
Clafer Tools for Product Line Engineering
http://clafer.org

Michał Antkiewicz, Kacper Bąk, Alexandr Murashkin,
Jimmy Liang, Rafael Olaechea, Krzysztof Czarnecki

Generative Software Development Lab
University of Waterloo, Waterloo, Canada

{mantkiew, kbak, amurashk, jliang, rolaechea, kczarnec}@gsd.uwaterloo.ca

ABSTRACT
Clafer is a lightweight yet expressive language for structural
modeling: feature modeling and configuration, class and ob-
ject modeling, and metamodeling. Clafer Tools is an inte-
grated set of tools based on Clafer. In this paper, we de-
scribe different product-line variability modeling scenarios
of Clafer Tools from the viewpoints of product-line owner,
product-line engineer, and product engineer.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Languages; D.2.13 [Re-
usable Software]: Domain engineering; F.4.1 [Mathemati-
cal Logic]: Logic and constraint programming; F.4.3 [Formal
Languages]: Decision problems; G.1.6 [Optimization]:
Constrained optimization; H.5.2 [User Interfaces]: Inter-
action styles; I.6.4 [Model Validation and Analysis]

General Terms
modeling, features, optimal variant, feature modeling, prod-
uct line engineering, Pareto front visualization, exploration

Keywords
Clafer, ClaferWiki, ClaferIG, ClaferMOO, ClaferMOO Vi-
sualizer

1. INTRODUCTION
Clafer Tools is a a set of tools supporting many different

tasks in Product Line Engineering (PLE) related to vari-
ability modeling, configuration, verification, and validation.
In this paper, we demonstrate how the tools support differ-
ent PLE scenarios from the point of view of three personas:
product-line owner, product-line engineer, and product en-
gineer. In general, product-line owners are concerned with
getting the benefits of applying the product-line approach,
deriving value from their product line, increasing market
share and competitiveness, and product-line planning and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’13 Tokyo, Japan
Copyright 2013 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Clafer
Figure 1: Architecture and Capabilities of Clafer and Tools

scoping. Product-line engineers are concerned with creating
and evolving a shared product-line architecture, managing a
feature set and implementation assets, and supporting prod-
uct teams. Product engineers are concerned with deriving
correct variants from the product line that satisfy customer’s
requirements.

Clafer Tools are based on Clafer [4, 10], a lightweight mod-
eling language. Clafer (Class feature reference) is a struc-
tural modeling language with minimalistic syntax and rich
semantics equivalent to first-order relational logic. Clafer
can be used for feature modeling, specialization, and config-
uration, metamodeling, and domain modeling. Distinguish-
ing features of Clafer are: unification of many modeling con-
cepts (class, instance, attribute, reference, feature, and fea-
ture group) into a single concept clafer, powerful constraint
language, name resolution, and optimization objectives.

Figure 1 presents a layered architecture of Clafer Tools
and the major capabilities provided by the language Clafer
and the tools. Clafer Compiler [3] is a reference implementa-
tion of the language and it is the basis of all other tools. The
compiler outputs different formats, such as Alloy, HTML,
and the intermediate representation (IR) of the model. The
IR is the result of compilation and contains fully resolved
information about the model. The IR is primarily used by
the tools. The compiler also computes approximate scopes,
that is, smallest numbers of objects of each type needed to
instantiate the model. The scopes enable automatic model
instantiation by finite scope reasoners such as Alloy.

Clafer Wiki [5] is a collaborative integrated development
environment (IDE) for modeling in Clafer. The wiki inte-
grates the Clafer compiler and renders the models as hy-
perlinked HTML and as graphs. The wiki supports literate-

style modeling : fragments of a model can be interwoven with
rich text. All model fragments collected from a page are
compiled together, allowing for hyperlinking. The wiki also
provides parse and compile error highlighting, identifier use-
to-definition navigation via hyperlinks, simplified graph ren-
dering and CVL [9] variability abstraction rendering, version
control based on Git, and access control. A public instance
of the wiki, called Model Wiki, showcases different models
in Clafer (link available on project web site).

Clafer Instance Generator (ClaferIG) [6] is a reasoner for
Clafer: it finds instances of models or identifies a set of con-
flicting constraints. The instance generator can be used for
model validation and verification, and configuration comple-
tion. The instance generator relies on the scopes computed
by the compiler and uses Alloy [1] as a backend reasoner.
We are also working on an alternative backend using Choco
constraint solver [2]. Users can adjust the scopes in the rare
cases whereby the computed scopes are insufficient.

