
1

ά²Ŝ ƳƻǾŜ ƻǳǊ ŀǘǘŜƴǘƛƻƴfrom solving low-level, algorithmic problems, to the large scale
ǎƻŦǘǿŀǊŜ ǎȅǎǘŜƳǎ ǊǳƴƴƛƴƎ ƛƴ ŜƴǘŜǊǇǊƛǎŜǎέ

Reference http://pubs.opengroup.org/architecture/togaf9-doc/arch/
TOGAF is an international standard for enterprise architecture.

ά²Ƙŀǘ ƛǎ ŀƴ ŜƴǘŜǊǇǊƛǎŜΚ ²Ƙŀǘ ƛǎ ŜƴǘŜǊǇǊƛǎŜ ŀǊŎƘƛǘŜŎǘǳǊŜΚ
TOGAF defines "enterprise" as any collection of organizations that has a common set of goals.
For example, an enterprise could be a government agency, a whole corporation, a division of
a corporation, a single department, or a chain of geographically distant organizations linked
together by common ownership.
The term "enterprise" in the context of "enterprise architecture" can be used to denote both
an entire enterprise - encompassing all of its information and technology services, processes,
and infrastructure - and a specific domain within the enterprise. In both cases, the
architecture crosses multiple systems, and multiple functional groups within the enterprise.
Confusion often arises from the evolving nature of the term "enterprise". An extended
enterprise nowadays frequently includes partners, suppliers, and customers. If the goal is to
integrate an extended enterprise, then the enterprise comprises the partners, suppliers, and
customers, as well as internal business units.
The business operating model concept is useful to determine the nature and scope of the
enterprise architecture within an organization. Large corporations and government agencies
may comprise multiple enterprises, and may develop and maintain a number of independent
enterprise architectures to address each one. However, there is often much in common
about the information systems in each enterprise, and there is usually great potential for gain
in the use of a common architecture framework. For example, a common framework can
provide a basis for the development of an Architecture Repository for the integration and re-
ǳǎŜ ƻŦ ƳƻŘŜƭǎΣ ŘŜǎƛƎƴǎΣ ŀƴŘ ōŀǎŜƭƛƴŜ ŘŀǘŀΦ ά

What is service-oriented architecture?

It is a set of architectural principles postulating that instead of building traditional, monolithic
applications, enterprise software systems should be organized into a reusable software
services with clearly defined interfaces and functions. Such software services are accessible
over a standard protocol and can be used by other applications/services.

2

ά5ƛǾƛŘŜ ϧ /ƻƴǉǳŜǊ ƛǎ ŀ ǎǘŀƴŘŀǊŘ ǇǊƛƴŎƛǇƭŜ ŦƻǊaddressing complexity of any kind.

In software design, it means that in order to successfully build a large system, it first
needs to be broken down into modules that can be independently developed and
easily integrated.

Traditionally, a module is a part of the software that can be assigned to a single team
for development.

But there are many ways in which the big system can be divided. What is a good
ǿŀȅΚέ

3

άIƛƎƘcohesion & low coupling are standard software design principles saying that a
good module is cohesive, that is, composed of closely interrelated elements (e.g.,
classes) and that modules should be loosely coupled, that is, the dependencies
among the modules should be minimized.

CƛƎǳǊŜΥ ά¢ƘŜ ƻǊŀƴƎŜ ōƻȄŜǎ ǊŜǇǊŜǎŜƴǘ ŜƭŜƳŜƴǘǎ ƻŦ ǘƘŜ ƳƻŘǳƭŜ ŀƴŘ ǘƘŜ ŘŀǎƘŜŘ ŀǊǊƻǿǎ
represent dependencies. As can be seen there are many dependencies among the
ŜƭŜƳŜƴǘǎ ƻŦ ǘƘŜ ƳƻŘǳƭŜ ōǳǘ Ƨǳǎǘ ŀ ǎƛƴƎƭŜ ŘŜǇŜƴŘŜƴŎȅ ōŜǘǿŜŜƴ ǘƘŜ ƳƻŘǳƭŜǎΦέ

