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Abstract We propose using framework-specific models
to support the development of framework-based appli-
cations. Such models describe how framework-provided
abstractions are used or implemented in the applica-
tion code. Framework-specific models are expressed us-

tion. A framework provides a set of abstractions, referred
to as framework-provided concepts. Instances of the con-
cepts may be completely or partially implemented in the
framework and it is application’s responsibility to cor-
rectly use the ready-to-use concept instances and cor-

ing framework-specific modeling languages (FSMLs), which rectly implement the missing parts of the partially im-

capture framework abstractions as language concepts. In
this paper, we present a concrete approach to defining
the abstract syntax and semantics of FSMLs which en-
ables round-trip engineering. We apply the approach to
three existing frameworks, namely Java Applet, Apache
Struts, and Eclipse Workbench, showing that the frame-
work abstractions and usage rules can be adequately cap-
tured. We also present a set of algorithms to support
round-trip engineering and a generic FSML framework,
which we used to implement the sample FSMLs.

Keywords object-oriented frameworks - framework-
specific model - framework-specific modeling languages -
model-supported engineering - framework completion -
round-trip engineering

1 Introduction

Object-oriented application frameworks are one of the
most effective and widely used software reuse technolo-
gies today. The creation of framework-based applications
is often called framework completion. The resulting frame-
work completion code implements the difference in func-
tionality between the framework and the desired applica-
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plemented instances. Often, a framework only provides
an interface for a concept and no instance implemen-
tation. In this case, the instance has to be completely
implemented in the application and correctly interfaced
with the framework. The framework’s application pro-
gramming interface (API) specifies the usage and the
implementation rules for the concepts. A given concept
instance is correctly implemented or used if the comple-
tion code conforms to the framework’s API.
Unfortunately, framework completion can be chal-
lenging. The application programmers need to know which
concept instances are ready-to-use and which instances
need to be or can be implemented. When implementing
concept instances, the programmers need to know what
are the necessary and optional implementation tasks,
and which implementation options are compatibile. They
need to maintain the consistency among, potentially, many
different kinds of artifacts, such as Java classes, XML
configuration files, and Java Server Pages (JSPs), which
constitute the completion code. When looking at the
completion code, the developers need to distinguish be-
tween fragments of code that implement application-spe-
cific functionality from the fragments that use the frame-
work. Recognizing concept instances in the code is chal-
lenging since some instances, such as collaborations among
objects, are usually scattered across the completion code.
We can characterize the process of framework com-
pletion as two, interleaving activities: concept configura-
tion and open-ended programming with restrictions. Con-
cept configuration is deciding which and how many in-
stances of framework-provided concepts are to be created
and deciding among framework-stipulated implementa-
tion choices for every concept instance. Open-ended pro-
gramming is implementing application-specific function-
ality that goes beyond the predefined implementation
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Fig. 1 Overview of model-supported engineering of framework-based applications using FSMLs

steps and choices provided by the framework. Open-ended
programming is restricted in the sense that it must not
violate the framework’s rules of engagement.

Traditionally, both activities are performed by appli-
cation developers directly in the code. Concept config-
uration is performed implicitly, code implementing con-
cept instances is created manually, and the rationale for
choosing particular implementation options is often lost.
In this paper, we propose using framework-specific mod-
els to support the development of framework-based ap-
plications and we present a concrete approach for build-
ing framework-specific modeling languages (FSMLs) that
can be used for expressing such models. We validate
the approach by designing three FSMLs, each for one
of the open-source frameworks. We show that the con-
cepts can be adequately captured using the presented
approach. We propose using round-trip engineering to
keep the models and the code consistent thoughout the
development. We present generic algorithms for reverse-,
forward-, and round-trip engineering that interpret the
metamodels of the FSMLs. To validate the algorithms
we implemented them as a part of a generic paltform
for building FSMLs and we have built prototype imple-
mentations of the three FSMLs on top of the platform.
Finally, we used the prototypes to conduct experiments
to validate the effectiveness of reverse- and round-trip
engineering using FSMLs.

The rest of the paper is organized as follows. In Sec-
tion 2 we present an overview of model-supported engi-
neering of framework-based applications. Next, in Sec-
tion 3 we present a concrete approach to defining model-
ing languages for expressing framework-specific models.
We present the validation of the approach in Section 4,
in which we present the metamodels of three FSMLs de-
signed for three open-source frameworks. In Sections 5,
6, and 7 we present algorithms for reverse-, forward-,

and round-trip engineering, respectively. We describe a
generic platform for building FSMLs in Section 8, which
implements the abovementioned algorithms and which
was used for building prototype implementations of the
three example FSMLs. We conclude with related work
in Section 9 and discussion in Section 10.

2 Model-Supported Engineering of
Framework-Based Applications

Figure 1 presents an overview of model-supported engi-
neering of framework-based applications, which is an ex-
tension of traditional, code-centric engineering. In this
development model, application developers still perform
open-ended programming and concept configuration man-
ually. However, they now have an option of perform-
ing explicit concept configuration, in which they build
a framework-specific model by creating instances of the
concepts. The model describes the design of the appli-
cation from the framework viewpoint and contains con-
figurations of concept instances. The model can describe
both the current state of the code, the design yet to
be implemented, or the original design for the previous
state of the code. Since both the model and the code can
be developed independently, the developers can perform
round-trip engineering to synchronize them. In round-
trip engineering, the current model and the current code
are first compared to identify the changes that occurred
since the last time they were synchronized. Next, the
model and the code are reconciled by propagating changes
according to developer’s decisions. Round-trip engineer-
ing propagates changes in both directions and also allows
for the creation of a new framework-specific model from
the existing code (reverse engineering) and the creation
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of the new code from the existing model (forward engi-
neering).

Framework-specific models are expressed using FSMLs,

that is, the models conform to the metamodels of the
FSMLs. The metamodel of an FSML is needed for the
concept configuration and the round-trip engineering.

Designing FSMLs is a manual and creative activ-
ity. An FSML is a domain-specific modeling language [8]
designed for an area of concern of an object-oriented
application framework. FSML developer performs do-
main analysis to identify framework-provided concepts.
To that end, he analyses the framework itself, all avail-
able documentation, and existing applications that use
the framework. He may also draw from his own expe-
rience in building applications that use the framework.
Note, that the FSML developer need not to be a frame-
work developer.

In model-supported engineering and unlike in model-
driven engineering, framework-specific models are aux-
iliary development artifacts, which enables easy adop-
tion of the approach. The models can be automatically
retrieved from the existing code and they can provide
additional benefits in subsequent development, such as
providing the overview of the application from the frame-
work’s viewpoint and checking the conformance of the
code to the framework’s API. Additionally, the FSMLs
can be developed incrementally by gradually extending
them with new concepts and implementation options.

Next, we present a concrete approach to defining ab-
stract syntax and semantics of FSMLs with support for
round-trip engineering.

3 Defining Framework-Specific Modeling
Languages

A framework-specific modeling language (FSML) is a do-
main-specific modeling language [8] that is designed for
a specific framework, called its base framework. The ab-
stract syntax of an FSML should capture base frame-
work’s concepts and allow concept configuration. The
semantics of an FSML should enable round-trip engi-
neering.

3.1 Constituent parts of an FSML

Abstract syntax. An FSML explicitly captures frame-
work-provided concepts as language concepts in its ab-
stract syntax. Abstract syntax defines a decomposition
of a concept into a hierarchy of features. Features are dis-
tinguishing characteristics of a concept and allow to tell
among the instances of the concept. Models expressed
using an FSML are sets of concept instances, where each
concept instance is characterized by a configuration (se-
lection) of feature instances. We often refer to feature
instances simply as features.

In the feature hierarchy, features can be essential,
mandatory, and optional with respect to the parent fea-
ture. In a feature configuration, an essential feature must
be present if its parent feature is present; a mandatory
feature should be present if its parent feature is present;
and an optional feature may be present if its parent fea-
ture is present. Essential features are also mandatory;
however, the difference between the two is that a fea-
ture whose essential subfeature is absent cannot exist,
whereas a feature whose mandatory subfeature is absent
can exists, but is considered to have a configuration er-
ror. Presence of all essential features can be thought of as
the necessary and sufficient condition on the presence of
their parent feature. The distinction between the manda-
tory and essential features is important for the ability of
the model to capture broken concept instances. The es-
sential features encode the absolute minimum that the
implementation of the concept instance must contain in
order for the instance to be considered present.

The decomposition of a concept into features may
also include additional well-formedness constraints, such
as a feature requiring or excluding another feature. Fur-
thermore, features can be grouped and assigned a group
cardinality, which is an interval specifying how many fea-
tures from the group have to be present in a configura-
tion. A feature may have a type meaning that a value
of that type can be associated with the feature in the
configuration.

For example, the upper left part of Fig. 2 presents a
decomposition of a concept of Applet into features. The
feature extendsApplet is essential. The feature registers is
mandatory. The feature listensToMouse is optional, and
the feature showsStatus is optional and multiple. The
lower left part of Fig. 2 presents a framework-specific
model, which is a configuration of the concept Applet.
The feature extendsApplet is present in the configuration
and the features extendsJApplet and registers are absent
from the configuration. The absence of the mandatory
feature registers indicates an error in the configuration
of its parent feature listensToMouse and, consequently,
the instance of the concept Applet. Two instances of the
feature showsStatus are also present. The features name
and message have concrete values.

