

Domain Analysis of E-Commerce
Systems Using Feature-Based Model

Templates

by

Sean Quan Lau

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2006

© Sean Quan Lau 2006

 ii

I hereby declare that I am the sole author of this thesis.
I authorize the University of Waterloo to lend this thesis to other institutions or
individuals for the purpose of scholarly research

Signature

I further authorize the University of Waterloo to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

Signature

 iii

Abstract

The pervasiveness and criticality of software applications in modern times have resulted
in the demand for highly customized, high quality products in a timely and cost-efficient
manner. Model-Driven Software Product Lines (MDSPL) is an approach to software
development which allows developers to automatically build such products based on
configuration knowledge and reusable assets. A product line is a group of related
products that can be built from a common set of assets. The approach relies on two
activities: 1) Domain Engineering, where features in the product line are scoped and
reusable assets are built, and 2) Application Engineering, where individual products are
built from the reusable assets. The MDSPL approach is supported by feature models and
feature-based model templates. Feature models are a modeling notation used to represent
the variability in a system family and describe all valid configurations. Feature-based
model templates describe models for all valid products in a product line and are
parameterized with feature configurations.

In this work, we develop an example, inspired by a realistic application, of a product line
of Business-to-Consumer systems, which is used to demonstrate the viability of the
approach on a real world scenario. In addition, we analyze our experience with the
approach in order to produce guidelines for users of the modeling approach and
recommendations for future improvements of the approach and the tools. The key
recommendations include proposals to 1) investigate the representation of ordering in
feature models and activity diagram model templates, 2) extend the existing work on the
semantics of class and activity diagram model templates, and 3) add mechanisms to
address annotation consistency issues.

 iv

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Krzysztof Czarnecki, for his
guidance and support during these past two years. I am extremely grateful for the opportunity he
has given me to work with him in the Generative Software Development lab at the University of
Waterloo. I would also like to thank my thesis readers, Dr. Kostas Kontogiannis and Dr. Paul
Ward, whose invaluable comments and advice have helped improve the quality of my thesis.

I must further express my deep gratitude to Barry Pekilis, whose immense support throughout the
past year has been instrumental in the completion of this thesis. As well, I would like to
acknowledge the numerous discussions with Michał Antkiewicz in evaluating the models
contained in this thesis. I would also like to acknowledge the support from of the rest of my
colleagues in the Software Engineering group.

It is impossible for me to fully express the extent of my appreciation and the gratitude I owe to
my mom, dad, grandmother, brother, aunts & uncles, and Jacquelyn, whose support and belief in
me helped me throughout the trials and tribulations of this MASc thesis.

Finally, I would like to thank our department graduate secretary, Wendy Boles, who remained
patient through my barrage of questions and paperwork.

I gratefully acknowledge the financial support provided for this research effort by the University
of Waterloo’s Faculty of Engineering.

 v

Table of Contents

Chapter 1: Introduction ...1

1.1 Generative Software Development .. 2
1.1.1 System Families ... 2
1.1.2 Development Methodology: Domain and Application Engineering 2
1.1.3 Reusable Assets.. 3
1.2 Model-Driven Software Product Lines.. 4
1.2.1 Model-Driven Software Development ... 4
1.2.2 Feature Models .. 4
1.2.3 Feature-Based Model Templates.. 5
1.3 E-Commerce Systems.. 5
1.4 Research Overview.. 6
1.5 Research Contribution.. 6
1.6 Thesis Organization .. 7
1.7 Summary .. 7

Chapter 2: Background..8

2.1 Unified Modeling Language ... 8
2.1.1 Class Diagrams .. 9
2.1.2 Activity Diagrams.. 9
2.2 Feature Models .. 11
2.2.1 Configuration... 12
2.2.2 Binding Time.. 13
2.2.3 Tool Support .. 14
2.3 Feature-Based Model Templates.. 15
2.3.1 Tool Support .. 17
2.4 Summary .. 17

Chapter 3: Research Methodology..18

3.1 Domain Analysis of E-Commerce Systems ... 18
3.2 Applying the MDSPL Approach ... 20
3.3 Evaluation of the Approach.. 21
3.4 Summary .. 22

