends on the opti-
mization objectives: for maximization, the larger the value,
the better; for minimization, the smaller the value, the bet-
ter. In our example, the greener the bubble, the better se-
curity, and the smaller the bubble size, the better (smaller)
cost. The graph also supports tooltips to allow inspection
of exact quality values. For instance, for variant 2, battery
life is 44, productivity is 20, security is 23, and cost is 113.

20ur graph is implemented as an extension to Bubble chart
of Google Chart Tools: https://developers.google.com/chart



The graph offers many interesting opportunities of explo-
ration. First, an engineer can identify ranges of optimal
variants’ quality values by looking either at bubble place-
ment (batterylife [43..65]) or directly at the label (cost
[113..145]). Next, all variants are sorted by X and Y values:
the variant 2 is the least productive, while the top produc-
tivity belongs to the variants 11 and 13. An engineer can
sort variants in different dimensions by assigning third and
fourth quality attributes to the X and Y representations.

An engineer can see how variants are distributed, identify
locations with a high density. The engineer can consider
exploring the largest bubbles (6, 8, 11, 13, 14 and 15) se-
parately from all other bubbles because these ones are quite
close to each other in all four dimensions: their X and Y
positions differ by small amounts; the variants’ cost is almost
the same; and the variants’ security is below the average.

One way of focusing on a graph area is filtering the Pareto
front by specifying target quality ranges in the view 0b-
jectives. For example, to show the six desired ones only
(Fig. 3), an engineer can set the ranges as follows: cost
[125..145], (upper and lower bounds), security [..20] (upper
bound only to exclude top security values), productivity [..]
(all values), battery life [..] (all values). This operation does
not recalculate the Pareto front, just narrows it down. We
consider such filtering as a form of the top-down exploration
approach: quality range-driven exploration.

An engineer can also discover dependencies and correla-
tions among the qualities. In our example, the engineer can
notice that the larger the cost, the more productive and less
secure the variant is.

The Bubble Front Graph supports a top-down exploration
of the Pareto front focused on quality metrics. Our tool of-
fers another visualization for top-down exploration—a Fea-
ture and Quality Matrix.

2.2 Feature and Quality Matrix

Feature and Quality Matriz (further just “matrix”) (Fig. 4)
is an intuitive way to represent variants’ features and quality
values. The first column presents the product line’s feature
model (similarly to Fig. 2a). Each feature of the product
line is shown in a new row without the feature’s quality at-
tributes. The last rows represent variants’ quality values,
e.g., total_batterylife. The remaining columns, labeled
by numbers, represent variants (from 1 to 16). A content cell
is: a green tick or a crossed circle to indicate the presence or
absence of a feature; an empty cell to indicate the presence
of an effectively mandatory feature (present in every vari-
ant); or a variant’s numeric quality value. For example, the
feature Connectivity is effectively mandatory; the variant
1 has Bluetooth40, does not have WiFi, and costs 125.

Since the matrix deals with features, more scenarios are
possible. First, the engineer can immediately see the effec-
tively mandatory features, they are marked with an inactive
but checked checkbox. Next, the engineer can also see fea-
tures that commonly or rarely occur. For example, USB is
included in 14 out of 16 variants. All variants exclude Blue-
tooth20EDR—it can be considered for deprecation.

Some features change their occurrence when filtering by a
target quality range, because the matrix is filtered as soon
as the graph is filtered. For example, filtering by the target
quality range, as described above, causes the matrix to show
only the six variants (6, 8, 11, 13, 14 and 15), and WiFi and
USB are included in all the six variants. This may indicate

68 Feature and Quality Matrix: MobilePhone

[Distnet] [Resnt] @2 & @ @ [CHON POt NONEIE OMNE
' connectivity
H Bluetooth
O Bluetooth20EDR 2 OO0 Q000000000000
O Blustooth21eor 2 QO VO DO DO VOO IO O[O
O Blustoothdo 2 Ol 0D O VO VO P VOO VOO
D GSM
O iree OO 00 @ VOO0 DO DO
O wii ? OO0 0 OO0 000V VL O
O use 7 Ol0 9 P @ 9 DO DL DO
B gatten
D tateysiso 7 20009900000 de 08
O Lipattery1400 2 OO0 0000 POV VOO vV e
total_productivity 20 32 40 52 56 68 40 52 56 68 72 76 88 72 76 88
total_batterylife 44 a5 54 55 53 54 64 65 63 64 a5 43 a4 55 53 54
tata\_se(ur\ty 23 31 23 31 20 28 23 31 20 28 16 5 13 16 5 13
total_cost 113 114 116 117 119 120 121 122 124 125 137 139 140 142 144 145

4

Figure 4: The Feature and Quality Matrix. Variants sorted
in ascending order by cost.

that these two features contribute to cost.