Clafer Multi-Objective Optimizer (ClaferMOO) [7, 12] is
a reasoner for the attributed-feature models subset of Clafer,
which finds a set of Pareto-optimal model instances given a
set of optimization objectives (called Pareto front). Clafer-
MOO can be used for discovering feature configurations of
optimal variants within a product line.

Finally, ClaferMOO Visualizer [8] is an interactive, web-
based, graphical user interface (GUI) for visualization and
exploration of the set of Pareto-optimal instances gener-
ated by ClaferMOO. The visualizer provides a view into the
multi-dimensional Pareto front showing up to four chosen
dimensions at a time. The visualizer can be used for various
analyses of the Pareto front: observing density and clus-
tering of variants, observing correlations, top-down analy-
sis using selection by feature and by target quality ranges,
bottom-up analysis by comparing variants selected manually
(tradeoff analysis), and analysis of pre-configured variants
versus the optimal variants [11]. A public instance of the
visualizer is available (link available on project web site).

Clafer Configurator is a new tool we are currently imple-
menting, but it is not yet released. The configurator will
be interactive and web-based and it will provide a graphical
user interface for working with ClaferIG.

In the following section, we describe how Clafer Tools can
be used in different product-line engineering scenarios by
telling a story of a fictional company: ACME.

2. STORY
ACME is a supplier of a range of specialty Android phones

designed to satisfy specific requirements of large corporate
and government organizations. New variants were evolved
from old ones by applying the clone and own approach.

Motivation. Alice, the leader of ACME, wants to 1) ap-
ply the product-line approach to reduce time-to-market, 2)
scope the product line to gain competitive advantage in the
market, 3) discover which variants are best in their target
customer segments and estimate the cost and predict proper-
ties of new variants, and 4) sell customized products in small
batches to reach customers who are not currently economical
to engage. Alice asks Bob, a chief product-line engineer at
ACME, to create a product-line architecture and a platform
that would eventually cover 100% of ACME’s products.

2.1 Product Line Engineering
Bob decides to apply the incremental approach and he

AndroidPhone1
Connectivity

Bluetooth40
GSM
WiFi
USB

Battery
LiBattery1450

AndroidPhone2
Connectivity

Bluetooth21
GSM
USB

Battery
LiBattery1150

(a) Models of existing variants

MobilePhone
Connectivity

xor Bluetooth
Bluetooth20 ?
Bluetooth21 ?
Bluetooth40 ?

GSM
LTE ?

[LiBattery1400]
WiFi ?
USB ?

xor Battery
LiBattery1150 ?
LiBattery1400 ?

(b) Feature Model

abstract xor Bluetooth
Bluetooth20 ?
Bluetooth21 ?
Bluetooth40 ?

MobilePhone
Connectivity

‘Bluetooth
GSM
LTE ?

[LiBattery1400]
WiFi ?
USB ?

xor Battery
LiBattery1150 ?
LiBattery1400 ?

(c) Structure via quotation

abstract MobilePhone
Connectivity

‘Bluetooth
GSM
LTE ?

[LiBattery1400]
WiFi ?
USB ?

xor Battery
LiBattery1150 ?
LiBattery1400 ?

LowEndPhones : MobilePhone
[no WiFi]

HighEndPhones : MobilePhone
[USB && WiFi]
QuadCPU ?

(d) Specialization

Figure 2: SPL modeling in Clafer

begins with identifying two similar variants that can consti-
tute the initial platform. Bob contacts product teams and
they each submit models of Android phones (see Fig. 2a).
The two models (AndroidPhone1 and AndroidPhone2) are
modeled using Clafer—each is described by a hierarchy of
features expressed using indentation. The models represent
concrete variants and therefore they contain no variability.
We only focus on Connectivity and Battery features.

Modeling in Clafer. Based on the two variants, Bob
identifies commonalities and variabilities and creates a fea-
ture model using Clafer as well (see Fig. 2b). The feature
model has the same structure as the variant models but it
is enriched with variability information. In Clafer, features
are mandatory by default, whereas optional features are fol-
lowed by question marks. Exclusive-or feature groups are
preceeded by a keyword xor, the default group caridnality is
[0..∗], which does not constrain the grouped features. Clafer
is a minimalistic, yet expressive, language that unifies many
concepts. For example, Clafer unifies features with feature
groups, by allowing each feature to specify both feature car-
dinality and group cardinality; e.g., Bluetooth is a manda-
tory feature and an exclusive-or group. The unification of
concepts greatly eases model evolution and eliminates per-
mature committment since the modelers are not forced to
choose modeling constructs and later switch them.

