
Towards a Catalog of Variability Evolution Patterns: The
Linux Kernel Case

Leonardo Passos
University of Waterloo

lpassos@gsd.uwaterloo.ca

Krzysztof Czarnecki
University of Waterloo

kczarnec@gsd.uwaterloo.ca

Andrzej Wąsowski
IT University of Copenhagen

wasowski@itu.dk

ABSTRACT
A complete understanding of evolution of variability requires
analysis over all project spaces that contain it: source code,
build system and the variability model. Aiming at better
understanding of how complex variant-rich software evolve,
we set to study one, the Linux kernel, in detail. We qual-
itatively analyze a number of evolution steps in the kernel
history and present our findings as a preliminary sample of
a catalog of evolution patterns. Our patterns focus on how
the variability evolves when features are removed from the
variability model, but are kept as part of the software. The
identified patterns relate changes to the variability model,
the build system, and implementation code. Despite prelim-
inary, they already indicate evolution steps that have not
been captured by prior studies, both empirical and theoret-
ical.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering

General Terms
Design

Keywords
variability, patterns, evolution, software product lines, Linux

1. INTRODUCTION
Variability evolution is a core point in evolving software

product lines [6]. Changes in the variability dictate which
features are obsolete, which are new, which products are still
possible to be generated, which dependencies still hold, etc.
Despite its importance, the Software Product Line commu-
nity has little knowledge on how variability evolution occurs
in practice and which changes are performed when realizing
them. The few existing studies do not take feature removal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’12, September 24–25, 2012, Dresden, Germany.
Copyright 2012 ACM 978-1-4503-1309-4/12/09 ...$15.00.

into account [4, 5, 12], while others [14, 8] focus on the
variability model alone. Altogether, they fail to cover the
variability evolution when features are removed from the
variability model, while still being kept part of the software.
To address this issue, we study a real world variant rich
software –the Linux kernel– and extract evolution patterns
describing how variability evolves across different artifacts
(variability model, build files, and source code) when fea-
tures are erased from the variability model, but not from
the software itself.

The Linux kernel is the most successful open source soft-
ware, containing a rich and extensive variability that allows
it to support a large range of architectures, device drivers
and application domains [15].

Variability in the Linux kernel is vertically present in three
separate, but related spaces [10]: configuration space: kernel
configuration files (Kconfig), comprising the Linux variabil-
ity model; compilation space: kernel build files (KBuild),
mostly written as Makefiles with implicit rules [16]; imple-
mentation space: realization of all features, mostly written
as C code.

The Linux kernel configuration space was first studied by
She et al. [14], who analyze and compare its complexity
with regards to existing models in SPLOT [9]. Lotufo et
al. [8] extend that work by a longitudinal analysis over the
x86 architecture. Among other things, the authors inspect
the Linux variability model growth pace, how its structure
is affected and which changes developers execute over time.

A sole focus on the configuration space, however, does not
provide a full understanding of how variability evolves. In
fact, such an analysis can easily lead to wrong conclusions.
The variability model of the x86 64 architecture illustrates
that: between releases 2.6.32 and 2.6.33, 281 new feature
names were added, while 43 were removed. A closer inspec-
tion of all spaces of the commits removing such features led
us to conclude that 35% of them continued to exist; as our
patterns show, developers remove these features from the
variability model while migrating them to the implementa-
tion side or merging them with other features.1

The patterns we present is the first work capturing vari-
ability evolution in a multi-space setting of a complex real-
world variant rich software. Furthermore, our patterns com-
prise evolution steps not covered by previous work [4, 5, 12,
14, 8].

We believe that a holistic understanding of evolution prac-
tice of complex systems with rich variability will have sig-
nificant impact on product line research, including work

1Renames were also noted.

on methodologies, architectures, modeling languages, auto-
matic analyses and tooling.

The rest of this paper is organized as follows: in Sec. 2 we
provide a comprehensive understanding of the three spaces
of the Linux kernel, and how they relate to each other. In
Sec. 3 we discuss the methodology for extracting our catalog
of evolution patterns, which are then presented in Sec. 4. In
that section, we show the structure of each pattern, with
concrete examples and discussion. We then analyze possible
threats to validity of our findings in Sec. 5, and present re-
lated work in Sec. 6. We conclude the paper in Sec. 7, along
with directions for future work.