Mapping of the abstract syntax to the frame-
work API. Features in a framework-specific model rep-
resent patterns in the artifacts of framework completion
code (referred to as artifact or code patterns) that con-
stitute the implementation of the model. Because frame-
work completion code may consist of multiple artifacts
of different kinds, features of a single concept may cor-
respond to patterns scattered across multiple artifacts.
Features may also represent certain abstractions or se-
mantic facts about the code, in which cases the features
may not correspond to any artifact patterns directly.

The lower part of Fig. 2 presents correspondence links
between the features from the model and artifact pat-
terns, which are Java abstract syntax tree (AST) nodes.
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Fig. 2 Abstract syntax, mapping, model, and artifact

The concept instance Applet corresponds to the instance
of class. The feature extendsApplet corresponds to the
super class declaration super of the class. The feature
listensToMouse does not correspond to any artifact ele-
ment. The two instances of the feature showsStatus cor-
respond to two method call elements. The two instances
of the feature message correspond to the values of the
method call arguments “starting...” and “loading. .. ",
respectively.

The mapping of the abstract syntax to the frame-
work API defines how concept instances and their fea-
tures correspond to the artifact patterns in the frame-
work completion code. A feature can be associated with
a mapping definition, or simply a mapping, which is a
pattern expression specifying the number and kind of
patterns that the feature can correspond to. Each map-
ping has a predefined correspondence type, i.e., the type
of corresponding artifact elements. A mapping can also
be parametrized. In the upper part of Fig. 2, mappings
are attached to features and mapping parameters are
specified after a colon (:). For example, the mapping
class attached to the concept Applet specifies that in-

stances of the concept correspond to classes. The map-
ping methodCalls: showStatus attached to the feature
showsStatus specifies that instances of the feature corre-
spond to calls to the method showStatus. The mapping
methodCalls: addMouseListener attached to the feature
registers specifies that an instance of the feature corre-
sponds to a set of method calls. The multiplicity of a
feature determines the interpretation of the correspon-
dence. The mandatory feature registers is present if the
set of corresponding method calls is non-empty. The ab-
sence of the feature specifies that the set of corresponding
method calls should be empty.

The mapping of abstract syntax to framework API
can be realized by code queries and code transforma-
tions. A code query determines the presence or value
of a feature in the completion code. A code transfor-
mation creates, updates, and removes elements of the
completion code that constitute the implementation of a
feature. The mapping enables automated round-trip en-
gineering, where the code can be created from the model,
the model from the code, and changes made to the code
and the model can be identified and reconciled.
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Both the code queries and code transformations re-
quire a certain scope in which they operate. For example,
a mapping methodCalls: addMouseListener can be real-
ized by a code query that locates method calls in the
body of a class, in the body of a single method, or in
the control flow of a single method. Depending on which
type of query is used, a different search scope may be re-
quired, such as a class or a method. In this paper, we refer
to the scope in which a code query or a code transfor-
mation operates as context element. Examples of context
elements include Java class, method call, method, field, or
XML element. The context element required by a map-
ping attached to a feature can be obtained by locating
the closest parent of the feature that corresponds to the
artifact element of the required type. Such a parent is
referred to as context feature for the mapping. Context
elements can be a) containers of elements that subfea-
tures correspond to, b) sources of property values that
subfeatures correspond to, or ¢) sources of semantic facts
that subfeatures correspond to.

For example, in the top of Fig. 2, the concept Ap-
plet is a context feature for those of its subfeatures,
whose mappings require a Java class as a context, such
as the mapping fullyQualifiedName attached to the fea-
ture name. The mapping methodCalls attached to the
features showsStatus and registers requires a Java class
or a method as context. In our example, the concept
Applet provides the context Java class. The mapping ar-
gument Value attached to the feature message requires a
method call as context, which is provided by the feature
showsStatus in our example.

Using the mapping in forward and reverse en-
gineering. We illustrate forward and reverse engineer-
ing using example from Fig. 2. Assume that the model
for the instance of the concept Applet is given and the
completion code elements do not exist. Also, assume that
the feature registers is present in the model. First, a
code transformation creates a class that the applet cor-
responds to. The name of the class is set based on the
feature name, and the super class is set based on the
feature extendsClass. The implementation for the fea-
ture listensToMouse is created indirectly by the code
transformations for the features implementsMouseLis-
tener and registers (assuming its existence). Next, the
code transformation for the the feature showsStatus cre-
ates two method calls for the two instances of the feature.
For each method call, the value of the first argument is
set to the value of the features message. Code trans-
formations may require additional parameters, such as
default locations of method calls, which need to be spec-
ified in the mapping or obtained interactively from the
user.

Now, assume that the model does not exist and the
completion code is given. Unlike forward engineering,
which is driven by the model, reverse engineering is driven
by the abstract syntax because the model does not yet
exist. The goal of reverse engineering is to identify in-

stances of the concept Applet that are implemented in
the code. The mapping class specifies that instances of
Applet correspond to Java classes. In order to find out,
which classes could be potential applets, the essential fea-
ture extendsApplet is used to form a query. The query
finds all subclasses of the class java.applet. Applet. An in-
stance of Applet is created for each subclass. Next, the
code query for the feature extendsJApplet determines
that the context Java class does not extend the class
javax.swing.JApplet and an instance of the feature is not
created. The value of the feature name is set to the fully
qualified name of the context class. The feature listen-
sToMouse does not have any mapping attached to it,
and therefore, during reverse engineering, we assume the
presence of the instance of the feature. We then pro-
ceed with analysis to determine whether all the essen-
tial subfeatures of the instance are present. The code
query for the feature implementsMouseListener deter-
mines that the context class implements the interface
MouseListener and an instance of the feature is created.
If the context Java class did not implement the inter-
face MouseListener, the assumed instance of the feature
listensToMouse would be removed because implements-
MouseListener is an essential subfeature of listensTo-
Mouse. The code query for the feature registers does not
find any method calls to addMouseListener method in
the context class and an instance of the feature is not cre-
ated. The missing mandatory feature indicates that the
applet is implemented incorrectly. Next, the code query
for the feature showsStatus locates two method calls to
showStatus and two instances of the feature are created.
For each instance of the feature showsStatus, the code
query for the feature message retrieves the value of the
first argument of the context method call and sets the
value of the feature.

Reverse, forward, and round-trip engineering are de-
scribed in detail in Sections 5, 6, and 7, respectively.

To summarize, the abstract syntax encodes all valid
ways of configuring features, which, through the map-
ping, define all valid ways of implementing framework-
provided concepts.

Concrete syntax. The concrete syntax may offer
specialized rendering of the models to enhance their com-
prehension. In particular, concrete syntax may offer dif-
ferent decomposition of features than the abstract syntax
and provide better navigation between features.

3.2 FSMLs address the challenges of framework
completion

An FSML with round-trip engineering support addresses
the challenges from the previous section.

Knowing how to complete a framework. The
creation of a model consists of the creation of concept
instances and configuring them by selecting or elimi-
nating features and providing attribute values. Concept
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configuration is controlled by the abstract syntax and
well-formedness constraints, thus guiding the developer
in making correct configuration choices.

Code transformations can locate the places where
the code implementing a concept instance should be in-
serted in the completion code. The transformations are
executed for a correct concept configuration and, there-
fore, produce completion code that satisfies the frame-
work rules. A developer can review the changes made
by the transformations and learn how to complete the
framework.

In the case where the completion code has already
been created for a concept instance, changing the con-
figuration of the concept by adding or removing features
and modifying attribute values may require updating the
completion code by code transformation and subsequent
adjustments by the developer.

Obtaining an overview of a framework-based
application. Reverse engineering can identify instances
of concepts implemented in the code. The identified in-
stances can be presented to the developer in a form of
a model, which is, in fact, an overview of the appli-
cation from the viewpoint of the FSML. Furthermore,
the models can be constructed for different versions of
the code, allowing the developer to verify whether the
current code still conforms to the previous model. Also,
reverse engineering can recognize broken or incomplete
concept instances that need to be fixed. Finally, corre-
spondence links established during reverse engineering
provide traceability between the model and the code.

Following the general rules of engagement for
the framework. Forward engineering produces code
that conforms to the rules. The reverse mapping helps
ensuring that a manual customization of the code does
not violate the rules of engagement.

Repetitive code in the domain concept instan-
tiation. Code transformations automate the creation
and update of the repetitive code.

Knowing how to migrate completion code af-
ter API changes. An FSML provides a framework to
help with migration of completion code to a changed
API. Code queries can be used to find uses of the dep-
recated API and specialized code transformations can
rewrite existing code to conform to the changed API.

4 Examples of FSMLs

In this section, we present an FSML for each of the
following frameworks: Java Applet, Apache Struts, and
Eclipse Workbench. For each FSML, we discuss the scope
and the challenges addressed by the language, the ab-
stract syntax, and the mapping of the abstract syntax
to the framework API. In the remainder of the paper,
we refer to the abstract syntax and the mapping as a
metamodel.

Table 1 Metamodel notation

icon metamodel element
A
abstract class
E concrete class
| .
attribute
=+
reference
(%

containment reference
i | 1.%  mandatory multiplicities

, 0.%  optional multiplicities

essential feature

The presented FSMLs have been implemented using
a generic FSML framework, which is described in Section
8. The framework interprets the metamodels and pro-
vides support for round-trip engineering. The presented
metamodels are renderings of fragments of the actual
metamodels used in the prototypes.

