
Jo Atlee • U Waterloo • Dec 2013
 Sandy Beidu
 Shoham Ben-David
 Cecylia Bocovich
 Jonathan Hay
 Pourya Shaker

David R. Cheriton School of Computer Science
University of Waterloo

Feature	
 Interactions:	
 	

the	
 Good,	
 the	
 Bad,	
 and	
 the	
 Ugly	

feature-­‐oriented	
 software	
 development	

stakeholders’
mental model of system

feature-oriented
software system

Call Forwarding

Basic Call Service

Billing
Call

Forwarding

Basic
Call

Service

Billing

Call Forwarding

feature : a unit of functionality or added value in
the product

product	
 lines	

[Example from Sven Apel]

Lego Figure

Head Torso Legs

Hair Helmet

feature model = valid configurations

reusable implementations

products

mapping

product	
 lines	

feature	
 interactions	

feature interaction: features influence each other
in defining overall system behaviour [Zave]

›  conflicts over shared context
›  violations of global correctness properties
›  emergent behaviours

feature interaction problem: the number of
potential interactions is exponential in the
number of features

what	
 this	
 talk	
 is	
 about	

modelling feature requirements

›  feature modularity
›  modelling intended interactions

analyzing feature combinations
›  to detect interactions

resolution strategies
›  strategies that avoid classes of interactions

the	
 good	

not	
 all	
 interactions	
 are	
 bad!	

unintended but harmless interactions
›  call screening prevents activation of caller id

(planned) resolutions to conflicts
›  brake override overrides (acceleration ⨁ braking)

intended interactions
›  advanced cruise-control variants override basic cruise control
›  prohibit navigation overrides navigation
›  prohibit-navigation override overrides prohibit-navigation

feature-­‐oriented	
 requirements	

modelling	
 language	
 (FORML)	

Shaker,	
 Atlee,	
 Wang,	
 RE’12	

a notation for modelling the requirements of a
product line (PL)

› supports feature modularity

› provides language constructs for expressing intended
interactions explicitly

› composes features into a product line

req	
 models	
 decomposed	
 by	
 feature	

behaviour model

state-machine models (of features)
-  whose events, conditions and actions are

expressions over world phenomena
-  and over feature phenomena

world model
a conceptual model of the
problem world
-  defines possible world states
-  including feature phenomena

fe
at

ur
e

fe
at

ur
e

AutoSoftCar
ignition: IgnitionState

RoadObject
speed: Int
acceleration: Int
orientation: Int
direction: Direction

«AutoSoft»
CC

cruiseSpeed: Int
computedAccel: Int
«inputs»
SetCruiseSpeed()
EnableCC()
DisableCC()
Accelerate(value: Int)
Decelerate(value: Int)

«AutoSoft»
HC

cruiseHeadway: Int
«inputs»
SetCruiseHeadway(value: Int)

AutoSoft

«AutoSoft»
BDS

«inputs»
IgniteOn()
IgniteOff()
Steer(value: Int)
Accelerate(value: Int)
Decelerate(value: Int)

enum IgnitionState = {on, off}

Driver

RoadSegment
speedLimit: Int

Lane
IsOn

PhysicalObject
position: Coord
shape: Shape

1..*

1*

ContainsDrives

roadSegroadObj

on

waitAccelerate

t3: Accelerate(va lue) /

a1: AutoS oftC ar.acceleration := acceleration()

off

waitS teer

t5 : S teer(va lue) /

a1: AutoS oftC ar.orientation := orientation()

acceleration

steering

t1: IgniteO n() /

a1: AutoS oftC ar.ignition := on

waitD ecelerate

t4: D ecelerate(va lue) /

a1: AutoS oftC ar.acceleration := deceleration()

deceleration

t2: IgniteO ff() /

a1: AutoS oftC ar.ignition := off

S P L AutoS oft

feature BD S

region main

disabled

disengaged

engaged

t3: S etC ruiseS peed() [engageC nd] /

a1: AutoS oftC ar.acceleration = acceleration(),

a2: C C .cruiseS peed := AutoS oftC ar.speed,

a3: C C .computedAccel = acceleration()

t4 : D ecelerate(va lue)

t1 : E nableC C () t2 : D isableC C ()

t5 : [not engageC nd]

inactiveactive

t8: Accelerate(va lue) [va lue > C C .computedAccel]

t9 : Accelerate(va lue) [va lue <= C C .computedAccel]

enabled

main

main

BD S -on

C C

t6: a fter(t) /

a1: AutoS oftC ar.accleration := acceleration(),

a2: C C .computedAccel := acceleration()

t7 : S etC ruiseS peed() / a1: C C .cruiseS peed := AutoS oftC ar.speed

S P L AutoS oft

feature C C

extends region BD S -main [one C C]

transition BD S -t3:

[not isActive or va lue > C C .computedAccel]

le t engageC nd = minE ngageS peed <= AutoS oftC ar.speed <= maxE ngageS peed

let isActive = inS tate(BD S -main.BD S -on.C C .enabled.main.engaged.main.active)

modelling	
 features	

transition labels:
id:	
 e	
 [c]	
 /	
 id1:	
 [c1]	
 a1,	
 	
 …	
 ,	
 idn:	
 [cn]	
 an	

•  triggering	
 event:	
 a	
 change	
 in	
 the	
 world	

•  guard	
 condi8on:	
 predicate	
 over	
 the	
 world	

•  ac8on:	
 a	
 prescribed	
 change	
 to	
 the	
 world	

•  transi8on	
 or	
 ac8on	
 name	

features are modelled as hierarchical state machines
that sense and control the world

a	
 new	
 feature	
 may…	

introduce behaviours
›  via: new machines

intended interactions:
modelled as structural extensions at
extension points in existing features

 can also be expressed as
extensions to existing features:
new regions, new states,
new transitions,
weakened enabling conditions

eliminate behaviours
›  via: new or stronger enabling conditions on

existing actions or transitions

substitute behaviours
›  via: new pre-empting actions or transitions

adding	
 behaviours	

Cruise Control (CC)

new	
 region	

extends	
 BDS	
 state	

BDS

BDS{main.on}

replacing	
 behaviours	

Headway Control (HC)

new	
 region	
 includes	
 pre-­‐emp7ng	
 transi7on:	

models	
 HC	
 inten7onally	
 prohibi7ng	
 CC	

CC

extends	
 CC	
 state	

composition	
 is	
 a	
 product	
 line	

product line = {BDS, BDS + CC, BDS + CC + HC}

transitions, actions, clauses are guarded by presence
conditions (of their declaring feature)

[HC]	

[CC]	

[CC	
 implies	

[CC]	

[CC]	

[CC	
 and	

[CC	
 and	

[HC]	
 and	

summary	
 of	
 FORML	

•  precise modular modelling of features

•  new features extend existing features
›  with added, removed, and replaced behaviours

•  explicit modelling of intended feature interactions

•  result of feature composition is a product line

the	
 bad	

hybrid	
 brakes	
 ⨁	
 anti-­‐lock	
 breaking	

2010 Toyota Prius

hybrid brake system
›  (normal) hydraulic brake system
›  regenerative braking system
-  converts loss of vehicle momentum into electrical energy
-  stored in on-board batteries

anti-lock brake system (ABS)
›  maintains stability, steerability during panic braking

interaction
›  braking force after ABS actuation reduced
›  vehicle stopping distance is increased
›  62 reported crashes, 12 injuries

cruise	
 control	
 ⨁	
 traction	
 control	

cruise control

›  vehicle set to maintain driver-specified speed

traction control
›  brake fluid applied when wheels slip

interaction
›  engine power is increased (to maintain speed)
›  driver senses “sudden acceleration”
-  vehicle becomes difficult to control

resolution
›  advise drivers not to use cruise control on slippery roads

 F1 ⨁ F2 ⨁ ��� ⨁ Fn ⊭ Φ1 ∧ Φ2 ∧ ��� ∧ Φn

feature	
 interaction	

F1 ⊨ Φ1
 F2 ⊨ Φ2

Fn ⊨ Φn

��
�

feature property of feature

feature composition (= product)

Counter
Example

Software
Model

Property Model
Checker

Property
holds?

Stop

NO

YES

model	
 checking	

Clarke,	
 Emerson	
 ‘81,	
 	
 	
 Queille,	
 Sifakis	
 ‘82	

detecting	
 feature	
 interactions	

Counter
Example

Software
Model

Property Model
Checker

Property
holds?

Stop

NO

YES

F1 ⨁ F2 ⨁ ��� ⨁ Fn
Φ1
Φ2
���

Invalid	
 Configura8ons	

+	
 Counter	
 Example	

Product Line
Model

Property PL Model
Checker

Property
holds?