2. BACKGROUND
The variability in the Linux kernel appears in three main

spaces: (i) configuration space, comprised of Kconfig files;
(ii) compilation space: set of kernel build files (KBuild),
and; (iii) implementation space: mostly C source code. We
present them now in more detail.

Configuration space.
Kconfig is the language in which features and their depen-

dencies are declared. The kernel configurator (xconfig)2 ren-
ders the Kconfig model as a tree of features, from which users
select the ones of interest (see Fig. 1). For instance, users
interested in a cluster file system can select the OCSFS2 (Or-
acle™Cluster File System) feature, whose Kconfig snippet is
shown in Fig. 2.

Features in Kconfig are mostly written as configs (Fig. 2,
lines 3 and 12), and may contain attributes such as type,
prompt, dependencies, implied selections, default values, and
help text. In our example, OCSFS2 is a tristate feature (line
4): it can be absent (n) or users can select it to be either
compiled as a dynamically loadable module (m – shown as a
dot in Fig. 1) or statically compiled into the resulting kernel
(y – shown as a tick in Fig. 1). Boolean features (line 13) are
also possible, assuming either y or n as value. Other types
include integer and strings (not shown). A prompt mes-
sage is a short description of a feature (lines 4 and 13), and
it is used by the configurator when rendering the feature
in the hierarchy. Features without a prompt are not visi-
ble to users. Dependencies (line 5) state a condition that
must be satisfied to allow selection of the feature. A select
attribute (line 6) enforces immediate selection of target fea-
tures (CONFIGFS FS). A default attribute (line 15) states
the initial value of a feature, which might later be changed
in the configuration process. The feature hierarchy depends
on the order in which features are declared and on their de-
pendencies. Cross tree constraints are defined using select
and depends on attributes, but also by default values in com-
bination with visibility conditions. Visibility conditions and
default conditions (not shown) are guard expressions over
feature names that follow prompt and default attributes:
for prompts, it controls whether the feature should be made
visible; for defaults, it controls which default attribute is
applicable when more than one is defined. For a full map-
ping from Kconfig to standard FODA feature models, refer
to [14, 3]. Formal semantics of Kconfig is presented in [13].

The configurator generates a .config file, which is basically
a sequence of (feature-name, feature-value) pairs. Given the

2Other configurators also exist: config, menuconfig, nconfig,
gconfig, etc.

Figure 1: Linux configurator (xconfig)

features OCFS2 FS (OCFS file system support) and OCFS2
FS POSIX ACL (OCFS POSIX Access Control Lists) as

configured in Fig. 1 results in the following .config snippet:

CONFIG_OCFS2_FS=m
...
CONFIG_OCFS2_FS_POSIX_ACL=y

Compilation space.
The KBuild system controls the compilation process of

the Linux kernel. In KBuild, the files containing compila-
tion rules are essentially Makefiles with implicit rules [16].
The image of the kernel is defined by the vmlinux-all goal
contained in a top Makefile, whose snippet is shown in the
first part of Fig. 3. To build the image, vmlinux-all requires
the object files of the symbols appearing at the right hand
side of the goal (line 3), which are then linked together. In
that case, it requires all the object file names stored in core-
y, libs-y, drivers-y and net-y variables. These variables denote
lists of object files to which other elements can be appended
to. If directories are appended (line 5), KBuild recursively
runs the Makefile contained in each such directory and gen-
erates one object file per directory based on the content of
a special list: obj-y (similarly, a list obj-m controls module
compilation). Objects may be conditionally added to this
list by replacing y with a feature name. As shown in the
second fragment of Fig. 3 (line 3), ocfs2.o is only added to
obj-y if the feature OCFS2 FS is set to be y in the .config file.
KBuild attempts to compile object files by locating a cor-
respondent C file matching the same name. However, that
is not always the case. For ocfs2.o, there is no ocfs2.c file
in the Makefile’s directory, so KBuild relies on a list named
ocfs2-objs (line 11) as the set of object files that should com-
pose ocfs2.o. As before, objects may be conditionally added
to such a list (line 10).

