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Abstract. This tutorial explores the design space of heterogeneous syn-

chronization, which is concerned with establishing consistency among
artifacts that conform to different schemas or are expressed in different
languages. Our main application scenario is synchronization of software
artifacts, such as code, models, and configuration files. We classify het-
erogeneous synchronizers according to the cardinality of the relation that
they enforce between artifacts, their directionality, their incrementality,
and whether they support reconciliation of concurrent updates. We then
provide a framework of artifact operators that describes different ways of
building heterogeneous synchronizers, such as synchronizers based on ar-
tifact or update translation. The design decisions within the framework
are described using feature models. We present 16 concrete instances
of the framework, discuss tradeoffs among them, and identify sample
implementations for some of them. We also explore additional design
decisions such as representation of updates, establishing correspondence
among model elements, and strategies for selecting a single synchroniza-
tion result from a set of alternatives. Finally, we discuss related fields
including data synchronization, inconsistency management in software
engineering, model management, and model transformation.

1 Introduction

The sheer complexity of today’s software-intensive systems can only be con-
quered by incremental and evolutionary development. As Brooks points out [1],
“teams can grow much more complex entities in four months than they can
build,” where “build” refers to the traditional engineering approach of specify-
ing structures accurately and completely before they are constructed. However,
despite important advances in software methods and technology, such as agile
development and object orientation, evolving software to conform to a changed
set of requirements is notoriously hard. Evolution is hard because it requires
keeping multiple software artifacts such as specifications, code, configuration
files, and tests, consistent. A simple change in one artifact may require multi-
ple changes in many artifacts and current development tools offer little help in
identifying the artifacts and their parts that need to be changed and performing
the changes.



Synchronization is the process of enforcing consistency among a set of ar-
tifacts and synchronizers are procedures that automate—fully or in part—the
synchronization process. Heterogeneous synchronizers synchronize artifacts that
conform to different schemas or are expressed in different languages. Many pro-
cesses in software engineering can be viewed as heterogeneous synchronization.
Examples include reverse engineering models from code using code queries, com-
piling programs to object code, generating program code from models, round-
trip engineering between models and code, and maintaining consistency among
models expressed in different modeling languages.

While many approaches to synchronization of heterogeneous software arti-
facts exist, it is not clear how they differ and how to choose among them. The
purpose of this tutorial is to address this problem. We explore the design space
of heterogeneous synchronizers. We cover both the simpler synchronization sce-
narios where some artifacts are never edited directly but are re-generated from
other artifacts and the more complex scenarios where several artifacts that can
be modified directly need to be synchronized. Both kinds of scenarios occur
in software development. Example of the simpler scenario is generation of ob-
ject code from source code. The need for synchronizing multiple heterogeneous
artifacts that are edited directly arises in multi-view development [2, 3], where
each stakeholder can understand and change the system through an appropriate
view. The motivation for providing different views is that certain changes may
be most conveniently expressed in a particular view, e.g., because of conciseness
of expression or the familiarity of the a stakeholder with a particular view.

The tutorial is organized as follows. In Section 2, we present kinds of re-
lations among software artifacts and concrete examples of such relations. In
Section 3, we introduce kinds of synchronizers that can be used for reestab-
lishing the consistency among artifacts. We classify heterogeneous synchronizers
according to the cardinality of the relation that they enforce between artifacts,
their directionality, their incrementality, and whether they support reconciliation
of concurrent updates in Sections 4-6. The need for reconciliation arises in the
context of concurrent development, where developers need to concurrently mod-
ify multiple related artifacts. We provide a framework of artifact operators that
describes different ways of building heterogeneous synchronizers, such as syn-
chronizers based on artifact or update translation. The operator-based approach
is inspired by the manifesto for model merging by Brunet et al. [4]. The design
decisions within the framework are described using feature models. We present
16 concrete instances of the framework, discuss their properties, and identify
sample implementations for some of them. We summarize the synchronizers and
discuss the tradeoffs among the synchronizers in Section 7. In Section 8, we ex-
plore additional design decisions such as representation of updates, establishing
correspondence among model elements, and strategies for selecting a single syn-
chronization result from a set of alternatives. Finally, we discuss related fields
including data synchronization, inconsistency management in software engineer-
ing, model management, and model transformation in Section 9. We conclude
in Section 10.



Purpose and Approach The purpose of the tutorial is to present a wide
family of scenarios that require heterogeneous synchronization and the different
solutions that can be applied in each scenario. The solutions are characterized
by the scenarios they support, such as unidirectional or bi-directional synchro-
nization, and the different design choices that can be made when constructing
a synchronizer. The discussion of the scenarios and design choices is made more
precise by considering the properties of the relations that are to be maintained
among sets of artifacts and formulating the synchronizers using a set of arti-
fact operators. The formalization does not consider the structure of the artifacts
or their semantics. Whereas such a treatment would allow more precision in
the analysis of choices, it would introduce a considerable amount of additional
complexity and detail. We leave this endeavor for future work.

The intended audience is primarily those interested in building heterogeneous
synchronizers. This audience can learn about the different design choices, the
tradeoffs among the choices, and examples of systems implementing particular
kinds of synchronizers. Furthermore, the operator-based formalization of the
different kinds of synchronizers may also be of interest to researchers studying
the semantics of model transformations.

2 Relations Among Software Artifacts

Modern software development involves a multitude of artifacts of different types,
such as requirements and design models, program code, tests, XML configuration
files, and documentation. Since the artifacts describe the same software system,
they are related to each other in various ways. For example, a design model and
its implementation code should be related by refinement. Furthermore, both the
code and its XML configuration files have to use consistent names and identifiers.
Also, the design model should conform to the metamodel defining the abstract
syntax of the language in which the model is expressed.

In this tutorial, we usually consider software artifacts simply as typed values.
An artifact type is a set of artifacts and it may be viewed as an extensional def-
inition of a language. For example, assuming that J denotes the Java language,
we write P ∈ J in order to denote that the artifact P is a Java program. Al-
ternatively, we may also indicate the type of an artifact using a subscript, e.g.,
PJ . On few occasions, we also consider the internal structure of an artifact, in
which case we view an artifact as a collection of elements with attributes and
links among the elements.

When an artifact is modified, related artifacts need to be updated in order
to reestablish the relations. For example, when the design model is changed, the
implementation code may need to be updated, and vice versa. The general prob-
lem of identifying relations among artifacts, detecting inconsistencies, handling
of inconsistencies, and establishing relations among artifacts is referred to as con-
sistency management. Furthermore, the update of related artifacts in order to
re-establish consistency after changes to some of these artifacts is known as syn-



chronization, change propagation, or co-evolution. We refer to synchronization
as heterogeneous if the artifacts being synchronized are of different types.

Definition 1. Consistent Artifacts. We say that two artifacts SS and TT

are consistent or synchronized with respect to the relation R ⊆ S × T iff
(SS , TT ) ∈ R.

In general, two or more artifacts need not be consistent at all times [2, 5]. For
example, the implementation code may be out of sync with its design model
while several changes are being applied to the model. In this case, the incon-
sistency between the code and the design is desirable and should be tolerated.
Only after the changes are completed, the code is updated and the consistency
re-established. Consequently, some authors use the term inconsistency manage-
ment [6–8].

The relations among software artifacts may have different properties. For a
binary relation R ⊆ S ×T , we distinguish among the following three interesting
cases:

1. R is a bijection. This is the one-to-one case where each artifact in S corre-
sponds to exactly one artifact in T and vice versa.

2. R is a total and surjective function. This is the many-to-one case where each
artifact in S corresponds to exactly one artifact in T and each artifact in T
corresponds to at least one artifact in S.

3. R is a total relation. This is the many-to-many case where each artifact in S
corresponds to at least one artifact in T and each artifact in T corresponds
to at least one artifact in S.

Note that all of the above cases assume total binary relations. In practice,
cases where R covers S or T only partially can be handled, e.g., by making
these sets smaller using additional well-formedness constraints or by introducing
a special value representing an error. For example, a source artifact that has no
proper translation into the target type would be mapped to such an error element
in the target type. Furthermore, the above cases are distinguished only in regard
to the correspondence between whole artifacts. In practice, the artifact relations
also need to establish correspondence between the structures within the artifacts,
i.e., the correspondence between the elements and links in one artifact and the
elements and links in another artifact. We will explicitly refer to this structural
correspondence whenever necessary. Finally, the artifact relations need not be
binary, but could be relating three or more sets of artifacts.

Examples. Let us look at some examples of relations among different kinds of
artifacts.

Example 1. Simple class diagrams and KM3.
KM3 [9] is a textual notation that can be used for the specification of simple

class diagrams. The relation between graphical class diagrams and their textual
specifications is a bijection. In this example, assuming that the layout of diagrams



and text is irrelevant, artifacts expressed in one language can be translated into
the other language without any loss of information.

Example 2. Java and type hierarchy.
A type hierarchy of a Java program is a graph in which classes and inter-

faces are nodes and extends and implements relations are edges. Such a type
hierarchy is an abstraction of a Java program because it contains a subset of the
information contained in the program and it does not contain any additional in-
formation that does not exist in the program. Furthermore, many different Java
programs may have the same type hierarchy. Therefore, the relation between a
Java program and its type hierarchy is a function.

Example 3. Java and XML and Struts Framework-Specific Modeling Language
(FSML).

Struts FSML [10] is a modeling language that can be used for describing how
Struts’ concepts actions, forms, and forwards are implemented in an application
consisting of Java code and XML configuration files. A model expressed in the
Struts FSML is an abstraction of the code and it can be fully recreated from the
code. Actions, forms, and forwards can be implemented in the code in various
ways, some of which are equivalent with respect to the model. For example, a
Java class is represented in the model as an action if it is a direct or indirect
subclass of the Struts’ Action class. The relation between the code and the
model expressed in Struts FSML is a function: parts of the code do not have
any representation in the model and equivalent ways of implementing actions,
forms, and forwards are represented the same way in the model.

Example 4. UML class diagrams and RDBMS.
This example considers UML class diagrams and relational database schemas.

The relation between the two languages is a general relation because inheritance
and associations in class diagrams can be represented in many different ways in
database schemas and every database schema can be represented using different
class diagrams with or without inheritance [11]. For example, each single class
can be mapped to a separate table or an entire class hierarchy can be mapped
to a single table. Furthermore, different class hierarchies may still be translated
into the same table structure.

Example 5. Statecharts and sequence diagrams.
The relation between statecharts and sequence diagrams is a general relation

because a statechart can be synthesized from multiple sequence diagrams and a
given sequence diagram can be produced by different statecharts.

Example 6. Metamodels and models.
In model-driven software development [12], the syntax of a modeling lan-

guage is often specified as a class model, which is referred to as a metamodel. A
metamodel defines all syntactically correct models and a model is syntactically
correct if it conforms to its metamodel. As any other software artifacts, meta-
models evolve over time. Some changes to the metamodels may break the con-
formance of existing models, in which case the models need to be updated [13].



The relation between a metamodel and a model is a general relation because
many models can conform to a single metamodel and a single model can con-
form to many metamodels. As an example of the latter situation, consider two
metamodels representing the same set of models, but one using abstract and
concrete classes and the other using concrete classes only.

