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Abstract. The traditional notion of instantiation in Object-Oriented
Modeling (OOM) requires objects to be complete, i.e., be fully certain
about their existence and attributes. This paper explores the notion of
partial instantiation of class diagrams, which allows the modeler to omit
some details of objects depending on modeler’s intention. Partial instan-
tiation allows modelers to express optional existence of some objects and
slots (links) as well as uncertainty of values in some slots. We show that
partial instantiation is useful and natural in domain modeling and re-
quirements engineering. It is equally useful in architecture modeling with
uncertainty (for design exploration) and with variability (for modeling
software product lines).
Partial object diagrams can be (partially) completed by resolving (some
of) optional objects and replacing (some of) unknown values with ac-
tual ones. Under the Closed World Assumption (CWA), completion re-
duces uncertainty of already existing objects, or deletes them if their
existence is optional. Under the Open World Assumption (OWA), com-
pletion may additionally introduce new elements, perhaps uncertain. The
paper presents a simple theory of partial instantiation and completion
under the CWA. It shows that partial object diagrams can be modeled by
subclassing and multiplicity constraints. As a result, class diagrams can
implement partial instances with the well-known notions of subtyping
and inheritance.

1 Introduction

Instances play a major role in modeling. They represent real-world objects
for which models provide abstractions. In Object-Oriented Modeling (OOM), an
instance of a class diagram is an object diagram, i.e., a collection of objects and
links instantiating, respectively, classes and associations. For a link l : o → v, we
will also say that object o owns slot l that holds value v.

Traditionally, objects are complete. Their types are known, and all slots have
well-defined values. Such a notion of an instance, however, is restrictive when
modeling involves uncertainty, variability, or simply underspecification. This is
because classic (we will also say complete) instantiation requires that all slots
are assigned values simultaneously. We discuss the notion of a partial instance
that enriches the traditional instantiation. It allows object diagrams to have
partiality, by which we assume that (a) existence of some objects and slots can



be optional, and (b) there are slots with unknown values. By resolving optionality
and replacing unknown values with actual ones, a partial object diagram becomes
complete. There are many different completions of the same partial instance,
and so the latter implicitly represents a set of instances. In this sense, a partial
instance works like a class; in the paper we will make this observation precise.

Partial instances represent partial knowledge. They leave out knowledge that
is unavailable at a given time, either due to uncertainty, variability, or under-
specification. In uncertainty, the modeler captures several options but is unsure
which one is the correct one (which one is correct is the missing knowledge). In
variability, the modeler captures several options, each of which are correct and
should be supported (the missing knowledge is the set of choices for a particu-
lar application). In underspecification, the modeler leaves out information that
is irrelevant with respect to the modelers viewpoint. Thus, they differ in the
intention. Partial instances, under various names, occur in:
– Models with uncertainty. Uncertainty captures possible choices that the mod-

eler is unsure about (“don’t know” semantics). An example would be a mobile
device with hands-free input; this could be head gestures or voice input; the
designer is uncertain about the choice, but the final solution will pick on
them. Partial instances of meta-models can represent uncertainty in mod-
els. They can treat uncertainty in requirements [4, 10] and in architectural
models [11].

– Models with variability. Several choices are possible, each for a different
product configuration (e.g., for a different customer). Partial instances of
meta-models represent variability in models [6]. They are used to represent
requirements models for product lines (including the product line scope),
product line architectures [3], and product line tests. The variabilities in
tests can be configured when the application is configured.

– Models with underspecification. Modelers focus on certain system aspects and
can leave other aspects, which are outside their scope, underspecified (“don’t
care” semantics). Partial instances allow us to express partial specification
of test cases as in Test-Driven Development (TDD) [13, 17].

– Variability models (e.g., feature models [14]). Instances of variability mod-
els represent system configurations; their partial instances represent partial
configurations and support staged configuration [5, 3]. Variability models are
related to models with variability, but they do not consider further instantia-
tions of the configurations (linguistically), because they are not meta-models.

– Data with uncertainty. Partial instances of data schemas represent uncer-
tainty in application data. They are useful in databases [12], exchanging
web data [2], and model finding [21].

The above applications of partial instances are difficult (if at all possible)
to manage with complete instances. Partial instances allow one to delay design
decisions and to construct instances incrementally. The missing parts of partial
instances can be completed either by the modeler, or automatically by tools.

Despite the important applications, the traditional notion of instantiation
in OOM offers limited support for partial instances. For example, UML object
diagrams cannot express optionality of objects. One can use, however, UML
class diagrams “as is” to encode partial instances. Our contribution makes this
encoding precise and general. We show that partial object diagrams can be



encoded by subclassing and strengthening multiplicity constraints. One of the
implications is that OOM languages with no direct support for partial
instances can support them via class-based modeling.

The paper is organized as follows. Section 2 demonstrates the usefulness of
partial instances in requirements elicitation. It introduces completion under the
Closed World Assumption (CWA) and Open World Assumption (OWA). Sec-
tion 3 shows the intuition behind encoding partial object diagrams as class dia-
grams. Section 4 presents a simple theory of partial instantiation and completion
under the CWA. Section 5 discusses related work and Section 6 concludes.

2 Requirements Elicitation with Partial Instances: An
Example

Example-Driven Modeling (EDM) [4] systematically uses examples for eliciting,
modeling, verifying, and validating complex business knowledge. During require-
ments elicitation a Subject Matter Expert (SME) transfers their knowledge to a
Business Analyst (BA) who then explicates it as documents, models, and code.
This section motivates the necessity of partial instances for eliciting and validat-
ing requirements, and in OOM in general. First, we consider partial instances
under the CWA, where completion of partial instances means reduction of uncer-
tainty, variability, or underspecification. Later, we discuss partial instances under
the OWA, in which new objects and slots (perhaps, optional) can be added.

