
Example-Driven Modeling Using Clafer

Michaª Antkiewicz, Kacper B¡k, Krzysztof Czarnecki, Zinovy Diskin, Dina
Zayan1, and Andrzej W¡sowski2

1 GSD Lab, University of Waterloo, Canada
{mantkiew,kbak,kczarnec,zdiskin,dzayan}@gsd.uwaterloo.ca

2 IT University of Copenhagen, Denmark
wasowski@itu.dk

Abstract. Example-driven modeling (EDM) is an approach to system-
atically using explicit examples for eliciting, modeling, verifying, and val-
idating complex business knowledge. In EDM, examples and abstractions
are equally important parts of the model, as both are needed for e�ective
knowledge transfer (model = examples + abstractions). We show how
Clafer, a lightweight structural modeling language, can be used when ap-
plying EDM for domain analysis and requirements elicitation. We present
a sample modeling scenario and features of Clafer which support EDM.

1 Introduction

Building upon results from cognitive psychology and software engineering, we
have proposed example-driven modeling (EDM) [7], a modeling approach which
prescribes using explicit examples for eliciting, modeling, verifying & validating
domain knowledge. Despite examples being widely used in behavioral modeling,
end-user programming, grammar and schema inference and testing, software
speci�cation and testing, their use in structural modeling is much less common.

We have proposed two hypotheses related to why examples should be used
(H1 & H2) and four hypotheses related to how they should be used (H3-H6):

H1 Constructing models with the aid of explicit examples improves the quality

of models.
H2 Augmenting models with explicit examples improves model comprehension

among various stakeholders.
H3 EDM starts either with abstractions or examples. A modeler typically goes

back and forth between the two.
H4 If examples express requirements for using abstractions, then automated tools

validate models on examples to discover errors.
H5 A variety of generated examples leads to more e�ective model construction,

comprehension, and validation.
H6 Using both positive and negative examples leads to more precise models than

positive examples alone.

We invite the community to participate in the e�ort of validating these hy-
potheses as more experience and economic data as well as guidance for applying

EDM are still needed. We have performed a controlled experiment to validate
the hypothesis H2 and partially H6 [17].

In this paper, we assume that these hypotheses are true and we show how
EDM can be performed using a lightweight structural modeling language Clafer [1,
5] and a dedicated reasoner, Clafer Instance Generator (ClaferIG) [1]. We present
a domain knowledge elicitation scenario and introduce Clafer and its features
supporting EDM in Section 2. We identify rede�nition [3, 6] as a key semantic
mechanism which enables the uni�cation of examples and abstractions in Clafer's
syntax. We then discuss the relationship between Clafer and the hypotheses of
EDM in Section 3. EDM needs three key parts: methods, languages, and tools.
We provide Clafer as a language designed to support EDM and ClaferIG as a
supporting tool for example derivation. These two enable us to gather experience
and data needed to validate the hypotheses and de�ne EDM methods.

2 A Domain Knowledge Elicitation Scenario

In this section, we describe a domain knowledge elicitation scenario whereby a
business analyst (BA), Bob, elicits domain knowledge from a subject-matter ex-
pert (SME), Alice. The scenario is based on the one we previously presented [7];
however, here we elaborate on the scenario and demonstrate how it can be per-
formed using Clafer. Alice's organization needs a room booking system.

alice: Our members often book rooms for meetings. We need to manage
the available rooms and to provide room-booking functionality.

bob: Give me an example of a room booking, please.

alice: We have a mid-year review meeting in June. It is organized by Steven,
a chair, and is held in the meeting room C that provides a whiteboard
and audioconferencing equipment to include online participants.

[Bob models the example using Clafer (Fig. 1(a) explained below).]

In Clafer, the model is built from only one kind of element, called clafer, which
can play multiple roles, such as, representing a type, an attribute, a relationship,
an instance, or a combination thereof. Each clafer has a name and it can be
either top-level or nested under other clafers. Just writing a name in a new
line, such as June, declares a new clafer (a top-level one in this case). Clafer
nesting is expressed via indentation, e.g., whiteboard is nested under C. Each
clafer has a number of possible occurrences called clafer cardinality, such as, 0,
0..1 (? for short), 1, 0..∗ (∗ for short), 1..∗ (+ for short), and n..m (e.g., 2..4).
By default, the cardinality is 1. For example, June has cardinality 1 by default,
whereas Steven has cardinality 1 explicitly speci�ed. Also, both participant

and onlineParticipant have clafer cardinality 1..∗; however, for the latter the
cardinality is speci�ed using the shorthand notation +. Finally, clafers can refer
to other clafers using →. For example, the clafer room speci�es that one can
navigate from midYearReview to C via room.