3 Mappings, Transforms, Transformations, Synchronizers,

and Synchronizations

We refer to the specifications of relations among artifacts as mappings. Fur-
thermore, we refer to programs that implement mappings as transforms and
executions of those programs as transformations. In this tutorial, we focus on
synchronizers, which are transforms used for (re-)establishing consistency among
related artifacts. Consequently, we refer to the execution of a synchronizer as
synchronization. Note that not every transform is a synchronizer. For exam-
ple, refactorings, which change the structure of an artifact while preserving the
artifact’s semantics are transforms, but they are not synchronizers.

Transforms are executable programs, which may be interactive. For example,
they may seek additional inputs from the user to decide among possible alter-
native results. In this tutorial, we model transforms as computable functions,
where any additional inputs are given to the functions up-front as arguments. In
particular, we represent interactive choices as decision functions that are passed
as parameters to the transforms.

In the following sections we present various kinds of heterogeneous synchro-
nizers that can be used to synchronize two artifacts, which we refer to as source
and target. At the highest level, a synchronizer falls into one of the three distinct
categories: unidirectional, bidirectional, and bidirectional with reconciliation (cf.
Figure 1). The three alternatives are represented as a feature model [14, 15]. A
feature model is a hierarchy of common and variable features characterizing the
set of instances of a concept that is represented by the root of the hierarchy.
In this tutorial, the features provide a terminology and a representation of the
design choices for heterogeneous synchronizers. The subset of the feature model
notation used in this tutorial is explained in Table 1. The three categories of
synchronizers are modeled in Figure 1 as a group of three alternative features.
Each of these alternative features is actually a reference to a more refined feature
model that is presented later.

Unidirectional synchronizer ◮ Bidirectional synchronizer ◮ Bidirectional synchronizer
with reconciliation ◮

Heterogeneous synchronizer

Fig. 1. Artifact synchronization synchronizers



Table 1. Feature modeling notation used in this tutorial

Symbol Explanation

F
Solitary feature with cardinality [1..1], i.e., mandatory feature

F
Solitary feature with cardinality [0..1], i.e., optional feature

F ◮ Reference to feature F

XOR feature group (groups alternative features)

F
Grouped feature (a feature under a feature group)

Unidirectional synchronizers synchronize the target artifact with the source
artifact. Bidirectional synchronizers (without reconciliation) can be used to syn-
chronize the target artifact with the source artifact and vice versa. They syn-
chronize in one direction at a time, meaning that they are most useful if only
one of the artifacts was changed since the last synchronization. Bidirectional
synchronizers can also be used when both artifacts have changed since the last
synchronization; however, they cannot be used to resolve conflicting changes to
both artifacts, as one artifact acts as a slave and its changes may get overridden.
Finally, bidirectional synchronizers with reconciliation can be used to synchronize
both artifacts at the same time. Thus, these synchronizers are also applicable in
situations where both artifacts were changed since the last synchronization and
they can be used for conflict resolution in both directions.

4 Unidirectional Synchronizers

Unidirectional synchronization from S to T enforcing the relation R ⊆ S × T
involves up to four artifacts (cf. Figure 2):

1. SS is the original source artifact, i.e., the version of the source artifact before
it was modified by the developer;

2. TT is the original target artifact, i.e., the version of the target artifact that
co-existed with the original source artifact;

3. S′
S is the new source artifact, i.e., the version of the source artifact after it

was modified by the developer; and
4. T ′

T is the new target artifact, i.e., the version of the target artifact after
synchronization with the new source artifact.

The first three of these artifacts are the ones that typically exist before the
synchronization occurs. However, the first two are optional since the new source
could have been created from scratch and the original target might have not
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Fig. 2. Artifacts involved in unidirectional synchronization

been yet created. Note that we use the convention of marking new versions of
artifacts by a prime.

The fourth artifact, T ′
T , is the new target that needs to be computed during

the synchronization. The enclosing boxes in Figure 2 indicate elements that
are computed during the synchronization. The arrows pointing downwards in
the figure denote updates: U∆S is the update applied to the original source
and Y∆T is the target update resulting from the synchronization. The double-
headed arrow between the new artifacts indicates that they are consistent, i.e.,
(S′

S , T ′
T ) ∈ R. Note that, in general, the original artifacts SS and TT do not have

to be consistent; however, some synchronizers might impose such a requirement.
A unidirectional synchronizer from S to T implementing the relation R ⊆

S × T computes the new target T ′
T given the new source S′

S , and optionally
the original source SS and the original target TT , as inputs, such that the new
source and the new target are consistent, i.e., (S′

S , T ′
T ) ∈ R. Note that the new

source can also be passed as input to the synchronizer indirectly by passing both
the original source and the update of the source as inputs. Furthermore, some
synchronizer variants require the original source and the original target to be
consistent.

Unidirectional synchronizers can be implemented using different operators
and the choices depend first and foremost on the cardinality of the end of the
relation in the direction of which the synchronizers are executed. In particular, a
synchronizer can be executed towards the cardinality of one, which we refer to as
to-one case, and towards the cardinality of many, which we refer to as to-many
case (cf. Figure 3).

To-one ◮ To-many ◮

Unidirectional synchronizer

Fig. 3. Unidirectional synchronizers

The to-one case corresponds to the situation where the mapping between
source and target is a function from source to target, which also covers the case
of a bijection. The mapping clearly specifies a single target artifact T ′

T that
a synchronizer has to return for a given source artifact S′

S . The to-many case



corresponds to the situation where the mapping between source and target is not
a function in the source-to-target direction. In other words, the relation is either
a function in the target-to-source direction or a general relation. Consequently,
the mapping may specify several alternative target artifacts that a synchronizer
could return for a given source artifact. Since all synchronizers are functions
returning only a single synchronization result, to-many synchronizers will require
a mechanism for selecting one target artifact from the set of possible alternatives.

4.1 Unidirectional synchronizers in to-one direction

The unidirectional to-one case could be described as computing a “disposable
view”, where the target T ′

T is fully determined by the source S′
S . In other words,

the source-to-target mapping is a function and the target can be automatically
re-computed whenever needed based on the source S′

S only.
In general, a disposable view can be computed in an incremental or a non-

incremental fashion. The non-incremental approach implies that the view is
completely re-computed whenever the source is modified, whereas the incremen-
tal approach involves computing only the necessary updates to the existing view
and applying these updates. As a result, all incremental synchronizers take the
original target as a parameter.

All to-one synchronizers are original-target-independent, meaning that the
computed new target does not depend on the original target in a mathematical
sense. Although the incremental to-one synchronizers take the original target as
a parameter, the new target depends only on the new source because the relation-
ship between the new source and the new target is a function. The original tar-
get is used by the synchronizer implementation purely to improve performance,
which is achieved by reusing structures from the original target and avoiding
recomputing these structures. We present examples of original-target-dependent
synchronizers in Section 4.2.

Artifact
translation

Heterogeneous
artifact

comparison

Homogeneous
artifact

comparison

Update
translation

To-one

Fig. 4. Operators used in to-one unidirectional synchronizers

Depending on the operator that is used to translate between source and tar-
get artifact types, we distinguish among three fundamental ways of realizing
unidirectional to-one synchronizers (cf. Figure 4). The first synchronizer variant



is non-incremental and it uses artifact translation, an operator that translates
an entire source artifact into a consistent target artifact. The other two variants
are incremental. The second variant uses heterogeneous artifact comparison, an
operator that directly compares two artifacts of different types and produces an
update that can be applied to the second artifact in order to make it consistent
with the first artifact. The third variant uses update translation, an operator that
translates an update to the source artifact into a consistent update of the target
artifact. In addition, update translation expects the original source and the orig-
inal target to be consistent. The artifacts involved in the synchronization using
update translation are shown in Figure 5. The input artifacts are underlined. As
an option, the transform may use homogeneous artifact comparison to compute
the source update as a difference between the original and the new source.

S
S

R
←−−−→ T

T

U
∆S

?

?

y

?

?

y

Y∆T

S′

S

R
←−−−→ T ′

T

Fig. 5. Artifacts involved in unidirectional synchronization using update translation

Artifact translation. The non-incremental variant of the to-one synchronizer
uses an operator that translates a source artifact into a consistent target artifact.

Operator 1 Artifact translation: ATS,T : S → T . For an artifact SS , the op-
erator ATS,T (SS) computes ST such that (SS , ST ) ∈ R.

In this tutorial, operators are defined generically over artifact types and the
type parameters are specified as subscripts. For example, the operator ATS,T

has the artifact type parameters S and T and these parameters are used in the
operator’s signature.

We are now ready to state the non-incremental to-one synchronizer. We
present all synchronizers using the form input+ precondition∗ =⇒ computation
=⇒ output+, which makes the input artifact(s), the precondition(s) (if any),
the computation steps, and the output artifact(s) explicit. This form may seem
too verbose for the following simple synchronizer, but its advantages become
apparent for more complex synchronizers.

Synchronizer 1 Unidirectional, non-incremental, and to-one synchronizer us-
ing artifact translation:
S1S,T : S → T

S′
S =⇒ T ′

T = ATS,T (S′
S) =⇒ T ′

T

In this non-incremental variant, the new source artifact is translated into the
new target artifact, which then replaces the original target artifact.



Examples for Synchronizer 1.

Example 7. Type hierarchy.
Examples of Synchronizer 1 are type hierarchy extractors for object-oriented

programs (cf. Example 2). Such extractors are offered by many integrated de-
velopment environments (IDEs).

Example 8. Reverse engineering in FSMLs.
Another example of Synchronizer 1 is reverse engineering of framework-based

Java code in FSMLs (cf. Example 3). The result of reverse engineering is a
framework-specific model that describes how framework abstractions are imple-
mented in the application code [10,16]. For any application code, a unique model
is retrieved using code queries.

Example 9. Lenses in Harmony.
Synchronizer 1 corresponds to the get function in Lenses [17]. In Lenses, the

source-to-target relationship is many-to-one and the target is also referred to as
view. A get function takes the new source and creates the corresponding new
view for it. A full lens, as shown later, is a bidirectional synchronizer and consists
of two functions: get and putback.

Updates. Incremental synchronization can be achieved either by coercing the
original target artifact into conformance with the new source artifact or by trans-
lating updates of the source artifact into the updates of the target artifact. Both
variants require the notion of an update.

Definition 2. Update. An update U : S ⇀ S for artifact(s) of type S is a
partial function that is defined for at least one artifact SS . Artifacts on which
an update is defined are referred to as reference artifacts of that update.

The intuition behind an update is that it connects an original version of an
artifact with its new version, e.g., S′

S = U∆S(SS). Note that we abbreviate the
space of all partial functions S ⇀ S as ∆S and we use this abbreviation to
specify the type of an update.

The size of the set of reference artifacts of an update can vary. An extreme
case is when an update is applicable to only a single artifact. A more practical
solution is to implement updates so that they can be applied to a number of
artifacts that share certain characteristics. For example, an update could be
defined so that it applies to all artifacts that contain a certain structure that the
update modifies.

In practice, we can think of an update as a program that takes the origi-
nal version of an artifact and returns its new version. The update instructions,
such as inserting or removing elements, could be recorded while the user edits
the original artifact. The recorded sequence can then be applied to a reference
artifact, e.g., the original artifact.

Alternatively, an update can be computed using a homogeneous artifact com-
parison operator, which takes an original version of an artifact and its new ver-
sion and returns an update connecting the two. We refer to this comparison
operator as homogeneous since it takes two artifacts of the same type.