2.1 Completion under the Closed World Assumption

Alice is an SME and her organization needs a system for booking meeting rooms.
She hires Charlie, a BA, to build such a system. Charlie’s task is to implement
room booking functionality. He is concerned with the timing aspect of scheduling
meetings. Requirements elicitation is a complex task and, in practice, can only
be done iteratively. The first session between Alice and Charlie goes as follows:

alice: We need to keep track of bookings to ensure that rooms and people
are not double-booked. Recently, for example, Sue, the head of research,
had scheduled two meetings at the same day at 10am.

charlie: How did that happen?
alice: First, she organized a meeting at 10am. The other meeting was orga-

nized by Sam also at 10am. Sue somehow understood that Sam wanted
to attend her meeting and confirmed her attendance of Sam’s meeting.
It wasn’t the first time that miscommunication happened.

charlie: I see. So how does Sue deal with conflicting meetings?
alice: In several ways. First, she may cancel one of the meetings. Alter-

natively, she confirms only one of the meetings while keeping the other
one unconfirmed. She can also confirm the two meetings but they cannot
overlap. Sometimes she combines the two meetings into one if the top-
ics are similar. Each employee should have a daily agenda of meetings.
Based on that they should be able to confirm or decline each meeting.



Fig. 1: Several cases of completion of partial object diagrams. Changes between
object diagrams are highlighted in yellow.

charlie: That’s quite complex. I think I understand...
[Charlie writes down the possible ways of scheduling meetings (Fig. 1).]

Figure 1 Conflict models the situation where Sue has two meetings scheduled
at 10am. The object diagram shows her agenda with the meetings m1 and m2.
It conforms to the class diagram in Fig. 1 CD, where time of the meeting is
mandatory. The object diagram violates an important constraint that one person
cannot have several meetings scheduled at the same time. To manage conflict
resolution, Charlie creates a template for inserting information about the two
meetings, in fact, a partial instance POD as shown in Fig. 1. The dashed arrow
part indicates this activity. The initial partial instance must be as uncertain
as possible. However, Sue cannot manage time of Sam’s meeting, hence, this
attribute cannot be uncertain. By completing the partial instance incrementally,
Charlie can arrive at a non-conflicting schedule. The partial instance conforms
to the class diagram in Fig. 1 CD.

The partial instance POD has two types of partiality. First, the time of
meeting m1 is unknown (has value _). As an organizer, Sue may pick the time
later. The meaning of _ is that the concrete value exists but is unknown and it
may be specified by a more complete instance. The second type of partiality is
that the two meetings and corresponding slots are optional (labeled with ?). For
example, it is unknown whether Sue confirms or declines the meeting m1 and/or
m2. The meaning of ? is that an element may or may not exist.

Figure 1 depicts several cases of POD completion. The arrows c1 . . . c6 in
Fig. 1 illustrate possible ways of scheduling meetings by Sue. They are partial or



full completions of Fig. 1 POD. All these completions conform to the class dia-
gram CD. Under the CWA, a partial instance is a (partial) completion of another
partial instance if it removes some unknown value _ (by specifying the actual
value) or label ? (by instantiating or deleting an element). A more complete
instance can only reduce uncertainty, variability, or underspecification.

Completion c1. Sue cancels the meeting m2. Elements labeled with ? (m2

and its slot) have no instances in the more complete diagram. Additionally, she
confirms the meeting m1, but may decide later when to schedule it. The object
m1 and its slot are no longer labeled with ?. The slot time has still unknown value,
as Sue cannot pick the time unless she talks to her colleagues. The completion c4
shows that Sue may decide to schedule the meeting at 11am. The more complete
diagram replaces the unknown value _ with the actual value. The meeting is a
fully complete instance without uncertainty, and is encoded as an object diagram.

Completion c2. Sue confirms the meeting m1 and schedules it at 11am. In
the partial object diagram, the label ? is removed from m1 and its slot. The value
of time is specified as 11. Sue keeps the meeting m2 unconfirmed (still labeled
as ?). The diagram can be further completed in two ways. First, Sue can cancel
the meeting m2 as in the completion c5. Alternatively, as in the completion c6,
she can confirm the meeting m2; its time does not overlap with m1. There may
be several completion chains (e.g., c1.c4 and c2.c5 ) leading to the same result.

Completion c3. Sue decides to merge her meeting with Sam’s one because
the topics are similar. Formally, two objects are combined into one named m12

(we will also say that objects are glued together).

2.2 Completion under the Open World Assumption

Charlie works with his partner, Bob, to build the room booking system. The
two BAs are interested in different aspects of the system. Charlie’s task is to
take care of scheduling; Bob needs to keep track of the available equipment. The
session between Alice and Bob goes as follows:

alice: Each meeting is organized by a chair who is responsible for book-
ing the room. Chair also notifies other participants about the meeting.
Rooms have different equipment, and obviously, different numbers.

bob: Let’s understand a concrete meeting. Could you please give me an
example of room booking? What equipment is used?

alice: Sure. For example, Sue organizes meetings for her research group.
They use an electronic whiteboard, as it simplifies sharing notes online.
[Bob writes down the example (see Fig. 2 Bob I).]

bob: Perfect. Do all rooms have an electronic whiteboard?
alice: No. All rooms have a traditional whiteboard, but only some rooms

offer the electronic one.
[Bob completes the example (see Fig. 2 Bob II).]

In the next session Alice talks to Charlie again:

alice: As you may know, each meeting is organized by a chair.
bob: Right, such as Sue. Alice, how often are the meetings scheduled? Can

you give me a concrete example?



Fig. 2: Abstraction and partial completion of examples. Changes between object
diagrams are highlighted in yellow. Note that Bob II refines the type of room r.

alice: For example, Sue organizes weekly meetings at 10am. They discuss
progress done on research projects.
[Charlie writes down the example (see Fig. 2 Charlie).]