June

Steven 1

midYearReview
month → June
chair → Steven
room → C
participant 1..∗

onlineParticipant +

C
whiteboard
audioConferencing

(a) Mid-year review

Joanna

ondemandMeeting
chair → Joanna
participant +
onlineParticipant 0
room → D

D
whiteboard

(b) On-demand

Al

John

aMeeting
chair → Al, John
participant 0
onlineParticipant 25
room → E

E
whiteboard

(c) Negative 1

Tom

Ed

aMeeting
participant → Tom
onlineParticipant → Ed
room → F

F
audioConferencing

(d) Negative 2

Fig. 1. Concrete Examples of Meetings

alice: Another example is an on-demand meeting organized within work
hours. Joanna, a team-leader, sometimes meets other team members in
room D. They use a whiteboard and have no online participants.
[Bob notes the example (Fig. 1(b)). The number of onlineParticipants is 0.]
[Bob observes some similarities between the two examples and creates two

examples to clarify a few details with Alice.]
bob: Are examples (c) and (d) in Fig. 1 valid?
alice: No, both examples are invalid. In example (c), there are two chairs,

but a meeting must have exactly one chair. Also, it is our policy that
rooms cannot be booked for meetings with online participants only. The
maximum number of online participants supported by our system is 20.
Finally, one cannot have a meeting with online participants without au-
dio conferencing equipment! In example (d), there's no chair, which is
required. I am also unsure if we have any rooms without a whiteboard.

bob: Thank you, that clari�es a lot of details! I think we are now ready to
create a more abstract model.
[Bob creates a few abstractions (Fig. 2(a)).]

bob: We have three main abstractions: Member, Room, and Meeting. We can
now extend the examples from Fig. 1(a)(b) by adding types. In Fig. 2(a),
we can see that Steven is a Member and that participant points to a
Member.

In Clafer, abstractions are created using a keyword abstract. An abstract clafer
is not an example � it aggregates commonalities of a set of examples. Clafers
de�ned without keyword abstract are called concrete clafers. Clafers can inherit
from at most one clafer using :, e.g., C : Room 3. Clafers can also use other clafers
to specify the type of a reference using →, e.g., participant → Member. Both

3Clafer does not unify inheritance with instantiation: : is only used for inheritance.
Clafer does not represent instances directly; instead, in the semantics of Clafer, concrete
clafers correspond to partial instances encoded as (often singleton) classes [3, 6].

abstract Member

abstract Room

abstract Meeting

June
Steven : Member
midYearReview : Meeting

month → June
chair → Steven
room → C
participant → Member +
onlineParticipant → Member 1..20

C : Room
whiteboard
audioConferencing

Joanna : Member
ondemandMeeting : Meeting

chair → Joanna
room → D
participant → Member +
onlineParticipant → Member 0

D : Room
whiteboard

(a) Adding partial types

abstract Member

abstract Room
whiteboard ?
audioConferencing ?

abstract Meeting
chair → Member
room → Room
participant → Member +
onlineParticipant → Member 0..20
[some onlineParticipant =⇒ some room.audioConferencing]

June
Steven : Member
midYearReview : Meeting

month → June
chair → Steven
room → C
onlineParticipant → Member 1..20

C : Room
whiteboard
audioConferencing

Joanna : Member
ondemandMeeting : Meeting

chair → Member = Joanna
room → D
onlineParticipant → Member 0

D : Room
whiteboard

(b) Re�ning the abstractions. Examples by rede�nition

Fig. 2. Adding abstractions

concrete and abstract clafers can be inherited from (:) and pointed to (→).
Adding types as in Fig. 2(a) is useful for classifying the examples. For example,
it was not clear what the clafer C represented; now it is clear that it is a Room.

bob: From our four examples and the discussion, we can now see that every
meeting must have exactly one chair who is a member; every meeting
is held in one room; there must be at least one or more participants;
and there may be up to 20 online participants - we can move them
into the abstraction. For now, I feel that month is something speci�c to
midYearReview, so let's leave it there.
Regarding rooms, it is clear that audioConferencing has cardinality
0..1. However, Alice was uncertain whether all rooms have a whiteboard,
so until it is veri�ed we assume cardinality 0..1 as well.
[Bob factors out the common parts into the abstractions (Fig. 2(b)). He also

added a constraint to Meeting that the room used for a given meeting must

have audioConferencing equipment if the meeting has onlineParticipants.]