4.1 Understanding the metamodels and the rendering

We express abstract syntax using class diagrams, which
consist of classes, attributes, and references. References
can be containment or non-containment. However, un-
like in UML, we render a class diagram as a tree, which
represents a containment hierarchy, where attributes and
references are children of classes, and classes are children
of containment references. Also, to reduce visual clutter,
we do not show the type of Boolean attributes and con-
tainment references. Instead of showing a class, which
is the type of a containment reference, after the colon
(:), we render the class and all its subclasses as children
of the reference. This way we can clearly see the con-
tainment hierarchy and all classes whose instances can
be values of containment references. Table 1 summarizes
notation used for presenting the metamodels.

The features of the concepts can be represented in
the abstract syntax as attributes, references, and (con-
tainment reference, class) pairs. Multiplicity of a fea-
ture is represented by the multiplicity of attribute, ref-
erence, and containment reference, respectively. Figure 3
presents abstract syntax for concept Applet from Fig. 2
as a class diagram rendered as a containment hierarchy.
The feature Applet is represented as the containment-
reference-and-class (applets, Applet) pair; the feature
name is represented as the attribute name : String,
the feature extendsApplet is represented as the pair (ex-
tendsApplet, ExtendsApplet); and the feature extends-
JApplet is represented as the Boolean attribute extends-
JApplet. We consider a feature to be present in the
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model if the representing attribute or reference a) has
a non-null value for single valued features, b) has a non-
empty collection of values for multi-valued features, and
c) attribute value is true for Boolean attributes.

The mapping for any abstract syntax element (class,
attribute, or reference) is rendered in angle brackets next
to the element. Since the whole model describes the com-
pletion code, the root element of the model must always
correspond to the project, which contains all artifacts
that constitute the completion code.

4.2 Applet FSML

The Applet FSML is a simple language whose main pur-
pose is to capture the concept of applet and capture
framework rules and best practices of applet develop-
ment. A model expressed in the Applet FSML describes
details of applet implementation related to the Applet
framework, provides traceability to the fragments of code
related to the framework, and allows for checking frame-
work rules encoded as well-formedness constraints in ab-
stract syntax.

Figure 3 presents the metamodel of the Applet FSML.
The instance of the root class AppletModel corresponds
to the modeled project and contains a number of applets
through applets containment reference. Each instance
of the class Applet corresponds to a Java class we refer
to as context Java class.

The attribute applet : String corresponds to the
fully qualified name of the context Java class. The ref-
erence extendsApplet corresponds to the fact that the
context Java class extends the class java.applet.App-
let. It is a mandatory and essential feature of an applet,
meaning that, it is necessary for a Java class to extend
the class Applet in order to be an applet. The attribute
extendsJApplet corresponds to the fact that the con-
text Java class extends the class javax.swing.JApplet.
It is an optional feature, and applets should extend the
class JApplet if they also use Java Swing framework for
graphical components.

The feature (overridesRequiredMethods, Overri-
desRequiredMethods) is mandatory and represents a
framework-rule that an applet should override at least
one of the three lifecycle methods: init, start, and
paint. This constraint is specified as a feature group
<1-3> constraint on the class OverridesRequiredMe-
thods, and means that at least one and at most three
of subfeatures must be present in the implementation.
The three subfeatures are represented as init, start,
and paint attributes and each corresponds to a life-
cycle method: void init(), void start(), and void
paint(java.awt.Graphics), respectively. The mapping
specifies that the attributes correspond to methods im-

plemented directly by the class using inherited: false.

The group cardinality <1-3> is marked as essential (using
'), meaning that if not satisfied, the feature overrides-

RequiredMethods will not be present. Note, that the ref-
erence overridesRequiredMethods is not marked as es-
sential because it is only mandatory for an applet to over-
ride the lifecycle methods, and failing to do so does not
mean that a given class is not an applet—it only means
that the implementation does not satisfy a framework
constraint.

Applets may display status messages by calling void
Applet.showStatus(String) method. The reference
showsStatus corresponds to all method calls to the show-
Status method that can be found in the hierarchy of the
context Java class. Each instance of the class ShowsSta-
tus corresponds to a single method call'. The attribute
message corresponds to the value of the first argument
of the context method call, provided that the value is
statically available.

An applet may optionally listen to mouse events. The
optional feature (listensToMouse, ListensToMouse)
represents the fact that an applet is a mouse listener. The
attribute implementsMouseListener corresponds to the
fact that the context Java class implements java.awt.-
event.MouseListener interface. The attribute regis-
ters corresponds to one or more method calls to void
java.awt.Component .addMouseListener (MouseListe-
ner) method and the attribute deregisters correspon-
ds to one or more method calls to void Component.re-
moveMouseListener (MouseListener) method. The fea-
tures implementsMouseListener and registers are es-
sential for the feature (listensToMouse, ListensTo-
Mouse) to be present.

Java applets should run long running operations in
background threads. As a best practice, a reference to
the thread should be stored in a field, the field should
be assigned to the new thread and the field should be
assigned null, to give the thread a signal to terminate.
The feature (thread, Thread) represents a number of
threads, and each instance of the class Thread corre-
sponds to field of the context Java class. Note that a Java
field that an instance of the class Thread corresponds
to becomes a context Java field. The attribute thread :
String corresponds to the name of the context Java field.
The attribute typedThread corresponds to the fact that
the type of the context Java field is java.lang.Thread
or a subclass. The attribute typedThread is marked as
essential meaning that only fields of type Thread are con-
sidered. The attribute initializesThread corresponds
to the fact that the context Java field is assigned with
the call to new Thread(Runnable) in the hierarchy of
the context Java class. Analogously, the attribute nul-
lifiesThread corresponds to the fact that the context
Java field is assigned with null in the hierarchy of the
context Java class. Note, that the mappings assigned-
WithNew and assigned WithNullln require two contexts.

Finally, an applet may retrieve values of named pa-
rameters specified on the HTML page by calling String

! The method call becomes a context method call for sub-
features.



8 Michal Antkiewicz, Krzysztof Czarnecki

H AppletModel <project=
= = applets
=~ Applet <dass=
"%‘q name : String <fullyQualifiediame =
= !T’ extendsApplet <extendsClass: 'Applet’ local: true >
= ﬁ?' ExtendsApplet
= extendsJApplet <extendsClass: JApplet'=
[=F %* overridesRequiredMethods
= ﬁﬁ 1<1-3> OverridesReguiredMethods
= init <methods: “void init()' inherited: false>
= start <methods: 'void start() inherited: false >
= paint <methods: 'void paint{Graphics)' inherited: false =
(= 5= showsStatus <callsReceived: 'void Applet.showStatus(String)' =
= ﬁf; ShowsStatus <methodCall =
= message ; String <argumentValue: 1=
= registersMouseListener <methodCalls: "void Component. addMouselistener (MouseListener)' in: ‘hierarchy' =
= Q?; <1-1> RegistersMouselistener <methodCall>
[ =+ this <argumentIsThis: 1>
= QF ThisMouselistener
T implementsMouselistener <implementsInterface: 'Mouselistener'=
= F* deregisters <methodCalls: 'void Component.removeMouselistener (MouseListener)' in: ‘hierarchy' =
=1 EF DeregistersThis <methodCall=
!'? this <argumentlsThis: 1>
= helper <argumentIsiew: 1>
= variable <argumentlsVariable: 1=
[ = mouselistenerField <argumentIsField: 1=
= g; MouselistenerField <field=
"%'" mouselistenerField ; String <fieldMame =
T typedMouselistener <typedWith: ‘Mouselistener' =
= 5 dereqisters <methodCalls: 'void Component.removeMouselistener (MouseListener)' in: hierarchy'=
= E; DeregistersField <methodCall =
!'? field <argumentlsFigld: 1sameds:'../..">
= 5=t thread
= EF Thread <field:
%ﬂ thread : String <fieldMame>
!‘? typedThread <typedwith: Thread'=
= §* initializesThread <assignedWithMew: Thread(Runnable)
= g; <1-1> InitislizesThreadwith <methodCall =
= = this <argumentIsThis: 1>
= E; ThisRunnable
T implementsRunnable <implementsIinterface: 'Runnable'=
= helper <argumentIsMew: 1
= wariable <argumentlsVariable: 1=
= = runnableField <argumentlsField: 1>
= EF RunnableField <field>
T typedRunnable <typedwith: 'Runnable'=
T nullifiesThread <assignedwithMull =
[= 5%t parameter <callsReceived: 'String Applet. getParameter{String)' =
= EE Parameter <methodCall>
= name : String <argumentvalue: 1>
3 providesParameterInfo <methods: 'String[]1[] getParameterInfol)’ inherited: false>

Fig. 3 Metamodel of the Applet FSML
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Applet.getParameter (String) method. The reference
parameter corresponds to all method calls to the get-
Parameter () method that can be found in the hierar-
chy of the context Java class. Each instance of the class
Parameter corresponds to a single method call. The at-
tribute name corresponds to the value of the first argu-
ment of the context method call, which is the name of the
parameter. Applets should also override the String[] []
getParameterInfo() method, which should return tri-
ples of strings (name, type, description) for each named
parameter. The attribute providesParameterInfo cor-
responds to the method getParameterInfo() declared
in the context Java class.

The Applet FSML does not cover Applet framework
completely. Outside the scope of the language are:

1. other kinds of listeners, such as mouse motion lis-
tener. We did not include other kinds of listeners be-
cause the mechanism is exactly the same as for mouse
listener.

2. checking that String[] [] getParameterInfo() me-
thod returns a triple for every parameter used by
an applet, and that the applet uses every parameter
whose declaration is returned by the method.

3. referential integrity between Java code and HTML
page on which an applet is declared. Checking that a
HTML page uses correct parameters, and that an ap-
plet uses values of all parameters used on the HTML
page.

4. communication among applets included on the same
HTML page. Applets are assigned symbolic names,
which are used for message based communication.

