Software Services

By Michat Antkiewicz
http://gsd.uwaterloo.ca/mantkiew

@ WCI CS Club

Context

* Software Engineering
— Methods and processes of software development
Evolving enterprise software ecosystem
— Hundreds of systems, systems of systems

— Enable “business agility”: the ability to rapidly
respond to the ever-changing market

* Service-Oriented Architecture
— Break monolithic systems into software services

2SS Y2@0S 2 cﬂszsd)I\Amg IS e agwlthmlc problems to the large scale
a2F06I NS aeadsSya NizyyAy3d Ay SyYyGSNIINR&aSaé

Reference http://pubs.opengroup.org/architecture/togatibc/arch/
TOGAF is an international standard for enterprise architecture.

G2 KFEG A& 'y SydSNLINAAaSK 2 KFG Aa SYGSNLINRAS
TOGAF defines "enterprise" as any collection of organizations that has a common set of goals.
For example, an enterprise could be a government agency, a whole corporation, a division of
a corporation, a single department, or a chain of geographically distant organizations linked
together by common ownership.

The term "enterprise"” in the context of "enterprise architecture” can be used to denote both

an entire enterprise encompassing all of its information and technology services, processes,
and infrastructure and a specific domain within the enterprise. In both cases, the

architecture crosses multiple systems, and multiple functional groups within the enterprise.
Confusion often arises from the evolving nature of the term "enterprise". An extended
enterprise nowadays frequently includes partners, suppliers, and customers. If the goal is to
integrate an extended enterprise, then the enterprise comprises the partners, suppliers, and
customers, as well as internal business units.

The business operating model concept is useful to determine the nature and scope of the
enterprise architecture within an organization. Large corporations and government agencies
may comprise multiple enterprises, and may develop and maintain a number of independent
enterprise architectures to address each one. However, there is often much in common

about the information systems in each enterprise, and there is usually great potential for gain
in the use of a common architecture framework. For example, a common framework can
provide a basis for the development of an Architecture Repgsitory for the integration and re
dzaS 2F Y2RSfta>X RSaAdyas yR o0lFaStAyS RIFEGE® d

What is servic@riented architecture?

Itis a set of architectural principles postulating that instead of building traditional, monolithic
applications, enterprise software systems should be organized into a reusable software
services with clearly defined interfaces and functions. Such software services are accessible
over a standard protocol and can be used by other applications/services.

Divide & Conquer
* Break the system into modules that can be

— Independently developed
— Easily integrated

* What’s a good way to divide a big system?

G5ABARS 9 /2yl dzS NI ddressingcémplgxityofeRy kindNA y O A LI

In software design, it means that in order to successfully build a large system, it first
needs to be broken down into modules that can be independently developed and
easily integrated.

Traditionally, a module is a part of the software that can be assigned to a single team
for development.

But there are many ways in which the big system can be divided. What is a good
gl e KE

High Cohesion & Low Coupling

» Standard software design principle
— Closely related elements form a cohesive module

— Loosely-coupled modules enable interoperability
and reuse

module

* How to do it in the context of an enterprise?

a | Acé@hKsion & low coupling are standard software design principles saying that a
good module is cohesive, that is, composed of closely interrelated elements (e.qg.,
classes) and that modules should be loosely coupled, that is, the dependencies
among the modules should be minimized.

CAIdzNBY a¢KS 2Nry3aS 62ESa NBLINBaSyd StSy
represent dependencies. As can be seen there are many dependencies among the A
St Sysyua 2F¥ UKS Y2RdA S o0dzui 2dzad | aAy3ats

. O13INRdzyRY ¢KIFG A& | aRSLISYRSyOe&é¢K

In software design, dependency means that one element needs to rely on some

functionality provided by another element. The elements can be of different kinds:

1) Procedures that depend on other procedures for some computation,

2) Classes that depend on other classes by using them as types of fields, invoking
methods, accessing fields,

3) Modules that depend on other modules by accessing some internal elements via
the module interface,

4) Applications that depend on certain technologies or other applications by
accessing data/functions/exchanging files/etc.