The examples in Fig. 2(b) are constructed using rede�nition [3, 6] of the clafers
inherited from the abstractions, which allows them to look exactly as the origi-
nal examples from Fig. 2(a). Using rede�nition a modeler can restrict any aspect

of the inherited clafer's declaration. Here, we show two ways of restricting the
inherited references: 1) by rede�nition and restricting the type, as in chair →
Steven, whereby the type is restricted from Member to Steven, and 2) by con-
straining to a particular set using =, as in chair → Member = Joanna, whereby
chair can still point to any Member but it is constrained to only point to Joanna.
Also, onlineParticipant -> Member 0 illustrates restricting clafer cardinality.
Finally, since the examples do not rede�ne the inherited clafer participant, it
is omitted (cf. Fig. 2a).

Clafer constraints are speci�ed between [and] and can be arbitrary �rst-
order predicate logic formulas with some relational logic operators, e.g., join
(.). Clafer's constraint language is heavily inspired by the constraint language
of Alloy [9]; it does not distinguish between scalar values and sets�everything
is a set. In our example, the constraint can be read as follows: "having some

onlineParticipants implies audioConferencing equipment in the room."
All examples provided by Alice and Bob are partial examples, i.e., they

provide full detail about, e.g., month and room, but they do not provide de-
tails about the on-site and on-line participants, they only indicate their number.
Partial examples can be completed under closed-world assumption (CWA) or
open-world assumption (OWA). In Clafer, we apply the CWA interpretation in
reasoning, where the reasoner only �lls in the missing information. For example,
the room D only lists a whiteboard and omits audioConferencing equipment,
which is interpreted as underspeci�ed, that is, the room may or may not have
the equipment. To specify that the equipment is not present, Bob would have to
write audioConferencing 0. Modelers, on the other hand, naturally apply the
OWA interpretation and freely extend the examples as shown in Fig. 2a. There-
fore, adding abstractions is helpful for indicating what details can be speci�ed,
partially speci�ed, or omitted in examples and what details can be completed
by the reasoner under CWA.

bob: So far, our abstractions look quite good. Let's automatically derive a
few examples to validate our model. Alice, are they valid?
[Bob creates an underspeci�ed meeting, aMeeting, which has some on-line

participants (Fig. 3(a)), together with aRoom and between 2 to 5 aMembers.

He uses Clafer Instance Generator (ClaferIG)[1] to automatically generate all

possible completions of aMeeting, aRoom, and aMember under CWA. Two com-

pletions are shown in Fig. 3(b)(c)]
alice: No, the examples (b) and (c) are invalid! A chair cannot be a par-

ticipant. Also, no member can participate both on-site and on-line.
bob: Then we need to add the missing constraints.

[Bob adds the following three constraints: 1) the chair cannot be a participant,

2) the chair cannot be an on-line participant, and 3) the sets of participants and

on-line participants are disjoint (Fig. 3(d)). Bob derives examples Fig. 3(b)(c)]
alice: Examples (b) and (c) are valid.

[Finally, Bob uses ClaferIG to verify the abstractions against the negative ex-

amples from Figure 1(c)(d) (after adding types) and from Figure 3(b)(c)�the

tool reports constraint violations con�rming that the examples are negative.]

aMember : Member 2..5

aMeeting : Meeting
[some onlineParticipant]

aRoom : Room

(a) Partial examples

aMember$1 : Member
aMember$2 : Member
aMember$3 : Member

aMeeting : Meeting
chair → aMember$3
room → aRoom
participant → aMember$3
onlineParticipant$1 → aMember$3
onlineParticipant$2 → aMember$2
onlineParticipant$3 → aMember$1

aRoom : Room
audioConferencing

(b) Derived example 1

aMember$1 : Member
aMember$2 : Member

aMeeting : Meeting
chair → aMember$2
room → aRoom
participant$1 → aMember$1
participant$2 → aMember$2
onlineParticipant → aMember$2

aRoom : Room
whiteboard
audioConferencing

(c) Derived example 2

abstract Meeting
chair → Member
[chair.ref not in participant.ref]
[chair.ref not in onlineParticipant.ref]
room → Room
participant → Member +
onlineParticipant → Member 0..20
[no (participant.ref &

onlineParticipant.ref)]
[some onlineParticipant =⇒
some room.audioConferencing]