After the two sessions Bob and Charlie meet to consolidate their knowledge
of different aspects of the system. Their goal is to come up with a consistent
picture. Bob learned about rooms and equipment, whereas Charlie learned that
meetings may repeat. Figure 2 shows the elicited examples and that the process
of adding details can be modeled as instance completion.

Bob’s first example (Fig. 2 Bob I) specifies that there is a meeting SM or-
ganized by Sue and that the meeting requires an Electronic whiteboard. He also
specifies that the meeting takes place in some room r, but he does not know the
room number num. After clarifying some details, Bob learned that only certain
rooms provide the electronic equipment that Sue needs. He completes the previ-
ous example by refining the type of r to an assumed subtype ERoom (Fig. 2 Bob
II). Charlie’s example (Fig. 2 Charlie) shows that he learned that Sue schedules
meetings at 10am and they repeat weekly.

Based on the partial examples Bob and Charlie create an example that
merges their knowledge (Fig. 2 POD II). The partial object diagram is a combi-
nation of Charlie’s example and Bob’s refined example. Fortunately, there are no
conflicts in the merged example. There is, however, still one unknown: the room
number num where Sue meets her group. The two BAs propose a class diagram
(Fig. 2 CD) that provides an abstraction for meetings. Abstractions generalize
information to improve understanding of a set of examples. The BAs were able
to construct the class diagram only after consolidating their partial knowledge.



Bob and Charlie decide to meet Alice again to validate the merged example
and the proposed class diagram. Alice confirms that the example is valid. She
also says that Sue uses room 200. Figure 2 OD shows a complete object diagram.

The completion in Fig. 2 works under the OWA. OWA allows completions to
add new elements. For example, the completion POD II adds new elements to
Bob’s and Charlie’s examples. Some slots do no exist in the example of Bob (e.g.,
rep) or Charlie (e.g., wb). Also, Charlie’s initial example had no uncertainty, but
the partial instance POD II has uncertainty: the room number num is unknown.
Clearly, completion based on OWA is more general than the one based on CWA.

Partial instances naturally express stakeholder’s partial view of the world.
When BAs focus on different aspects of the system, they construct partial exam-
ples. Modeling with partial instances has an important advantage over modeling
with always complete instances. It explicates what is known and unknown given
current knowledge. Our example showed that completion of partial examples
may work under the CWA or the OWA. The former is useful for conflict resolu-
tion and exploring a set of configurations. The latter is adequate for requirements
elicitation by various parties. OWA-completions subsume CWA-ones.

3 Modeling Partial Examples with Subclassing

This section shows that instantiation (partial and complete) of a class diagram
can be encoded as extending the latter via subclassing. The main idea is that
objects of class C are encoded as singleton subtypes of C; then links instantiating
C’s associations are naturally encoded as associations either inherited from C to
the subclasses, or redefined in the subclasses.

3.1 Extension under the CWA

Figure 1 showed possible ways of resolving a conflict between two overlapping
meetings. Let us now model all the solutions with subclassing as shown in Fig. 3.
It parallels the structure of the previous figure. Instead of typing and comple-
tion, the diagrams are related by subclassing (arrows with hollow heads placed
between class name and its superclass) and extension (hollow arrows between
diagrams). Extension is a relation expressing that a more complete diagram
includes the less complete one.

Figure 3 CD+ encodes Fig. 1 POD as a class diagram. The class diagram
CD+ includes classes from Fig. 3 CD (the same as in Fig. 1 CD), but makes
them abstract, and introduces subclasses. The class A is a singleton subclass of
Agenda. Its class multiplicity is 1 (following class name and superclass), meaning
that there is exactly one instance of this class. The two optional meetings are
modeled by subclasses M1 and M2 with multiplicities 0..1. The two references
from A to the meetings are also optional. As A is a subclass of Agenda, the two
references redefine mt, i.e., they restrict the targets of mt to the two subclasses
of Meeting. Both subclasses inherit the attribute time from Meeting. The class M1

says nothing about time and keeps its value unknown. The class M2 redefines the
attribute time by specifying its value to be 10.

The extensions e1 . . . e6 parallel the completions c1 . . . c6 from Fig. 1. Infor-
mally, extension means that each element of the less complete diagram can be



Fig. 3: Several cases of extension of class diagrams (compare with Fig. 1)

mapped to an element of the more complete one. Under the CWA the extensions
reduce uncertainty. Class diagrams can do that by: introducing singleton sub-
classes, restricting multiplicities of classes/references/attributes, and redefining
targets of references and values of attributes. All the extensions should include
the class diagram from Fig. 3 CD, but with classes made abstract (similarly to
CD+). We omit these classes to ease reading.

The extension e1 models a situation when Sue confirms one of the meetings
and cancels the other one. The multiplicity of M1 (and its slot) is redefined as 1.
The multiplicity of M2 (and its slot) is redefined a 0. The diagram shows M2 to
make it explicit that its multiplicity is 0. Removal of M2 from the diagram would
have the same meaning. Furthermore, the value of time in M1 is kept unknown.
The extension e2 can be understood analogically. The extension e3 describes
a situation where Sue combines two meetings. It introduces a class M12 that
merges information from classes M1 and M2 by subclassing them. Additionally,
it refines class and slots multiplicities to be 1. In the case of diamond inheritance,
the properties from the common base are not duplicated. Thus M12 redefines the
merge of the redefinitions of mt from M1 and M2.

3.2 Extension under the OWA

Bob & Charlie elicited examples of booking a meeting in Fig. 2. Figure 4 encodes
the diagram with subclassing and extension. The class model in Fig. 4 CD is
exactly the same as in Fig. 2. Other models are created as previously: objects are
encoded as singletons, slots are encoded as redefined references/attributes, and



Fig. 4: Partial examples as subclassing (compare with Fig. 2)

each model includes classes from Fig. 4 CD but makes them abstract (omitted
to avoid repetition). The mapping completion is replaced by extension.