Operator 2 Homogeneous artifact comparison: ACS : S × S → ∆S. For ar-
tifacts SS and S′

S , the operator ACS(SS , S′
S) computes U∆S such that S′

S =
U∆S(SS).

We further discuss the design choices for creating and representing updates
in Section 8.1.

Heterogeneous artifact comparison. The first incremental synchronizer uses
heterogeneous artifact comparison, an operator that directly compares two arti-
facts of different types and produces an update that can be applied to the second
artifact in order to make it consistent with the first artifact.

Operator 3 Heterogeneous artifact comparison: ACS,T : S × T → ∆T . For
artifacts S′

S and TT , the operator ACS,T (S′
S , TT ) computes an update U∆T such

that (S′
S , U∆T (TT )) ∈ R.

The incremental synchronizer using heterogeneous artifact comparison takes
the original target in addition to the new source as an input and produces the
new target.

Synchronizer 2 Unidirectional, incremental, original-target-independent, and
to-one synchronizer using heterogeneous artifact comparison:
S2S,T : S × T → T

S′
S , TT =⇒ U∆T = ACS,T (S′

S , TT )
T ′
T = U∆T (TT ) =⇒ T ′

T

In general, the synchronizer needs to analyze the original target with respect
to the new source, compute the updates, and apply the updates to the original
target. Although the above formulation separates the update computation and
application, all these actions could be performed in one pass over the existing
target by synchronizing the target in place.

Note that the above operator and synchronizer assume the situation shown
in Figure 2, where SS and TT do not have to be consistent. However, in cases
where SS and TT are consistent and a small source update U∆S corresponds
to a small target update Y∆T , the performance savings from reusing TT in the
computation of T ′

T are expected to be high.

Update translation. The second incremental synchronizer assumes that the
original source SS and the original target TT are consistent (cf. Figure 5). The
key idea behind this synchronizer is to translate the update of the source into a
consistent update of the target.

Definition 3. Consistent Updates. Two updates U∆S and Y∆T of two con-
sistent reference artifacts SS and TT , respectively, are consistent iff application
of both updates results in consistent artifacts, i.e., (U∆S(SS), Y∆T (TT )) ∈ R.



We can now define the update translation operator. The operator takes not
only the update of the source artifact but also the original source and target
artifacts as parameters. The reason is that consistent updates are defined with
respect to these artifacts.

Operator 4 Update translation: UTS,T : ∆S × S × T → ∆T . For consistent
artifacts SS and TT , i.e., (SS , TT ) ∈ R, and an update U∆S of the source ar-
tifact SS , the operator UTS,T (U∆S , SS , TT ) computes an update U∆T of the
target artifact TT such that U∆S and U∆T are consistent for SS and TT , i.e.,
(U∆S(SS), U∆T (TT )) ∈ R.

Using the update translation operator we can define the second incremental
synchronizer as follows.

Synchronizer 3 Unidirectional, incremental, original-target-independent, and
to-one synchronizer using update translation:
S3S,T : S × ∆S × T → T

SS , U∆S , TT

(SS , TT ) ∈ R =⇒ U∆T = UTS,T (U∆S , SS , TT )
T ′
T = U∆T (TT ) =⇒ T ′

T

The synchronizer requires the original source and the original target, which
have to be consistent, and an update to the original source.

Note that the update of the source artifact U∆S can also be computed by
comparing the new source against the original source using the homogeneous ar-
tifact comparison. This possibility allows us to rewrite Synchronizer 3 as follows.

Synchronizer 4 Unidirectional, incremental, original-target-independent, and
to-one synchronizer using homogeneous artifact comparison and update transla-
tion:
S4S,T : S × S × T → T

SS , S′
S , TT

(SS , TT ) ∈ R =⇒ U∆S = ACS(SS , S′
S)

U∆T = UTS,T (U∆S , SS , TT )
T ′
T = U∆T (TT ) =⇒ T ′

T

An example for Synchronizer 3.

Example 10. Live Update.
An example implementation of Synchronizer 3 is live update [18]. In live

update, a target artifact is first obtained by executing a transformation on the
source artifact. The transformation execution context is preserved and later used
for incremental update of the target artifact in response to an update of the
source artifact. The update translation operator works by locating the points
in the transformation execution context that are affected by the source update.
Update application works by resuming the transformation from the identified
points with the new values from the source.



4.2 Unidirectional synchronizers in to-many direction

The operators used in unidirectional to-many synchronizers are summarized in
Figure 6. The feature diagram is similar to the diagram for the to-one case in
Figure 4 except that each operator appears as a “with choice” variant. Further-
more, an additional variant using a special merge operator was added (on the
bottom left in the diagram). The to-many case implies that a given source arti-
fact may correspond to multiple target artifacts. Thus, each translating operator
in its “with choice” variant produces a set of possible targets rather than a single
target. Consequently, all to-many synchronizers need a decision function as an
additional input that they use to select only one result from the set of possible
targets.

Homogeneous
asymmetric

artifact merge
with choice

Artifact
translation
with choice

Heterogeneous
artifact

comparison
with choice

Homogeneous
artifact

comparison

Update
translation
with choice

To-many

Fig. 6. Operators used in to-many unidirectional synchronizers

Like their to-one counterparts, the to-many synchronizers can be non-incre-
mental or incremental. However, whereas all to-one synchronizers are original-
target-independent, the to-many synchronizers have only one original-target-
independent variant. The remaining ones are original-target-dependent, which
means that values and structures from the original target are used in the com-
putation of the new target and the resulting new target depends both on the
new source and the original target.

The dependency on the original target is desirable for to-many synchronizers
if the target can be edited by developers. The original-target-dependent synchro-
nizers can preserve parts of the original target that have no representation in
the source artifact type when the target is updated. These parts could be added
to the target and edited by developers. Such edits should be preserved during
the synchronization of the target in order to preserve developers’ work.

The first two unidirectional to-many synchronizers are non-incremental and
correspond to the left branch of the feature diagram in Figure 6. The first one is
original-target-independent. It uses artifact translation with choice to translate
the new source into a set of possible new targets and selects one target using a
decision function. The second synchronizer is original-target-dependent. It also
uses artifact translation with choice to translate the new source into a set of



possible new targets, but then it merges the selected new target with the original
target. For this purpose, it uses homogeneous asymmetric artifact merge with
choice, an operation which merges a slave artifact with a master artifact while
preserving a certain property of the master artifact. As a result, some structures
from the original target can be preserved.

The remaining synchronizers are incremental and operate similarly to their
to-one counterparts. However, unlike the latter, they are original-target-depen-
dent. The first incremental variant uses heterogeneous artifact comparison with
choice. The other one uses update translation with choice. The source update
may optionally be computed using homogeneous artifact comparison between
the original source and the new source.

Artifact translation with choice. Let us first consider the first non-incremental
variant. This variant requires an artifact translation operator that returns a set
of possible results. Note that P+(T ) denotes the power set of the set T without
the empty set. We mark all “with choice” variants of operators with ∗.

Operator 5 Artifact translation with choice: AT∗
S,T : S → P+(T ). For an

artifact S′
S , the operator AT∗

S,T (S′
S) computes {S′

T : (S′
S , S′

T ) ∈ R}.

A single resulting artifact can be chosen using a decision function.

Definition 4. Decision. A decision for an artifact type T is a function DDT
:

P+(T ) → T such that ∀X ∈ P+(T ) : DDT
(X) ∈ X. We denote a set of all

decision functions for an artifact type T as DT .

Intuitively, a decision function chooses one artifact out of a set of artifacts
of a given type. It models both the situation where the user makes a choice
interactively or the situation where a choice is made based on some predefined
criteria or default settings. We discuss some design choices for implementing
decision functions in Section 8.5.

Synchronizer 5 Unidirectional, non-incremental, original-target-independent,
and to-many synchronizer using artifact translation with choice:
S5S,T : S × DT → T

S′
S ,DDT

=⇒ T ′
T = DDT

(AT∗
S,T (S′

S)) =⇒ T ′
T

Synchronizer 5 is only of interest for scenarios where the target artifact is
not supposed to be manually edited, e.g., code generation in model compilation.

Examples for Synchronizer 5.

Example 11. Code and model compilation.
In compilation, the resulting artifacts, regardless if they are machine code,

byte code, or code in a high-level programming language, depend on many set-
tings of the compiler such as optimizations or coding style. Although the relation
between the source and target artifacts is many-to-many, the selection of options
allows the synchronizer (the compiler) to produce a single result.



Example 12. Pretty printing.

Similarly to the previous example, many code style options influence the
result of pretty printing an abstract syntax tree representing a program.

Homogeneous asymmetric artifact merge. Unlike the first variant, which
completely replaces the original target with the new one, the second non-incre-
mental variant uses a merge operator to preserve some structures from the orig-
inal target.

The merge operator is homogeneous as it merges two artifacts of the same
type. It is also asymmetric as one of the artifacts is a master artifact and the
other one is a slave artifact, that is, the operator merges the master and slave
artifacts in such a way that the result of the merge satisfies the same property
as the master artifact does. The merge can be implemented in two ways: by
copying structures from the master artifact to the slave artifact or vice versa.

In our context, the slave artifact will be the original target and the master
artifact will be the target obtained by translating the new source into the target
artifact type. The property of the master artifact to be preserved will be its
consistency with the new source artifact.

We model artifact properties as binary functions.

Definition 5. Artifact Property. A property function φ for artifacts of type
T is a function with the following signature φ : T → {0, 1}. We say that the
property φ holds for an artifact TT iff φ(TT ) = 1. We denote the set of all
properties for an artifact type T as ΦT .

Operator 6 Homogeneous asymmetric artifact merge with choice: M∗
T : T ×

T × ΦT → P+(T ). For a slave artifact TT , a property φ, and a master artifact
ST such that φ(ST ) = 1, the operator M∗

T (TT , ST , φ) computes a non-empty
subset of {T ′

T : φ(T ′
T ) = 1}. The elements of the subset preserve structures from

both master and slave artifacts according to some criteria.

The key intention behind this operator, which is only partially captured by
the formal part, is that the resulting set contains artifacts obtained by com-
bining structures from both input artifacts such that each of the artifacts in
the resulting set satisfies the input property. The merge returns a subset of all
the artifacts satisfying the property, meaning that some artifacts satisfying the
property are rejected if they do not preserve structures from both artifacts well
enough according to some criteria. The operator returns a set of artifacts rather
than a single artifact since, in general, there may be more than one satisfactory
way to merge the input artifacts.

Synchronizer 6 Unidirectional, non-incremental, original-target-dependent, and
to-many synchronizer using artifact translation with choice and homogeneous
asymmetric artifact merge with choice:



S6S,T : S × T × DT ×DT → T

S′
S , TT ,DDT

,EDT
=⇒ S′

T = DDT
(AT∗

S,T (S′
S))

T ′
T = EDT

(M∗
T (TT , S′

T , φΦT
)) =⇒ T ′

T

where φΦT
(T ) =

{

1 if (S′
S , T ) ∈ R

0 otherwise

The synchronizer takes two decision functions. The first function selects a
translation of the new source artifact into the target artifact type from the alter-
natives returned by the artifact translation with choice. The selected translation
S′
T is then merged with the original target artifact, where the property passed

to the merge is consistency with the new source artifact S′
S . The second decision

function is used to select one target artifact from the alternatives returned by
the merge.