Implementation space.
Variability in the source code base is expressed in terms

of conditional compilation macro directives, whose condi-
tions are Boolean expression over feature names (see Fig. 4).
It is worth noting that before KBuild compiles any code,
it reads the content in the .config file and creates an auto-
conf.h header file containing macro definitions for all features
that should be part of the kernel, along with their values.
KBuild forces this file to be included in all C sources (this is
achieved using gcc’s -include switch). For instance, selecting
OCFS2 FS POSIX ACL for the OCFS2 FS module results in
a definition such as

1 # fs/ocfs/Kconfig
2 ...
3 config OCFS2_FS
4 tristate "OCFS2 file system support"
5 depends on NET && SYSFS
6 select CONFIGFS_FS
7 ...
8 help
9 OCFS2 is a general purpose extent

10 based shared disk cluster file system...
11 ...
12 config OCFS2_FS_POSIX_ACL
13 bool "OCFS2 POSIX Access Control Lists"
14 depends on OCFS2_FS
15 default n
16 ...
17 ...

Figure 2: KConfig file snippet for OCFS2 FS

1 top Makefile
2

3 vmlinux-all := $(core-y) $(libs-y) $(drivers-y) $(net-y)
4 ...
5 core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/
6 ...

1 fs/ocfs2/Makefile
2

3 obj-$(CONFIG_OCFS2_FS) += ocfs2.o ...
4 ocfs2-objs := ...
5 aops.o
6 blockcheck.o
7 ...
8 xattr.o
9

10 ifeq ($(CONFIG_OCFS2_FS_POSIX_ACL),y)
11 ocfs2-objs += acl.o
12 endif
13 ...

Figure 3: KBuild Makefile snippets

1 // File: fs/ocfs2/acl.h
2 ...
3 #ifdef CONFIG_OCFS2_FS_POSIX_ACL
4 extern int ocfs2_check_acl(struct inode *, int);
5 extern int ocfs2_acl_chmod(struct inode *);
6 ...
7 #else
8 #define ocfs2_check_acl NULL
9 static inline int ocfs2_acl_chmod(struct inode *inode)

10 { return 0; }
11 ...
12 #endif

Figure 4: Conditional compilation

#define CONFIG_OCFS2_FS_POSIX_ACL 1

which guarantees that the code block in lines 4–6 in Fig. 4
will be compiled, instead of lines 8–11.

From the description so far, it is clear that the Linux
kernel variability is a three-dimensional space (variability
model, Makefiles and C code), and evolutionary changes
such as feature addition, removal, split, merge, rename, etc.
may affect not a single dimension, but all three. In addition,
the three spaces are glued together by referring to feature
names as exported in the .config file. Next, we discuss our
methodology in extracting evolution patterns.

3. METHODOLOGY
We collected four patterns from a selection of 140 among

220 feature removals from the configuration space in three
kernel release pairs of the x86 64 Linux kernel: (v2.6.32,
v2.6.33), (v2.6.26, v2.6.27) and (v2.6.27, v2.6.28). Each pat-
tern documents a situation in which the feature is removed
from the configuration space, but continues to exist in the
software.

Three of our patterns come from the analysis of (v2.6.32,
v2.6.33). Our particular interest in v2.6.32 regards to the
fact that it is the baseline kernel in Debian 6.0,3 one of the
most mature and popular distributions in the Linux com-
munity.

From this initial analysis, we aimed at sequentially diffing
release pairs starting from v2.6.26. We fixed such starting
point due to incompatibility issues when using newer kernel
build infrastructure with older Kconfig and .config files.

While we analyzed and classified all 43 removals in the
pair (v2.6.32, v2.6.33), the selection of removals for analysis
in (v2.6.26, v2.6.27) and (v2.6.27, v2.6.28) was rather arbi-
trary. Our main concern was only to capture a pattern that
we had not seen before.

Our infrastructure is built on top of the KBuild system,
which we extracted from the Linux source code. With it,
we parse Kconfig files and compute the set difference of the
features in each pair of kernel releases. To facilitate analy-
sis, we also created a relational database containing all fea-
ture additions and removals, which are linked with the as-
sociated release pair and commit identifier. The records in
this database were constructed by parsing all patches in the
Linux Git repository.4

Our analysis is based on manual inspection over the col-
lected set of commit patches. Since changes can span more
than one commit, whenever a patch is insufficient to draw
a sound conclusion, we set to recover other commits chang-
ing the feature under investigation or any other feature that
may affect it (eg.: a parent feature).