Working under the OWA is natural when using subclassing and extension.
For example, regardless of the definition of class Meeting, Charlie’s class SM can
easily add new attributes. They may have defined or undefined values. All the
arrows e1 . . . e6 could, in principle, be replaced by subclassing. The subclasses
would need to be renamed to avoid name clashes.

3.3 Encoding Partial Instances as Class Diagrams

We denote the encoding of partial object diagrams as class diagrams by a func-
tion cdenc. It takes a partial instance and encodes it as a class diagram that
extends the class diagram that the partial instance conforms to. Figure 5 shows
the previously defined class diagram from Fig. 1 CD and the partial instance
from Fig. 1 POD that conforms to it. It also shows the completion c6 of POD.
All derived elements are shown as dashed and blue. The result of function cdenc
is shown in the upper right corner of Fig. 5. The function cdenc takes POD,
and extends CD with singleton classes (that encode objects) and references/at-
tributes (that encode slots). It respects the labels ? by placing multiplicities in
the class diagram. If an attribute has undefined value, then it is skipped in the
resulting class diagram, because it is inherited from one of the superclasses.

The derived class diagram (cdenc(CD, POD) in Fig. 5) has two important
properties. First, it is an extension of CD that POD partially instantiates. Hence,
the partial instance POD can be typed over the derived class diagram by type+.
Second, all the completions of POD that are instances of CD must be isomorphic
with instances of the derived class diagram. In the example, the completion



Fig. 5: Example of partial instantiation via subclassing

Fig. 6: Meta-model of formal class diagrams

Fig. 7: Sample instance:
class diagram Sample CD
and Sample CD+

c6 (POD) is isomorphic with POD’, i.e., an instance of cdenc(CD, POD). The
partial object diagrams are not exactly the same due to different typing. The
partial object diagram c6 (POD) is typed over CD, whereas POD’ is typed over
cdenc(CD, POD). We formally show that the typing of c6 (POD) over cdenc(CD,
POD) and the typing of POD’ over CD can be derived under the CWA.

4 Partial Instantiation as Subclassing

This section formalizes class diagrams (CDs) and partial object diagrams (PODs)
used in Sections 2 and 3 by building their meta-models. Meta-models are them-
selves formal class diagrams, i.e., graphs (collections of nodes and arrows) en-
dowed with constraints (predicate declarations). Such diagrams are a simplified
version of UML class diagrams, and use the machinery of diagram predicate logic
[9, 8, 20]. We often skip the adjective ‘formal’ and call them just class diagrams.

We also formalize the extension relations between CDs, and the completion
relation between PODs, and prove a theorem stating that the latter can be
encoded by the former (under the CWA for extension and completion).

4.1 Formal Class Diagrams and Their Extensions



The Meta-model: Classifiers. Figure 6 specifies a meta-model of class di-
agrams. It is a graph whose nodes are meta-classes to be interpreted by sets;
elements of those sets instantiate meta-classes. Node Class is instantiated by
classes, for example, by Agenda, Meeting, int, string in Sample CD in Fig. 7; then
we write JClassK = {Agenda, Meeting, int, string}. Node Ref is instantiated by
references, for example, Sample CD instantiates Ref by set {person, mt, time}.

Arrows in the meta-model are unidirectional meta-associations; their target
multiplicities are exactly 1 by default and thus omitted; other multiplicities are
explicitly specified. Meta-associations are instantiated by sets of pairs of elements
instantiating nodes; for example, for Sample CD, set JownerK consists of pairs
(person, Agenda), (mt, Agenda), (time, Meeting). The default multiplicity 1 makes
such sets of pairs single-valued totally-defined mappings (or functions). Thus, for
Sample CD, sets JownerK and JtypeK are functions from set JRefK to set JClassK.

Subclassing relation between classes is modeled by the meta-association isA.
If this meta-association is instantiated — e.g., in the Sample CD+ , set JisAK has
two elements (pairs of classes): (mngrAgenda, Agenda) and (mngrMeeting, Meet-

ing) — it means that mngrAgenda is a subclass of Agenda, and mngrMeeting is a
subclass of Meeting. Following UML, we denote subclassing by arrows with tri-
angle arrow head. Semantics of isA is subsetting: JmngrAgendaK ⊂ JAgendaK, and
JmngrMeetingK ⊂ JMeetingK. We will also often interpret subsetting by inclusion
mappings and write, e.g., JisAK: JMngrAgendaK →֒ JAgendaK.

The keyword redefines means inclusion Jmt*K ⊂ JmtK of the corresponding
set of pairs. In such a case, UML says mt* subsets mt, and thus defines a meta-
association loop isA for references too.

The isA (subsetting) mechanism is used in the meta-model itself (Fig. 6),
where triangle-head arrows are used for declaring meta-isA for meta-classes.
The upper such arrow says that Class and Ref are classifiers, and another
such arrow from Dom to Class says that some of meta-classes are domains. For
example, in Sample CD, JDomK={string, int} ⊂ JClassK is the set of primitive
domains used in the class diagram. Node Attr denotes the result of the query
“Select all references whose type is a domain”; for Sample CD, JAttrK={person,
time}. We will say that it is a derived node (its frame is dashed and blue). The
query also produces derived arrow type* , which subsets (redefines) type.

As an attribute can be initialized with a concrete value (to be final in our
context), the meta-model has a partially-defined meta-association val. Its target
Val is instantiated by values of the primitive domains and by singleton classes
that represent these values, JValK = JintK ∪ JstringK ∪ {{i} : i ∈JintK} ∪ {{s} :
s ∈JstringK}, and function JTypeK provides their type: if x ∈JValK is in JintK,
then JTypeK(x)=int. We require that for any object diagram instantiating the
meta-model, and for any its attribute a ∈JAttrK, if a is initialized with a value,
then the value has to be of the same type as the attribute, i.e., a.JvalK.JTypeK =
a.Jtype*K. We encode this constraint by labeling the three arrows with commu-
tativity predicate [=].