Chapter 4: E-Commerce Domain Analysis: Store Front......................23

4.1 Home Page .. 23
4.1.1 Static Content ... 24
4.1.2 Dynamic Content .. 24
4.2 Registration ... 25
4.2.1 Registration Enforcement... 26
4.2.2 Registration Information .. 27
4.2.3 User Behaviour Tracking Information.. 29
4.3 Catalog.. 29
4.3.1 Product Information ... 30

 vi

4.3.1.1 Product Types .. 30
4.3.1.2 Basic Information ... 31
4.3.1.3 Detailed Description .. 31
4.3.1.4 Warranty Information .. 32
4.3.1.5 Customer Reviews .. 32
4.3.1.6 Associated Assets ... 32
4.3.1.7 Product Variants .. 34
4.3.1.8 Size .. 34
4.3.1.9 Weight ... 34
4.3.1.10 Availability ... 35
4.3.1.11 Custom Fields .. 35
4.3.2 Categories .. 35
4.3.3 Multiple Catalogs .. 36
4.3.4 Searching.. 36
4.3.5 Browsing... 37
4.3.6 Custom Views .. 38
4.4 Wish Lists .. 38
4.5 Buy Path ... 40
4.5.1 Shopping Cart ... 41
4.5.2 Checkout .. 42
4.5.2.1 Checkout Type... 43
4.5.2.2 Shipping Options ... 44
4.5.2.3 Taxation Options ... 45
4.5.2.4 Payment Options ... 48
4.5.3 Order Confirmation ... 49
4.6 Customer Service... 50
4.6.1 Question and Feedback Forms .. 50
4.6.2 Product Returns .. 51
4.6.3 Order Status Viewing.. 52
4.6.4 Shipment Status Tracking .. 52
4.7 User Behaviour Tracking ... 53
4.7.1 Behaviour Tracked.. 53
4.8 Summary .. 54

Chapter 5: E-Commerce Domain Analysis: Business Management ...55

5.1 Order Management... 55
5.1.1 Physical Goods Fulfillment .. 57
5.1.1.1 Warehouse Management .. 57
5.1.1.2 Shipping.. 58
5.1.2 Electronic Goods Fulfillment .. 59
5.1.2.1 File Repository... 60
5.1.2.2 License Management... 60
5.1.3 Services Fulfillment .. 60
5.2 Targeting .. 61
5.2.1 Targeting Criteria ... 62
5.2.2 Targeting Mechanisms.. 64
5.2.2.1 Advertisements .. 65
5.2.2.2 Discounts .. 67
5.2.2.3 Sell Strategies... 69

 vii

5.2.2.4 Display and Notification ... 71
5.2.2.5 Campaigns.. 72
5.3 Affiliates ... 73
5.4 Inventory Tracking ... 73
5.5 Procurement... 75
5.6 Reporting and Analysis... 76
5.7 External Systems Integration ... 77
5.8 Administration... 79
5.8.1 Content Management.. 79
5.8.2 Store Administration... 80
5.9 Summary .. 81

Chapter 6: Model Template Descriptions ..82

6.1 Class Diagram Model Templates ... 82
6.1.1 Store Front Entity Model ... 82
6.1.2 Services Model ... 88
6.2 Activity Diagram Model Templates... 89
6.2.1 StoreFront Activity.. 90
6.2.2 FindProduct Activity... 91
6.2.3 SearchProduct Activity ... 92
6.2.4 SelectProductFromCatalog Activity ... 94
6.2.5 SelectProductFromWishlist Activity ... 95
6.2.6 CheckoutItems Activity .. 97
6.2.7 CreateOrder Activity .. 101
6.2.8 OrderProducts Activity .. 102
6.2.9 ProcessOrder Activity ... 103
6.2.10 CheckOrderStatus Activity .. 105
6.2.11 RefundOrder Activity ... 106
6.2.12 RegisterWithTheStore Activity.. 107
6.2.13 UpdatePersonalProfile Activity.. 108
6.2.14 CreateQuickCheckoutProfile Activity... 110
6.2.15 ResetPassword Activity... 111
6.2.16 CreateWishList Activity .. 112
6.2.17 SendWishList Activity .. 113
6.3 Summary .. 114

Chapter 7: Evaluation of the Feature-Based Model
 Template Approach ...115

7.1 Analysis of Variability Modeling in Feature Models ... 115
7.2 Analysis of Annotations in Model Templates ... 118
7.2.1 Class Diagram Model Templates ... 119
7.2.1.1 Store Front Entity Model.. 119
7.2.1.2 Service Model... 121
7.2.2 Activity Diagram Model Templates... 121
7.3 Candidate Modeling Guidelines... 124
7.3.1 Applying Binding Time Analysis to Feature Modeling.. 124
7.3.2 Modeling Feature Groups in Model Templates.. 125
7.3.2.1 Modeling Feature Groups in Class Diagram Model Templates............................ 126

 viii

7.3.2.2 Modeling Feature Groups in Activity Diagram Model Templates 127
7.3.3 Applying MetaExpressions to Increase Conciseness.. 128
7.4 Recommendations ... 130
7.4.1 Variability in the Ordering of Features and Model Elements............................... 130
7.4.2 Additional Semantics for UML Class Diagram Model Templates 131
7.4.3 Additional Semantics for UML Activity Diagram Model Templates 132
7.4.3.1 IPCs for Data Stores and Generic Data Nodes ... 133
7.4.3.2 Branch Annotations Semantics .. 133
7.4.3.3 Automatic Flow Type Correction .. 134
7.4.4 Annotation Consistency Issues ... 135
7.5 Summary .. 139

