Feature Interactions:

the Good, the Bad, and the Ugly

Jo Atlee » U Waterloo * Dec 2013

Sandy Beidu
Shoham Ben-David
Cecylia Bocovich
Jonathan Hay
Pourya Shaker

WATFORM ne¢s!s

David R. Cheriton School of Computer Science
University of Waterloo

feature-oriented software development

feature : a unit of functionality or added value in
the product

Call Forwarding

<:> Basic | Billing
Call

e
Forwarding

Call Forwarding

Basic Call Service

Billing

stakeholders’ feature-oriented
mental model of system software system

product lines

feature model = valid configurations

Lego FiguM

I

Hea‘Cﬂ

To rs‘tﬂ

LeM

Helmm

@

‘ mapping

reusable lmplementatlons

products

[Example from Sven Apel]

product lines

feature interactions

feature interaction: features influence each other
in defining overall system behaviour [Zave]

> conflicts over shared context

> violations of global correctness properties

> emergent behaviours

feature interaction problem: the number of
potential interactions is exponential in the
number of features

what this talk is about

modelling feature requirements
> feature modularity
> modelling intended interactions

analyzing feature combinations
> to detect interactions

resolution strategies
> strategies that avoid classes of interactions

the good

not all interactions are bad!

intended interactions
> advanced cruise-control variants override basic cruise control
> prohibit navigation overrides navigation
> prohibit-navigation override overrides prohibit-navigation

unintended but harmless interactions
> call screening prevents activation of caller id

(planned) resolutions to conflicts
> brake override overrides (acceleration @ braking)

feature-oriented requirements
modelling language (FORML)

Shaker, Atlee, Wang, RE’12

a notation for modelling the requirements of a
product line (PL)

> supports feature modularity

> provides language constructs for expressing intended
iInteractions explicitly

> composes features into a product line

req models decomposed by feature

world model behaviour model
a conceptual model of the state-machine models (of features)
problem world — whose events, conditions and actions are

- defines possible world states expressions over world phenomena
- including feature phenomena — and over feature phenomena

on

acceleration

13: Accelerate(value) /
PhysicalObject al: AutoSoftCar.acceleration := acceleration()

position: Coord -
waitAccelerate

shape: Shape

[deceleraon]
t1: IgniteOn() /

a1: AutoSoftCar.ignition := on t4: Decelerate(value) /
al: AutoSoftCar.acceleration := deceleration()
off 12: Ignite O ff() / 1
i al: AutoSoftCar.ignition := off
RoadObject d

feature

engaged

speed: Int e PEeees
PO * IsOn 1 steering
ac.celer.'latlo.n. Int RoadSegment Lane 15: Steer(value) /
orientation: Int roadObj roadseg speedLimit: Int 1. a1: AutoSoftCar.orientation := orientation()
direction: Direction
zr
Drives Contains r-=--o-—)
Driver AutoSoftCar | AutoSoft !
ignition: IgnitionState} = c-——-——---
BDS-on
cc
. Camna)
«AutoSoft» } 11: EnableCC() 12: DisableCC()
,,,,,,,,,,,,,,,,,, cc |
| ! main
«AutoSoft» cruiseSpeed: Int ! ‘
I

|

|

|

! BDS computedAccel: Int

I «i T e 13: SetCruiseSpeed() [g Chd]/ 16: after() / 3 5

| cnputs» «inputs» . «AutoSoft» ‘ o el | RSSO
| etCruiseSpeed() HC as:cc = i

1 IgniteOff()

feature

| Steer(value: Int)
| Accelerate(value: Int)

I
I
I
I
|
I IgniteOn() 3
I
I
I
I
I
I
I

| I
S I } |
EnabIeCC() } | | 18: Accelerate(value) [value > CC.computedAccel]
1 14: Decelerate(value)
| | i . disengaged active | 19: Accelerate(value) [value <= CC.computedAccel] | inactive
DisableCC() | 1 cruiseHeadway: Int ! s pA— L posseon |
I : |
Accelerate(value: Int) 1 | «inputs» |
Decelerate(value: Int) |1 SetCruiseHeadway(value: Int) |

17: SetCruiseSpeed|() / a1: CC.cruiseSpeed = AutoSoftCar.speed

modelling features

features are modelled as hierarchical state machines
that sense and control the world

t1: IgniteOn+(0) [true] /
al: [true] AutoSoftCar.ignition := on

i N\
on

acceleration

t3: Accelerate+(o) /
al: AutoSoftCar.acceleration := acceleration()