In practice, the decision functions are likely to be realized as default set-
tings allowing the entire synchronizer to be executed automatically. Furthermore,
practical implementations, while focusing on preserving manual edits from the
original target, often do not restore the full consistency during the merge. In such
cases, the developers are expected to complete the merge by manual editing.

An example for Synchronizer 6.

Example 13. JET and JMerge.
An example implementation of artifact merge with choice is JMerge, which

is a part of Java Emitter Templates (JET) [19]. JET is a template-based code
generation framework in Eclipse.

JMerge can be used to merge an old version of Java code (slave artifact)
with a new version (master artifact), such that developers can control which
parts of the old versions get overridden by the corresponding parts from the new
version. JMerge replaces Java classes, methods, and fields of the slave artifact
that are annotated with @generated with their corresponding new versions from
the master artifact. Developers can remove the @generated annotation from the
elements they modify in order to preserve their modifications during subsequent
merges. The behavior of JMerge is parameterized with a set of rules, which is
an implementation of the decision function EDT

. JMerge is not concerned with
preserving the consistency of the master artifact with the new source, meaning
that the merged result might require manual edits in order to make it consistent.
However, JMerge guarantees that all program elements in the slave that are not
annotated with the @generated annotation remain unchanged in the merged
result.

The code generator of Eclipse Modeling Framework (EMF) [20] implements
Synchronizer 6 and uses JMerge as an implementation of the merge operator.
The code generator is based on JET and takes a new EMF model as an input,
which is the new source artifact S′

S . Code generation is controlled by a separate
generator model, which specifies both global generation options and options that



are specific to some source model elements. The latter can be thought of as deco-
rations or mark-up of the source elements, but ones that are stored in a separate
artifact. Effectively, the generator model corresponds to the decision function
DDT

. The code generator emits the Java code implementing the model, i.e., S′
T .

JMerge is then used to merge the freshly-generated code S′
T (master artifact)

with the original Java code TT (slave artifact) that may contain developer’s
customizations. The resulting new Java code T ′

T is now synchronized with the
new model in the sense that all code elements annotated with the @generated

annotation were replaced with the code elements generated from the new model.
The JMerge approach is an example of the concept of protected blocks. Pro-

tected blocks are specially marked code sections that are preserved during code
re-generation. In JMerge, protected blocks are marked by virtue of not being
annotated with @generated.

Heterogeneous artifact comparison. Analogously to the incremental syn-
chronizers from the previous section, incremental to-many synchronizers can be
realized using either heterogeneous comparison or update translation. However,
both operators need to be modified to produce sets of results.

Operator 7 Heterogeneous artifact comparison with choice: AC∗
S,T : S × T →

P+(∆T ). For artifacts S′
S and TT , the operator AC∗

S,T (S′
S , TT ) computes a

non-empty subset of {U∆T : (S′
S , U∆T (TT )) ∈ R}. The elements of the subset

preserve structures from TT according to some criteria.

We can now state the first incremental synchronizer as follows.

Synchronizer 7 Unidirectional, incremental, original-target-dependent, and to-
many synchronizer using heterogeneous artifact comparison with choice:
S7S,T : S × T × D∆T → T

S′
S , TT ,DD∆T

=⇒ U∆T = DD∆T
(AC∗

S,T (S′
S , TT ))

T ′
T = U∆T (TT ) =⇒ T ′

T

An example for Synchronizer 7.

Example 14. Lenses in Harmony.
Synchronizer 7 corresponds to the putback function in Lenses [17]. In Lenses,

the source-to-target relationship is many-to-one and putback is used in the target-
to-source direction. In other words, putback is a unidirectional to-many synchro-
nizer. The function takes the new view and the original source and returns the
new source. A full lens combines putback with get (cf. Example 9) to form a
bidirectional synchronizer (cf. Example 18).

Update translation with choice. The second incremental variant uses update
translation with choice.



Operator 8 Update translation with choice: UT∗
S,T : ∆S × S × T → P+(∆T ).

For two consistent artifacts SS and TT and an update U∆S of SS , the operator
UT∗

S,T (U∆S , SS , TT ) computes a non-empty subset of {U∆T : (U∆S(SS), U∆T (TT )) ∈
R}. The elements of the subset preserve structures from TT according to some
criteria.

Synchronizer 8 Unidirectional, incremental, original-target-dependent, and to-
many synchronizer using update translation with choice:
S8S,T : S × ∆S × T × D∆T → T

SS , U∆S , TT ,DD∆T

(SS , TT ) ∈ R =⇒ U∆T = DD∆T
(UT∗

S,T (U∆S , SS , TT ))
T ′
T = U∆T (TT ) =⇒ T ′

T

Examples for Synchronizer 8.

Example 15. Incremental code update in FSMLs.
An example of Synchronizer 8 is incremental code update in FSMLs [10].

During forward propagation of model updates to code, code update transforma-
tions are executed for every added, modified, or removed model element. This
translation of element updates into corresponding code updates is an example of
an update translation function. Different code updates can be applied for a given
model update depending on the desired implementation variant. An example of
an implementation variant is the creation of an assignment to a field either as a
separate statement or as an expression of the field’s initializer. The variants can
be selected based on source model annotations that are provided by default and
can also be modified by the developer. This annotation mechanism represents
an implementation of the decision function DD∆T

.

Example 16. Co-evolution of models with metamodels.
Wachsmuth [13] describes an approach to the synchronization of models in

response to certain well-defined kinds of updates in their metamodels. The up-
dates are classified into refactoring, construction, and destruction. These meta-
model updates are then translated into the corresponding updates of the models.
The model updates are an example of updates whose sets of reference artifacts
contain more than one artifact (cf. Definition 2).

5 Bidirectional Synchronizers

Propagating change only in one direction is often not practical as certain changes
may only be possible in certain artifacts. Bidirectional synchronization involves
propagating changes in both directions using bidirectional synchronizers. Bidi-
rectional synchronization is also referred to as round-trip engineering [21–23].

In this section, we focus on synchronization where changes to one artifact
are propagated to the other artifact only in one direction at a time, whereas in



the next section we focus on synchronization in which changes to both artifacts
can be reconciled and propagated in both directions at once.

A sample bidirectional synchronization scenario with a source-to-target syn-
chronization followed by a target-to-source synchronization is shown in Figure 7.
The results of the first synchronization are placed in boxes with subscript one
and the results of the second synchronization are placed in boxes with subscript
two. The first synchronization is executed in response to update U∆S , and the
second synchronization is executed in response to update Y ′

∆T .
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Fig. 7. Bidirectional synchronization scenario with a source-to-target synchronization
followed by a target-to-source synchronization

Unidirectional synchronizer ◮

Towards target

Unidirectional synchronizer ◮

Towards source

Bidirectional synchronizer

Fig. 8. Bidirectional synchronizer

A bidirectional synchronizer can be thought of as a pair of unidirectional
synchronizers, one synchronizer for one direction, as shown in Figure 8. The
feature towards target represents the unidirectional synchronizer from source to
target, and the feature towards source represents the unidirectional synchronizer
from target to source. Both synchronizers could be constructed separately using
a unidirectional language, or they could be derived from a single description in
a bidirectional language. We discuss these possibilities in Section 8.6.

Properties. According to Stevens [24], the key property of a pair of unidi-
rectional synchronizers implementing bidirectional synchronization for a given
relation is that they are correct with respect to the relation. Correctness means



that each synchronizer enforces the relation between the source and target arti-
facts. Clearly, any pair (SiS,T ,SjT ,S) of the unidirectional synchronizers defined
in the previous sections (where i and j may be equal) is correct with respect to
R by the definition of the synchronizers.

Another desired property of a synchronization synchronizer is hippocratic-
ness [24], meaning that the synchronizer should not modify any of the artifacts
if they already are in the relation. The hippocraticness property is also referred to
as check-then-enforce, which suggests that the synchronizer should only enforce
the relation if the artifacts are not in the relation.

Note that, in practice, a synchronization step may be partial in the sense
that it does not establish full consistency. Artifact developers may choose to
synchronize only certain changes at a time and ignore parts of the artifacts that
are not yet ready to be synchronized. Therefore, the correctness property only
applies to complete synchronization.

Examples of bidirectional synchronizers.

Example 17. Triple Graph Grammars in FUJABA.

Giese and Wagner describe an approach to bidirectional synchronization us-
ing Triple Graph Grammars (TGG) [25]. Their approach is implemented in the
Fujaba tool suite [26]. TGG rules are expressed using a bi-directional, graphical
language. For two models, the user can choose the direction of synchronization.
Both models are then matched by TGG rules, which can be viewed as an im-
plementation of the heterogeneous artifact comparison. The updates determined
by each rule are applied to the target in a given direction, which amounts to
incremental synchronization. The authors assume that the relationship between
source and target is a bijection [25, p. 550]. Thus, the approach can be described
as (S2S,T ,S2T ,S).

Example 18. Lenses in Harmony.

A lens [17] is a bidirectional synchronizer for the many-to-one case. It con-
sist of two unidirectional synchronizers: get (cf. Example 9) and putback (cf.
Example 14). In other words, a lens can be described as (S1S,T ,S7T ,S). Note
that the second synchronizer executes in the target-to-source direction, i.e., the
direction towards the end with the cardinality of many, and the artifact at that
end can be edited. Consequently, the synchronizer should be one of the unidirec-
tional, to-many, and original-target-dependent synchronizers, which is satisfied
by S7T ,S .

6 Bidirectional Synchronizers with Reconciliation

In this section we focus on synchronization where both artifacts can be changed
simultaneously in-between two consecutive synchronizations and the changes can
be reconciled and propagated in both directions during a single synchronization.



Bidirectional synchronization with reconciliation involves up to six artifacts
(cf. Figure 9). Four of them are the same as in the case of unidirectional synchro-
nization (cf. Figure 2), except that the original source SS and the original target
TT are now assumed to be consistent. Furthermore, the new target T ′

T is given
as a result of a user update Y∆T just as the new source S′

S is given as a result
of another user update U∆S . The purpose of a bidirectional synchronizer with
reconciliation is to compute a reconciled source artifact S′′

S and a reconciled tar-
get artifact T ′′

T , such that the two are consistent. In essence, such a synchronizer
can also be viewed as a heterogeneous symmetric merge operation.
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Fig. 9. Artifacts involved in bidirectional synchronization with reconciliation

As in the unidirectional case, some of the four input artifacts may be missing.
The two extreme cases are when only the new source or only the new target
exist. The synchronization in these cases corresponds to the initial generation
of the target artifact or the source artifact, respectively. The case where both
original artifacts are missing corresponds to the situation where two artifacts
are synchronized for the first time. Note that a “missing” artifact corresponds
to a special value that represents a minimal artifact, that is, an artifact that
contains the minimum structure required by its artifact type. We assume that
minimal artifacts of all types are always consistent.
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Fig. 10. Bidirectional synchronizer with reconciliation



In general, bidirectional synchronization with reconciliation involves

– translation of updates, artifacts, or both;
– identification of conflicting updates;
– creation of updates that resolve conflicts and reconcile the artifacts; and
– application of the updates.

The identification of conflicting updates and their resolution can be performed
in homogeneous or heterogeneous fashion as indicated in Figure 10.