Chapter 8: Conclusion..140

8.1 Summary .. 140
8.2 Future Work .. 143
8.3 Closing Remarks.. 144

Appendix A: Additional Constraints in the E-Shop
 Feature Model ..145

Appendix B: Annotation Analysis Data..151

References..155

 ix

List of Tables

Table 2.1: Feature Modeling Notation in fmp ... 14
Table 4.1: Behaviour Analysis of Cart Saved After Session Feature................................... 42
Table 6.1: Activity Categories ... 90
Table A.1: Additional Constraints .. 146
Table B.1: Class Diagram (Store Front Entity Model) Annotation Analysis 151
Table B.2: Class Diagram (Service Diagram) Mapping Analysis 152
Table B.3: Activity Diagram Annotation Analysis .. 153

 x

List of Illustrations

Figure 1.1: The Problem and Solution Space Pattern... 3
Figure 2.1: Labeled Class Diagram Rendered in RSM... 9
Figure 2.2: Class Diagram with Stereotypes Rendered in RSM .. 9
Figure 2.3: Labeled Activity Diagram Rendered in RSM .. 10
Figure 4.1: Store Front Feature .. 23
Figure 4.2: Home Page Feature... 24
Figure 4.3: Registration Feature ... 26
Figure 4.4: Registration Enforcement Feature.. 26
Figure 4.5: Registration Information Feature ... 27
Figure 4.6: Catalog Feature... 30
Figure 4.7: Product Information Feature .. 31
Figure 4.8: Associated Assets Features... 33
Figure 4.9: Categories Feature.. 35
Figure 4.10: Searching Feature ... 36
Figure 4.11: Browsing Feature.. 37
Figure 4.12: Custom Views Feature.. 38
Figure 4.13: Wishlists Feature... 39
Figure 4.14: Buy Path and Shopping Cart Features ... 40
Figure 4.15: Checkout and Checkout Type Features.. 43
Figure 4.16: Shipping Options Feature .. 44
Figure 4.17: Taxation Options Feature .. 46
Figure 4.18: Payment Options Feature .. 48
Figure 4.19: Order Confirmation Feature ... 50
Figure 4.20: Customer Service Feature.. 51
Figure 4.21: User Behaviour Tracking Feature... 53
Figure 5.1: Business Management Feature .. 55
Figure 5.2: Order Management and Fulfillment Features ... 56
Figure 5.3: Physical Goods Fulfillment Feature .. 57
Figure 5.4: Targeting Feature ... 62
Figure 5.5: Targeting Criteria Feature... 63
Figure 5.6: Targeting Mechanisms Feature ... 65
Figure 5.7: Advertisements Feature and Subfeatures... 65
Figure 5.8: Discounts Feature ... 67
Figure 5.9: Sell Strategies Feature .. 70
Figure 5.10: Display and Notification Feature... 71
Figure 5.11: Affiliates Feature... 73
Figure 5.12: Inventory Tracking Feature .. 74
Figure 5.13: Procurement Feature.. 75
Figure 5.14: Reporting and Analysis Feature .. 76
Figure 5.15: External Systems Integration Feature .. 78
Figure 5.16: Administration Feature.. 79
Figure 6.1: EShopArtifact, Catalog, Category, Product and Money Classes 83
Figure 6.2: EShopArtifact, Product, and Asset Classes .. 84
Figure 6.3: Customer and BillingInformation Classes.. 85
Figure 6.4: Order, ShoppingCart and Wishlist Classes.. 86
Figure 6.5: Tax Rule Classes .. 87
Figure 6.6: EShop Interactions with Warehouse, Payment Gateway & Order Processor 88
Figure 6.7: EShop Interactions with Tax and Shipping Services... 89