Constraint Language. Bob augments feature model
with constraints originating from the problem domain. For
example, the LTE module consumes more energy than the
traditional GSM module, therefore it requires battery of higher
capacity. The requirement is expressed by writing a con-

straint in the context of LTE. The constraint simply says
that if LTE is selected, then also the battery LiBattery1400

must be selected. Clafer offers an expressive constraint lan-
guage that allows Bob to specify any first-order logic formu-
las, which reduces the amount of tacit knowledge. Similarly
to features, constraints can be nested under features, which
places them in the relevant context. Name resolution rules
automatically locate features in the hierarchy when referring
to features from constraints, thus eliminating the need for
fully-qualified names. The two characteristics of Clafer have
positive impact on model evolution.

Dealing with Scale. After several iterations of evolving
the model, Bob decides to split it into smaller pieces. Stan-
dard feature models do not provide any mechanism for struc-
turing models. As the models grow, they become difficult to
comprehend and inconvenient to work with. Clafer provides
model structuring via quotation (see Fig. 2c). First, Bob ex-
tracted the feature Bluetooth from the feature model and
created an abstract feature of the same name. Next, in the
original model he preceded Bluetooth by back-quote. The
mechanism includes the abstract feature Bluetooth into the
hierarchy via inheritance (we omit the details here). Ab-
stract features define types, whereas non-abstract features
specify instances. Abstract clafers are often used to enable
reuse of both structure and constraints, thus supporting fea-
ture model reuse (illustrated later).

Configuration Completion and Conflict Resolution.
When models become larger, it is very difficult to verify and
validate them without automated tools. First, manual con-
figuration of large feature models is time-consuming. Sec-
ond, when feature models include constraints, finding con-
figurations is error-prone. Bob uses ClaferIG for verifica-
tion and validation. The tool offers reasoning on a wide
range of structural models, in particular, over feature mod-
els. ClaferIG provides two main functionalities: 1) config-
uration completion, and 2) conflict detection. For a given
(partially configured) feature model, it tries to find a com-
plete configuration of the model. Bob inspects the generated
configurations and checks whether the existing variants are
covered by the model Fig. 2a. Bob elicits missing constraints
when he sees incorrect configurations and restricts the model
to prohibit them. He confirms that the model from Fig. 2b
is correct. If the model was incorrect (either inconsistent, or
inconsistent with the existing variants), ClaferIG presents
the set of conflicting constraints, which Bob can remove.

Specialization and Extension. Bob knows that ACME
divides the market into two segments: low-end phones and
high-end phones. He needs to do the same with the fea-
ture model, i.e., create two specializations of the product
line. Normally Bob would have to clone the feature model
and modify the new clones. In Clafer, he can do it in an-
other way: via inheritance. First, he marks the feature Mo-

bilePhone as abstract. Next, he creates two non-abstract
features LowEndPhones and HighEndPhones that extend Mo-

bilePhone. He is able to attach constraints to the new mod-
els to partially configure them. In case of LowEndPhones, the
phones have no WiFi feature. HighEndPhones, on the other
hand, have both USB and WiFi modules, but also may have
a quad-core CPU (represented by the feature QuadCPU). In
that way, Bob can arrange models into multiple extension
and specialization layers.

Collaboration. Bob is a part of small group of platform
engineers who edit the feature model. They share the model

with all other engineers at ACME in read-only mode. Such
a setup is necessary for collaborative consensus building typ-
ically performed doing workshops. Bob uses ClaferWiki to
control the model centrally. ClaferWiki provides an inter-
face for editing and viewing the models as well as it sup-
ports literate modeling, the ability to interleave model frag-
ments with rich text natural language descriptions. Thanks
to the Git version control underlying the wiki, they can cre-
ate branches of the wiki to support scoping future versions
of the product line.

2.2 Product Engineering
Carol is a product engineer at ACME. Her job is to derive

variants from the product line for customers. She defines
variants by creating feature configurations.

Deriving correct variants. A correct variant is one
whose defining feature configuration satisfies all problem and
solution space constraints. Even if all constraints are known,
manually verifying whether a feature configuration satisfies
the constraints is tedious and error prone. Since Bob was
able to express all constraints in the product-line feature
model, ClaferIG can be used to verify the correctness of the
configuration and help Carol fix the possible violations.