The matrix also allows engineers to instantly filter variants
by selecting features that should be present in all variants
and eliminating features that should not be present in any
of the variants without recalculation of the Pareto front.
For example, in order to only see variants with WiFi, the
engineer ticks the corresponding checkbox in front of WiFi
(Figure 5). The matrix now shows only the six variants (6,
8,11, 13, 14 and 15). Now, in order to see variants without
Bluetooth21EDR, the engineer crosses out the corresponding
checkbox and only four variants remain. Effectively manda-
tory features cannot be eliminated. We refer to this kind of
top-down exploration as feature-driven exploration.

Feature-driven exploration can be combined with quality
range-driven exploration. For example, instead of excluding
Bluetooth21EDR explicitly, the engineer could specify the
target quality range for security as [10..] to exclude the
red bubbles and arrive at the same four variants.

The engineer can also sort the variants in the matrix by a
variant number (default) and by each quality in ascending
or descending order. In Fig. 4, the engineer sorted by cost
in ascending order (as indicated by the small black triangle)
and observed that features USB and WiFi begin to appear
with variants 3 and 15, respectively, as the cost increases.

The matrix offers a function to make differences among
variants more visible for feature impact and trade-off ana-
lysis. Pressing the button Distinct causes dimming of uni-
form rows and effective highlighting of the rows with differ-
ences. For example, Fig. 5 shows that the difference between
these variants in terms of features is LTE and battery type:
LiBattery1150 or LiBattery1400. By looking at quality
values, the engineer sees that LTE combined with LiBat-
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Figure 6: Comparison of two Pareto fronts.

tery1400 gives the highest cost of 145 and the top pro-
ductivity of 88, while exclusion of LTE combined with the
inclusion of the same battery gives the cost of 142, which
can be considered as small in comparison to the producti-
vity drop from 88 to 72. Therefore, the engineer chooses the
variant 13 as it represents the most desired trade-off. It is
important to emphasize that previously the engineer could
only understand the individual contributions of a single fea-
ture to the overall variant quality. Now, the visualization
and exploration allows engineers to achieve deeper insight
into a cumulative effect of the presence of a feature set for
analyzing more complex trade-offs.

The Feature and Quality Matrix supports several tasks re-
lated to Pareto front exploration by feature and comparison
of variants. More complex comparisons of arbitrary selec-
tions of variants require another view—Variant Comparer.

2.3 Variant Comparer

The engineer may need to understand evolution of the
whole Pareto front as the product line evolves. To support
such scenarios, the tool allows loading pre-configured vari-
ants (e.g., previously computed optimal variants or existing
manually configured variants), and visualizing and exploring
them together with the newly calculated variants (Fig. 6).

For example, consider a set of optimal variants of our
product line at the time when the feature LTE was not yet
available. After adding an optional feature LTE, the en-
gineer generates a new Pareto front and loads the vari-
ants saved before, and they merge with new optimal vari-
ants. Figure 6 shows the resulting Bubble Front Graph.
Pre-configured (previously generated) variants that exactly
match the newly generated optimal variants are shown as
octagons; otherwise, they are shown as squares. The engi-
neer observes that eight old variants remain unchanged and
that two old variants, 19 and 26, are not optimal. The en-
gineer can see the achieved quality values: in the old Pareto
front, the highest level of productivity achieved was 72, but
now it is equal to 88. The engineer can compare non-optimal
variants to optimal ones: non-optimal variants 19 and 26 are
located below the similar-size optimal variants 8 and 6. The
engineer first wants to compare the variants 19 to 8 to iden-
tify whether the former has evolved to the latter. To help
with comparing arbitrarily selected variants, we designed the

third view: Variant Comparer.

The Variant Comparer view (Fig. 6, right) is designed
to present the commonalities and differences among the se-
lected set of variants, identification of complete classes (ex-
plained further), and trade-off analysis. The view is dynam-
ically updated whenever a variant is selected or unselected
in the Bubble Front Graph or the Feature and Quality Ma-
trix. The view is implemented as two tables: the top one
for the common features, the bottom one is for the distinct
features and all quality values. In our example, in order
to compare the variants 19 and 8, the engineer first selects
both variants. In the table Differences, the engineer realizes
that 8 differs from 19 only by presence of the feature LTE,
and that by adding this feature 19 would become optimal.
The engineer can also see the impact on variant quality: a
boost in productivity at the cost of small increase in price
and decrease of battery life.

