
1

“We move our attention from solving low-level, algorithmic problems, to the large scale
software systems running in enterprises”

Reference http://pubs.opengroup.org/architecture/togaf9-doc/arch/
TOGAF is an international standard for enterprise architecture.

“What is an enterprise? What is enterprise architecture?
TOGAF defines "enterprise" as any collection of organizations that has a common set of goals.
For example, an enterprise could be a government agency, a whole corporation, a division of
a corporation, a single department, or a chain of geographically distant organizations linked
together by common ownership.
The term "enterprise" in the context of "enterprise architecture" can be used to denote both
an entire enterprise - encompassing all of its information and technology services, processes,
and infrastructure - and a specific domain within the enterprise. In both cases, the
architecture crosses multiple systems, and multiple functional groups within the enterprise.
Confusion often arises from the evolving nature of the term "enterprise". An extended
enterprise nowadays frequently includes partners, suppliers, and customers. If the goal is to
integrate an extended enterprise, then the enterprise comprises the partners, suppliers, and
customers, as well as internal business units.
The business operating model concept is useful to determine the nature and scope of the
enterprise architecture within an organization. Large corporations and government agencies
may comprise multiple enterprises, and may develop and maintain a number of independent
enterprise architectures to address each one. However, there is often much in common
about the information systems in each enterprise, and there is usually great potential for gain
in the use of a common architecture framework. For example, a common framework can
provide a basis for the development of an Architecture Repository for the integration and re-
use of models, designs, and baseline data. “

What is service-oriented architecture?

It is a set of architectural principles postulating that instead of building traditional, monolithic
applications, enterprise software systems should be organized into a reusable software
services with clearly defined interfaces and functions. Such software services are accessible
over a standard protocol and can be used by other applications/services.

2

“Divide & Conquer is a standard principle for addressing complexity of any kind.

In software design, it means that in order to successfully build a large system, it first
needs to be broken down into modules that can be independently developed and
easily integrated.

Traditionally, a module is a part of the software that can be assigned to a single team
for development.

But there are many ways in which the big system can be divided. What is a good
way?”

3

“High cohesion & low coupling are standard software design principles saying that a
good module is cohesive, that is, composed of closely interrelated elements (e.g.,
classes) and that modules should be loosely coupled, that is, the dependencies
among the modules should be minimized.

Figure: “The orange boxes represent elements of the module and the dashed arrows
represent dependencies. As can be seen there are many dependencies among the
elements of the module but just a single dependency between the modules.”

Background: what is a “dependency”?

In software design, dependency means that one element needs to rely on some
functionality provided by another element. The elements can be of different kinds:
1) Procedures that depend on other procedures for some computation,
2) Classes that depend on other classes by using them as types of fields, invoking

methods, accessing fields,
3) Modules that depend on other modules by accessing some internal elements via

the module interface,
4) Applications that depend on certain technologies or other applications by

accessing data/functions/exchanging files/etc.

How to best achieve high cohesion and low coupling in the context of the
enterprise?”

4

At the enterprise level, one way is to align the modules to business services.

For example...

When we do that... <next slide>

5

Go through the definition.

This help achieving an important goal of the enterprises: “improve business agility”
that is supported by a strategy “achieve business-IT alignment”.

Background:
1) business agility is the ability of the business to quickly react to the ever changing

market and take advantage of arising opportunities. Example follows.
2) business-IT alignment is recognized by industry as a key strategy for enabling

business agility. Alignment means that there is a clear correspondence between
business services and processes and software systems that support them.

6

7

An enterprise architect can create such a diagram to explain how business and
software services of the bank and the credit rating agency interact. The “uses” and
“supported by” are dependencies. The dashed boxes represent organization unit
boundaries.

It is a contrived example but is shows the main principle of business services being
supported by software services that can have arbitrary structure and dependencies.
In this example, since client information management is a shared it has been
modularized into a separate software service.

The example also illustrates the idea of SaaS – Software as a Service – the credit
agency does not physically sell its software but rather provides a service based on
software that banks can access for a fee.

8

Let’s say that a new market opportunity arises – car loans. How can an enterprise
quickly respond to such an opportunity?

9

The architect evolves the architecture by adding new business and software services
and showing their dependencies. As you can see (despite the contrived example), the
business can quickly design a new solution, minimize required work by reusing
existing services and developing only the truly new functionality. Traditionally, this
has not been the case and the duplication of data and similar functionalities was (and
still is in legacy systems) causing many problems.

Of course, evolution of such a service-oriented architecture poses other specific
challenges but given specific principles it becomes more engineering than art as
previously.

10

11

<This slide could be removed as it introduces more problems than benefits. For
example, students were asking for examples of how a protocol or process models
look like. That is outside of the scope and causes unnecessary confusion. Indeed the
technical space is confusing even to professional software engineers.>

12

13

The two tools implement the standard pipe & filter architecture. We have four kinds
of elements: ...

14

15

<That’s runtime>

The players provide their bets.

16

Results of running the pipe.

17

Design of the pipe.

Top row we have data sources: text inputs and a fetch feed that calls the top 25 web
service.

The filter “Split” creates two identical copies of the data feed.

For each player, the data feed is filtered by permitting only items that contain the
provided bet in the ‘item.title’ field.

The filter “Count” outputs a singe number – the number of items from the previous
filter.

The filter “RSS item builder” creates a new item with the given description and the
count plugged into the field title. <see Title: text [wired] – that means the value of
this field comes from a pipe coming from the filter “count”>

The filter “Union” combines the two RSS items for each player into a single feed.

The filter “Sort” sorts the feed by item.title in descending order (the item for the
player with the biggest count will be first).

The filter “Truncate” cuts everything except the first item.

Finally, the data sink “Pipe Output” consumes the single item of the player who is the
winner.

18

We observe that the part for each player is identical and therefore can be extracted
into a separate, reusable module.

It will allow building games with more players without duplicating the code. In this
example, we create a game for three players and reuse the module three times.

19

<runtime>

20

This is the extracted Player module. As compared to the previous design, the module
has an additional data source: a text input for providing player’s name/label.

21

This is the main code for the game. It has three data sources for providing player’s
bets.

Below, we can see the three invocations of the player module. Each invocation is
configured with a player name/label (Player 1, 2, 3). The remainder of the pipe is the
same.

22

Another example was done using Tarpipe.

Tarpipe offers a very large number of connectors for most popular web services. In
this example, we create a workflow which automatically adds a bookmark in Diigo
from information provided in an email.

The data source “Mail decoder” receives an email sent to a predefined address and
extracts ‘from’, ‘subject’, and ‘body’ fields.

The filter “Diigo” invokes the Diigo web service and creates a bookmark with the
information from the email. The filter then outputs a ‘bookmark Url’.

Finally, the data sink “Mailer” emails back the ‘bookmark Url” as the body of an email
to the original sender.

Tarpipe workflows can also be started when another service publishes new
information such as “a new RSS item” in a feed.

23

This is a very interesting 3rd party example.

<The link is to the YouTube video>

24

Programmable Web is a tremendous resource featuring thousands of published web
services (referred to as APIs (Application Programming Interfaces)) and thousands of
web mashups.

25

<Idea: should we perhaps have some homework assignment to create a mashup?>

26