Deriving valid variants (1). A valid variant is one
which satisfies the customer’s requirements. For the require-
ments that can be directly mapped to product-line features,
the features can simply be selected in the feature configura-
tion. For the remaining features, ClaferIG can be used to
generate possible completions of the feature configurations,
which then Carol can review with the customer.

Reusing configurations. For large feature models, it
is infeasible to always begin the configuration process from
scratch. Typically, product engineers know which existing
variants are closest to satisfying the customer’s requirements
and therefore they can take the feature configurations of
these variants and modify them as needed. Unfortunately,
modifying existing configurations may result in constraint
violations—these can be detected using ClaferIG.

Carol can also prepare a set of partial configurations typ-
ical for different market segments (similarly to Fig. 2d) and
use them as a starting point. ClaferIG can be used to gen-
erate possible configuration completions.

Partial configurations are essential for supporting staged
configuration, whereby many product engineers configure
only the parts of the feature model they are knowledgeable
about. Consequently, selections made by one engineer can
limit selections available to the others. Clafer naturally sup-
ports staged configuration.

Deriving valid variants (2). The customer may have
requirements that do not directly map to product-line fea-
tures but that are related to certain non-functional or emerg-
ing qualities of variants. In such cases, simply selecting fea-
tures by trial and error may potentially be very time con-
suming and result in suboptimal variants from the point of
view of the customer. To be able to satisfy these quality re-
quirements, Carol works with Bob to add the necessary qual-
ity attributes to the product line. They extend the feature
model with quality attributes, such as energy consumption
or expected productivity gains as shown in Fig. 3. Each
feature can individually contribute to the overall variant’s
quality. For instance, Bluetooth40 adds 4 units to the over-
all variant’s productivity, while it consumes 3 units of en-
ergy. Battery contributes negatively, since battery produces

abstract Feature
productivity : integer
consumption : integer

abstract MobilePhone
Connectivity
xor Bluetooth

Bluetooth21 : Feature ?
[productivity = 4]
[consumption = 2]

Bluetooth40 : Feature ?
[productivity = 8]
[consumption = 3]

GSM : Feature
[productivity = 2]
[consumption = 2]

LTE : Feature ?
[productivity = 16]
[consumption = 25]

WiFi : Feature ?
[productivity = 20]
[consumption = 10]

USB : Feature ?
[productivity = 25]
[consumption = −10]

xor Battery
LiBattery1150 : Feature ?

[consumption = −75]
LiBattery1400 : Feature ?

[consumption = −90]
total productivity = sum Feature.productivity
total consumption = sum Feature.consumption

optimalPhone : MobilePhone
[Wifi && no LTE]

<< max optimalPhone.total productivity >>
<< min optimalPhone.total consumption >>

Figure 3: Quality attributes and optimization objectives.

Figure 4: ClaferMoo Visualizer

rather than consumes energy. Finally, they add variant qual-
ity attributes total_productivity and total_consumption.
While each definition uses a simple sum, more complex for-
mulas can be used to model feature interactions. Despite
knowing contributions of individual features, Carol cannot
easily predict the overal quality of the resulting variant; this
is due to complex dependencies among the features. Carol
can, however, specify feature configurations and see the re-
sulting variant quality values.

Multi-Objective Optimization. Carol is interested in
optimal variants where the productivity is maximized while
the energy consumption is minimized. ClaferMOO [7] can
be used to solve this optimization problem: it computes a
set of Pareto-optimal (i.e., non-dominated) variants given
the above optimization criteria. Carol first prepares a par-
tial configuration optimalPhone, which includes the feature
WiFi and excludes LTE and specifies the two optimization
goals (Fig. 3). Next she runs ClaferMOO, which computes
all optimal completions of the partial configuration. The set
of optimal variants can potentially be significantly smaller
than the set of all variants. Carol can inspect the optimal
variants with the customer, but choosing the most suitable
ones requires a global view into the Pareto front.

Trade-off and feature impact analysis. Satisfying
customer’s requirements requires balancing the desired fea-

ture set and the acceptable levels of quality. Since the opti-
mal variants are non-dominated, gains in one quality usually
require sacrifices in other quality. In order to better help the
customer, Carol wants to understand the effects of features
on variant quality. For instance, Bluetooth40, compared to
Bluetooth21, gives two times more productivity while con-
suming one unit of energy, and this trade-off is hard to see.
Carol can use ClaferMoo Visualizer [8] [11] to visualize and
explore the Pareto front (Fig. 4). Finally, Carol and her
customer choose the best available variant.