4. EVOLUTION PATTERNS
This section presents in detail four evolution patterns in

commits found in the Linux kernel repository.
To reduce clutter, we present each pattern in an abstract

manner, capturing the changes in each artifact type. Then,
we rely on fragments of real artifacts to exemplify the pre-
sented concepts, followed by a discussion of the pattern.

We present the first pattern as a basic walk-through to
our notation and adapt it as we proceed with presentation.

4.1 Optional feature to implicit mandatory
In this evolution pattern, depicted in Fig. 5, an optional

feature F is removed from the feature model, but becomes
unconditionally compiled in source code. Its compilation,
however, is subject to the presence of F’s parent P.

The pattern is presented in two parts, capturing the struc-
ture before the change (shown at left) and after it (shown at
right). It abstractly documents changes to a fragment of the
variability model (rendered in the FODA notation), shown
inside a dashed box; the build artifact (B); source code (C),
and; the cross-tree constraint formulae (CTC).

Instance.
3http://www.debian.org/
4git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git

P

B = <..., (F, P.o += F.o),...>

C = <...(F, Cx, Cy)...(F, Cx)...>

CTC

F

P

B' = <..., (F, P.o += F.o),...>

C' = <...(F, Cx, Cy)...(F, Cx)...>

CTC' = CTC[P/F]

Figure 5: Optional feature to implicit mandatory

1 diff --git a/fs/ocfs2/Kconfig b/fs/ocfs2/Kconfig

2 config OCFS2_FS
3 + select FS_POSIX_ACL
4 -config OCFS2_FS_POSIX_ACL
5 - bool "OCFS2 POSIX Access Control Lists"
6 - depends on OCFS2_FS
7 - select FS_POSIX_ACL
8 - default n
9 - help

10 - Posix Access Control Lists (ACLs) support
11 - permissions for users...
12

13 diff --git a/fs/ocfs2/Makefile b/fs/ocfs2/Makefile

14 ocfs2-objs := ver.o
15 ...
16 xattr.o
17 -ifeq ($(CONFIG_OCFS2_FS_POSIX_ACL),y)
18 -ocfs2-objs += acl.o
19 -endif
20 + acl.o
21

22 diff --git a/fs/ocfs2/acl.h b/fs/ocfs2/acl.h
23

24 -#ifdef CONFIG_OCFS2_FS_POSIX_ACL
25 extern int ocfs2_check_acl(struct inode *, int);
26 extern int ocfs2_acl_chmod(struct inode *);
27 ...
28 -#else
29 -#define ocfs2_check_acl NULL
30 -static inline int ocfs2_acl_chmod(struct inode *inode)
31 -{ return 0; }
32 - ...
33 -#endif
34 ...

Figure 6: A patch matching the pattern in Fig. 5

The patch5 fragment in Fig. 6 is a concrete example of this
pattern, where OCFS2 FS is P and OCFS2 FS POSIX ACL
is F. In the patch, changes are either removal (lines prefixed
with“-”) or addition (lines prefixed with“+”). Lines without
any prefix are used as context to ease understanding.

The patch shows that the feature OCFS2 FS POSIX ACL
is being removed from the feature model (lines 4–11), but
its implied selection attribute is moved to its parent feature
(line 3). Fig. 5 captures this situation by deleting F from the
feature model and by replacing any references to F with P
in the set of cross tree constraints, thus leading to a new set
CTC’.

Regarding the changes in the Makefile, the patch shows
that the compilation condition guarding acl.o is dropped
(lines 17–19), and acl.o is unconditionally added to the list
of objects ocfs2-objs (line 20). To capture this abstractly, we
first introduce a simplified representation for build files. In
our notation, build files are denoted as a sequence B of build
rules of the form (e, r1, r2), where e is a guard expression over

5Commit id: e6aabe

feature names (as in line 17 of the patch); r1 is a build rule
in case e evaluates to true; and r2 is the alternative build
rule to be used in case e does not hold. For simplicity, the
condition may be omitted (taken as true) to represent un-
conditional build rules. Moreover, the second rule may not
be shown, stating the absence of an alternative rule in case
the guard expression fails. Using this notation, we capture
the change over the Makefile shown in the patch as follows:
in the left side, (F, P.o += F.o) is one build rule in B, stating
that if F is present, then F’s object code should be part of
P’s. After the change is applied, a new sequence B’ is ob-
tained containing a new build rule where the condition over
F is dropped, which we explicitly represent by writing it as
crossed:

B' = <..., (F, P.o += F.o),...>

As for the edits in the source code side (see acl.h: lines 24–
33), the patch indicates that the code guarded by a condi-
tional compilation directive is kept, while the associated con-
dition (line 24) and the alternative code block (lines 28–33)
are removed. We capture this situation in our abstraction
by removing specific parts (shown as crossed) of guarded
blocks, which we represent as triples (e, Cx, Cy): similar to
build rules, e denotes a conditional macro expression over
feature names, whereas Cx is the code to be compiled in
case e holds; otherwise Cy is used.