Homogeneous reconciliation means that updates to both source and target
artifacts are compared and then reviewed by the user in terms of one artifact
type, which is either the source or the target type. In other words, if the com-
parison and review (and resolution of potential conflicts) is done on the target
side, the new source artifact or the update of the source artifact need to be
first translated into the target type. Depending whether the entire artifact or
just the update is translated, the comparison and reconciliation is done either
by homogeneous artifact comparison and reconciliation with choice or its update
counterpart (cf. Figure 10). Assuming reconciliation on the target side, both
operators return an update of the new source artifact (but expressed in the tar-
get artifact type) and an update to the new target artifact, such that the two
updates reconcile both artifacts. Finally, the first update has to be translated
back into the source artifact type and applied to the new source artifact, and the
second update is applied to the new target artifact. Note that the translation
of artifacts or updates in one direction and the translation of updates in the
other direction essentially requires a bidirectional synchronizer, as indicated in
Figure 10 by a reference to the feature bidirectional synchronizer.

Heterogeneous reconciliation implies a heterogeneous comparison between
the artifacts or the updates. A bidirectional synchronizer with heterogeneous
reconciliation can be implemented using the operator heterogeneous artifact com-
parison and reconciliation with choice or its update counterpart (cf. Figure 10).
The operators are similar to their homogeneous counterparts with the difference
that they directly compare artifacts of different types and thus do not require a
pair of unidirectional synchronizers for both directions.

6.1 Comparison and reconciliation procedures

In general, comparison and reconciliation operators work at the level of indi-
vidual structural updates that occurred within the overall update of the source
artifact U∆S and the overall update of the target artifact Y∆T . The updates can
be atomic, such as element additions, removals, and relocations and attribute
value modifications. The updates can also be composite, i.e., consisting of other
atomic and composite updates.

We categorize updates into synchronizing, propagating, consistent, conflicting,
non-reflectable, and inverse. An update in one artifact is synchronizing if it
establishes the consistency of the artifact with the related artifact. An update
in one artifact is propagating if it forces a synchronizing update in the related



artifact. Two updates, one in each artifact, are consistent if one is a synchronizing
update of the other one. On the other hand, two updates, one in each artifact,
are conflicting if the propagation of one update would override the other one.
An update in one artifact is non-reflectable if it does not force any synchronizing
update in the other artifact. An inverse update (intuitively undo) for a given
update and a reference artifact maps the result of applying the given update to
the reference artifact back to the reference artifact.

A maximal synchronizer [27] is one that propagates all propagating updates.
The following strategy is used to compute U ′

∆S and Y ′
∆T for achieving maximum

synchronization:

– consistent and non-reflectable updates in U∆S and Y∆T are ignored since
both artifacts are already consistent with respect to these updates;

– out of several conflicting updates in U∆S and Y∆T , exactly one update can
be accepted as a propagating update; and

– for each propagating update in U∆S , a synchronizing update needs to be
included in Y ′

∆T ; similarly, for each propagating update in Y∆T , a synchro-
nizing update needs to be included in U ′

∆S .

After the updates are classified into consistent, non-reflectable, conflicting,
and propagating by the comparison operator, the user typically reviews the clas-
sification, resolves conflicts by rejecting some of the conflicting updates, and then
the final updates U ′

∆S and Y ′
∆T are computed by determining and composing

the necessary synchronizing updates. In practice, simple acceptance or rejection
of updates might not be sufficient to resolve all conflicts, in which case the in-
put artifacts may need to be manually edited to resolve and merge conflicting
updates.

In general, conflict resolution is not the only possible conflict management
strategy. Other possibilities include storing all conflicting updates in each rec-
onciled artifact or allowing artifacts to diverge for conflicting updates [27].

6.2 Bidirectional synchronizers for one-to-one relations

Note that due to the need for reconciliation, none of the synchronizers can be
fully non-incremental since at least one artifact needs to be updated by update
application. Let us first consider a target-incremental synchronizer. This variant
requires homogeneous artifact comparison and reconciliation with choice opera-
tion. The need for choice arises from the fact that conflicts may be resolved in
different ways.

Operator 9 Homogeneous artifact comparison and reconciliation with choice:
ACR∗

T : T ×T ×T → P+(∆T ×∆T ). For two artifacts S′
T and T ′

T , and the ref-
erence artifact TT , the operator ACR∗

T (S′
T , T ′

T , TT ) computes a non-empty sub-
set of {(U ′

∆T , Y ′
∆T ) : U ′

∆T (S′
T ) = Y ′

∆T (T ′
T )}. Each pair of updates (U ′

∆T , Y ′
∆T )

from that subset is such that the updates resolve conflicting changes and enforce
all propagating changes from U∆T and Y∆T , where U∆T = ACT (TT , S′

T ) and
Y∆T = ACT (TT , T ′

T ).



The operator ACR∗
T performs a three-way comparison of the artifacts and re-

turns a set of pairs of updates. The reference artifact is included in the three-way
comparison as it allows precisely determining the kind and location of updates.
In particular, it allows determining whether certain updates occurred consis-
tently in both artifacts, inconsistently in both artifacts, or only in one artifact.
Each resulting pair of updates modifies both artifacts S′

T and T ′
T such that they

become identical and all conflicting updates are resolved and all propagating up-
dates are propagated. The second condition is necessary: without it, the operator
could simply return updates that could, for example, revert each artifact back to
the reference artifact, or even to the minimal artifact. Each pair of resulting up-
dates represents one possible way of reconciling conflicts. The resulting updates
are constructed using the strategy given at the end of the previous section.

Now we are ready to formulate the target-incremental synchronizer. Note
that all discussed synchronizers perform reconciliation on the target side.

Synchronizer 9 Bidirectional, target-incremental, and one-to-one synchronizer
using artifact translation and homogeneous artifact comparison and reconcilia-
tion with choice:
S9S,T : S × T × T × D∆T ×∆T → S × T

S′
S , T ′

T , TT ,

FD∆T ×∆T
=⇒ S′

T = ATS,T (S′
S)

( , Y ′
∆T ) = FD∆T ×∆T

(ACR∗
T (S′

T , T ′
T , TT ))

T ′′
T = Y ′

∆T (T ′
T )

S′′
S = ATT ,S(T ′′

T ) =⇒ S′′
S , T ′′

T

In the target-incremental variant, source artifact is first translated into the
target artifact type. Next, the operator ACR∗

T computes new updates for each
artifact. In the target-incremental synchronizers, the update for the artifact S′

T

is simply ignored. Next, the reconciled target artifact T ′′
T is created by applying

the update Y ′
∆T to T ′

T . Finally, the reconciled source artifact S′′
S is obtained by

translating T ′′
T back into the artifact type S.

A fully-incremental variant, in which the new source S′
S is incrementally

updated, is also possible.

Synchronizer 10 Bidirectional, fully-incremental, and one-to-one synchronizer
using artifact translation, homogeneous artifact comparison and reconciliation
with choice, and update translation:
S10S,T : S × T × T × D∆T ×∆T → S × T

S′
S , T ′

T , TT ,

FD∆T ×∆T
=⇒ S′

T = ATS,T (S′
S)

(U ′
∆T , Y ′

∆T ) = FD∆T ×∆T
(ACR∗

T (S′
T , T ′

T , TT ))
T ′′
T = Y ′

∆T (T ′
T )

U ′
∆S = UTT ,S(U ′

∆T , S′
T , S′

S)
S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T



A fully-incremental variant can also be realized by translating updates in-
stead of translating the entire artifacts. The fully-incremental case requires a
homogeneous update comparison and reconciliation operator.

Operator 10 Homogeneous update comparison and reconciliation with choice:
UCR∗

T : ∆T × ∆T × T → P+(∆T × ∆T ). For two updates U∆T and Y∆T of a
reference artifact TT , the operator UCR∗

T (U∆T , Y∆T , TT ) computes a non-empty
subset of {(U ′

∆T , Y ′
∆T ) : U ′

∆T (U∆T (TT )) = Y ′
∆T (Y∆T (TT ))}. Each pair of up-

dates (U ′
∆T , Y ′

∆T ) from that subset is such that the updates resolve all conflicting
changes and enforce all propagating changes from U∆S and Y∆T .

Synchronizer 11 Bidirectional, fully-incremental, and one-to-one synchronizer
using update translation and homogeneous update comparison and reconciliation
with choice:
S11S,T : S × S × ∆S × T × T × ∆T × D∆T ×∆T → S × T

SS , S′
S , U∆S ,

TT , T ′
T , Y∆T ,

FD∆T ×∆T

U∆S(SS) = S′
S

Y∆T (TT ) = T ′
T

(SS , TT ) ∈ R =⇒ U∆T = UTS,T (U∆S , SS , TT )
(U ′

∆T , Y ′
∆T ) = FD∆T ×∆T

(UCR∗
T (U∆T , Y∆T , TT ))

T ′′
T = Y ′

∆T (T ′
T )

U ′
∆S = UTT ,S(U ′

∆T , T ′
T , S′

S)
S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

Analogously to the non-incremental variant, the UCR∗
T operator performs

the three-way comparison of the updates with respect to the reference artifact
TT . Again, the result is a pair of reconciled updates. The update U ′

∆T needs
to be translated into the artifact type S. Finally, the reconciled updates are
applied.

6.3 Bidirectional synchronizers for many-to-one relations

For many-to-one relations, we only consider homogeneous reconciliation on the
target side since source artifacts or updates can be unambiguously translated
in the target direction. We show two synchronizers in this category. The first
synchronizer uses a non-incremental unidirectional synchronizer in the source-
to-target direction, while the other uses an incremental one. For the target-to-
source direction, we need to use one of the unidirectional to-many synchronizers
that are original-target-dependent, where the “original target” corresponds to
the new source in our context. The reason is that we want to preserve non-
reflectable edits from the new source. Both synchronizers use update translation
with choice in the target-to-source direction.



Synchronizer 12 Bidirectional, fully-incremental, and many-to-one synchro-
nizer using artifact translation, homogeneous artifact comparison and reconcili-
ation with choice, and update translation with choice:
S12S,T : S × S × T × T × D∆S ×D∆T ×∆T → S × T

SS , S′
S , TT , T ′

T ,

DD∆S
,

FD∆T ×∆T

(SS , TT ) ∈ R =⇒ S′
T = ATS,T (S′

S)
(U ′

∆T , Y ′
∆T ) = FD∆T ×∆T

(ACR∗
T (S′

T , T ′
T , TT ))

T ′′
T = Y ′

∆T (T ′
T )

U ′
∆S = DD∆S

(UT∗
T ,S(U ′

∆T , S′
T , S′

S))
S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

Synchronizer 13 Bidirectional, fully-incremental, and many-to-one synchro-
nizer using update translation, homogeneous update comparison and reconcilia-
tion with choice, and update translation with choice:
S13S,T : S × S × ∆S × T × T × ∆T × D∆S ×D∆T ×∆T → S × T

SS , S′
S , U∆S ,

TT , T ′
T , Y∆T ,

DD∆S
,

FD∆T ×∆T

U∆S(SS) = S′
S

Y∆T (TT ) = T ′
T

(SS , TT ) ∈ R =⇒ U∆T = UTS,T (U∆S , SS , TT )
(U ′

∆T , Y ′
∆T ) = FD∆T ×∆T

(UCR∗
T (U∆T , Y∆T , TT ))

T ′′
T = Y ′

∆T (T ′
T )

U ′
∆S = DD∆S

(UT∗
T ,S(U ′

∆T , T ′
T , S′

S))
S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

An example for Synchronizer 12.