How to best achieve high cohesion and low coupling in the context of the
SYUSNLINRAR &aSKE

Align the modules to business services

* Business services are what enterprises provide

* For example, a bank provides
— Chequing accounts
— Credit cards

At the enterprise levelpne way is to align the modules to business services.
For example...

When we do that... <next slide>

Align the modules to business services

* Modules become software services

— “A software service is a coarse-grained,
discoverable, and self-contained software entity
that interacts with applications and other services
through a loosely coupled, often asynchronous,
message-based communication model [BJK02].”

* Goal: “Achieve business-IT alignment” to
improve business agility

[BIKO2] A. Brown, S. Johnston, and K. Kelly. Using Service-Oriented Architecture and Component-Based
Development to Build Web Service Applications. Cupertino, CA: Rational Software Corporation. 2002

Go throughthe definition.

y3a Iy AYLRZNIFyYyOG 32Kt 27

¢tKAa KSfLI I OK
A& 08 -LIt &dMIFAYYDBY (¢ OKA SO

ASQD
0K G a dzLJLJ2 NI S

A

R

Background:

1) business agility is the ability of the business to quickly react to the ever changing
market and take advantage of arising opportunities. Example follows.

2) businesdT alignment is recognized by industry as a key strategy for enabling

business agility. Alignment means that there is a clear correspondence between
business services and processes and software systems that support them.

Example: a Bank

* Business services of the bank are supported by
software services:
— Chequing account management
— Credit card account management
— Client information management

* Business and software services of a credit rating
agency that are used by the bank:
— Provide credit rating
— Credit rating management

Enterprise Architecture (i)

——————————————————— A —_—_————————
Organization Unit: I Organization Unit:

I

A Bank | : A Credit Rating Agency
I
|

_uses | | Business Service:
(Provide credit rating [
T

Business Service: Business Service:
| Provide chequing accounts [Provide credit cards |
T T

1 1
"supported by :supported by | |
1
1
| supported by
1
1
management management . !
-~ - I
1

I
"~ .uses - |
-~ _ -~ uses ~. 1

=g 7 |

I

|

|

~ 3
[Software Service:]

Credit rating

I

|

|

|

|

|

|

: v _ ¥ _ |
Software Service: Software Service: |

: [Chequing account] [Credit card account }r\u\m

|

I

|

|

| management

Software Service:
Client information

management

An enterprisearchitect carcreate such a diagrato explain how business and
a2F0o61 NBE aSNBAOSa 2F 0UKS olyl FYR G4KS ON
GadzZI2NIGSR 08¢ | NB RSLISYRSyOASao ¢KS RIa
boundaries.

It is a contrived example but is shows the main principle of business services being
supported by software services that can have arbitrary structure and dependencies.
In this example, since client information management is a shared it has been
modularized into a separate software service.

The example also illustrates the ideaS#aS, Software as a Serviggthe credit
agency does not physically sell its software but rather provides a service based on
software that banks can access for a fee.

Example: Need for Business Agility

New market for car loans

New business service needed
— Provide car loans

New software service needed

— Car loan management

How to quickly respond to the new market?

[SGQa aleée GKFG | ySégcarYdarsJHBvwian anlefitd2pNse dzy A 0 &
quickly respond to such an opportunity?

Thearchitect evolves the architecture by adding new business and software services
and showing their dependencies. As you can see (despite the contrived example), the
business can quickly design a new solution, minimize required work by reusing
existing services and developing only the truly new functionality. Traditionally, this

has not been the case and the duplication of data and similar functionalities was (and
still is in legacy systems) causing many problems.

Of course, evolution of such a servioceented architecture poses other specific
challenges but given specific principles it becomes more engineering than art as
previously.

10