(d) Adding constraints

aMember$1 : Member
aMember$2 : Member
aMember$3 : Member
aMember$4 : Member
aMember$5 : Member

aMeeting : Meeting
chair → aMember$1
room → aRoom
participant → aMember$5
onlineParticipant$1 → aMember$4
onlineParticipant$2 → aMember$3
onlineParticipant$3 → aMember$2

aRoom : Room
audioConferencing

(e) Derived example 3

aMember$1 : Member
aMember$2 : Member
aMember$3 : Member
aMember$4 : Member

aMeeting : Meeting
chair → aMember$1
room → aRoom
participant$1 → aMember$4
participant$2 → aMember$3
onlineParticipant → aMember$2

aRoom : Room
whiteboard
audioConferencing

(f) Derived example 4

Fig. 3. Automatic example derivation

3 Discussion: Clafer & The Hypotheses of EDM

Here, we discuss the relationship between how Clafer was used in the presented
scenario and the hypotheses of EDM.
H1 Constructing models with the aid of explicit examples improves the quality

of models. We illustrated that the examples helped to ground the discussion,
explore corner cases, derive initial abstractions and re�ne them by discovering
the missing constraints, discover points of uncertainty, and verify whether the
abstractions allow positive examples and disallow the negative ones. Also, the
examples provided by the SME were often partial and Clafer allowed the modeler
(here, the BA) to express them naturally (nothing special required).
H2 Augmenting models with explicit examples improves model comprehension

among various stakeholders. The modeler wrote both the abstractions and exam-
ples in Clafer as a part of the same model. In general, SMEs cannot be expected
to be pro�cient in understanding the abstractions, especially when complex con-
straints are involved or a notation for abstractions di�ers signi�cantly from the
notation for examples. The modelers, on the other hand, can work directly with

abstractions and only use examples to explore corner or exceptional cases. There-
fore, when the examples are part of the model, they provide a shared basis for
communication between expert modelers and other stakeholders.
H3 EDM starts either with abstractions or examples. A modeler typically goes

back and forth between the two. In EDM, the modelers perform two main activ-
ities that relate examples with abstractions: 1) abstraction inference (AI) � for
synthesizing abstractions from a set of examples, 2) example derivation (ED) �
for generating examples from abstractions. During AI, modelers compare exam-
ples, observe commonalities and di�erences, use negative examples to illustrate
constraint violations, determine overconstraining and underconstraining of ab-
stractions. During ED, modelers create concrete or partial positive and negative
examples, automatically derive completions of partial examples, and validate the
examples with the SMEs. In Clafer, both starting with abstractions or starting
with examples are possible. ClaferIG supports deriving concrete examples from
abstractions and partial examples. The uni�ed syntax for abstractions and ex-
amples of Clafer allows the modeler to easily compare examples and pull up
common content of examples to the abstractions by simply copying and pasting.
At the same time, the modeler can leave the examples mostly unchanged, except
for providing type information, because of rede�nition. Thus, in Clafer evolving
examples into abstractions requires minimal e�ort.
H4 If examples express requirements for using abstractions, then automated tools

validate models on examples to discover errors. Using ClaferIG, a modeler can
check consistency of the abstractions and verify whether the positive examples
are allowed and the negative examples are disallowed. In the case of an inconsis-
tency, ClaferIG helps the modeler in diagnosing them by reporting a near-miss
example; this capability is realized by computing UnSAT cores and removing
one or more contradicting constraints from each core [10].
H5 A variety of generated examples leads to more e�ective model construction,

comprehension, and validation. We illustrated how partial specialization allows
deriving a variety of examples, while giving the user control over the kinds of
examples that are generated.Automatic derivation of examples exposes hidden
assumptions and constraints, as the tool can exhaustively explore all cases.
H6 Using both positive and negative examples leads to more precise models than

positive examples alone. We illustrated in the scenario that using the negative
examples allows the modeler to discover constraints because the SME can catch
constraint violations when inspecting the examples. Furthermore, Bob validated
the model by checking that the negative examples indeed violate the constraints.

4 Related Work

We discussed the related work on EDM in [7]. Here we only focus on language
and tool support for EDM.