Example 19. Synchronization in FSMLs.
The FSML infrastructure [10] supports synchronization according to Syn-

chronizer 12. Source artifact is Java code, XML code, or a combination of both.
Target artifact is a model in an FSML designed for a particular framework,
e.g., Apache Struts (cf. Example 3). The relation between source and target is
many-to-one. The infrastructure performs homogeneous artifact comparison and
reconciliation on the model (target) side since every code update has a unique
representation on the model side. The reverse is not true: a model update can
be translated in different ways into code updates.

The first step of the synchronizer is to retrieve S′
T , i.e., the model of the new

code, from the new code S′
S using ATS,T , which is implemented by a set of code

queries (cf. Example 8).
The second step is a three-way compare between the model of the new code

S′
T and the new model T ′

T while using the original model TT as a reference



artifact. The original model corresponds to the initial situation when the model
and the code were consistent after the previous synchronization, and the new
model and the new code are the results of independent updates of the respective
original artifacts (cf. Figure 9).

The artifact comparison and reconciliation ACR∗
T operates on framework-

specific models. A model is an object structure conforming to a class model, i.e.,
the metamodel. The object structure consists of objects (i.e., model elements),
attributes with primitive values, and containment and reference links between
objects. The containment links form a containment hierarchy, which is a tree.
The comparison process starts with establishing the correspondence among the
model elements in all three models, namely S′

T , T ′
T , and TT . The correspondence

is established using structural matching, which takes into account the location
of the elements in the containment hierarchy and their identification keys that
are specified in the metamodel. Approaches to establishing correspondence are
further discussed in Section 8.2. The result of the matching is a set of 3-tuples,
where each tuple contains the corresponding elements from the three input mod-
els. Each position in a 3-tuple is dedicated to one of the three input models and
contains the corresponding element from the model or a special symbol repre-
senting the absence of the corresponding element from that model.

Table 2. Results of three-way compare of the corresponding elements t, s, and r in
the new artifacts T ′

T and S′

T , and the reference artifact TT , respectively. The absence
of a corresponding element is represented by -. Table adapted from [10].

T ′

T S′

T TT condition detected updates to element update classification

s t r t = s = r unchanged no updates
s t r t = s ∧ t 6= r modified consistently in T ′

T & S′

T consistent updates
s t - t = s added consistently to T ′

T & S′

T consistent updates

s t r t 6= s ∧ t = r modified in S′

T propagating update in S′

T

s t r t 6= s ∧ s = r modified in T ′

T propagating update in T ′

T

s t r t 6= s 6= r 6= t modified inconsistently in T ′

T & S′

T conflicting updates
s t - t 6= s added inconsistently to T ′

T & S′

T conflicting updates

s - r t = r removed from S′

T propagating update in S′

T

s - r t 6= r removed from S′

T , modified in T ′

T conflicting updates
s - - - added to T ′

T propagating update in T ′

T

- t r s = r removed from T ′

T propagating update in T ′

T

- t r s 6= r removed from T ′

T , modified in S′

T conflicting updates
- t - - added to S′

T propagating update in S′

T

- - r - removed from T ′

T & S′

T consistent updates

The comparison process continues by processing each 3-tuple to establish the
updates that occurred in the new source and the new target according to Ta-
ble 2. The first and the second column classifies each 3-tuple according to whether
all three elements or only some were present and whether the corresponding ele-
ments were equal or not. Two elements are equal iff their corresponding attribute
values are equal, their corresponding reference links point to the same element,



and the corresponding contained elements are equal. The third column describes
the detected updates as element additions, modifications, and removals, and the
fourth column classifies the updates as propagating, consistent, or conflicting
(cf. Section 6.1).

The classification results are then presented to the user, who can review each
of the updates and decide to accept or reject it. More precisely, a propagating
update can be accepted or rejected and a pair of conflicting updates can be
enforced in the forward or the reverse direction or rejected all together. Note that
the decisions can be taken at different levels in the containment hierarchy. In a
extreme, the user might only review the updates at the level of the corresponding
model elements representing the model roots. The user might also desire to drill
down the hierarchy and review the updates at a finer granularity.

The conflict resolution decisions made by the user correspond to the decision
function FD∆T ×∆T

. It is desirable that the decisions taken by the user should
result in a well-formed model T ′′

T before the code is updated. However, in prac-
tice, developers may choose to synchronize one element at a time. Also, only
accepting and/or rejecting updates may not be enough to arrive at the desired
model, meaning that developers might need to perform some additional edits
during reconciliation.

The last stage of ACR∗
T is to compute the resulting updates U ′′

∆T and Y ′′
∆T .

The resulting update U ′′
∆T for S′

T is computed by collecting the synchronizing
update for every accepted propagating and conflicting update to T ′

T and the in-
verse updates to the rejected propagating updates. An inverse update reverts an
element back to its state from TT . There is no need to include an inverse update
for the rejected update from a conflicting pair since the accepted update will
override the corresponding element. The update Y ′′

∆T is computed in a similar
way.

Finally, the update of the model representing the new code, U ′′
∆T , is trans-

lated into the update of the new code, U ′′
∆S . The translation is achieved using

update translation UT∗
T ,S as described in Example 15. At last, both the new

code and the new model are incrementally updated by applying U ′′
∆S and Y ′′

∆T ,
respectively, and the synchronizer returns the two reconciled artifacts S′′

S and
T ′′
T .

6.4 Bidirectional synchronizers for many-to-many relations

Reconciliation for many-to-many relations can be performed in the homoge-
neous or heterogeneous fashion. A bidirectional synchronizer with homogeneous
reconciliation for a many-to-many relation needs to use unidirectional original-
target-dependent to-many synchronizers in both directions.

First we show a bidirectional synchronizer with homogeneous reconciliation
that uses update translation with choice in both directions.

Synchronizer 14 Bidirectional, fully-incremental, and many-to-many synchro-
nizer using update translation with choice and homogeneous update comparison



and reconciliation with choice:
S14S,T : S × S × ∆S × T × T × ∆T × D∆S ×D∆T ×D∆T ×∆T → S × T

SS , S′
S , U∆S ,

TT , T ′
T , Y∆T ,

DD∆S
,ED∆T

,

FD∆T ×∆T

U∆S(SS) = S′
S

Y∆T (TT ) = T ′
T

(SS , TT ) ∈ R =⇒ U∆T = ED∆T
(UT∗

S,T (U∆S , SS , TT ))
(U ′

∆T , Y ′
∆T ) = FD∆T ×∆T

(UCR∗
T (U∆T , Y∆T , TT ))

T ′′
T = Y ′

∆T (T ′
T )

U ′
∆S = DD∆S

(UT∗
T ,S(U ′

∆T , SS , TT ))
S′′
S = U ′

∆S(S′
S) =⇒ S′′

S , T ′′
T

The heterogeneous variant of the many-to-many synchronizer requires a het-
erogeneous comparison and reconciliation operator.

Operator 11 Heterogeneous artifact comparison and reconciliation with choice:
ACR∗

S,T : S×T ×S×T → P+(∆S×∆T ). For two artifacts S′
S and T ′

T , and two
consistent reference artifacts SS and TT , the operator ACR∗

S,T (S′
S , T ′

T , SS , TT )
computes a non-empty subset of {(U ′

∆S , Y ′
∆T ) : (U ′

∆S(S′
S), Y ′

∆T (T ′
T )) ∈ R}. Each

pair of updates (U ′
∆T , Y ′

∆T ) from that subset is such that the updates resolve con-
flicting updates and enforce all propagating updates from U∆S and Y∆T , where
U∆S = ACS(SS , S′

S) and Y∆T = ACT (TT , T ′
T ).

Synchronizer 15 Bidirectional, fully-incremental, and many-to-many synchro-
nizer using heterogeneous artifact comparison and reconciliation with choice:
S15S,T : S × S × T × T × D∆S×∆T → S × T

SS , S′
S , TT , T ′

T ,

FD∆S×∆T

(SS , TT ) ∈ R =⇒ (U ′
∆S , Y ′

∆T ) = FD∆S×∆T
(ACR∗

S,T (S′
S , T ′

T , SS , TT ))
S′′
S = U ′

∆S(S′
S)

T ′′
T = Y ′

∆T (T ′
T ) =⇒ S′′

S , T ′′
T

We introduce the last variant, Synchronizer 16, by first discussing its sample
implementation.

An example for Synchronizer 16.

Example 20. ATL Virtual Machine extension for synchronization.
An example of a bidirectional many-to-many synchronizer is an extension

to the Atlas Transformation Language (ATL) [28] virtual machine [29]. While
the synchronizer works in the reconciliation setting as illustrated in Figure 9
and allows independent updates to the original source and the original target,
it only supports partial reconciliation. More specifically, while the synchronizer



propagates all propagating updates, it does not support conflict resolution. Fur-
thermore, the synchronizer does not tolerate additions made to the original tar-
get model. In any of the above situations, the synchronizer reports an error and
terminates.

The mapping between source and target is given as an artifact translator
expressed in ATL, which is a unidirectional transformation language. While an
ATL translator is a partial function, the extension supports many-to-many rela-
tions by merging the translation results with existing artifacts using asymmetric
homogeneous merge (cf. Operator 6). In this way, the non-reflectable updates
from the new source and the new target can be preserved.

The following synchronizer describes the synchronization procedure.

Synchronizer 16 Bidirectional, source-incremental, and many-to-many syn-
chronizer using artifact translation, homogeneous artifact comparison, update
translation with choice, and homogeneous asymmetric artifact merge with choice:
S16S,T : S × S × T × D∆S ×D∆S ×D∆T → S × T

SS , S′
S , T ′

T ,

DDS
,EDS

,FDT
=⇒ TT = ATS,T (SS)

Y∆T = ACT (TT , T ′
T )

Y∆S = DDS
(UT∗

T ,S(Y∆T , TT , SS))
SY
S = Y∆S(SS)

S′′
S = EDS

(M∗
S(S′

S , SY
S , φ1

ΦS
))

S′′
T = ATS,T (S′′

S)
T ′′
T = FDT

(M∗
T (T ′

T , S′′
T , φ2

ΦT
)) =⇒ S′′

S , T ′′
T

where φ1
ΦS

(S) =

{

1 if (T ′
T , S) ∈ R

0 otherwise

φ2
ΦT

(T ) =

{

1 if (S′′
S , T ) ∈ R

0 otherwise

First, the original target TT is obtained by executing an artifact translation
written in ATL. Next, the update of the original target Y∆T is translated into
the corresponding update of the original source SS using the virtual machine
extension. The information that is necessary for the update translation in the
reverse direction was recorded by the ATL virtual machine extension during
the execution of the artifact translation in the forward direction. Next, the new
source S′

S is merged with SY
S , which is the updated original source incorporating

the source translation of Y∆T . The merged artifact S′′
S is the reconciled source

artifact. Finally, the reconciled source S′′
S is translated into the artifact S′′

T , which
is then merged with the new target T ′

T to produce the reconciled target artifact
T ′′
T .
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7 Summary of Synchronizers and Tradeoffs

In this section, we summarize the presented synchronizers and discuss the trade-
offs among them. Figure 11 presents a composite feature model of the design
space of heterogeneous synchronizers. The feature model serves two purposes: 1)
it consolidates the fragments of the feature model spread over the course of the
tutorial, and 2) it provides section and page numbers of the feature descriptions.
The leaf features that are not references, i.e., the leafs without ◮, correspond to
artifact operators.