.ŀŎƪƎǊƻǳƴŘΥ ǿƘŀǘ ƛǎ ŀ άŘŜǇŜƴŘŜƴŎȅέΚ

In software design, dependency means that one element needs to rely on some
functionality provided by another element. The elements can be of different kinds:
1) Procedures that depend on other procedures for some computation,
2) Classes that depend on other classes by using them as types of fields, invoking

methods, accessing fields,
3) Modules that depend on other modules by accessing some internal elements via

the module interface,
4) Applications that depend on certain technologies or other applications by

accessing data/functions/exchanging files/etc.

How to best achieve high cohesion and low coupling in the context of the
ŜƴǘŜǊǇǊƛǎŜΚέ

4

At the enterprise level,one way is to align the modules to business services.

For example...

When we do that... <next slide>

5

Go throughthe definition.

¢Ƙƛǎ ƘŜƭǇ ŀŎƘƛŜǾƛƴƎ ŀƴ ƛƳǇƻǊǘŀƴǘ Ǝƻŀƭ ƻŦ ǘƘŜ ŜƴǘŜǊǇǊƛǎŜǎΥ άƛƳǇǊƻǾŜ ōǳǎƛƴŜǎǎ ŀƎƛƭƛǘȅέ
ǘƘŀǘ ƛǎ ǎǳǇǇƻǊǘŜŘ ōȅ ŀ ǎǘǊŀǘŜƎȅ άŀŎƘƛŜǾŜ ōǳǎƛƴŜǎǎ-L¢ ŀƭƛƎƴƳŜƴǘέΦ

Background:
1) business agility is the ability of the business to quickly react to the ever changing

market and take advantage of arising opportunities. Example follows.
2) business-IT alignment is recognized by industry as a key strategy for enabling

business agility. Alignment means that there is a clear correspondence between
business services and processes and software systems that support them.

6

7

An enterprisearchitect can create such a diagramto explain how business and
ǎƻŦǘǿŀǊŜ ǎŜǊǾƛŎŜǎ ƻŦ ǘƘŜ ōŀƴƪ ŀƴŘ ǘƘŜ ŎǊŜŘƛǘ ǊŀǘƛƴƎ ŀƎŜƴŎȅ ƛƴǘŜǊŀŎǘΦ ¢ƘŜ άǳǎŜǎέ ŀƴŘ
άǎǳǇǇƻǊǘŜŘ ōȅέ ŀǊŜ ŘŜǇŜƴŘŜƴŎƛŜǎΦ ¢ƘŜ ŘŀǎƘŜŘ ōƻȄŜǎ ǊŜǇǊŜǎŜƴǘ ƻǊƎŀƴƛȊŀǘƛƻƴ ǳƴƛǘ
boundaries.

It is a contrived example but is shows the main principle of business services being
supported by software services that can have arbitrary structure and dependencies.
In this example, since client information management is a shared it has been
modularized into a separate software service.

The example also illustrates the idea of SaaSςSoftware as a Service ςthe credit
agency does not physically sell its software but rather provides a service based on
software that banks can access for a fee.

8

[ŜǘΩǎ ǎŀȅ ǘƘŀǘ ŀ ƴŜǿ ƳŀǊƪŜǘ ƻǇǇƻǊǘǳƴƛǘȅ ŀǊƛǎŜǎ ςcar loans. Howcan an enterprise
quickly respond to such an opportunity?

9

Thearchitect evolves the architecture by adding new business and software services
and showing their dependencies. As you can see (despite the contrived example), the
business can quickly design a new solution, minimize required work by reusing
existing services and developing only the truly new functionality. Traditionally, this
has not been the case and the duplication of data and similar functionalities was (and
still is in legacy systems) causing many problems.

Of course, evolution of such a service-oriented architecture poses other specific
challenges but given specific principles it becomes more engineering than art as
previously.

10