We have performed a controlled experiment to evalue the e�ects of using
examples on structural model comprehension [17]. This experiment con�rmed
the hypothesis H2 and showed that using explicit examples has signi�cant pos-

itive e�ect on the e�ectiveness of the experiment participants in comprehending
a structural domain model, their ability to correctly, completely, and e�ciently
instantiate the model, and correctly and e�ciently answer a number of questions.
Furthermore, both positive and negative partial examples designed to illustrate
a speci�c point were very helpful for the participants in their ability to complete
the experimental tasks (cf. H6).

Alloy [9] is a lightweight modeling language supported by a reasoner. Alloy
models specify abstractions; the reasoner derives examples and checks model
consistency. Although Alloy can express partial examples by encoding them as
singleton sets, a dedicated syntactic extension has been proposed [13]. In contrast
with Clafer, Alloy provides no �rst-class support for rede�nition and for encoding
hierarchical models (in Clafer, clafers can be nested arbitrarily deeply); however,
both can be realized indirectly by specifying model constraints.

UML [14] class and object diagrams are two standardized notations for ex-
pressing abstractions and examples, respectively. They are two separate diagrams
that exist independently (separate meta-classes and cross-referencing in certain
ways is restricted, for example, an object cannot be used as a type of a reference
and links cannot be made between objects and classes). In practice, relating
UML object to class diagrams is troublesome, because it requires the modeler
to constantly switch attention between separate diagrams. In Clafer, abstrac-
tions can be mixed and cross-referenced with examples and, thanks to syntactic
uni�cation, examples can be easily evolved into abstractions by copy/paste.

UML class diagrams is a syntactically much richer notation than Clafer.
While Clafer reduces structural modeling concepts to clafer, UML class dia-
grams make each concept explicit both in the syntax and semantics (e.g., dif-
ferent types of associations). Both languages o�er support for rede�nition and
for partial examples. UML object diagrams o�er a limited support for partial
examples. Whereas they can express uncertainty of slots' values, they cannot
express uncertainty about existence of objects. Clafer can model both. In [3], we
formally de�ne and discuss partial instances, the notions of rede�nition and in-
stance extension in the CWA and OWA frameworks. Consequently, we show how
partial instances can be encoded in UML via singleton classes and subclassing.

UML object diagrams can express positive examples. Modal object dia-
grams [11] is an extension that also adds negative examples. Relating negative
examples to abstractions is di�cult unless the modeler knows why they are in-
consistent with abstractions. We are not aware of any non-academic UML tools
that can verify consistency of object and class diagrams. ClaferIG can verify
the models and can additionally point to inconsistent model elements; however,
currently Clafer does not support expressing the negative modality.

We originally introduced Clafer in [5]. Our recent work [6] is a substantial
revision of the language. In formal semantics, we explained the great �exibility
of the concept clafer and clari�ed some language constructs (e.g., references).
Furthermore, we formally explained the notion of rede�nition among clafers,
which can be realized at any nesting level in the containment hierarchy and which
allows for encoding partial examples as subclasses of abstractions. However, in [6]

we do not show how rede�nition can be applied to unify the syntax of examples
and abstractions to support EDM, which is shown in this paper.

Clafer has been originally designed as a language for modeling variability in
product lines (PLs). In [2], we demonstrate how to use Clafer to migrate from
a clone-and-own software family to a product line. The presented approach is
example-driven and involves abstraction inference from a set of examples, each
representing an individual product. Furthermore, in the context of PLs examples
are also useful for validation of the PL variability models. While the previous
work [2] has focused on simple Boolean feature models, this work addresses EDM
for a broader application scope and much richer structural models.

There is a vast number of works related to inferring abstractions from exam-
ples that could be leveraged for Clafer. For example, inferring grammars [15],
metamodels [8], data schemas [4], behavioral [16] and structural models [12].

5 Conclusion

We presented how Clafer and ClaferIG can be used in an EDM modeling sce-
nario and how Clafer relates to the EDM hypotheses. Although usually only
experts can specify abstractions directly, both experts and novices can under-
stand examples well. The use of abstractions and examples di�ers for experts
and novices. The former naturally start with abstractions and use examples to
clarify di�cult details. Novices, on the other hand, prefer to start with exam-
ples and only then infer abstractions that generalize examples. It is clear that a
speci�c variety of examples is needed for an e�ective knowledge transfer. Most
notably, positive examples demonstrate correct scenarios; near-miss negative ex-
amples show constraint violations, focusing on one case at a time; and partial
examples allow focusing on a speci�c knowledge area.