Metamodel II: Constraints. Constraints are an important part of formal
class diagrams. Specification of constraints begins with a signature Sign of pred-
icate symbols (or labels), each one is supplied with its arity, i.e., a configuration



(graph) of nodes and arrows for which the predicate can be declared. In our
examples, the signature is Sign = mult-node⊔mult-arr⊔{abstract, disj, =}. Set mult-

node=int×int∗ consists of pairs of integers (including * for int∗), which can be
declared for classes, i.e., the arity of each predicate in mult-node is some fixed
single-node graph. Set mult-arr=int×int∗ consists of pairs of integers (including
*), which can be declared for associations, i.e., the arity of each predicate in
mult-arr is some fixed single-arrow graph. The arity of predicate abstract is also
a singleton node graph. If a class is abstract, it can only be instantiated via its
subclasses. In other words, there are no elements whose typing mapping points
to the abstract class, but must point to one of the subclasses. UML’s notation
for declaring a class abstract is to display its name in italic.

The arity of predicate disj is the family of all graphs consisting of a finite set
of arrows with a common target. For example, we may declare disj for two arrows
MngrAgenda → Agenda and SecretaryAgenda → Agenda. In any legal instance of
this class diagram, sets JMngrAgdendaK and JSecretaryAgendaK are disjoint. To
ease notation, we assume that any set of subclasses that do not have a common
subclass is declared disjoint by default.

Predicate = (commutativity) can be declared for any arrow diagram, in which
there are two paths between the same source and target, like in the lower part
of Fig. 6. The declaration ensures that for any element instantiating the source
class, the two instantiated paths lead to the same element instantiating the tar-
get class. Note that having commutativity actually allows us to define subsetting
(redefinition) of associations. For example, in Fig. 7 Sample CD+, declaring mt*
redefines mt means commutativity: for any object diagram instantiating the di-
agram, and any object a ∈ JMngrAgendaK, we have a.Jmt*K.JisAK = a.JisAK.JmtK.

A constraint declaration or just a constraint is an expression P (e1, ..., en)
with P a predicate symbol (label) from the signature Sign, and e1...en a list of
its arguments conforming to P ’s arity graph. For example, for commutativity
label, the argument list consists of two sublists giving two paths. In diagrams,
expression P (e1, ..., en) is declared by placing label P close to the members of the
argument list so that it should be clear what the elements ei are. Such placing
can be easily done for node and arrow multiplicities. By default, all classes have
multiplicity 0..*, and different default policies can be set for arrow multiplicities.

Extension Relation. We first give a formal definition and then explain its
meaning with special cases. Let CD be a consistent class diagram, i.e., Inst(CD) 6=
∅. (Note that an empty instance is legal if allowed by the constraints.) We say
that a class diagram CD′ extends CD (write CD ≤ CD′), if

1. CD graph is a subgraph of CD′ graph, particularly, they may coincide.
2. if a class A’ belongs to CD′ − CD, then

(a) there exists a family of CD classes sup(A′) = (A0,A1, ...,An) with A0

being the parent of A1..An, which are all (i = 0..n) declared abstract in
CD′ and such that A′ is a child of all A1..An (and hence of A0 too). The
case n=0, hence, sup(A′) = (A0), is not excluded.

(b) if B’ is another class (not equal to A’) in CD′ − CD with sup(B’) =
(B0,B1, . . . ,Bm) and B0 = A0, then A’ and B’ are declared disjoint.



(c) if a reference r′ is owned by class A′ in CD′−CD, then there is some Ai

in the family sup(A′) such that r′ is either inherited from Ai or redefines
some of its references r. In the latter case, if type(r) = B and type(r′) =
B′, then B occurs into sup(B′).

3. all constraints in CD go into CD′. New constraints introduced in CD′ are
consistent with constraints in CD so that CD′ is also consistent.

Thus, CD ≤ CD′ means that there is an embedding mapping e : CD → CD′

satisfying the conditions above. There are several special cases of extension.

1. Strengthening constraints. CD is one class A with multiplicity 0..n and some
attributes. CD′ is composed of classes A and A’, such that A is abstract and
A’ is a subclass of A, and the multiplicity of A’ is 0 ≤ m′ . . . n′ ≤ n with
attributes inherited and/or redefined. Then because A is abstract in CD′,
CD′ actually amounts to class A’ with all its attributes inherited/redefined
from A, that is, A’ is A but with stronger multiplicity. For example, Fig. 3
shows that extension e1 makes M1 a singleton.

2. Deletion. If in the first case the multiplicity is strengthened to be 0..0 for A’,
then the class A in CD will be effectively deleted. For example, Fig. 3 shows
that extension e1 deletes M2.

3. Gluing. CD consists of class A with two subclasses, A1 and A2, with multiplic-
ities m1..n1 and m2..n2 respectively. CD′ has in addition class A′

12 subclassing
both A1 and A2, which are declared abstract in CD′, and its multiplicity is
m’..n’. Because all (grand) parents of A′

12 are abstract in CD′, the latter, in
fact, amounts to class A’12 with attributes inherited from A1 and A2. Thus,
A1 and A2 have glued in CD′ into A’12. For example, Fig. 3 shows that exten-
sion e3 introduces M12 that subclasses M1 and M2. To prohibit extensions
with gluing, it is enough to specialize the general definition by setting n = 0,
i.e., sup(A′) = (A0): a class in the extension has exactly one superclass.

For a class diagram CD, we write Ext(CD) for the set of all its extensions.