Discussion.
The purpose of this pattern is to guarantee that a secu-

rity feature is not unintentionally left unselected in face of
its parent feature presence; thus, it eliminates the chance of
misconfigurations, with the cost of a bigger product (exe-
cutable binary size). In our example, making Posix Access
Control Lists a mandatory feature for the OCFS2 file system
is in tune with that: in Linux, ACL controls file/directory
permissions for groups and individuals, and it is a major
security feature already supported by other filesystems, in-
cluding ext3/4, xfs, btrfs, etc. In server environments using
a cluster based filesystem, it is likely the case that such sup-
port is required, and its absence (unintentional or not) might
lead to major security flaws, as no permission control would
exist.

Interesting enough, users configuring new versions of the
kernel in which OCFS2 FS POSIX ACL is not available as a
selectable feature may conclude that OCFS2 dropped sup-
port for ACL. This occurs because the patch removing the
OCFS2 FS POSIX ACL feature from Kconfig does not up-
date the help text of OCFS2 to state that ACL is now an
integral part of it; thus, users might not select OCFS2 as part
of the kernel, driven by the conclusion that it now lacks a
feature it once supported.

4.2 Computed attributed feature to code
In this evolution pattern, shown in Fig. 7, an invisible fea-

ture F (no prompt) is defined by a default expression e.6

The purpose of F is to be a mere value place holder that is
referred in code using the feature’s name. The change re-
moves F from the feature model, while replacing its usage in
code by its computed default expression. The build artifacts
and the set of cross tree constraints are not altered, meaning
that F is not referred in constraints and it does not have an

6Kconfig does not allow arbitrary non-Boolean expressions

P

F

B
C = <...(... F ...)...>

CTC

default = e
no prompt

P

B'
C = <...(... e ...) ...>

CTC

'

Figure 7: Computed attributed feature to code

associated compilation unit.

Instance.
An instance of this pattern regards the removal of feature

CFG80211 DEFAULT PS VALUE7 (matches F), defined as:
config CFG80211_DEFAULT_PS_VALUE

int
default 1 if CFG80211_DEFAULT_PS
default 0
depends on CFG80211

As can be seen, the above definition lacks a prompt message,
and thus the feature is not visible to users. Its value is given
by a combination of default conditions (refer to Sec. 2), and
depends on the presence of CFG80211 DEFAULT PS. These
conditions denote a single abstract conditional expression

CFG80211_DEFAULT_PS ? 1 : 0

In the source code, the feature is originally referred by

rdev->wiphy.ps_default = CONFIG_CFG80211_DEFAULT_PS_VALUE;

which was later changed to

#ifdef CONFIG_CFG80211_DEFAULT_PS
rdev->wiphy.flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT;

#endif

The inspected patch shows that a set of related Boolean
flags in the source code, including ps default, became a single
integer variable (flags) implementing a bit mask. In that
sense, the bit-or assignment as shown has the same effect
as before, but using a different implementation technique.
In case the flag is not set (the conditional statement is not
compiled), the corresponding bit position defaults to zero.
Otherwise, its associated bit receives 1 as value.

Discussion.
This pattern affects the set of configurations derivable

from the configuration space, but it preserves behaviour in
all products containing P, as our instance showed. In that
sense, the pattern documents a refinement scenario. The ex-
isting theory over software product line refinement [5] fails
to address this, as its theorems8 only cover situations with
feature model equality or equivalence in the set of possible
configurations (our .config files).

Contrary to the previous pattern, this evolution pattern is
a refactoring, as it preserves behaviour and improves main-
tainability, at least as stated by developers in the commit

7Commit id: 5be83d
8See theorems 11-14 in [5].