Stop

product-­‐line	
 model	
 checking	

Classen,	
 Heymans,	
 Schobbens,	
 Legay,	
 Raskin,	
 ICSE’10	

properties	
 should…	

•  reflect each feature’s desired behaviour

•  be conditional on whether a feature is present

•  accommodate intended interactions

›  which affect whether a transition executes

source dest

t : ev [f & cond & (g => cond2)] / x := val

feature presence
conditions

intended
interaction

properties	

All paths Globally neXt state

AG (t_execute -> AX(x = val))

a property for each transition in the PL model:
›  if transition executes, the effects of its actions are realized
› can be generated automatically from PL model

source dest
t : ev [f & cond & (g => cond2)] / x := val

progress	

FORML
PL model

Model &
properties to
be analyzed

Translator Model
checker

•  Rich data types
•  Complex multi-step

execution semantics

•  Boolean data types
•  Simple execution

semantics

summary	
 of	
 interaction	
 detection	

•  properties can be generated automatically from
the PL model

•  analyzer checks every property in all behaviours
of all products in product line

•  analyzer identifies, for each property, all
products in which the property can be violated

•  only unintended interactions will be reported

the	
 ugly:	
 	
 scalability	

lots	
 of	
 features	

e.g., telephony has 1000+ features per system

a system of feature-rich systems
›  features from multiple providers
› multiple active versions of the same feature

provider’s
features

device’s
features device’s

features

PBX
features

provider’s
features

lots	
 of	
 interactions	

results of the second feature interaction contest

Call Forward
on Busy Call Number

Delivery

Terminal Call
Screening

Freephone
Billing

Freephone
Routing

Teen
Line

Three-Way
Calling

Call Forward
Universal

Call
Waiting

Charge
Call

Return
Call

Cellar
Phone
Billing

1
2
3
4
5
7

interations

one feature affects the flow of control in another feature

one feature affects (deletes, alters) a message destined for another feature

shared data read by one feature is modified by another feature

two features modify the same data

two features issue conflicting actions

one feature violates another feature's assertions or invariants

the supply of resources is inadequate, given the set of competing features

control-flow

data-flow

data modification

data conflict

control conflicts

assertion violation

resource contention

lots	
 of	
 types	
 of	
 interactions	

introduced	
 in	
 several	
 phases	

Bowen,	
 SETSS’89	

[req] understanding / specifying how features ought to interact

[req] the number of interactions (and resolutions) to consider
grows exponentially with the number of features

[design] more interactions introduced during design due to
sharing of resources, I/O devices, protocol signals, etc.

[imp] near-commonalities among features leads to questions
about how to effectively reuse software components

[test] the sheer number of interactions and resolutions to be
tested lengthens the testing phase

wicked	
 problem	

lots of features
lots of interactions
multiple types of interaction

lots of resolutions
introduced in several phases

resolve interactions through feature composition	

›  compose features into products (or product lines)
›  composition algorithm resolves entire classes of interactions

conflict-­‐free	
 composition	

Hay,	
 Atlee,	
 FSE’00	

A

B

X

Y
≈

A,X

A,Y B,Y B,X

t1 t2 t1&t2 ⟫ t1 t2

resolution strategy: maximal subset of enabled
transitions with nonconflicting actions
›  uses feature priority to resolve conflicts

F1 F2 F1 ⨁ F2

t1&t2 ⟫ t1 ⟫ t2

violation-­‐free	
 composition	

Hay,	
 Atlee,	
 FSE’00	

A

B

X

Y ≈
A,X

A,Y B,Y B,X

t1 t2 t1&t2 ⟫ t1 t2

resolution strategy: maximal subset of enabled
transitions with nonconflicting and nonviolating actions

4 classes of interactions
›  actions conflict

resolution
 resolve by priority

›  actions violate assertions

›  new assertions not satisfied

›  new assertions conflict

resolve by priority

apply transition

apply transition

feature	
 coordination	

› fixed set of features

› pre-determined
selection of features

› static integration

› perfect coordination
possible

› fixed set of features

› semi-configurable
selection of features

› set of static integrations

› perfect coordination
possible, but impractical

› unlimited features

› user-defined
selection of features

› dynamic integration

›  loose coordination

summary	

[HC]	

[CC]	

[CC	
 implies	

[CC]	

[CC]	

[CC	
 and	

[CC	
 and	

[HC]	
 and	

model features
modularly with
intended interactions

resolve classes of
undesired interactions
through composition

Properties

PL Model
Checker

Invalid	
 Configura7ons	

+	
 Counter	
 Example	

detect remaining
unintended
interactions