4.2 Partial Instances and Their Completion

Instantiation of Class Diagrams by Object Diagrams. A class diagram
is a pair CD = (GCD, CCD) with GCD a graph with some additional structure
specified in the previous section, and CCD a set of constraints declared over the
graph. An object diagram OD over CD is a graph GOD equipped with a typing
mapping typeOD : GOD → GCD. Nodes in graph GOD represent objects and
values; arrows are links between them. As in UML, we also call links slots: for a
link time : M1 → 10, we say that object M1 owns slot time that holds value 10,
and for a link room : M1 → R, we say that slot room holds a reference to object
R. The typing mapping is a correct graph morphism compatible with partition
into classes and domains. For example, if a node in GOD is typed by int, then it
must be an integer value.

We call an OD correctly typed over a CD’s preinstance, and write PInst(CD)
for the set of CD’s preinstances.

Inverting the typing mapping maps nodes of graph GCD into sets, and arrows
into mappings. For example, if C is a class in GCD, then type−1

OD
(C) is the set



Fig. 8: Meta-model of partial object
diagrams

Fig. 9: Rules of instance completion

of objects typed by C. In Sect. 4.1 we denoted such sets by JCK. Similarly, if
r : C → C’ is a reference arrow in GOD, then type−1

OD
(r) is the set of links (i.e.,

pairs of objects) typed by r. In Sect. 4.1, we denoted such sets by JrK, and noted
that such a set defines a mapping JrK : JCK → JC’K. Hence, we can check whether
multiplicities and other constraints declared in CD are satisfied.

We say that an OD over CD is its correct (or legal) instance if all constraints
are satisfied. Let Inst(CD) denote the set of all legal CD’s instances. Clearly,
Inst(CD) ⊂ PInst(CD).

Instantiation of Class Diagrams by Partial Object Diagrams. A partial
object diagram is an object diagram, where some values in slots may be unknown,
and some objects and slots may not exist (our examples marked such by label
?). To deal with unknown values, we add to every primitive domain a countable
set of null values {_1, _2, . . .} called indexed nulls. (In the database literature,
they are called labeled nulls.) For a given domain, say, int, we need many nulls
(not just one), because different attributes of type integer may have (potentially
different) unknown values. Making attributes certain means replacing nulls by
actual (non-null) integer values, but having only one null value would force
us to make all values equal. In our examples, we placed symbol _ into a slot
with unknown value, but we assume that different slots (of the same type) hold
different indexed nulls.

If existence of an object or slot is declared uncertain, we label it by ? and
say it is optional. Otherwise, an object or slot is considered certain and manda-
tory. If in concrete syntax slots belong to an optional object, then they are
optional themselves. A mandatory object may have optional slots, but if a slot
is mandatory (in the semantics), its owner is mandatory too (but the value may
be unknown). Moreover, to avoid dangling references, a mandatory slot holding a
reference must refer to a mandatory object. We admit optional slots with known
values (for example, optional meeting M2 with certain time in Fig. 1).

The Metamodel. Metamodel in Fig. 8 makes the discussion precise. The up-
per part (Element, Object, Slot) says that a partial object diagram is a



graph. Meta-classes Object! and Slot! represent mandatory objects and slots;
mandatory elements form a correct subgraph of the partial object diagram graph.

Metaclass Value represent values of primitive domains (e.g., integers and
strings) together with the indexed nulls. For simplicity, values are assumed to be
special objects (class Value is a subclass of Object). Class Value• represents
actual values of primitive domains (nulls excluded). Derived class ValueSlot

is for slots holding values rather than references, and ValueSlot• is subclass
of slots holding actual known values.

To be precise, instances of the meta-model in Fig. 8 are partial graphs rather
than partial object diagrams: the latter are endowed with typing mapping into
some class diagram. The meta-model states that a partial graph is a triple PG =
(G,G!, G•) with G a graph, G! its subgraph of mandatory elements, and G• a
subgraph of slots with known values.

Given a class diagram CD, a partial object diagram over it, POD, is a partial
graph PGPOD = (GPOD,G!POD,G•

POD) with a totally defined typing map-
ping (graph morphism) typePOD : GPOD → GCD, which maps proper objects
to classes and values to value domains. The pair (GPOD, typePOD) is denoted
by |POD|; it is the POD with all ?-labels removed.

Given a CD, we say that a POD is a (partial) preinstance if typePOD is
a correct graph morphism (thus, the set PInst(CD) also includes well-typed
graphs with unknown values). We call a preinstance POD an (partial) instance if
GPOD = G•

POD (i.e., all values are known) and all constraints are satisfied, i.e.,
|POD| ∈ Inst(CD). We denote the set of (partial) preinstances by pPInst(CD)
and of (partial) instances by pInst(CD).

Partial Object Diagram Completion. Let PG = (G,G!,G•) be a par-
tial graph. Its (partial) completion comprises another partial graph PG′ =
(G′,G’!,G’•) and a partially defined graph mapping c : G → G′, which is com-
patible with the extra partial graph structure. To wit: both restrictions of map-
ping c to the two subgraphs, c! : G! → G′ and c• : G• → G′, are actually in-
clusion mappings into the respective subgraphs of G′, i.e., mapping c provides
two inclusions c! : G! → G’! and c• : G• → G’• as shown in Fig. 9 (and so G!
⊂ G’! and G• ⊂ G’•). Completion of partial object diagrams, i.e., typed partial
graphs, requires, in addition, commutativity with typing mappings as shown in
the upper part of the figure.