Table 7 shows a feature comparison of the presented synchronizers and their
inputs. Synchronizers 1–8 are unidirectional, of which Synchronizers 1–4 are
to-one and Synchronizers 5–8 are to-many. Synchronizers 9–16 are bidirectional.
Among them, Synchronizers 9–11 are one-to-one, Synchronizers 12–13 are many-
to-one, and Synchronizers 14–16 are many-to-many.

Tradeoffs for unidirectional to-one synchronizers. The incremental vari-
ants offer higher performance than the non-incremental one because only indi-
vidual updates are considered instead of the whole artifacts. Consequently, they
enable more frequent synchronization for large artifacts. However, implement-
ing heterogeneous artifact comparison or update translation operators is usually
more complex than implementing artifact translation. The reason is that addi-
tional design decisions for implementing updates (cf. Section 8.1) and matching
(cf. Section 8.2) need to be considered.

Furthermore, while the incremental variant based on update translation is
likely to be more efficient than the one based on heterogeneous artifact compar-
ison, the additional requirement that the original versions of the artifacts need
to be consistent may be too restrictive in some situations. For example, it could
be sufficient for the original versions to be nearly consistent.

Tradeoffs for unidirectional to-many synchronizers. The first synchro-
nizer, i.e., the one based on artifact translation with choice and without homo-
geneous merge, is only useful if the target is not going to be manually edited
in between target regenerations, as in the case of compiling a program into ob-
ject code. If the target is intended to be edited, any of the remaining to-many
variants needs to be used.

The synchronizer using the merge operator is simple to implement for cases
where the structures of the target artifact that are non-reflectable in the source
are well separated from the structures that are reflectable in the source. Such
separation simplifies the implementation of the merge. If both kinds of structures
are strongly intertwined, one of the incremental to-many synchronizers may be
a better choice since they take the original target into account already in the
translation operator.

The tradeoffs between the two incremental synchronizers, i.e., the one using
heterogeneous artifact comparison with choice and the other one using update



Table 3. Summary of features synchronizers on their inputs

→ 1 → ∗ 1↔ 1 ∗ ↔ 1 ∗ ↔ ∗

Synchronizer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

in
cr

em
en

t. non-incremental • · · · • • · · · · · · · · · ·
(target-) incremental · • • • · · • • • · · · · · · ·

source-incremental · · · · · · · · · · · · · · · •
fully-incremental · · · · · · · · · • • • • • • ·

original-target-dependent · · · · · • • • • • • • • • • •

SS (original source artifact) · · • • · · · • · · • • • • • •
S′

S (new source artifact) • • · • • • • · • • • • • • • •
U∆S (update of the orig. source art.) · · • · · · · • · · • · • • · ·

DDS
(decision function on artifact) · · · · · · · · · · · · · · · •

DD∆S
(decision function on update) · · · · · · · · · · · • • • · ·

EDS
(decision function on artifact) · · · · · · · · · · · · · · · •

in
p
u
ts TT (original target artifact) · • • • · • • • • • • • • • • ·

T ′

T (new target artifact) · · · · · · · · • • • • • • • •
Y∆T (update of the orig. target art.) · · · · · · · · · · • · • • · ·
DDT

(decision function on artifact) · · · · • • • · · · · · · · · ·
DD∆T

(decision function on update) · · · · · · · • · · · · · · · ·
EDT

(decision function on artifact) · · · · · • · · · · · · · • · ·
FD∆T ×∆T

(decision fun. on updates) · · · · · · · · • • • • • • · ·
FD∆S×∆T

(decision fun. on updates) · · · · · · · · · · · · · · • ·
FDT

(decision function on artifact) · · · · · · · · · · · · · · · •

p
re

co
n
.

(SS , TT ) ∈ R · · • • · · · • · · • • • • • ·
U∆S(SS) = S′

S · · · · · · · · · · · · • • · ·
Y∆T (TT ) = T ′

T · · · · · · · · · · · · • • · ·

artifact translation • · · · · · · · • • · • · · · •
heterogeneous artifact comparison · • · · · · · · · · · · · · · ·

update translation · · • • · · · · · • • · • · · ·
homogeneous artifact comparison · · · • · · · · · · · · · · · •

o
p
er

a
ti

o
n
s artifact translation* · · · · • • · · · · · · · · · ·

update translation* · · · · · · · • · · · • • • · •
homog. asymmetric artifact merge* · · · · · • · · · · · · · · · •
heterogeneous artifact comparison* · · · · · · • · · · · · · · · ·

homog. artifact comp. & recon.* · · · · · · · · • • · • · · · ·
homog. update comp. & recon.* · · · · · · · · · · • · • • · ·

heterog. artifact comp. & recon.* · · · · · · · · · · · · · · • ·

translation with choice, are similar to the tradeoffs between their to-one coun-
terparts.

Tradeoffs for bidirectional synchronizers. The choice of the unidirectional
synchronizer mainly depends on the cardinalities of the relation’s ends, i.e., one
or many. Each of the synchronizers can be non-incremental or incremental de-
pending on the performance requirements. If the cardinality of the end towards
which the synchronizer should be executed is many, any of the unidirectional



to-many synchronizers that are original-target-dependent should be used. The
synchronizer should be original-target-dependent because the target of the syn-
chronizer can be edited.

Tradeoffs for bidirectional synchronizers with reconciliation. Homoge-
neous reconciliation is most appropriate if the relation between the source and
target has at least one end with the cardinality of one because artifacts or up-
dates can be unambiguously translated in the direction of that end. In contrast,
heterogeneous reconciliation appears to be more appropriate for many-to-many
relations.

8 Additional design decisions

In this Section, we present additional design decisions related to the implemen-
tation of the synchronizers: creation and representation of updates, structure
identification and matching, modes of synchronization, implementation of deci-
sion functions, and construction and correctness of synchronizers.

8.1 Creation and representation of updates

An update describes the change of artifact’s internal structure. The applica-
tion of an update corresponds to the execution of a sequence of artifact update
operations such as element additions, removals, and relocations and attribute
value changes. One way of obtaining a sequence of artifact update operations
is by recording editing operations performed by the artifact’s developer. In this
case, the artifact at the beginning of the recording is a reference artifact of the
recorded update. We refer to updates obtained by recording developer’s edits as
history-based updates. The sequence of developer’s edits can be transformed into
a canonical form, which produces the same result as the original sequence, but
lacks redundant edits, such as, modifying the same attribute multiple times. An-
other way of creating an update is by comparing two artifacts using homogeneous
artifact comparison. We refer to updates obtained by comparing two artifacts as
state-based updates. History-based updates contain more information than state-
based updates, but may be more difficult to implement in practice. For example,
implementations have to ensure that all artifact updates are performed through
an appropriate change-tracking interface.

8.2 Structure identification and matching

Comparison operators such as homogeneous and heterogeneous artifact compar-
ison require a way to establish the correspondence between the elements of the
artifacts being compared. Furthermore, the implementation of an update func-
tion must also contain information about the elements it affects and a way to
identify them in the reference artifact. We refer to the process of establishing
the correspondence between elements as matching.



The two fundamentally different approaches to matching are non-structural
matching and structural matching. Non-structural matching assumes that ele-
ments receive globally unique, structure-independent identifiers at the time of
their creation. By “globally unique” we mean that the identifiers are unique at
least in the scope of the matched artifacts. Structure-independent means that
the identifiers are independent of the artifact structure, meaning that they re-
main constant when the structure evolves. For example, the identifier could be
generated as a combination of the IP address of the machine where the identifier
is generated, a timestamp, and a random number. This approach greatly sim-
plifies matching among different versions of an artifact as the correspondence of
elements can be established immediately based on the equality of the identifiers.
The main drawback of this approach is that it tends to be brittle with respect
to artifact evolution that involves a deletion and subsequent recreation of an
element. For example, consider the removal of a method from a class and its
later re-introduction. The new method would have a new identifier, which would
mark it as a new element even though it is probably just a new version of the
original method. Furthermore, identifiers tend to pollute and bloat the artifacts,
especially if they need to be stored in a human-readable textual form.

Structural matching avoids both problems by establishing correspondence
through the structural information that is already in the artifacts, e.g., element
nesting, element’s position in ordered lists, and attribute values such as element’s
local name. In our method evolution example, the old and the new version of the
method could be matched by using the fully qualified name of the containing
class and the method’s signature as an identifier. The matching can still use
precomputed identifiers, but these identifiers would be structure dependent as
they encode structural information. The main drawback of structural matching
is that sometimes the structural information needed for recovering a particular
relationship may be missing or difficult to identify. For example, while the fully
qualified name and signature of a method is sufficient to unambiguously match
a single call to that method within the body of another method, identifying
multiple calls within a single body is challenging. Using the lexical order of
the calls is a possible solution, but one that is brittle with respect to evolution
when the body is restructured, for example, when additional calls are inserted in
the middle of the body. A practical solution may need to use more local context
information of each call in order to establish the correspondence between the two
versions. The problem of recognizing element relocations in nested structures is
an active research topic, e.g., [30].

In practice, both non-structural and structural matching can be used in com-
bination. For example, the model management infrastructure of IBM Rational
Software Modeler [31], which is IBM’s UML modeling tool, supports both non-
structural and structural matching.

Finally, matching could be realized at a semantic level rather than a struc-
tural (i.e., syntactic) one. For example, Nejati et al. [32] present an approach
for matching and merging Statecharts specifications that respects the behavioral
semantics of the specifications.



8.3 Instantaneous vs. on-demand synchronization

Another design decision is the time of update propagation. We distinguish be-
tween instantaneous and on-demand synchronization. Instantaneous synchro-
nization translates and applies updates to the target artifact immediately after
the updates occurred in the source artifact. On-demand synchronization trans-
lates and applies updates at the time most convenient for the developer. Instan-
taneous synchronization is likely to require an incremental synchronizer since
translating the entire source artifact after each update would be highly ineffi-
cient.

8.4 Disconnected vs. live synchronization

Update propagation can be implemented as a disconnected or a live transforma-
tion. Live transformation is a transformation that does not terminate [18,25] and
whose intermediate execution data, referred to as execution context, is preserved.
The context of a live transformation maintains the links between structures in
the source artifact and the resulting structures in the target artifact. The preser-
vation of the execution context allows for efficient propagation of updates made
to the source artifact (cf. Example 10). In contrast, a disconnected transforma-
tion terminates and its execution trace is lost, in which case a structure matching
mechanism is needed (cf. Section 8.2).

8.5 Strategies for selecting synchronization result from multiple

choices

Synchronization in the “to-many” direction requires a way to select a single
target from the set of possible targets that are consistent with the source. We
distinguish among the following selection strategies:

– Pre-determined choice: The choice is fixed by the synchronizer developer and
hardcoded in the synchronizer.

– Interactive selection: The available choices, typically ranked according to
some criteria, are presented to the user interactively. While the number of
choices may be infinite, a finite number is presented at a time and the user
can ask for more.

– User-specified defaults: The user may use global options to specify prefer-
ence. Alternatively, the choices may be related to individual source elements,
in which case the source elements are annotated. Examples of annotation
mechanisms are Java annotations and UML profiles.