.%(waitAccelerate)

deceleration

off | t2: IgniteOff+(o) /
al: AutoSoftCar.ignition ;= off

t4 > t3: Decelerate+(o) /
al: AutoSoftCar.acceleration ;= deceleration()

transition labels:
id: e [c] /id;: [c]ay, ..., id :[c,]a,

triggering event: a change in the world
guard condition: predicate over the world
action: a prescribed change to the world
transition or action name

[
.%(waitDecelerate)

steering
t5: Steer+(o) /
al: AutoSoftCar.steerDirection := steerDirection()

a new feature may...

can also be expressed as
extensions to existing features:
[] new regions, new states,

introduce behaviours new transitions
> via: new machines weakened enabling conditions

@iminate behaviours N
> via: new or stronger enabling conditions on
existing actions or transitions

substitute behaviours
_ > via: new pre-empting actions or transitions)

intended interactions:
modelled as structural extensions at

extension points in existing features

adding behaviours BDS
Cruise Control (CC) f;%-w

extends BDS state

new region

state-machine extension

transition BDS{t3}: [strengthen with ¢: not inState(main.enabled.main.engaged.main.active) or driverOverride()] B‘

BDS{main.on v

replacing behaviours cc

Headway Control (HC))

extends CC state new region includes pre-empting transition:
models HC intentionally prohibiting CC

~
CC{main.enabled.main.engaged}
main
t2: override(CC{t6}) [slowRoadObjectAhead()] /
al: AutoSoftCar.acceleration := acceleration(),
a2: CC.goalAccel := acceleration()
t1: SetHeadway+(0) /
= al: HC.headway := o.value e :
inactive \\ active j
e t3: SetHeadway+(o) / al: HC headway := o.valuej

composition is a product line

transitions, actions, clauses are guarded by presence
conditions (of their declaring feature)

| state-machine BDS{main} %

t1: IgniteOn+(0) /
al: ..
off ;21:. IgniteOff+(o) /

product line = {BDS, BDS + CC, BDS + CC + HC}

summary of FORML

» precise modular modelling of features

* new features extend existing features
> with added, removed, and replaced behaviours

« explicit modelling of intended feature interactions

* result of feature composition is a product line

the bad

hybrid brakes @ anti-lock breaking

2010 Toyota Prius
hybrid brake system

> (normal) hydraulic brake system

> regenerative braking system
— converts loss of vehicle momentum into electrical energy

— stored in on-board batteries

anti-lock brake system (ABS)

> maintains stability, steerability during panic braking

interaction
> braking force after ABS actuation reduced

> vehicle stopping distance is increased
> 62 reported crashes, 12 injuries

cruise control & traction control

cruise control
> vehicle set to maintain driver-specified speed

traction control
> brake fluid applied when wheels slip

interaction
> engine power is increased (to maintain speed)

> driver senses “sudden acceleration”
— vehicle becomes difficult to control

resolution
> advise drivers not to use cruise control on slippery roads

feature interaction

feature,.. _property of feature
Fy F ¢1,~
F, = @,
Fn — ¢I’I

F1@F2@..'@Fn#¢1/\¢z/\°°°/\d)n
- /
Y
feature composition (= product)

model checking

Clarke, Emerson ‘81, Queille, Sifakis ‘82

Software
Model

el Chocker

Property NO Counter
holds?

Example

detecting feature interactions

Software FFOF @ eee DF,

Model

P,
P,

Procerty Chocker

Property NO Counter
holds?

Example

product-line model checking

Classen, Heymans, Schobbens, Legay, Raskin, ICSE’0

Product Line
Model

=3

Property Invalid Configurations
holds? + Counter Example

properties should...

* reflect each feature’s desired behaviour
* be conditional on whether a feature is present

« accommodate intended interactions
> which affect whether a transition executes

t:ev[f&cond&(g=>cond2)]/x:=val

source ¢ dest

feature presence Intended
conditions Interaction

properties
a property for each transition in the PL model:

> if transition executes, the effects of its actions are realized
> can be generated automatically from PL model

t:ev[f&cond & (g=>cond2)]/x:=val

source dest

_AG (t_execute -> AX(x=val))

All paths Globally neXt state

progress

Model & E ::