Let us see how this definition works. Given a CD, we say that a partial ob-
ject diagram POD′ is more complete than partial object diagram POD, if some
unknown values _ in POD are replaced by actual values, and some of labels ?

are removed by either removal of labels ? from objects/slots, or removal of ob-
jects/slots labeled by ?. The former removal means that an ?-element in POD

certainly exists in POD′, the latter removal means that a ?-element certainly
does not exist in POD′. The multiplicities on the complete arrow in Fig. 9 are
important. The multiplicity 0..1 means that an element of POD may have only
one completion in POD′. The multiplicity 1..* means that a completion com-
pletes at least one element, i.e., it can reduce uncertainty by gluing elements (if
the multiplicity was 1, gluing would be prohibited). Generally, we have a par-
tially defined mapping c : POD → POD′ commuting with typing of POD and
POD′. We call this mapping complete (see Fig. 9), and write c : POD ≤ POD′.



Fig. 10: Projection of prein-
stances

Fig. 11: Instances of CD+ are instances of
CD and completions of POD

We write Compl(POD) = {|POD′| ∈ PInst(CD) : POD ≤ POD′} for the
set of all completions of POD.

4.3 Partial Object Diagrams via Class Diagrams

We first note that an extension ext : CD → CD′ of diagram CD gives rise to
a function ext∗ : PInst(CD′) → PInst(CD) that projects preinstances of CD′

to preinstances of CD (see Fig. 10). Let OD′ be a preinstance of CD′, e′ is its
element, and t′ = type′(e) is its type in CD′. If t′ = ext(t) for some type t ∈ CD,
then ext∗ copies e into OD and gives it the type t. If t′ ∈ (CD′ \CD), then e is
not copied into OD. In this way, by traversing all elements in OD′, we build a
CD’s preinstance OD and traceability mappings from OD to OD′.

Theorem. For any class diagram CD and its partial preinstance POD there
is a class diagram CD+

POD
and an extension extPOD : CD → CD+

POD
such that

the mapping
ext∗ : Inst(CD+

POD
) → Inst(CD) ∩ Compl(POD)

is a bijection. Moreover, if POD 6= POD′, then CD+

POD
6= CD+

POD′ .

Figure 11 visualizes the theorem. Any correct instance of the class diagram
CD+

POD
, projected onto preinstances of CD, is a correct instance of CD and

is a completion of POD. All completions of POD, that are correct instances of
CD, must also be correct instances of CD+

POD
. Note that there are completions

of POD that are not correct instances of CD (they may violate its constraints).
We prove the theorem for the simpler case of completion without gluing, and

correspondingly CD+

POD
without multiple inheritance.

Proof. The proof consists of two parts. In Part 1, we specify a function cdenc,
which for a given pair (CD,POD), as above, produces CD+

POD
and an extension

mapping extPOD : CD → CD+

POD
. In Part 2, we prove that ext∗ is a bijection.

Part 1. (Below we will skip the index POD near CD+ and ext)
Function cdenc encodes any partial object diagram POD as a class diagram

CD+, such that CD+ is an extension of CD (CD ≤ CD+). For a given class
diagram CD, any partial object diagram POD, such that |POD| ∈ PInst(CD),
the function cdenc(CD,POD) constructs CD+ ∈ Ext(CD) as follows.



1. Copy all elements of CD to CD+.
2. Label all classes of CD+ that belong to CD as [abstract].
3. For each o ∈ Object belonging to POD, create a singleton class c ∈ Class

belonging to CD+. The class subclasses o’s class, i.e., isA(c) = type(o). If
o ∈ Object! then the multiplicity of c is 1..1, otherwise it is 0..1.

4. For each s ∈ Slot where owner(s) = o and val(s) = v, such that v 6= _,
create a reference r ∈ Ref belonging to CD+. Let us assume that the objects
o and v are mapped to classes c and d, respectively, in CD+. The reference
r is defined so that owner(r) = c. Additionally, the reference redefines its
type from CD, i.e., isA(r) = type(s). If s ∈ ValueSlot, then type(r) =
Type(type(v)) and val(r) = d, otherwise type(r) = d. In the former case, the
type of r is one of the primitive domains. If s ∈ Slot! ∪ ValueSlot• then
the multiplicity of r is 1..1, otherwise it is 0..1.

Part 2. For the function cdenc, as defined above, the mapping ext∗ defined at
the very beginning of Sect. 4.3 is a bijection.

2.1) Given a correct instance I in Inst(CD) ∩ Compl(POD), there is I+

in Inst(CD+) such that ext∗(I+) = I.
The partial graph of POD can be typed over CD+, because of encoding by

cdenc. Each element ePOD of POD can be typed over CD+ by typePOD : GPPOD → CD+.
If I completes POD, then for each element e belonging to I, we have e =
complete(ePOD). The instance I+ can be constructed by having the same par-
tial graph as I and typing each e of I over CD+ by type+(e) = typePOD(ePOD).
The instance I+ is correct, as CD+ preserves the constraints of CD and POD.

Furthermore, ext∗(I+) = I holds. The instance ext∗(I+) is a correct instance
of CD, because extension is compatible with constraints. That is, we also have
a function ext∗ : Inst(CD+) → Inst(CD) (denoted again by ext∗). That way
each correct instance of CD+ can be projected onto a correct instance of CD.

2.2) Given a correct instance I+ ∈ Inst(CD+), the projection ext∗(I)+ is
in Inst(CD) ∩ Compl(POD).

As shown previously, any correct instance I+ of CD+ can be projected onto
a correct instance of CD, i.e., ext∗(I+) ∈ Inst(CD).

Furthermore, I+ also belongs to Compl(POD). It is because, POD can be
typed over CD+. Each element belonging to I+ has exactly one type t+ such
that exactly one element of POD is mapped to t (it is established by cdenc).
This correspondence establishes completion between elements of I+ and |POD|,
and from that follows that ext∗(I+) ∈ Compl(POD).

As it is seen from the proof, the constructions b1 and b2 are mutually inverse.
The last statement of the theorem is also evident by construction. �

We conjecture that the theorem remains true for the general case of POD
completions with gluing, but an accurate proof is our future work.