– Adaptive defaults: The default settings could be obtained by mining from the
original target or from a corpus of existing sample targets. An example of this
strategy is the automatic application of code formatting that was extracted
from a corpus of sample programs using data mining techniques [33].

– Target preservation: The available choices may be restricted by the desire to
preserve structures in the original target. We accounted for this possibility
in the original-target-dependent synchronizers.



8.6 Construction of bidirectional synchronizers

Bidirectional synchronizers can be constructed using either a bidirectional or a
unidirectional transformation language. Synchronizers constructed using a bidi-
rectional language can be directly executed in both directions from a single
specification.

Examples of bidirectional transformation languages include QVT Relations [34],
triple graph grammars [25, 35] (TGGs), and Lenses for trees [17]. In QVT and
TGGs, synchronizers are expressed by a set of rules, which can be executed in
both forward and reverse directions. Implementations of the QVT Relations lan-
guage include ModelMorf by TATA Research Development and Design Centre
and Medini QVT by IKV++. Tool support for creating TGG-based synchroniz-
ers exists as a plug-in for the FUJABA tool suite [26]. In the Lenses approach
complex bidirectional synchronizers are implemented by composing bidirectional
primitives using combinators. Similarly to lenses, Xiong et al. propose an ap-
proach to building bidirectional synchronizers using combinators that translate
modification operations performed on one artifact to synchronizing operations
on the other artifact [36]. In this approach, a synchronizer is defined by creating
a synchronizer graph, which consists of primitive synchronizers, input artifacts,
and intermediate (temporary) artifacts. The approach additionally supports dif-
ferent synchronization behaviors by parameterizing primitive synchronizers with
mode options.

Using a unidirectional transformation language requires either writing two
unidirectional synchronizers, one in each direction, or writing a unidirectional
synchronizer in one direction and automatically computing its inverse. Depend-
ing on the type of relation among the artifacts, the two unidirectional trans-
formations can be constructed in many ways. For some bijections, an inverse
transformation can be automatically computed from the transformation in one
direction. Pierce provides a list of examples of interesting cases of computing
such inverse transformations [37]. Xiong et al. [29] developed an approach that
can execute a synchronizer written in ATL, a unidirectional language, in the
reverse direction (cf. Example 20). The information that is necessary for the
reverse transformation is recorded by an extension to the ATL virtual machine
during the execution of the synchronizer in the forward direction.

8.7 Correctness of synchronizers

In practice, establishing full consistency automatically may not always be possi-
ble. First, developers may desire to synchronize partially finished artifacts, i.e.,
the synchronizer may need to be able to handle artifacts of which only parts are
well-formed. Second, the complex semantics of some artifacts and relations can
sometimes be only approximated by programs implementing translation opera-
tors. For example, a synchronizer that operates on program code may need to
rely on static approximations of control and data flow.

Code queries for FSMLs exemplify both situations [16]. The precise FSML
semantics relate model elements with structural and behavioral patterns in Java



code. However, the code queries implementing the reverse engineering for the be-
havioral patterns are incomplete and unsound approximations of the behavioral
patterns. Furthermore, the code query evaluation engine relies on an incremental
Java compiler, which allows for querying code that does not completely compile.

9 Related Work

In this section we discuss related works in three areas: data synchronization in
optimistic replication, inconsistency management in software development, and
model management and model transformation.

9.1 Data synchronization in optimistic replication

The need for synchronization arises in the area of optimistic replication, which
allows replica contents to diverge in the short term in order to allow concur-
rent work practices and to tolerate failures in low quality communication links.
Optimistic replication has applications to file systems, personal digital assis-
tants, internet services, mobile databases, and software revision control. Saito
and Shapiro [38] provide an excellent survey of optimistic replication algorithms,
which are essentially synchronization algorithms. They distinguish the following
phases of synchronization: update submission at multiple sites, update propaga-
tion, update scheduling, conflict detection and resolution, and commitment to
final reconciliation result. The scheduling of update operations is of particular
interest in the context of multiple master sites with background propagation,
which leads to the challenge that not all update operations are received at all
sites in the same order. Furthermore, Saito and Shapiro distinguish several key
characteristics of optimistic replication:

– Single vs. multi-master synchronization: Synchronization scenarios can in-
volve different numbers of master sites. Master sites are those that can mod-
ify replicas. In contrast, slave sites store read-only replicas. The scope of this
tutorial is limited to master-slave (i.e., unidirectional) and master-master
(i.e., bidirectional) synchronization.

– State-transfer vs. operation transfer : We discussed this distinction in Sec-
tion 8.1.

– Conflict detections and resolution granularity : Conflicts may be easier to
resolve if smaller sub-objects are considered.

– Syntactic vs. semantic update operations: Replicas can be compared syntac-
tically or semantically. This distinction is concerned with the extent to which
the synchronizer system is aware of the application semantics of the replicas
and the update operations. Semantic approaches avoid some conflicts that
would arise in syntactic approaches, but are more challenging to implement.

– Conflict management : This characteristic is concerned with the way the sys-
tem defines and handles conflicts. Conflict detection policies can be syntactic
or semantic. Conflict resolution may involve selecting one update among a



set of conflicting ones while the others are discarded, storing all conflict-
ing updates in each synchronized replica, or allowing replicas to diverge for
conflicting updates [27].

– Update propagation strategy : This dimension includes the degree of syn-
chrony, e.g., pull vs. push strategies, and the communication topology, e.g.,
star vs. ad-hoc propagation.

– Consistency guarantees: Some synchronizers may guarantee consistency of
the accessed replicas while other may give weaker guarantees, such as guaran-
teeing that the state of replicas will eventually converge to being consistent.

An additional dimension given by Foster et al. [27] is

– Homogeneity vs. heterogeneity : This dimension refers to the distinction whether
the data to be synchronized adheres to a single schema or to different schemas
expressed in the same schema language (e.g., relational algebra). The focus
of this tutorial is on heterogeneous synchronization.

Saito and Shapiro [38] and Foster et al. [27] give many example of existing
synchronization systems; however, Harmony [27] seems to be the only generic
synchronizer handling heterogeneous replicas. Harmony is concerned with the
special case of mappings which are functions. The same case is also studied in
databases as the view update problem, e.g., see Bancilhon and Spyratos [39] and
Gottlob et al. [40].

9.2 Data integration and schema mapping

Another related area is data integration, which is concerned with integrating data
from multiple sources, such as different databases. A particular challenge in this
context is schema integration, i.e., the integration of the vocabularies defined by
the schemas, which is addressed by schema matching. Bernstein and Rahm [41]
provide an excellent survey of approaches to automated schema matching.

9.3 Inconsistency management in software development

Software artifact synchronization is a topic in inconsistency management in soft-
ware engineering [2, 5, 6, 8, 42]. Spanoudakis and Zisman [8] provide a survey of
this area. They identify a broad set of activities related to inconsistency man-
agement: detection of overlaps (i.e., identification of relationships), detection of
inconsistencies, diagnosis of inconsistencies, handling of inconsistencies, tracking
(not all inconsistencies need to be resolved), and specification and application of
an inconsistency management policy. Grundy and Hosking [7] explore architec-
tures and user-interface techniques for inconsistency management in the context
of multiple-view development environments.



9.4 Model management and model transformation

Software artifact synchronization is also closely related to model management
and model transformation. In model-driven software development (MDSD) [12],
models are specifications that are inputs to automated processes such as code
generation, specification checking, and test generation. Furthermore, models in
MDSD are typically represented as object graphs conforming to a class model
usually referred to as a metamodel.

Model management is concerned with providing operators on models such as
comparison, splitting, and merging. Bernstein et al. argued for the need of such
generic model operators and the existence of mappings among models as first-
class objects [43]. Later, Bernstein applied the model management operators to
three problems: schema integration, schema evolution, and round-trip engineer-
ing [44]. Brunet et al. [4] wrote a manifesto for model management, in which they
argue for an algebraic framework of model operators as a basis for comparing
different approaches to model merging. Indeed, the use of operators in our design
space was partly inspired by this manifesto. The diff operator corresponds to the
homogeneous comparison operator presented in this tutorial. Furthermore, the
manifesto refers to updates as transformations and to the application of updates
as patching. The manifesto defines additional operators, e.g., split and slice. The
operators in this tutorial treat the relation R as an implicit parameter. In con-
trast, the operators in the manifesto are defined explicitly over artifacts and
relations. While the manifesto focuses on homogeneous merge, our design space
is concerned with heterogeneous synchronization. In fact, bidirectional synchro-
nizers with reconciliation can be understood as heterogeneous merge operations.
One of the uses of model management is detecting and resolving inconsisten-
cies in models, e.g., see work by Egyed [45] and Mens [46]. Sriplakich et al. [47]
discuss a middleware approach to exchanging model updates among different
tools. Finally, Diskin [48, 49] proposes using category theory as a mathematical
formalism for expressing the operators for both homogeneous and heterogeneous
generic model management.

Another related area is model transformation, which is concerned with pro-
viding an infrastructure for the implementation and execution of operations on
models. Mens et al. [50] provide a taxonomy of model transformation and apply
it to model transformation approaches based on graph transformations [51]. The
taxonomy discusses several tool-oriented criteria such as level of automation,
preservation, dealing with incomplete and inconsistent models, and automatic
suggestion of transformations based on context. Czarnecki and Helsen [52] sur-
vey 26 approaches to model transformation. The survey and the design space
presented in this tutorial both use a feature-based approach and have some
features in common, such as target incrementality, source incrementality, and
preservation of user edits in the target. In contrast to this tutorial, the survey
mainly focuses on the different paradigms of transformation specification, such
as relational, operational, template-based, and structure-driven approaches, and
it does not consider reconciliation. Some ideas for an algebraic semantics for
model transformations are presented by Diskin and Dingel [53].



The topic of bidirectional model transformation has recently attracted in-
creased attention in the modeling community. Stevens [24] analyzes properties
of the relational part of OMG’s Query View Transformation (QVT) and ar-
gues that more basic research on bidirectional transformation is needed before
practical tools will be fully realizable. Giese and Wagner [25] identify a set of
concepts around bidirectional incremental transformations. In particular, they
distinguish between bijective and surjective bidirectional transformations. The
latter correspond to the situation where several sources correspond to a single
target. Furthermore they refer to a transformation as fully incremental if the
effort of synchronizing a source model change is proportional to the size of the
source change. Finally, Ehrig et al. [35] study the conditions under which model
transformations based on triple-graph grammars are reversible.

10 Conclusion

In this tutorial we explored the design space of heterogeneous synchronization,
i.e., the synchronization of artifacts of different types. We presented a number
of artifact operators that can be used in the implementation of synchronizers
and presented 16 example synchronizers. The example synchronizers illustrate
different approaches to synchronization and can be characterized along a number
of dimensions, such as directionality, incrementality, original-target-dependency,
and support for the reconciliation of concurrent updates. For some of the syn-
chronizers, we provided examples of existing systems that implement a given
approach to synchronization. Furthermore, we discussed a number of additional
design decisions such as representation of updates, establishing correspondence
among model elements, and strategies for selecting a single synchronization re-
sult from a set of alternatives. Finally, we discussed important works in related
fields including data synchronization, inconsistency management in software en-
gineering, model management, and model transformation.
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