4.3 Apache Struts FSML

Apache Struts is a web application framework built on
top of J2EE. Struts is a relatively simple and prescrip-
tive framework, where main abstractions are clear. A web
application based on Struts has at least three different
kinds of artifacts: Java code for business logic, XML con-
figuration files, which assign roles to Java classes and
specify other parameters for the framework, and Java
Server Pages (JSPs) for presentation. There are two main
challenges with the development of Struts-based applica-
tions: maintaining referential integrity among numerous
artifacts, and ensuring correctness of XML configuration
file. The latter problem arises due to the fact that XML
schema of the configuration file only defines few XML at-
tributes as required, and the remaining attributes are op-
tional. However, different subsets of XML attributes are
required for particular usages of the framework and the
schema is not capable of encoding such framework rules.
This problem could also be addressed using FSMLs, how-
ever, in this section we only show how the problem of
referential integrity can be addressed.

We present a fragment of the Struts FSML’s meta-
model to illustrate how models expressed using FSMLs

can help the developers with maintaining referential in-
tegrity among the artifacts. The fragment is concerned
only with concepts of action and forward. An action im-
plements a response to a HTTP request and returns a
number of forwards. A forward is a (name, path) pair
declared in the XML configuration file, where path is
a relative link to an action or a page. The implementa-
tion of an action consists of two parts: action declaration
in XML configuration file and Java class. Forwards can
be global and local with respect to action declaration.
Global forwards can be used by any action, and local
forwards can only be used by the declaring action.

The referential integrity problem we are addressing is
a) using paths of existing actions in forward declarations,
b) using qualified names of existing action Java classes
in action declarations, c) using correct forward names
in Java code of actions, and d) using paths of existing
actions in <html:1link> tags in Java Server Pages. Case
b) includes verifying that a Java class exists for every
action declaration, as well as, verifying that action dec-
laration exists for every Java action class (not shown).
Case d) is not presented here. By aggregating action and
forward information in a single model we can both check
referential integrity, and visualize page flow of a Struts
application.

This example also illustrates the importance of con-
crete syntax. Although abstract syntax tree of the model
contains all necessary information for the page flow, it
is not directly usable and needs to be rendered using a
specialized notation.

In our example we only focus on XML and Java. Page
flow related information from Java Server Pages in the
model includes representation of <html:link action=
"path"> tags, where path is a value of unique path at-
tribute of action declaration.

Figure 4 presents a fragment of the metamodel of the
Struts FSML. Instance of the class StrutsApplication
corresponds to the modeled project, which contains Java
code, XML configuration file, and Java Server Pages. The
feature (strutsConfig, StrutsConfig) corresponds to
the struts-config.xml file and, at the same time, to
the root XML element of the document called stru-
ts-config. The feature (forwards, ForwardDecl) cor-
responds to a number of global forward declarations,
where each instance of the class ForwardDecl corresponds
to a single XML element. The attributes name and path
correspond to XML attributes, with the same names, of
the context XML element. The reference target corre-
sponds to the referential integrity constraint, and speci-
fies that an instance of the class ActionDecl retrieved by
a model query must exist, such that the attribute path
of the action declaration equals to the attribute path of
the forward declaration. If such an action declaration did
not exist, the value of the reference would be null and
therefore a mandatory feature would be missing. The fea-
ture (actions, ActionDecl) corresponds to a number
of action declarations. The reference actionImpl corre-
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H strutsApplication <project=
[= % strutsConfig

=g StrutsConfig <xmiDocument: ' WEE-INF fstruts-config.xml' = <xmlElement: ‘struts-config'>

= 3= forwards <xmlElements: 'global-forwards/forward' =
E-H ForwardDed <xmiElement:=
5 name : String <xmlAtribute =
O path : String <xmlAttribute =

5* target : ActionDed <where: path equalsTo: .. /path =

[=)- M= actions <xmlElements: 'action-mappings/action’=
E+-H ActionDed <xmlElement:
"ft'" path : String <xmlAttribute =
O name ; String <xmlAtiribute =
= type : String <xmlAttribute =

5 actionImpl : ActionImpl <where: qualifieddame equalsTo: .. ftype =

= 2= forwards <xmlElements: 'forward' >
= H ForwardDed <xmiElement=
T name ; String <xmlAtiribute =
= path : String <xmlAttribute =

5* target : ActionDed <where: path equalsTo: .. fpath =

[=)- 3= actions
=-H ActionImpl <class>
!"ft'" name ; 5tring <cdassMame =
=5 package : String <qualifier =
& gualifiedMame : String
O local <isLocal=

!‘? extendsAction <extendsClass: "Action'=

= 3= forwards <methodCalls: ‘ActionForward ActionMapping. findForward{String)’ in: 'dass'>

= Ef ForwardImpl <methodCall=
"ft'" name ; String <argumentValue: 1=
= = farward

=g <1-2> Forward

=+ |localForward : ForwardDed <where: name equalsTo: ../../name > <and: ..ftype egqualsTo: ../../[.. fqualifiedMame >
=+ globalForward : ForwardDed <where: name equalsTo: ../../name > <andParentls; struts-config =

Fig. 4 Fragment of the metamodel of the Struts FSML

sponds to the referential integrity constraint, and spec-
ifies that an instance of the class ActionImpl retrieved
by a model query must exist, such that the attribute
qualifiedName of the action implementation equals to
the attribute type of the action declaration. The feature
(forwards, ForwardDecl) corresponds to a number of
local forward declarations contained by the context XML
element.

As we can see, the class ForwardDecl is the type of
the two references: StrutsConfig: :forwards and Act-
ionDecl: :forwards. The reuse is possible because the
paths specifying the location of XML elements are spec-
ified in the mapping for the references.

The second part of the metamodel represents Java
code of actions. The feature (actions, ActionImpl) cor-
responds to a number of Java classes. The attribute name
corresponds to the class name and the attribute package
corresponds to the class qualifier. The attribute quali-
fiedName is a derived attribute, whose value is computed

by concatenating values of the qualifier and name at-
tributes. The attribute extendsAction is an essential
feature and corresponds to the fact that the context Java
class extends framework-provided class org.apache.-
struts.action.Action. The feature (forwards, For-
wardImpl) corresponds to method calls to org. apache. -
struts.ActionForward org.apache.struts.action.-
ActionMapping.findForward(String) method, which
is used to lookup a forward declaration with given name
in the XML configuration file. The attribute name corre-
sponds to the value of the first argument of the context
method call, which is the name of the forward. The fea-
ture (forward, Forward) corresponds to the referential
integrity constraint that a local or global forward dec-
laration must exist for the name provided as argument
to the context method call. The reference localForward
corresponds to the model query, which retrieves an in-
stance of the class ForwardDecl, such that value of the
attribute name of the forward declaration equals to the
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value of the attribute name of the class ForwardImpl,
and the value of the attribute type of parent action dec-
laration equals to the value of the attribute qualified-
Name of the context Java class. Similarly, the reference
globalForward corresponds to the model query, which
retrieves a global forward declaration.

The presented metamodel of the Struts FSML al-
lows checking referential integrity constraints. The model
queries of the features that represent referential integrity
constraints can be re-evaluated on demand while working
with the model, which allows the developers maintaining
the artifacts consistent.

4.4 Eclipse Workbench Part Interaction FSML

Eclipse [9] is a universal, open-source platform for build-
ing and integrating tools, which is implemented as a set
of Java-based object-oriented frameworks. In this pa-
per, we consider a particular part of the Eclipse API,
which is concerned with workbench parts and their inter-
actions. Workbench parts are the basic building blocks
of the Eclipse Workbench, which is the working area of
an Fclipse user. The parts can interact in various ways,
for example, by exchanging events.

In this paper, we consider two kinds of workbench
parts, namely editors and views. An editor is used for
displaying and editing the contents of input resources.
An example of an editor is the Java editor included in
the Eclipse Java Development Tools (JDT) [9]. A view is
also used for displaying and editing information, but un-
like an editor, a view is not associated with any particular
input resource. An example of the standard workbench
view is Content Outline, which is used to display the
outline of an input resource opened in an active editor.
Editors and views have to be contributed to the Work-
bench by declaring them in a plug-in manifest files. The
Workbench scans manifest files upon startup and makes
contributed workbench parts available to the user.

Workbench parts interact in various ways. In this pa-
per, we consider five kinds of part interactions, namely
selection provider, two kinds of selection listeners, part
listener, and adapter requestor/adapter provider. For ex-
ample, the Content Outline view listens to part activa-
tion events by registering itself as a listener with the
Workbench Part Service and, therefore, a class that im-
plements the view plays a role of part listener. When
an editor, such as the Java editor, is activated, the view
receives an activation event. In response to this event,
the view asks the editor for its IContentOutlinePage
adapter, which is used to display the outline of the ed-
itor’s input resource. Therefore, the view is an adapter
requestor and the editor is an adapter provider. Content
Outline view is also a selection provider by registering it-
self as a provider with the Workbench Selection Service.
The Selection Service broadcasts selection events to all
registered listeners. An example of a selection listener is

E WorkbenchPartInteractions <project=
T project ; String <projectName >
== parts
-1 Part <dass>
!‘? name : String <cdassMame =
& package : String <gualifier =
= ViewPart -> Part
O partld : String <viewPartld>
!E* implementsIViewPart <implementsinterface: TviewPart concrete: trues
[=~H EditorPart -> Part
= partld : String <editorPartld>
!f' implementsIEditorPart <implementsInterface: TEditorPart’ concrete: true=

== roles

"
" Role

H selectionProvider -> Role <dass>
H SelectionListener -= Role <dass>
E PariListener -> Role <dass=

E AdapterProvider -> Role <dass=

H adapterRequestor -> Role <dass>

[ B R

Fig. 5 Overview of the metamodel of the Workbench Part
Interaction FSML

another standard workbench view Property Sheet, which
displays properties of a selection made anywhere in the
workbench.