5 Related Work

Partial instances, under the name of incomplete information, is a classical topic
in databases, from a seminal (and still influential) paper [12] to lattice-theoretic
models [15] to semistructured data [2]. However, this work is based on the value-
oriented relational data model; optionality of objects and slots is not considered.



UML object diagrams [19] offer partial support for partial instances. Slots
may have unknown values, called nulls, that correspond to our _. Objects and
slots, however, cannot be labeled as optional. Our work provides syntax for
both partialities and supplies it with formal semantics. UML class diagrams, on
the other hand, can support partial instances “as is” via subclassing of classes,
attributes, and associations. Our work makes this encoding precise; it assumes,
however, that the typing mapping from object diagrams to class diagrams is
total. UML object diagrams allow partial typing for objects, i.e., objects may
have missing classifier. Partial typing is also supported by subclassing, as new
attributes and associations can be introduced in subclasses (as in Fig. 4) but the
presented theory needs to be extended to cover that case (extension for OWA).

MOF [18] is a standardized meta-modeling language. Similarly to UML ob-
ject diagrams, properties may have unknown values. They are specified as a
question mark ? (we use _ for the same purpose). MOF does not consider the
second type of partiality, i.e., optional existence of elements (that we label as ?).

Partial instances of meta-models occur in the context of uncertainty, vari-
ability, or underspecification. Partial models [10] express uncertainty about a
concrete model variant. Model templates [6] express variability and model mul-
tiple variants simultaneously. Both works use annotations (similar to our labels
?) to indicate optional elements. The annotations go beyond the semantics of as-
sumed base languages. The subclassing approach may encode labeled models at
the level of meta-models to make them compatible with the base languages [3].

Modal Object Diagrams (MODs) [16] extend UML object diagrams with pos-
itive/negative and example/invariant modalities. Our work focuses on positive
examples; the conflicting example in Sect. 2 would be a negative example in
MODs. MODs have two further extensions: partial and parametrized object dia-
grams. The former are related to our labels ? and extension relation. The latter
are related to unknown values _. We provide concrete syntax and semantics for
both. MODs were encoded in Alloy as partial instances via existentially quanti-
fied formulas, whereas we encode them generically via singletons. Existentially
quantified formulas do not reflect explicitly the structure of diagrams.

Alloy [7] is a structural modeling language based on sets and relations. Kod-
kod [21] is its relational model finder. Although Kodkod has direct support for
partial instances, Alloy does not expose it in the concrete syntax. One way of
encoding partial instances is through singletons. We make this encoding precise.
Alloy has no first-class support for redefinition of references. It can be done via
constraints. AlloyPI [17] extends Alloy with special syntax for partial instances;
i.e., types and partial instances have distinct notations. There are tradeoffs be-
tween separate notations and a unified notation for partial instances. The latter
allows keeping the language small, and there is no need to extend tools to deal
with new syntax; however, users may prefer an explicit notation for instances in
some situations; the tradeoffs should be investigated further in user studies.

Clafer [3] is a meta-modeling language with first-class support for variability
modeling. In contrast to mainstream OOM languages, Clafer allows for arbitrary
property nesting (classes/attributes/associations) in the containment hierarchy.
It encodes partial instances via singletons, as described in this paper. Similarly to
Alloy, a reasoner generates completions that, again, can be encoded as singletons.



Also, architectural languages, such as AADL [11] and AUTOSAR [1], sup-
port subclassing of classes and associations. They are used to define partial
architectures and refine subcomponents.

While several previous works listed above encode partial instances as single-
tons (natively in Clafer; singleton idiom in Alloy; in AADL and in AUTOSAR,
the components are nested and they have cardinalities—AUTOSAR calls them
prototypes), we are not aware of a formalization of this idea. The presented
theory makes the concept of partial instances via subclassing and its relation
to explicit partial instances precise, improving the understanding of both ap-
proaches to language design and their tradeoffs.

We see several advantages of this encoding: 1) any OOM language with-
out native support for partial instances can support them at the class level; 2)
the encoding can be relatively easily implemented on top of existing languages
solely by syntactical means, i.e., the semantics of underlying language is kept
unchanged; 3) encoding (partial) instances as class diagrams allows the modeler
to specify constraints in the context of each such instance – in contrast, objects
in object diagrams cannot contain constraints; and 4) a user of such a language
has fewer concepts to learn. On the other hand, we also see two main drawbacks
of this syntactical unification. A general disadvantage is that fundamental OOM
concepts (instances and types) are not directly visible in the syntax, which may
lead to confusion. Second, the class diagrams that encode partial instances are,
arguably, bulky and convoluted. In the presented encoding, we abused class mod-
eling by specifying “degenerated” class diagrams composed of singleton classes.
It is unlikely that practitioners would work directly with such diagrams. A ded-
icated UML profile could address this problem. Clafer avoids this problem by a
suitable syntax design.

6 Conclusion and Future Work

Partial instances enable modeling with uncertainty, variability, and underspecifi-
cation. We showed their use in requirements elicitation and validation. The first
example involved uncertainty; the second underspecification. We considered par-
tial instances and their completion under the CWA and the OWA. Despite many
applications, support for partial instances in OOM languages is limited.

Our work contributes to the design of modeling notations. It showed that un-
der the CWA partial instances can be encoded as class diagrams by strengthen-
ing multiplicity constraints, redefinition, and subclassing. In other words, partial
instantiation and subclassing/redefinition are formally equivalent for modeling
partialities within the presented scope. One of the implications is that any OOM
language can support partial instances as long as it offers the notion of subclass-
ing for classes and properties (associations and attributes). Our work makes this
encoding generic and precise; the presented concepts may be widely applicable.

The formal part of our work focused on completion and extension under the
CWA. It omitted the case of completion with gluing instances. The latter case
and formalization under the OWA remain future work. Another line of future
work is to formally consider instantiation and subtyping to understand if, and
to what degree, the two relationships can be unified.
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