P

B = <..., (F2, obj-y += F2.o),...>

C = <... >

CTC

F1

P

F2 F1

F1 F2 C' = <... >F1 F2

B' = <..., (F2, obj-y += F2.o),...>

CTC' = CTC - {constraints defined by F2}

F2

[alias]

Figure 8: Merge by aliasing

log message:

“We’ve accumulated a number of options for wiphys which
make more sense as flags as we keep adding more. Convert
the existing ones.”

The choice of having features as place holders for computed
attributes in Kconfig files appears to be mere idiomatic pref-
erence, as there is no mentioning in the kernel coding style9

and Kconfig language reference10 stating which practice is
preferable.

4.3 Merge features by module aliasing
This evolution pattern, illustrated in Fig. 8, merges fea-

tures F1 and F2 into the existing feature F1 when the imple-
mentation of F1 subsumes F2. The source code comprising
the compilation unit of F2 is completely removed, and so is
any build rule. Any constraints defined by F2 are deleted,
and existing constraints remain as is, which means that F2

is not referred in any other constraint. Furthermore, F1 reg-
isters itself as an alias module to F2. In that case, whenever
the kernel receives a request to load F2, F1 is the actual
module that gets loaded.

Instance.
An instance of this pattern concerns the merge11 of the

feature RT3090 (matches F2) into RT2860 (matches F1),
with RT2860 supporting both Ralink™2860 and 3090 wire-
less chips. In the patch associated with this instance, all
the code related to RT3090, its Kconfig entry and build
files are removed. The only addition in the patch occurs
in rt2860/pci main dev.c:

+ MODULE_ALIAS("rt3090sta");

where rt3090sta is the original object filename created for
RT3090, as defined by the rt3090sta-objs list in its Makefile.
In the above statement, RT2860 declares that it has RT3090
as its alias.

Discussion.
Merge by alias is only possible for features that are not

scattered in code, but rather have a well defined set of files
that once compiled generate a single object code.

Contrary to the instance found in Optional feature to im-

9http://www.kernel.org/doc/Documentation/CodingStyle
10http://www.kernel.org/doc/Documentation/kbuild/
kconfig-language.txt

11Commit id: e20aea

Feature Files SLOC (.c) SLOC (.h) SLOC (Makefile)
RT3090 108 56,617 15,318 68
RT2860 88 38,010 10,218 49

Table 1: CLOC statistics for RT3090 and RT2860
drivers

plicit mandatory, the description and help message of the
RT2860 feature are updated to reflect the fact that it now
supports the RT3090 family of chips.

It appears that RT2860 inherits much of the code from
RT3090, suggesting co-evolution of the two drivers. Run-
ning the code clone detection tool CCFinder [7]12 supports
our claim, as we found 864 clones between the two drivers,
with clones containing as many as 2,500 tokens (see Fig. 9
for the whole distribution). Curiously, RT2860 is smaller
than RT3090, as we observed by running CLOC.13 Table 1
shows a reduction of ≈ 32% in SLOC in comparison with
RT3090’s (.h and .c files), with a Makefile 27% more com-
pact. Despite such a simplification in code, functionality has
not been lost, as developers state in the commit log:

“Remove no longer needed rt3090 driver. rt2860 handles
now all rt2860/rt3090 chipsets.”

In Linux, it is possible to create a single driver supporting
multiple devices. This mechanism is also used by developers
as a means to merge features. For instance, the driver for the
light sensor device TSL2561 is now merged into TSL2563,14

which supports four devices, as declared in its device table:

static const struct i2c_device_id tsl2563_id[] = {
{ "tsl2560", 0 },
{ "tsl2561", 1 },
{ "tsl2562", 2 },
{ "tsl2563", 3 },
{}

};
MODULE_DEVICE_TABLE(i2c, tsl2563_id);

Structurally, this instance is very much related to the in-
stance previously discussed. Its difference relies on how
these two features evolved: TSL2563 was implemented com-
pletely separate from TSL2561, and was released by Nokia™;
TSL2563, on the other hand, was implemented by a single
developer. Moreover, the two implementations share no sim-
ilarity, as CCFinder does not detect any clone between them.
This example shows the distributed development nature of
Linux, and how drivers released by manufactures tend to
subsume drivers developed by the open source community.