Figure 5 presents an overview of the metamodel of the
WPI FSML. An instance of the class WorkbenchPartIn-
teractions corresponds to the modeled project and con-
tains a number parts through the reference parts and a
number of part interactions through the reference inter-
actions. The class Part is the type of the reference
parts. Its instances correspond to Java classes. ViewPart
is a subclass of Part and its instances correspond to
Java classes, which implement org.eclipse.ui.IView—
Part interface. Similarly, instances of EditorPart corre-
spond to Java classes, which implement IEditorPart in-
terface. The model only represents concrete Java classes
because we want to illustrate interactions between parts
that can actually be instantiated in the Workbench. That
also means that the model must represent behaviour in-
herited from abstract superclasses. As mentioned before,
workbench parts must be declared in plug-in manifest
files, in order to become available to the user. The at-
tribute partId corresponds to the unique part id spec-
ified in the part declaration. In this paper, we abstract
from the further details of part implementation, and we
focus on part interactions, which are the main area of
concern of the WPI FSML.

Instances of the classes SelectionProvider, Global-
Selectionlistener, SelectionListenerFrom, PartLis-
tener, and AdapterRequestor correspond to Java classes
that play certain roles in the interactions. However, the
instances should only correspond to those Java classes
that are workbench parts, that is, the Java classes that
instances of Part correspond to. In the metamodel we
refer to the Java classes that other features correspond
to using base-concept references. Base-concept references
can be thought of as a way of importing context ele-
ments. This powerful mechanism allows us to specify ad-
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[ selectionProvider -> Raole <dass>
’? provider : Part <baseConcepts>

1

==

T implementsISelectionProvider <implementsInterface: TSelectionProvider' =

== registers <methodCalls: "void PartSite.setSelectionProvider (ISelectionProvider)' ing "hierarchy'=

= Q"P RegistersAsSelectionProvider
!'? registersThis <argumentlsThis: 1=
[ selectionlistener -> Role <dass>
!$ listener : Part <baseConcept>
o
= !T* registersis
=+ EF <1-3> Registersas

T implementsISelectionListener <implementsIinterface: 'TSelectionListener'=

(=l =+ globalSelectionListener <methodCalls: 'void ISelectionService. addSelectionlistener{ISelectionListener)' in: ‘hierarchy'=

= Q; GlobalSelectionListener <methodCall =

[=)- 5 deregisters <methodCalls: 'void ISelectionService removeSelectionListener{ISelectionListener)' in: ‘hierarchy'=

= QE Deregisters <methodCall>

[z} 5 deregistersSameObject <argument: 1 ofMethodCall: ../.. sameAsarg: 1 ofCal: .. =

[=I EF DeregistersSameCbject

T registersBeforeDeregisters <methodCall: ../../.. before: ../, givenCallbackSeq: ‘init createPartConirol dispose' =
= =+ globalPostSelectionListener <methodCalls: 'void [SelectionService . addPostSelectionListener (ISelectionlistener])' in: "hierarchy'=

= QF GlobalPostSelectionlistener <methodCall>

[=)- 5 deregisters <methodCalls: "void [SelectionService . removePostSelectionListener(ISelectionListener]) in: ‘hierarchy'=

[=1 EJf Deregisters <methodCall =

[=) 5 deregistersSameObject <argument; 1 ofMethodCall: .. /.. samedsarg: 1 ofCal: .. =

= Q; DeregistersSameCbject

T registersBeforeDeregisters <methodCall: .. /../.. before: ../, givenCallbackSeq: 'init createPartControl dispose’=
= 5=t spedficselectionListener <methodCalls: "void ISelectionService, addSelectionListener(String, 1SelectionListener)’ in: ‘hierarchy' =

= EJf spedificselectionListener <methodCall =

!"%'" registrationPartld ; String <argumentValue: 1=

5* provider : Part <where; partld equalsTo: .. fregistrationPartld =
[z 5 deregisters <methodCalls: "void [SelectionService removeSelectionListener{String, 1SelectionListener) in: ‘hierarchy' =

=1 EJf DeregistersSamePartld <methodCall >

!'? deregistrationPartld : String <argumentvalue: 1> <valueEqualsTa: ../.. fregistrationPartld =
[=) 5 deregistersSameObject <argument; 2 ofMethodCall: .. /.. samedsarg: 2 ofCall: .. =

= Q; DeregistersSameCbject

T registersBeforeDeregisters <methodCall: .. /../.. before: ../, givenCallbackSeq: 'init createPartControl dispose’=

Fig. 6 Metamodel for the WPI FSML concepts related to selection handling

ditional features with respect to artifact elements that
other elements in the model, or even in other models,
correspond to. Figure 6 presents details of the interac-
tions concerned with selection handling. An instance of
the class SelectionProvider corresponds to the same
Java class that the target (value) of the provider base-
concept reference corresponds to. The SelectionProvi-
der concept specifies that a part is a selection provider
if it implements org.eclipse. jface.viewers.ISelec-
tionProvider interface and registers with Selection Ser-
vice by calling void org.eclipse.ui.internal.Part-
Site.setSelectionProvider(

ISelectionProvider) method. Similarly, the Selection-

Listener concept specifies that a part is a selection
listener if it implements org.eclipse.ui.ISelection-
Listener interface. Concept GlobalSelectionListe-
ner specifies that a part, which is a selection listener, reg-
isters with Selection Service by calling void org.ecli-

pse.ui.ISelectionService.addSelectionListener (

ISelectionListener), and deregisters by calling re-
moveSelectionListener (ISelectionListener) meth-
od. The attribute registersBeforeDeregisters corre-
sponds to the fact that the method call the attribute
registersWithService corresponds to occurs before the
method call instance of the class Deregistration corre-
sponds to, with respect to the given callback sequence.
The callback sequence specifies that the framework calls
methods init, createPartControl, and dispose in the
specified order. The attribute deregistersSameObject
corresponds to the fact that the same object is the argu-
ment of the registration and deregistration method calls.
Concept SelectionListenerFrom corresponds to a se-
lection listener which listens to events from parts with
given part ids. The feature (registersWithService,
RegistersWithService) corresponds to a number of reg-
istration method calls, and the attribute registration-
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PartId corresponds to the part id used for a single reg-
istration. The reference provider represents a referen-
tial integrity constraint, that part ids used for the reg-
istration must be part ids of existing parts. The value
of the reference is an instance of Part retrieved by a
model query, where the value of the attribute partId
of the part equals to the part id used for the registra-
tion. The feature (deregistersWithService, Deregi-
stersWithService), corresponds to the deregistration
method call, whose first argument’s value is the same as
the part id used for the registration.

Figure 7 presents details of the interactions concerned
with handling part events and adapters. Concept Part-
Listener is very similar in structure to GlobalSelec-
tionListener concept, and specifies that a part is a
part listener if it implements org.eclipse.ui.IPart-
Listener interface and registers and deregisters with
Part Service. Note that the same class Deregistration
is used as the type of the reference GlobalSelection-
Listener: :deregistersWithService.

The interaction between adapter requestors and adapt-
er providers is the most complex one and very difficult to
see in the completion code. Concept AdapterRequestor
specifies that a part requests an adapter by calling Object
org.eclipse.core.runtime.IAdaptable.getAdapter(
Class) method. The attribute adapter corresponds to
the name of type of the requested adapter. The feature
(adapterProvider, AdapterProvider) corresponds to
a number of parts, whose getAdapter () method returns
object of the requested adapter type. The feature (pro-
videsAdapter, ProvidesAdapter) corresponds to the
method getAdapter of the context Java class. The at-
tribute providesAdapter corresponds to the fact that
the context Java method can return an object assignable
to the requested adapter type.

The WPI FSML is an interesing example for a num-
ber of reasons. First, it addresses the problem of under-
standing possible collaborations among objects, which
are implemented in the framework and cannot be di-
rectly identified in the code without understanding the
framework. The adapter requestor/provider interaction
is particularly difficult to comprehend as it usually oc-
curs together with part listener and selection listener in-
teractions, where an adapter is requested from the source
of an event, in response to the event propagated by a ser-
vice.

Second, it shows that often specialized static analyses
are necessary in order to be able to recognize concept in-
stances. For example code queries of returnsObject0f-
Type, methodCall: before: givenCallbackSeq:, and
argument: ofMethodCall: sameAsArg: ofCall: map-
pings.

Third, it takes into account behaviour inherited from
super classes, by including method calls that can be
found in the super classes (as specified by in: clause of
the methodCalls mapping), and inherited methods (as

specified by inherited: true clause of methods map-
ping).

And finally, it illustrates how multiple FSMLs can be
composed by means of base-concept references.

5 Reverse engineering

As previously described, the goal of reverse engineering is
the creation of a model that describes existing comple-
tion code. The process of reverse engineering is driven
by the metamodel of an FSML, which consists of the
abstract syntax and the mapping of abstract syntax to
framework API. Abstract syntax defines the structure of
all possible models or, in other words, all possible config-
urations of features. The mapping provides code queries,
which can be used for determining the presence or value
of features.

The process of reverse engineering a) creates instances
of classes, b) sets instances of classes as values of con-
tainment references, ¢) sets the values of attributes, and
d) sets values of base-concept references. Values of non-
base-concept and non-containment references, which usu-
ally correspond to referential integrity constraints, are
never set during reverse engineering. Instead, model queries
are executed after the model is created and all data is
available.