Translator properties to Model
checker
be analyzed

FORML
PL model

* Rich data types
 Complex multi-step
execution semantics

 Boolean data types
« Simple execution
semantics

summary of interaction detection

* properties can be generated automatically from
the PL model

« analyzer checks every property in all behaviours
of all products in product line

- analyzer identifies, for each property, all
products in which the property can be violated

* only unintended interactions will be reported

the ugly: scalability

lots of features

e.g., telephony has 1000+ features per system

provider’s PBX
features features

device’s
features

provider’s

features device’s

features

a system of feature-rich systems

> features from multiple providers
> multiple active versions of the same feature

lots of interactions

results of the second feature interaction contest

Call Forward

Cellar
on Busy

Phone
Billing

Call Number
Delivery

Return
Call reephone

Billing

Freephone
Routing

Teen # interations
Line

Terminal Call
Screening

NOoOOh~howND =

Universal —————__Three-Way

Calling

lots of types of interactions

control-flow
one feature affects the flow of control in another feature

data-flow
one feature affects (deletes, alters) a message destined for another feature

data modification
shared data read by one feature is modified by another feature

data conflict
two features modify the same data

control conflicts
two features issue conflicting actions

assertion violation
one feature violates another feature's assertions or invariants

resource contention
the supply of resources is inadequate, given the set of competing features

introduced in several phases

Bowen, SETSS’89

'req] understanding / specifying how features ought to interact

req] the number of interactions (and resolutions) to consider
grows exponentially with the number of features

[design] more interactions introduced during design due to
sharing of resources, I/O devices, protocol signals, etc.

[imp] near-commonalities among features leads to questions
about how to effectively reuse software components

[test] the sheer number of interactions and resolutions to be
tested lengthens the testing phase

wicked problem

lots of features

lots of interactions

multiple types of interaction
lots of resolutions
introduced in several phases

resolve interactions through feature composition
> compose features into products (or product lines)
> composition algorithm resolves entire classes of interactions

conflict-free composition

Hay, Atlee, FSE’00

resolution strategy: maximal subset of enabled
transitions with nonconflicting actions

> uses feature priority to resolve conflicts

F F> F ®F,
| AX
~ t1&t2 \ 2
77 AY B,Y B,X

t1&t2 y t1) t2

violation-free composition

Hay, Atlee, FSE’00

resolution strategy: maximal subset of enabled
transitions with nonconflicting and nonviolating actions

——

A (X A,X
l” >> th ~ / lﬂ&tz t2
~
eeeeeeee B U AY) (BY]) [BX
4 classes of interactions resolution
> actions conflict resolve by priority
> actions violate assertions resolve by priority
> new assertions not satisfied apply transition

> new assertions conflict apply transition

feature coordination

l;;!

Next: Summary & Payments.

eaderX

‘View and print POF fles
More securely open PDF fles n 3 sandboxed environment
‘Optimize your POF viewing experience with Reading Mode.

Create PDF flls from any application that prints

> fixed set of features

> pre-determined
selection of features

> static integration

> perfect coordination
possible

o o >G
onmd Tz o m
< 333 ° 8 v g)
5SS¢g EN-E- a

s

3 3

3 o

& 2

S

8

]

> 3T

E) g

ad =z

M 2 g

@ 12 €

@ o

& »

8 g

2 a

8 ¥

23 523
Sza
2

588 N
8 8 &
e 5
2=e 5
S ;
5
5

[
LK §2egz3
R dz382¢2

> fixed set of features

> semi-configurable
selection of features

> set of static integrations

> perfect coordination

possible, but impractical

FRANADSENSRY I".ﬂ
CANSSENER-NANE - WN
Lﬂfﬂ.l!!-ll!==l\
NESNENSETIETRESE
=AUEEENENIs I NEENY
l.u::.:?;uzm-:wr.
.BH!SOINI\M ENENOTRTR
EREyEEDEsREAERECONERGEEED
LZEXEBxe s HeNO-EaENScEYER

EELSHOE SEEEERSEESERENe ™

BR"EBEETEERIDcOR SRR opEYEYE
AENGITFEOnNYTANSEI YRR
SERERESLEN TESRNEARTRYSE
=i I .P'.ﬁ--Z' JRESERPRCER
BERERSEXEXEsEERYRL S LERY

> unlimited features

> user-defined
selection of features

> dynamic integration

> loose coordination

summary

. /:esolve classes of

undesired interactions
through composition

model features
modularly with
intended interactions

PL Model
Checker

l

Invalid Configurations

+ Counter Example

detect remaining
unintended
interactions