4.4 Optional feature to kernel parameter
In this evolution pattern, whose structure is presented in

Fig. 10, an optional feature F is removed from the feature
model, but continues to exist in the source code. The key
aspect of this pattern relies in its build rules. Originally, the
presence of a feature F defines a new symbol name (macro)
that is appended to the macro namespace of the source code
under compilation. Such symbol (X) conditions a block of
code S. After the change, F is removed as a feature and it is
turned into a kernel parameter F.param that conditions the
execution of S during runtime. In that case, the build rule
defining symbol (X) is dropped.

12ccfx d cpp -dn rt3090 -is -dn rt2860 -w f-w-g+
13http://cloc.sourceforge.net/
14Commit id: eaacdd

P

B = <..., (F, define X), ...>

C = <... (X, S)...>

CTC

F

P

C' = <... (if F.param then S)...>

CTC

B' = <..., (F, define X), ...>

Figure 10: Optional feature to kernel parameter

Instance.
An instance of this pattern concerns the feature CON-

FIG PNP DEBUG,15 which controls debugging print of Plug
and Play devices. Inspecting the Makefile elicits how sym-
bols are appended to the set of defined macro namespace:

-ifeq ($(CONFIG_PNP_DEBUG),y)
-EXTRA_CFLAGS += -DDEBUG
-endif

As shown above, the GNU C compiler allows macros to be
defined through the -D switch. In our instance, the CON-
FIG PNP DEBUG feature was replaced by the boot param-
eter pnp.debug.

Discussion.
This pattern shows how intricate the Linux kernel three

dimensional space is. As illustrated by our instance, the
variability switches from being statically compiled to being
determined during runtime. Since no functionality is loss
and behaviour is preserved, this change results in a software
refinement. For the same reasons argued before, evolution
occurs in such a way not predicted by existing theory [5].

5. THREATS TO VALIDITY
The major threat to our work is the incompleteness asso-

ciated with the analysis of commit logs. Our set of inspected
commits resulting in features being removed from the con-
figuration space required us to grep associated commits to
have a broader picture of the evolution in place. As this
process may fail to recover all associated commits, there is
a threat that our evolution patterns reflect a partial view of
the real changes. This is why we only present the findings
as a preliminary sample of patterns. Further experiments
will have to broaden the catalog towards completeness and
identify whether these patterns are indeed common.

Furthermore, our analysis is ultimately based on the man-
ual inspection over commits to extract the patterns herein
presented. As this process contain certain subjectivity, our
patterns may not capture the full intention as envisioned
by the original patch authors. To alleviate this, we present
concrete instances of each pattern to allow readers to judge
whether they reflect the presented structure.

6. RELATED WORK
Existing research has already studied the Linux kernel

variability. She et al. [14] and Lotufo et al. [8] analyse,
among other things, how the Linux variability model evolves

15Commit id: ac88a8

Figure 9: Clones between RT3090 and RT2860 drivers

in terms of feature addition and removal. As we argued in
this paper, an analysis based on a single space is incomplete
and possibly misleading: features that are no longer present
in the variability model do not necessarily cease to evolve,
as they might be merged into other features, migrated to
implementation space, etc.

Other researchers [5] study the formal aspects of software
product line refinement, deriving an evolutionary theory.
Such formalism assumes that changes are safe, i.e., do not af-
fect behaviour nor prevents instantiating existing products.
Our work shows that Linux does not follow a safe evolution-
ary model, as certain features are truly removed along the
way. Although the authors do not claim completeness, we
found real refinement patterns that cannot be explained by
their set of theorems.

Borba et al. [4] and Neves et al. [12] provide a catalog of
safe transformation templates that, different from ours, do
not cover variability evolution when features are removed
from the configuration space. In [12], the authors provide
evidence on how frequent their templates occur by analyzing
the evolution of two small software product lines.

Tartler et al. [17] study inconsistencies in the implementa-
tion side by not being kept in synchronization with the vari-
ability expressed in Kconfig files. Nadi and Holt [10] identify
anomalies in build artifacts, and later extends Tartler’s work
[11] to detect anomalies across all spaces (configuration, im-
plementation and compilation).

Berger et al. [3] compare Kconfig with other variabil-
ity modeling languages, such as eCos CDL16 and standard
FODA notation. She and Berger [13] study the semantics of
Kconfig and its approximation to propositional logic.

Other studies [1, 2] apply static analysis techniques in
Makefiles of Linux and FreeBSD to extract feature-to-code
mappings.