The reverse engineering process follows the contain-
ment hierarchy of the metamodel, in a depth-first man-
ner, and begins with a single instance of the class that
corresponds to the modeled project. Each code query
may navigate up the already created feature hierarchy to
locate a parent context feature that corresponds to the
required context element. Classes, attributes and refer-
ences are processed as follows.

Processing an instance ¢ of a class c. Attributes
and references of the class ¢, including all inherited at-
tributes and references, are processed in the order of their
appearance in the metamodel. The first essential feature
determined to be missing stops the process and the in-
stance 4 is removed from its containing reference. If all
essential features are present, a correspondence link is es-
tablished between the instance ¢ and the corresponding
artifact element.

Processing an attribute a of instance ¢. A code
query is executed for the mapping attached to the at-
tribute to determine the value. The value or a collection
of values returned by the query is assigned to the at-
tribute. If @ has a non-null value, a non-empty collection
of values, or a is true, a correspondence link is established
between the attribute and the corresponding artifact el-
ement or elements. Note, that a single valued feature
can only have one value, but it can still correspond to
multiple artifact elements.

Processing a containment reference r of in-
stance i. Let ¢ be a class which is the type of the ref-
erence r. The reference r can contain instances of the
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H Partlistener -> Role <dass>
lﬁ listener : Part <baseConcept>
!'? implementsIPartlistener <implementsInterface: 'TPartlistener'=

T registers <methodCalls: "woid IPartService, addPartListener(IPartlistener)’ in: ‘hierarchy' =
[=)- % deregisters <methodCalls: "void IPartService.removePartListener(IPartListener) in: hierarchy' =

=~ E* Deregisters2 <methodCall =

[=- 5 deregistersSameCbject <argument: 1 ofMethodCall: .. /.. freqisters sameésarg: 1ofcal: .. =

= Q? DereqistersSameCbject2

T registersBeforeDeregisters <methodCall: .. /.. /.. fregisters before: .. /.. givenCallbackSeq: 'init createPartControl dispose’=

H adapterProvider -> Role <dass>

lﬁ adapterProvider ; Part <baseConcept=

= !f' providesAdapter <methods: 'Object getAdapter(Class) inherited: true=

= QF ProvidesAdapter <method =
i‘ﬁ'.e adapters : String <typesOffeturnedObjects =
apterRequestor ->= Role <dass>
AdapterR ol Role <

lﬁ adapterRequestor : Part <baseConcepts

= :'; reguestsadapter <methodCalls; 'Object Iadaptable.getadapter(Class)' in: 'hierarchy' receiver: TWorkbenchPart =

= QF ReguestsAdapter <methodCall =

"T'z'" adapter : String <argumentValue: 1=

3 adapterProvider : AdapterProvider <where: providesadapter fadapters contains: .. fadapter'=

Fig. 7 Metamodel for the WPI FSML concepts PartListener and AdapterRequestor/Provider

concrete subclasses of the class ¢, including instances of
the class t if it is concrete. Let ¢ be a concrete class
whose instances can be contained by the reference r.

There is a number of possibilities when processing
a containment reference, but only one of the following
cases can apply. The cases are examined in the given
order for each possible class c.

1. The reference r has a mapping attached. A code
query is executed for the mapping and instances of
the class ¢ are created for each result of the query.

2. The class ¢ has a mapping attached. A code query
is executed for the mapping and instances of ¢ are
created for each result of the query.

3. The class ¢ contains an base-concept reference ar. An
instance of c is created for every possible target of the
base-concept reference ar and ar of each instance is
set to that target.

4. The class ¢ has an essential feature with a mapping
that can be used to form a code query to retrieve
elements that instances of ¢ correspond to. A code
query is formed and instances of ¢ are created for
each result of the query.

5. None of the above cases applies. Instances of the class
¢ are created to satisfy lower bound of the multiplic-
ity of the reference r if r is multivalued, or a single
instance of ¢ is created if r is single valued.

Each instance of the class ¢ is processed recursively.
Note that correspondence links are not created directly
for reference r. Instead, a correspondence link may be
created for each instance of the class c¢. A feature rep-
resented as the containment reference r is considered
present if it contains at least one child.

Processing of non-containment, non-base-concept

references. After the model has been completely cre-
ated, model queries attached to the non-containment,
and non-base-concept references are executed and the
values of the references are set.

6 Forward engineering

The goal of forward engineering is the creation of com-
pletion code that implements the design specified in a
model expressed using an FSML. The forward engineer-
ing process is driven by the model. The process traverses
the model in the depth first manner and is very similar to
the reverse engineering process, with the difference that
code transformations are used instead of code queries.
The process begins with the root instance of the model
which corresponds to the modeled project. Some map-
pings may not have a code transformation defined.

Processing an instance i of a class c. If a class
has an base-concept reference ar, no new artifact element
is created, because it has already been created for the tar-
get of the base-concept reference, before. If a class has
a mapping attached, code transformation is executed to
create a new artifact element. In some cases, a mapping
attached to the containing reference, i.e., a reference that
contains instance i, is used as the source of parameters
for the code transformation. Attributes and references of
the class ¢, including all inherited attributes and refer-
ences, are processed in the order of their appearance in
the metamodel.
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Processing an attribute a of instance ¢. A code
transformation attached to the attribute a is executed.

Table 2 Key specifications

. . . icon metamodel element name
Processing a containment reference r of in-
. . m
stance 7. A code transformation attached to the refer- )
. . . attribute, reference  key

ence r is executed. Each instance contained by the ref- o
erence 7 is processed recursively. P lass parent key

Processing of non-containment, non-base-concept o
references. Non-containment and non-base-concept ref- I class index key

erences are ignored during forward engineering.

7 Agile Round-Trip Engineering

The goal of round-trip engineering is keeping a number of
artifacts, such as models and code, consistent by prop-
agating changes among the artifacts. Making artifacts
consistent by propagating changes is also referred to as
synchronization. Round-trip engineering is a special case
of synchronization that can propagate changes in mul-
tiple directions, such as from models to code and vice
versa. Round-trip engineering is hard to achieve in a gen-
eral setting due to the complexity of the non-isomorphic
mappings between the artifacts.

FSMLs enable round-trip engineering over non-trivial
mappings that close the abstraction gap between the
framework-provided concepts and the completion code.
The mapping can be precisely defined because the frame-
work prescribes a finite set of framework-stipulated im-
plementation choices.

In this section, we present a particular approach,
which we refer to as agile round-trip engineering. The ap-
proach supports on-demand, rather than instantaneous,
synchronization. The artifacts to be synchronized can be
independently edited by developers in their local work-
spaces, and the reconciliation of the differences can be
done iteratively. Furthermore, the agile approach assumes
that a model can be completely retrieved from the code
using static analysis. We believe that our approach fits
agile development particularly well because it supports
collaborative, CVS-style development and models do not
have to be maintained separately if not desired.

Fig. 8 shows the artifacts and processes involved in
agile round-trip engineering. The intention of agile round-
trip engineering is to synchronize the current asserted
model, which represents the intended model of the ap-
plication, and the current framework completion code,
which may be inconsistent with the asserted model. The
asserted model and the completion code that are con-
sistent are also referred to as being reconciled. In order
to synchronize the asserted model and the completion
code, the current implementation model is automatically
derived from the current code. Furthermore, we assume
that the last reconciled model contains the latest copy
of each feature instance that was archived after the fea-
tures’s most recent synchronization. Special cases occur
if any of the three artifacts, namely the asserted model,
the last reconciled model, or the completion code, are

missing. These cases include situations where the code
has to be first created from an existing model, the model
has to be first created from existing code, or where inde-
pendently created model and code need to be synchro-
nized for the first time.

Given at least the asserted model or the completion
code, the synchronization procedure involves the pro-
cesses described in the following subsections.

1. Reverse engineering. The outcome of the reverse
engineering (see Sec. 5) is the implementation model. In
the case that there is no code, the implementation model
contains only one instance of the class that corresponds
to the modeled project.

2. Comparison. This process compares the asserted
model and the implementation model using the last rec-
onciled model as a reference. The comparison is similar
to the three-way compare in the CVS, where the compari-
son of two files uses their most recent common revision as
a reference. Corresponding concept and feature instances
from different models are compared. The correspondence
between concept instances or feature instances is estab-
lished based on the values of their FSML ids, i.e., two
instances are considered as corresponding if their FSML
ids are the same. Table 2 presents icons used in the meta-
models from Figures 3-6 to specify how unique FSML
ids are calculated for concept and feature instances. An
FSML id for an instance 4 of class ¢ includes a) name
of the class ¢, b) index of 7 in the collection of children
of the parent of i, if ¢ is annotated with index key, c) a
value of every attribute annotated with key, d) an FSML
id of target of every reference annotated with key, e) the
FSML id of the parent of i, if ¢ is annotated with par-
ent key. An FSML id for an attribute or reference f of
instance ¢ includes a) the FSML id of 4, b) name of f, c)
value of f, if f is a multivalue attribute or reference.