3. CONCLUSION
We presented how Clafer Tools support a number of product-

line engineering tasks. Clafer is an expressive modeling lan-
guage that supports a rich set of concepts in a unified way,
which eases model evolution. ClaferWiki is a web-based, col-
laborative IDE for literate modeling using Clafer. Clafer is
supported by reasoners, which help with model verification,
validation, and configuration (ClaferIG), and optimization
(ClaferMOO). Finally, ClaferMOO Visualizer can be used
to visualize and explore the Pareto front allowing product
engineers to discover most suitable variants given customer’s
requirements.

Future Work. We are currently working on a web-based
Clafer Configurator to support manual configuration and
staged configuration, which can be used together with opti-
mization and the visualizer to seamlessly support ”deriving
valid variants (1) and (2)” (see Sect. 2.2). We are also plan-
ning experimental evaluation of the tools with professional
product-line stakeholders.

Acknowledgments. We thank Andrzej W ↪asowski and
Derek Rayside for their feedback. We thank Chris Walker
for implementing Clafer Wiki and Neil Vincent Redman for
implementing many extensions to the ClaferMooVisualizer.

4. REFERENCES
[1] Alloy. http://alloy.mit.edu.

[2] Choco. http://www.emn.fr/z-info/choco-solver.

[3] Clafer Compiler. https://github.com/gsdlab/clafer.

[4] Clafer Homepage. http://clafer.org.

[5] Clafer Wiki. https://github.com/gsdlab/claferWiki.

[6] ClaferIG. https://github.com/gsdlab/claferIG.

[7] ClaferMOO. https://github.com/gsdlab/claferMoo.

[8] ClaferMoo Visualizer.
https://github.com/gsdlab/claferMooVisualizer.

[9] Common Variability Language revised submission,
2012. http://www.omgwiki.org/variability/doku.php#
cvl revised submission.

[10] K. B ↪ak, K. Czarnecki, and A. W ↪asowski. Feature and
meta-models in clafer: Mixed, specialized and coupled.
In International Conference on Software Language
Engineering, pages 291–301, 2010.

[11] A. Murashkin, M. Antkiewicz, D. Rayside, and
K. Czarnecki. Visualization and exploration of optimal
variants in product line engineering. Submitted to
SPLC’13.

[12] R. Olaechea, S. Stewart, K. Czarnecki, and
D. Rayside. Modeling and multi-objective
optimization of quality attributes in variability-rich
software. In NFPinDSML, 2012.

5. APPENDIX: DEMO SCRIPT
In the demonstration we will follow the story (see Sect. 2)

presented in this paper and show all tools using a larger ver-
sion of the presented example. We will show actual working
tools, not just slides. In particular, we will do the following:

1. Briefly show the website http://clafer.org, which is an
entry point into Clafer and contains pointers to all re-
lated materials. Point to tool distribution and down-
load and installation instructions.

2. Introduce the context: ACME company, moving to
product lines from clone & own.

3. Introduce the three personas: product-line owner and
engineer, and product engineer.

4. Open the ClaferWiki (example screenshot of a wiki
page shown on the right) and create two pages describ-
ing AndroidPhone1 and 2. Explain how the wiki uses
the compiler, literate modeling, conflict resolution sup-
port, etc.

5. Derive the feature model from the two configurations,
illustrate constraints and quotation mechanism.

6. Create partial configurations and use ClaferIG to check
whether the configurations are correct wrt. the feature
model. Introduce a conflict on purpose to illustrate
conflict resolution.

7. Create two specializations, LowEndPhones and High-
EndPhones.

8. Simulate collaboration on the model using wiki, show
version control and conflict resolution (time permit-
ting).

9. Create variant configurations, show constraint propa-
gation and configuration completion using ClaferIG or
ClaferConfigurator.

10. Show partial configurations and staged configuration.

11. Add quality to the model and run multi-objective opti-
mization by hand (execute ClaferMOO). Briefly inspect
the results to show how hard it is to work with Pareto
front data.

12. Finally, open ClaferMOO Visualizer (see Fig. 5 be-
low) and show analysis using Bubble Front Graph view
(clustering, distribution), and filtering by feature, by
target quality range using Feature and Quality Matrix,
tradeoff analysis using Variant Comparer view.

13. Conclude the demonstration.

14. Q & A.

Figure 5: ClaferMoo Visualizer—Large View