In our view Clafer is well-suited for EDM due to 1) being based on a single
concept, clafer, that can simplify co-evolution of abstractions and examples, 2)
uniform syntax for encoding examples and abstractions so that both can be easily
mixed in the same model, which is enabled by rede�nition (such mixing is not
supported by mainstream languages, such as UML class and object diagrams,
and XML documents and XSD schemas), 3) uniform syntax which also allows for
both examples and abstractions to look structurally similar, making evolution of
examples into abstractions trivial, 4) support for partial examples that naturally
express stakeholders partial view of the world, 5) support for specializing and
extending both the examples and abstractions (easy extension and specialization
by rede�nition, constraints, and partial typing), 6) tool support that makes the
model playable: constraints checking and automatic derivation of completions.

Future Work Despite the usefulness of examples, it is still unclear what type of

examples, how to collect them, how many are needed, and how diverse examples

should be to best support model comprehension and validation. Together with the
presented hypotheses, empirical studies are needed to evaluate the e�ectiveness
of EDM and to provide concrete guidelines for modelers.

Clafer design includes work on formal semantics and the development of the
compiler. Some results from the formal semantics, e.g., rede�nition, are currently
partially implemented. We are also planning to implement the ability to mark
top-level clafers as negative and extend the reasoner to check assertions that
such instances are expected to violate constraints. Currently, Clafer supports
only structural modeling; behavioral modeling in Clafer is an ongoing e�ort.

EDM requires a broad range of tools. Although tools can already automat-
ically derive a huge number of examples, they provide little support for explo-
ration and visualization of a set of examples (e.g., showing commonalities and
di�erences, �ltering by some characteristic). We have implemented a tool for
simultaneous exploration of a set of examples, called Clafer Con�gurator [1];
however, it is currently restricted to the attributed feature models with inheri-

tance subset of Clafer and it is not clear how it could be extended to support full
Clafer. Abstraction inference is a challenging task, because abstractions must be
inferred from an incomplete set of examples. Finally, since both abstractions and
examples constitute a model, the tools should support their co-evolution.

References

1. Clafer Homepage, http://clafer.org
2. Antkiewicz, M., B¡k, K., Murashkin, A., Olaechea, R., Liang, J., Czarnecki, K.:

Clafer tools for product line engineering. In: Software Product Line Conf. (2013)
3. B¡k, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., W¡sowski, A.: Partial instances

via subclassing. In: Intl. Conference on Software Language Engineering (2013)
4. Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema de�nitions from

XML data. In: International Conference on Very Large Data Bases (2007)
5. B¡k, K., Czarnecki, K., W¡sowski, A.: Feature and meta-models in Clafer: mixed,

specialized, and coupled. In: Software Language Engineering (2010)
6. B¡k, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., W¡sowski, A.: Clafer: Unifying

class and feature modeling. Journal paper. Submitted for review. (2013)
7. B¡k, K., Zayan, D., Czarnecki, K., Antkiewicz, M., Diskin, Z., W¡sowski, A., Ray-

side, D.: Example-driven modeling. Model = Abstractions + Examples. In: New
Ideas and Emerging Results (NIER) track of ICSE'13 (2013)

8. Cho, H.: A Demonstration-Based Approach for Domain-Speci�c Language Cre-
ation. Ph.D. thesis, University of Alabama (2013)

9. Daniel, J.: Software Abstractions: Logic, Language, and Analysis. MIT Press (2011)
10. Liang, J.: Correcting Clafer models with automated analysis. Tech. Rep. GSDLab-

TR 2012-04-30, University of Waterloo (04/2012 2012)
11. Maoz, S., Ringert, J., Rumpe, B.: Modal object diagrams. In: ECOOP (2011)
12. Mendel, L.: Modeling by example. Master's thesis
13. Montaghami, V., Rayside, D.: Extending Alloy with partial instances. In: ABZ'12
14. OMG: OMG Uni�ed Modeling Language (2011)
15. Parekh, R., Honavar, V.: Grammar inference, automata induction, and language

acquisition. In: Handbook of Natural Language Processing (2000)
16. Piterman, N., Pnueli, A., Sa'ar, Y.: Synthesis of reactive (1) designs. In: Veri�ca-

tion, Model Checking, and Abstract Interpretation (2006)
17. Zayan, D., Antkiewicz, M., Czarnecki, K.: E�ects of using examples on structural

model comprehension: A controlled experiment (2014), submitted for review.