The view also shows that the selected set defines a com-
plete class. A complete class is the largest set of variants that
have exactly the same commonality—adding another variant
would remove at least one feature from the commonality ta-
ble. This notion helps to identify sets of similar variants—if
the set is incomplete, the tool suggests which other variants
can be added to make it complete. We refer to selecting
variants and analyzing their commonalities and differences
and complete classes as bottom-up exploration approach.

3. METHOD AND TOOL EVALUATION

We performed a small controlled experiment (details in [8])
with three participants knowledgeable about product-line
engineering to evaluate the effectiveness of the visualization
method and the tool. The participants were required to
perform 11 predefined tasks and answer questions. They
used an older version of the too—the material presented
in Sec. 2 includes all feedback we have subsequently imple-
mented. Here we only describe the most significant results.

All three participants found the bubble chart visualization
both useful and intuitive. Participants were able to make de-
cisions in 4-dimensional space, compare bubbles and select
the ones they needed. All participants reported difficulty
comparing variants that differ by a small amount in bubble
opacity and size, whereas the differences were easily notice-
able for bubble position on two dimensional graph plane.
In the example, variant security was represented as bubble
opacity with a single color and it had three discrete values:
0, 5 and 10. One participant was confused by the opacity
representing the value zero, which was not completely trans-
parent (intuitively no color is interpreted as corresponding
to the value 0). To address that, we subsequently imple-
mented a three-color red-yellow-green gradient. Fortunately,
all three participants could rely on the tooltip feature of the
graph to know the exact values of quality attributes.

The lack of a label for the bubble size representation made
interpretation difficult for two subjects. We have since im-
plemented a label which shows a large bubble with the maxi-
mum value and a small bubble with the minimal value, which
makes the meaning of the bubble size clear (Fig. 3).

Two participants noticed the correlation between mass,
security and performance, without being asked to do so. It
was a good indicator that users can reason among multiple
dimensions with this visualization.

One participant noticed a limitation: given limited screen
space and big bubble size, bubbles will overlap and make the



exploration difficult. So far we do not have a good estimate
of optimal number of bubbles and distribution density.

All three participants mentioned that filtering by features
is important and needed in top-down decision making: find-
ing variants that have given features included or excluded.
Participants wanted to group variants together by some al-
gorithm (features, common values of quality attributes, or
proximity) and explore them separately. We since imple-
mented filtering by features and introduced the notion of
target quality range. Two participants found idea of clus-
tering by feature useful, another one said that this would
be probably useful. Clustering appears to be an important
prospective feature as well.

4. RELATED WORK

We are not aware of any research or industrial tools that
implement interactive exploration of Pareto fronts tailored
for PLE scenarios. However, similar visualizations are used
to some extent for different use cases. The Feature and
Quality Matrix is simply an extension of commonly used
matrix (feature matriz [9], product-feature matriz [7], and
variant matriz [2]) with quality attributes.

Poles et al. [12] use bubble charts for representing their
multi-objective optimization results, but in a different way:
bubble position reflects the two quality values, bubble color
and size represent standard deviations of the two quality va-
lues. Sasaki et al. [14] use a visualization similar to bubble
charts to display solutions of the multi-objective optimiza-
tion problem in three and four-dimensional spaces. How-
ever, the shapes representing variants are not labeled, and
therefore it is not possible to enumerate and explore them
individually, in contrast to our approach.

Other approaches to visualization e.g., 3D scatter plots [17],
Level Diagrams [4], heatmaps [13], self-organized maps [10]
require user studies to evaluate them in the PLE context.

The tool SPL Conqueror [16] focuses on the measurement
phase and supports some optimization of non-functional pro-
perties without exploration of optimal variants. Loesch and
Ploedereder [7] described notions of shared, distinct, rarely
used or never used features in terms of concept analysis. We
can incorporate concept analysis into our tool in the future
as it may offer more exploration opportunities.

S. CONCLUSION

We presented a novel visualization method: an integrated,
interactive, and synchronized set of complementary views
onto a Pareto front specifically designed to support a num-
ber of product line exploration scenarios. We implemented
a web-based tool and evaluated it in a small controlled ex-
periment. We demonstrated that Pareto front can be ef-
fectively visualized and explored using the proposed visual-
izations. The user experiment confirmed the feasibility of
our approach and provided good feedback we successfully
incorporated into our tool. In the future, we plan to explore
industry use cases, conduct a new user experiment with a
newer version of the tool and with professional engineers.
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