The result of comparing two concept instances or
two features is a synchronization state, which character-
izes whether a modification, such as addition, removal
or change, has occurred exclusively in the model, exclu-
sively in the code, or consistently in the code and the
model, or inconsistently in the code and the model. Syn-
chronization states are computed according to decision
tables presented in Table 3 for class instances and ta-
ble 4 for attributes and non-containment references. The
column state contains synchronization state decided for
an element if conditions from the previous columns were
satisfied. The column detected situation contains descrip-
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l:| temporary artifact {_) manual process —-> manual update

Fig. 8 Artifacts and processes of agile round-trip engineering

# |a 1 1]ac f r aloc | state | detected situation

1 1 1 1} 1 0 O 0 unchanged

2 0 1 1 0 = at least one forward and one reverse feature change, no conflict features
3 0 1 O 0 s at least one forward feature change, no conflict features

4 0 0 1 0 & at least one reverse feature change, no conflict features

5 0O 0 O 1 & at least one conflict feature

6 11 01 0 O 0 added consistently to the model & the code

7 0o - - > added inconsistently to the model & the code, at least one conflict feature
8 1 0 1 - - - - — removed from the code

9 1 0 0] - - - - — added to the model

100 1 1 - - - - — removed from the model

11/0 1 0] - - - - e added to the code

1210 0 1| - - - - - removed from the model & the code

Table 3 Class instance synchronization state decision table

# | av iv v condition state | detected situation

1 1 1 1 av = 1w =lv unchanged

2 1 1 1 | av=iwAav#lv * changed consistently in the model & the code

3 1 1 0 av = v added consistently to the model & the code

4 1 1 1 | av#ivAhav=1v s changed in the code

5 1 1 1 av i Aiv = lv s changed in the model

6 1 1 1 | av#iv# v # av &S conflict: changed inconsistently in the model & the code
7 1 1 0 av # v > conflict: added inconsistently to the model & the code
8 1 0 1 av = lv = removed from the code

9 1 0 1 av # lv 5, conflict: removed from the code, changed in the model
10 1 0 0 - — added to the model

11| 0 1 1 w=1lv — removed from the model

121 0 1 1 w # v =2 conflict: removed from the model, changed in the code
131 0 1 0 - a added to the code

141 0 0 1 - - removed from the model & the code

Table 4 Attribute and non-containment reference synchronization state decision table
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tions of the modifications made to the artifacts identified
by the comparison.

We have identified 15 distinct synchronization states,
assuming that the last reconciled model is never changed
manually. In this paper we use icons to represent syn-
chronization states for brevity. Symbols +, *, and — indi-
cate addition, change, and removal, respectively. Arrows
in the icons suggest the direction of change propagation
needed to reestablish consistency. The arrow < indicates
that a change occurred in the code and suggests model
update. We refer to the synchronization states that con-
tain only «— as reverse states. The arrow +— indicates
that a change occurred in the model and suggests code
update. We refer to the synchronization states that con-
tain only +— as forward states. The absence of an arrow
indicates that no change propagation is necessary. The

arrow < and the icons & and & indicate that incompat-
ible changes occurred in both the model and the code.
Each synchronization state is described in the column
detected situation.

The decision tables should be read from left to right.
Table 3 specifies how a synchronization state is computed
for the corresponding class instances. The columns a, 4,
and [ contain 1 if an instance is present in the asserted
model, implementation model, and last reconciled model,
respectively. The columns ac, f, r, and aloc contain 1 if
all subfeatures are consistent (ac), no conflicts and at
least one subfeature has a forward state (f), no conflicts
and at least one subfeature has a reverse state (), and at
least one subfeature has a conflict state (aloc). Value “-”
indicates that given entry does not influence the decision.
For example, the row #8 specifies the case, where an in-
stance of a class is present in both the asserted model
and the last reconciled model, but is missing in the im-
plementation model. The resulting synchronization state

is < because the instance must have been removed from
the code and therefore the corresponding instance has to
be removed from the asserted model to re-establish con-
sistency. The rows #6 and #7 specify the cases where
new class instances were added to both the model and
the code. If all subfeatures of the instances are consis-
tent, than the instances were added consistently (row
#6). Otherwise, if at least one subfeature has a conflict,
than the instances were added inconsistently (row #7)
and the conflict must be resolved in order to make the
added instances consistent. Note, that the subfeatures
can have no “*” and no “-” states; the only possible
states for the subfeatures in this case are “+” states.
Table 4 specifies how a synchronization state is com-
puted for the corresponding attributes or a non-contain-
ment references. Containment references are not com-
pared directly; the values of containment references (i.e.,
class instances), are compared instead. The columns av,
i, and v, contain 1 if an attribute or a reference has a
value in the asserted model, the implementation model,
and the last reconciled model, respectively. The column
condition specifies additional condition the values must

satisfy in order to reach the decision. For example, the
row #1 specifies the case, where an attribute or a ref-
erence has the same values in the asserted, the imple-
mentation, and the last reconciled models. The resulting

synchronization state is (unchanged). The row #2
specifies the case, where the value was changed in the
implementation model, and therefore the asserted model
needs to be updated. The resulting synchronization state

is <%, The row #12 specifies the case, where the value
appears only in the asserted model, and therefore it must
have been added to the asserted model. The table also
illustrates the role of the last reconciled model in de-
terminig the changes that occurred in the model and
in the code. For example, the rows #9 and #11 spec-
ify the cases where incompatible changes ocurred in the
model and the code. Also, the last reconciled model al-
lows distinguishing between addition and change as, for
example, in the rows #5 and #7.

3. Reconciliation. For all elements with synchroniza-

tion state other than v, ¥, # and = a reconciliation
decision needs to be made by the user. A reconciliation
decision specifies whether an addition, a removal, or a
change should be propagated from the model to the code
or vice versa. For the forward states, the possible deci-
sions are enforce and override and update. For the reverse
states, the possible decisions are update and override and

enforce. For the state :, the possible decision is enforce
and update. Decision ignore is applicable to any state.

Reconciliation may also require manual editing of the
completion code or the asserted model (e.g., by providing
new values for the attributes), in which case the synchro-
nization states need to be recomputed.

Table 5 describes the modifications executed for a
given synchronization state (column) and reconciliation
decision (row). Letters m and c¢ stand for the model and
the code, respectively. Symbol “|” indicates processing
of subfeatures. Symbol “-” indicates no modification. No
symbol indicates that the given state/decision combina-
tion is invalid.

4. Code and asserted model update. Finally, any nec-
essary changes are executed according to the reconcil-
iation decisions. The enforce decisions trigger the exe-
cution of the code transformations and the update de-
cisions force an update of the asserted model with the
values from the implementation model. The last recon-
ciled model is updated with the copies of the reconciled
class and feature instances. Additionally, the last recon-

ciled model needs to be updated for the states v+, T,
# and —.

Code transformations are executed according to the
order described in Section 6, but only for elements whose

synchronization states are different than +*, ¥, # and
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Forward & reverse states Conflict states Consistent states
L A ZS)BelE:E & S| &8 & 5 =2 ¥ -
enforce +c  *c —C
update 4+m *m -—m
enforce & update 1
override & enforce — * +c | *e ¢ +c¢ -
override & update | -m *m +m m fm -m +m
ignore - - - - - - - - - - - - - - -

Table 5 Reconciliation actions executed for given synchronization state (column) and reconciliation decision (row)

8 Framework for building FSMLs

The prototype implementations of the FSMLs presented
in section 4 were build on top of a generic FSML frame-
work. The FSML framework implements generic algo-
rithms for forward and reverse engineering, model com-
parison, and code and model update, as described in the
previous sections.

The framework supports pluggable mapping inter-
preters. By default, it includes an interpreter for Java
mappings. We also implemented custom mapping inter-
preter for XML used by the Struts FSML and a custom
mapping interpreter for handling Eclipse plug-in mani-
fest files used by the WPI FSML. Each interpreter de-
clares which mappings it supports and is called to exe-
cute code queries and code transformations at different
times.

The framework provides generic support for trace-
ability to code by means of persistent correspondence
links, the view Model-Code Navigation, which displays
correspondence links for a model element, the view Model-
Code Synchronization, which displays results of compari-
son, and base classes for implementing new model wizard
and synchronize action. The reconcile action is generic
and is provided by the framework. The custom part of
the synchronize action only involves plugging-in custom
mapping interpreters.

The FSML framework is based on the Eclipse Mod-
eling Framework (EMF). EMF provides a metamodeling
notation called FEcore, which we used for creating the
metamodels. We express the mappings using metamodel
annotations (tagged values). The metamodels presented
in Section 4 were automatically rendered using the F.SML
Ecore view, which is also a part of the FSML framework.

Implementing a new FSML involves a) creating ab-
stract syntax using Ecore, b) annotating metamodel el-
ements using annotations defined by the available map-
ping interpreters to specify the mappings, ¢) annotating
metamodel elements using key annotations, d) generat-
ing metamodel implementation using EMF generator,
e) implementing a new model wizard, f) implementing
a synchronize action, and g) implementing new custom
mapping interpreter, if necessary. Activities a-d) usually
require multiple iterations. Activities e-f) are very sim-
ple. For example, the new model wizard of the WPI
FSML has 28 lines of code and the synchronize action

has 27 lines of code. The implementation of a mapping
interpreter is non-trivial and includes implementing code
queries and code transformations, which support incre-
mental query and update of the artifact, context element
handling, support for traceability links, and about 20
callback methods, which are called by the FSML frame-
work at various points of the execution of generic reverse-
and forward engineering, and reconciliation algorithms.

