
Towards a Catalog of Variability Evolution Patterns – The
Linux Kernel Case

Leonardo Passos

University of Waterloo

lpassos@gsd.uwaterloo.ca

Krzysztof Czarnecki

University of Waterloo

kczarnec@gsd.uwaterloo.ca

Andrzej Wasowski

IT University of Copenhagen

wasowski@itu.dk

IV International Workshop on Feature Oriented Software Development (FOSD’12)1/28

In evolving variant-rich
software. . .

2/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.

3/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.

3/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.

3/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.

3/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.

3/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.

3/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.

3/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.

3/28

In evolving variant-rich software. . .

• New features are added

• Features are removed

1. feature is no longer supported: complete removal

2. feature continues to be supported, but its abstraction is no longer
present (disappears from the variability model).

Examples:

• merge

• split

• rename

• Constraints are changed, etc.
3/28

Example
(from Linux)

4/28

Ralink Drivers

RT2860

...

... ...RT3090

4/28

Ralink Drivers

RT2860

...

... ...RT3090

4/28

Ralink Drivers

RT2860

...

... ...

Complete removal?

4/28

Ralink Drivers

RT2860

...

... ...

Complete removal?

4/28

Existing evolution studies tend
to focus on the variability model

alone

5/28

That doesn’t tell the whole
story. . .

6/28

Ralink Drivers

RT2860... ...RT3090

7/28

Ralink Drivers

RT2860... ...RT3090

Configuration space

7/28

Ralink Drivers

RT2860... ...RT3090

Compilation space

7/28

Ralink Drivers

RT2860... ...RT3090

Implementation
space

7/28

Spaces are connected. . .

7/28

Ralink Drivers

RT2860... ...RT3090

7/28

Ralink Drivers

RT2860... ...RT3090

7/28

Ralink Drivers

RT2860... ...RT3090

7/28

Ralink Drivers

RT2860... ...RT3090

7/28

With the three spaces in mind,
the real picture of . . .

8/28

Ralink Drivers

RT2860

...

... ...RT3090

is

8/28

Ralink Drivers

RT2860... ...RT3090

8/28

Ralink Drivers

RT2860... ...RT3090

copy

copy

copy

RT3090 is merged into RT2860

8/28

Ralink Drivers

RT2860... ...RT3090

copy

copy

copy

RT3090 is merged into RT2860
8/28

We want to know. . .

9/28

How do the three spaces evolve
together in real world variant

rich software?

Focus: features that disappear from the

configuration space

10/28

How do the three spaces evolve
together in real world variant

rich software?

Focus: features that disappear from the

configuration space

10/28

Two goals

Understand the evolution of the three spaces in a
real-word variant rich software

Document our understanding in the form of evolution
patterns (preliminary).

11/28

Two goals

Understand the evolution of the three spaces in a
real-word variant rich software

Document our understanding in the form of evolution
patterns (preliminary).

11/28

Our subject of analysis

12/28

Qualities of Linux as a subject of study

• Mature: over 20 years since its first release

• Complex: over 6,000 features

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Contains multiple spaces:

◦ configuration space: Kconfig

◦ compilation space: Makefile

◦ implementation space: C code

13/28

Qualities of Linux as a subject of study

• Mature: over 20 years since its first release

• Complex: over 6,000 features

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Contains multiple spaces:

◦ configuration space: Kconfig

◦ compilation space: Makefile

◦ implementation space: C code

13/28

Qualities of Linux as a subject of study

• Mature: over 20 years since its first release

• Complex: over 6,000 features

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Contains multiple spaces:

◦ configuration space: Kconfig

◦ compilation space: Makefile

◦ implementation space: C code

13/28

Qualities of Linux as a subject of study

• Mature: over 20 years since its first release

• Complex: over 6,000 features

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Contains multiple spaces:

◦ configuration space: Kconfig

◦ compilation space: Makefile

◦ implementation space: C code

13/28

Qualities of Linux as a subject of study

• Mature: over 20 years since its first release

• Complex: over 6,000 features

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Contains multiple spaces:

◦ configuration space: Kconfig

◦ compilation space: Makefile

◦ implementation space: C code

13/28

Qualities of Linux as a subject of study

• Mature: over 20 years since its first release

• Complex: over 6,000 features

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Contains multiple spaces:

◦ configuration space: Kconfig

◦ compilation space: Makefile

◦ implementation space: C code

13/28

Qualities of Linux as a subject of study

• Mature: over 20 years since its first release

• Complex: over 6,000 features

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Contains multiple spaces:

◦ configuration space: Kconfig

◦ compilation space: Makefile

◦ implementation space: C code

13/28

Qualities of Linux as a subject of study

• Mature: over 20 years since its first release

• Complex: over 6,000 features

• Changes are kept in a publicly available SCM Repository (git)

• Continuous development

• Contains multiple spaces:

◦ configuration space: Kconfig

◦ compilation space: Makefile

◦ implementation space: C code

13/28

Variability evolution patterns
from Linux

14/28

Data collection & Analysis

• Data collection is limited to three pairs of stable kernel releases in
x86 64

• For each pair, we considered only the features that disappeared
from the configuration space

• Manual analysis of 140 removals from a total of 220 (63%)

15/28

Infrastructure

• Extraction and reuse of Kconfig parsing infrastructure from Linux
itself

◦ allow us to compute disappearing features among each release kernel

• Conversion of Linux patches from git into a relational database

◦ allow us to quickly identify which commit erases a feature from the
configuration space

• git log + gitk, grep: visualize and search logs

16/28

Extracting patterns is hard!

Difficulties in analyzing patches when collecting patterns:

• unrelated changes (noise)

• technical comments (too much jargon)

• extensive set of changes

• everything is recorded in the SCM as addition/removal of lines
(too low level)

17/28

Four identified patterns

• Optional feature to implicit mandatory

• Computed attributed feature to code

• Merge features by module aliasing

• Optional feature to kernel parameter

Template: structure, instance and discussion

18/28

Four identified patterns

• Optional feature to implicit mandatory

• Computed attributed feature to code

• Merge features by module aliasing

• Optional feature to kernel parameter

Template: structure, instance and discussion

18/28

Optional feature to implicit
mandatory

19/28

Structure & Instance

Y
... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC

(Before)

... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC[X\Y]

#ifdef X

if X,

(After)

Instance: X = OCFS, Y= OCFS Access Control List

20/28

Structure & Instance

Y
... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC

(Before)

... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC[X\Y]

#ifdef X

if X,

(After)

Instance: X = OCFS, Y= OCFS Access Control List

20/28

Structure & Instance

Y
... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC

(Before)

... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC[X\Y]

#ifdef X

if X,

(After)

Instance: X = OCFS, Y= OCFS Access Control List

20/28

Structure & Instance

Y
... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC

(Before)

... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC[X\Y]

#ifdef X

if X,

(After)

Instance: X = OCFS, Y= OCFS Access Control List

20/28

Structure & Instance

Y
... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC

(Before)

... ...

X

if Y,
 compile Y.c into Y.o
 compile X.c into X.c

Y.c #ifdef Y
 ...
#endif

CTC[X\Y]

#ifdef X

if X,

(After)

Instance: X = OCFS, Y= OCFS Access Control List

20/28

Discussion

Pattern should be used when:

• users should not be given the freedom to configure Y

◦ e.g.: they may inadvertly forget to select it, as in Access Control List
(Y)

• Y is a critical feature that makes sense to exist in the software,
given the presence of its parent X

21/28

Our patterns have direct
implications. . .

22/28

Direct implications

• Existing evolution studies (She et al. at Vamos’10, Lotufo et. al.
at SPLC’10) focus on the variability model alone: our patterns
show that features can be erased from the configuration space,
while still present in the implementation space

• Our patterns capture situations not covered by the existing SPL
evolution theory (Borba et al. at ITAC’10)

◦ compatibility of product is not guaranteed (evolution is not safe)

23/28

Conclusions

24/28

Conclusions

• Evolution must focus on all spaces

• We presented 4 patterns extracted from Linux

• Our patterns explain the evolution of features removed from the
configuration space

• They show evolution steps not captured in previous studies (both
theoretical and empirical).

25/28

Future work

26/28

Future work

• Collect patterns not restricted to removals

• Measure frequency

• Study other systems

27/28

Thanks for listening!

28/28

	Variability evolution patterns from Linux
	Conclusions
	Future work