7. CONCLUSION
We presented a preliminary catalog of evolution patterns

extracted from the Linux kernel repository, and explained
each pattern in a comprehensive manner, including (but not
restricted to) structure, concrete instances and the mecha-
nisms used by developers in achieving them.

Our study is the first to provide explanations on how vari-
ability simultaneously evolves in the implementation, com-
pilation and configuration spaces when removing features
from the variability model, while keeping them as part of
the software. Furthermore, we rely on a complex and vari-
ant rich subject of analysis: the Linux kernel.

16sourceware.org

As future work, we aim to execute a longitudinal study
of the Linux kernel to assess the frequency of the patterns
we found, along with the discovery of new ones. To allow
generalization, we plan to perform similar studies in different
software product lines, possibly from different domains.

8. REFERENCES
[1] T. Berger, S. She, K. Czarnecki, and A. W ↪asowski.

Feature-to-Code mapping in two large product lines.
Technical report, University of Leipzig, 2010.

[2] T. Berger, S. She, R. Lotufo, K. Czarnecki, and
A. W ↪asowski. Feature-to-code mapping in two large
product lines. In Proceedings of the 14th International
Conference on Software Product Lines (SPLC), pages
498–499. Springer-Verlag, 2010.

[3] T. Berger, S. She, R. Lotufo, A. W ↪asowski, and
K. Czarnecki. Variability modeling in the real: a
perspective from the operating systems domain. In
Proceedings of the 25th International Conference on
Automated Software Engineering (ASE), pages 73–82,
2010.

[4] P. Borba. An introduction to software product line
refactoring. In Proceedings of the 3rd International
Summer School Conference on Generative and
Transformational Techniques in Software Engineering
III, pages 1–26, 2011.

[5] P. Borba, L. Teixeira, and R. Gheyi. A theory of
software product line refinement. In Proceedings of the
7th International Colloquium Conference on
Theoretical Aspects of Computing (ICTAC), pages
15–43, 2010.

[6] L. Chen, M. Ali Babar, and N. Ali. Variability
management in software product lines: a systematic
review. In Proceedings of the 13th International
Software Product Line Conference (SPLC), pages
81–90, 2009.

[7] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering (TSE), 28(7):654–670, 2002.

[8] R. Lotufo, S. She, T. Berger, K. Czarnecki, and
A. W ↪asowski. Evolution of the linux kernel variability
model. In Proceedings of the 14th International
Conference on Software Product Lines (SPLC), pages
136–150, 2010.

[9] M. Mendonca, M. Branco, and D. Cowan. S.p.l.o.t.:
software product lines online tools. In Proceedings of
the 24th ACM SIGPLAN Conference Companion on

Object Oriented Programming Systems Languages and
Applications (OOPSLA), pages 761–762, 2009.

[10] S. Nadi and R. Holt. Make it or break it: Mining
anomalies from linux kbuild. In Proceedings of the
2011 18th Working Conference on Reverse
Engineering (WCRE), pages 315–324, 2011.

[11] S. Nadi and R. Holt. Mining kbuild to detect
variability anomalies in linux. European Conference on
Software Maintenance and Reengineering (CSMR),
pages 107–116, 2012.

[12] L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulezsa,
and P. Borba. Investigating the safe evolution of
software product lines. In Proceedings of the 10th
ACM International Conference on Generative
Programming and Component Engineering (GPCE),
pages 33–42, New York, NY, USA, 2011. ACM.

[13] S. She and T. Berger. Formal semantics of the kconfig
language. Technical note, University of Waterloo,
2010.

[14] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki. The variability model of the linux
kernel. In In Proceedings of the 4th International
Workshop on Variability Modelling of
Software-intensive Systems (VaMos), pages 45–51,
2010.

[15] J. Sincero, H. Schirmeier, W. Schröder-Preikschat,
and O. Spinczyk. Is the linux kernel a software
product line? In Proceedings of the International
Workshop on Open Source Software and Product Lines
(OSSPL), 2007.

[16] R. Stallman, R. McGrath, and P. D. Smith. Gnu make
manual, 2010.

[17] R. Tartler, J. Sincero, C. Dietrich,
W. Schröder-Preikschat, and D. Lohmann. Revealing
and repairing configuration inconsistencies in
large-scale system software. International Journal on
Software Tools for Technology Transfer (STTT), pages
1–21, 2012.