9 Related Work

There is a large body of related work; however, we high-
light only a few important works in each category.
Domain-Specific Modeling Languages (DSMLs)
and frameworks. The idea of putting a DSML on top
of a framework is not new. Roberts and Johnson consider
language-based tools on top of frameworks as the high-
est maturity level in framework evolution [15]. They ad-
vocate that black-box frameworks are particularly well-
suited for use with a DSML on top. However, configura-
tion alone does not allow fine-grained customization, and
it often has to be combined with open-ended program-
ming in practice. We are not aware of any work exploring
DSMLs for frameworks with round-trip engineering sup-
port except for [2], which this paper is an extension of.
General-purpose code analysis tools for archi-
tecture recovery and program comprehension.
There is an enormous body of work in this category. Two
subcategories are prominent. The first subcategory in-
cludes tools (e.g., JQuery [7], JTL [6], XIRC [10]) that
allow code querying for typical static code structures,
and dependencies. Such tools usually build a database
of facts about the structure of the program, and exe-
cute queries over the database. XIRC also allows repre-
senting artifacts other than program code in its XML
database, which allows for checking referential integrity
constraints. In contrast to these tools, our approach uses
whatever specialized analyses are needed for detecting
instances of framework concepts. For example, in order
to recognize the adapter requestor/provider interaction,
an analysis is needed to determine, whether a method
can return an object of a certain type, which is different
than simply querying for the return type of the method.
Also, rather than building a complete database of pro-
gram facts, FSMLs extracts only the information rele-
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vant with respect to FSML concepts, which drastically
reduces memory and time footprints. Often, an FSML
requires the retrieval of static values (string or type lit-
erals) of variables and method call arguments, which are
not provided by the generic code query tools.

The other subcategory groups works on detecting de-
sign patterns in code (e.g., [17]). The main problem with
these approaches is that a design pattern can be imple-
mented in the code in a multitude of different ways. Our
approach avoids this problem by limiting itself to the de-
tection of API-stipulated concepts and features, which is
more tractable because the framework prescribes all pos-
sible ways of implementing a concept. Also, frameworks
usually implement a particular variants of design pat-
terns.

Framework instantiation. Most approaches in this
category only support forward engineering without incre-
mental update. They usually utilize wizards and scripts,

as implemented in many industrial tools, including Eclipse.

Unfortunately, such wizards or scripts can usually be run
only once since they cannot take manual customizations
into account. This problem is sometimes addressed by
strictly separating the generated code from the manual
one using techniques such as protected regions, subclass-
ing of generated classes, and partial classes in C#. How-
ever, we believe that the separation approach affords less
flexibility in customizing the generated code, in partic-
ular, when the generated code dictates the structure of
customizations, such as in the case of template-based
code generation.

Many approaches have been proposed to assist the
framework-instantiation process through active documen-

tation [4,12,14,18], which specifies and interactively guides

the developer through available hotspots, instantiation
tasks and possible implementation choices. Attempts for
automating the framework instantiation such as [4] offer
code generation based on developer’s choices, but cannot
analyze existing code for correctness. Also, the genera-
tor (the wizard) is unable of analyzing existing code in
order to determine which choices have been made in the
previous run.

AHEAD [3] offers concept configuration controlled by
feature models, where features represent modular slices
through multiple artifacts, such as code and XML files.
The slices may be composed to produce framework com-
pletion code. Step-wise refinement is a generative ap-
proach, which supports only forward engineering without
the ability to update customizations.

Approaches, such as SCL [13], allow framework de-
velopers formalizing framework rules using a constraint
language. The constraints can be checked on demand
against the completion code and detect rule violations.
Such approaches could be used to define the reverse map-
pings of FSMLs. Another way of specifying constraints
over programs is a pluggable type system [1], where user-
defined typing constraints enrich the type system of the
programming language. Pluggable type systems could

potentially be used for specifying constraints and rules
for framework concepts, however currently there is lim-
ited support for handling variability in concepts, as well
as for handling multiple types of artifacts.

Design Fragments [11] is an approach to framework
instantiation, where a commonly found patterns of frame-
work usage are encoded as design fragments. Design frag-
ments are mined from existing example completion code.
Similarly to SCL [13], the conformance of the completion
code to a given design fragment can be automatically
checked. However, the completion code has to be manu-
ally bound to the design fragment it implements, whereas
in the FSML approach, the code is bound to the fea-
tures automatically via the correspondence links. Also,
completion code developers have to manually browse the
catalog of available design fragments to find the one that
fits the requirements. In the FSML approach, develop-
ers simply select the features they want to have imple-
mented.

Round-trip engineering. According to Sendall and
Kiister the main difference between round-trip engineer-
ing and forward and reverse engineering is that round-
trip engineering takes both artifacts into account with
the intention of reconciling them, whereas forward and
reverse engineering typically create new artifacts, poten-
tially replacing the old versions [16].

Round-trip engineering between UML and object-
oriented languages such as Java is supported by several
commercial UML modeling tools. The provided synchro-
nization can be instantaneous or on demand as in our ap-
proach. However, the mappings supported by these tools
are rather simple one-to-one mappings between UML
classes and Java classes.

Round-trip engineering is often provided in the con-
text of Enterprise Java Beans (EJBs) where a single EJB
component maps to a class and multiple interfaces. The
mappings, however, are simple sructural mappings.

10 Discussion and Future Work

The presented FSML approach makes contributions in
several areas. First, we show that framework-provided
concepts can be captured in metamodels of FSMLs, and
we provide numerous examples taken from the three anal-
ysed frameworks. We demonstrate how framework-rules
and referential integrity constraints can be captured as
abstract syntax constraints. Second, we show that se-
mantics of a DSML can be precisely specified in the
context of a framework through a mapping of the ab-
stract syntax to the framework API. Third, we present
a generic framework for building FSMLs, which we used
for implementing prototype implementations of the pre-
sented FSMLs. The framework is highly extensible and
supports pluggable mapping interpreters, which can han-
dle mappings for arbitrary kinds of artifacts.
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The code queries of FSMLs are restricted by the avail-
able static code analysis techniques. Our agile round-trip
engineering approach requires the design to be retriev-
able from the code, which may not always be possible
using purely static analysis. This problem could be ad-
dressed by injecting design information into the source
code, e.g., as code annotations. The FSML could also
suggest to the application programmer how to restruc-
ture the code to make its design more explicit in the
static code structure. In general, the effectiveness of the
reverse engineering depends on the programming lan-
guage and the type of the framework. This aspect re-
quires further research.

In our approach, the code transformations are not
required to produce fully functional code. An FSML is
intended to be used in an interactive manner. The gen-
erated or transformed code is intended to be further
customized. We think that generation of code fragments
demonstrating the use of the framework can help appli-
cation developers overcome the initially steep learning
curve. In general, code transformations designed to up-
date the code, are usually harder to devise than code
queries.

FSMLs can potentially be used for automatic or semi-
automatic code migration between two versions of the
same framework or between two frameworks. Cheema
describes a semi-automatic approach for migration of
code completion from Apache Struts to Java Server Faces
framework [5]. The process of migration is controlled by
the model extracted using an FSML for Struts and spe-
cialized export wizard is used to rewrite the code for JSF
framework.

We think that, in practice, a single FSML will typ-
ically cover a small area of a framework’s concern, and
multiple FSMLs will be provided for a single framework.
For example, in Eclipse, in addition to WPI, another
FSML could be used to specify the graphical appearance
of workbench parts, and yet another to specify work-
bench part’s menus, toolbars, and actions. Furthermore,
round-trip engineering affords manual integration of com-
pletion codes created for multiple frameworks. Such in-
tegration may be difficult for completion code gener-
ated from code templates because such code can be cus-
tomized in only limited ways. Integration of multiple
FSMLs remains future work, however using base-concept
references makes it possible to describe other aspects of
a concept instance from another model, as demonstrated
by the WPI FSML.

Validation. The validation of the proposed approach
to modeling requires validating multiple aspects. In this
paper, we present the results of applying the approach
to three existing frameworks. We conducted the study
to see to what extent framework-provided concepts can
actually be captured as an FSML. We demonstrated in
Section 4 that we were able to capture a variety of con-
cepts and framework rules in the metamodels for a vari-
ety of frameworks.

We also validated the feasibility of reverse engineer-
ing by applying the prototype implementations of FSMLs
to a number of concrete applications. We reverse engi-
neered 71 applets using the Applet FSML. The prototype
retrieved 97% of instances of the feature showStatus,
and 79% of instances of the feature message, 96% of in-
stances of the feature getParameter, and 73% of names
of parameters. We were able to retrieve 100% of all other
feature instances. We reverse engineered 3 Struts appli-
cations: Apache Roller, Mailreader, and Cookbook us-
ing the Struts FSML. The prototype retrieved 99.5%
of names of forwards used in 212 method calls to the
method findForward. We were able to retrieve 100%
of all other features. We reverse engineered one Eclipse
PDE plug-in, which depends on many other UI plug-
ins using the WPI FSML. The prototype retrieved 90%
of adapter types used in method calls to the method
getAdapter. We were able to retrieve 100% of all other
features. The complete data is under preparation.

We have preliminary experience with round-trip en-
gineering; however full validation remains future work.
Furthermore, user studies to confirm that the challenges
of framework completion are actually addressed are nec-
essary.

11 Conclusion

In this paper, we proposed the concept of FSMLs with
round-trip engineering support. The concept addresses
a number of challenges in framework-based application
development, such as knowing how to write framework
completion code, being able to see the design of the com-
pletion code, and the migration of the code to new frame-
work API versions. We presented a concrete approach
to representing the abstract syntax of an FSML and its
mapping to code. We applied the approach to three ex-
isting frameworks, namely Java Applet, Apache Struts,
and Eclipse Workbench, showing that the framework-
provided concepts, features, and usage rules can be ade-
quately captured. We also presented a set of algorithms
to support round-trip engineering and a generic FSML
framework, which is used to implement our sample FSMLs.
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