 xi

Figure 6.8: StoreFront Activity ... 90
Figure 6.9: FindProduct Activity .. 92
Figure 6.10: SearchProduct Activity .. 93
Figure 6.11: SelectProductFromCatalog Activity ... 95
Figure 6.12: SelectProductFromWishlist Activity... 95
Figure 6.13: CheckoutItems Activity – Phases One and Two .. 98
Figure 6.14: CheckoutItems Activity – Phase Three... 99
Figure 6.15: CreateOrder Activity.. 101
Figure 6.16: OrderProducts Activity .. 103
Figure 6.17: ProcessOrder Activity .. 104
Figure 6.18: CheckOrderStatus Activity.. 105
Figure 6.19: RefundOrder Activity... 107
Figure 6.20: RegisterWithTheStore Activity ... 108
Figure 6.21: UpdatePersonalProfile Activity ... 109
Figure 6.22: CreateQuickCheckoutProfile Activity .. 110
Figure 6.23: ResetPassword Activity .. 111
Figure 6.24: CreateWishList Activity... 113
Figure 6.25: SendWishList Activity .. 114
Figure 7.1: Adding Wish Lists Subfeature for Modeling Requirement 117
Figure 7.2: Adding Policy Subfeatures for Modeling Requirement 118
Figure 7.3: Using Multiple Associations to Model Multiplicity Variability 129
Figure 7.4: Using Multiplicity MetaExpression to Model Multiplicity Variability 130

 1

Chapter 1 Introduction

In 1968, a growing concern about the gap between “what was hoped for from a complex software

system, and what was typically achieved” [Nat68] began to surface among the attendees of the

North Atlantic Treaty Organisation (NATO) Software Engineering Conference. The term

software crisis was coined to describe this concern. The attendees discussed problem areas and

underlying causes to the software crisis, but perhaps Booch summarized it best in 1991 when he

stated, “our failure to master the complexity of software results in projects that are late, over

budget, and deficient in their stated requirements.” [Boo91] The crisis resulted from the need to

build industrial-strength software with rich functionality and a long production lifecycle.

Today, software is a pervasive entity which is critical to many areas. The applications range from

scheduling a coffeemaker to handling ignition timing in the automobile engine control unit to

managing supply chain systems for multinational corporations. The need for industrial-strength

software has increased, along with the demand for highly customized, high quality software in

different domains. These demands increase the software complexity factors defined by Booch1.

Despite the advancement in software engineering technologies, studies show that the software

crisis continues to persist. In 1995, The Chaos Report [Sta94] by the Standish Group predicted

that almost half of all software projects would cost almost twice the amount they were budgeted

for and almost a third would be canceled. In 2005, the Cutter Group released preliminary results

from a study consisting of several hundred software projects which showed nearly identical

results [Cut05]. Clearly, the software development processes and tools available now are not

meeting the demand.

Generative Software Development (GSD) is an approach that allows developers to manage some

of the software complexity factors. In this thesis, an example, inspired by a realistic application,

of a Business-to-Consumer system is developed. The example is modeled using a GSD approach

and the modeling experience is analyzed for areas in which the approach can be improved.

1 Booch defines the four software complexity factors as: “1) the complexity of the problem domain, 2) the
difficulty of managing of the development process, 3) the flexibility possible through software, and 4) the
problems of characterizing the behaviour of a discrete system.” [Booch 91].

 2

1.1 Generative Software Development

GSD is an approach that automates product development based on configuration knowledge and a

set of reusable assets [Cza05a]. It provides a practical framework for reuse, enables a better

understanding and expression of the application domain, and improves the quality of software

produced. The key concepts in GSD are system families, development methodology, and reusable

assets.

1.1.1 System Families

A system family is “a group of products that can be built from a common set of assets” [Wit96].

The term product line is sometimes used interchangeably, but product line is a more specific

concept because the products also share “a common, managed set of features that satisfy the

specific needs of a market” [Wit96].

The motivation for developing system families as opposed to individual products in the family is

to encourage systematic reuse of assets within a specific domain. Rapid development and reduced

development costs can be realized for products with multiple platform implementations or target

markets. The focus on building reconfigurable assets allows for components to be assembled in

combinations to satisfy customer requirements for a highly customized, unique product without

expending the development effort of a custom development project for each individual product.

1.1.2 Development Methodology: Domain and Application Engineering

The development methodology for GSD requires two separate activities – Domain Engineering

(DE), which is developing for reuse, and Application Engineering (AE) developing with reuse.

DE is the process of understanding and scoping the system family through domain analysis, and

developing the set of reusable, configurable assets. Domain analysis involves research to gain an

understanding of the domain from the perspective of the domain expert; it typically consists of

consultations with domain experts, examining documentation, and performing site surveys. An

important aspect of domain analysis is to obtain a clear definition of the terminology and

processes, which helps reduce the impedance mismatch between the requirements and the design

[Boo91]. The construction of reusable assets involves developing assets, such as components or

patterns, to be used for creating concrete products.

 3

AE is the process of specifying and configuring individual products based on the configuration

information provided by the application engineer and the reusable assets provided through DE.

The process can be either manual or automatic depending on the framework that is provided;

GSD provides a mechanism for automatic product generation. New requirements may be

discovered during AE which can be fed back to DE to extend the scope of the product line and

define new reusable assets, thus allowing new products to be generated. Therefore, DE and AE

are complementary processes. The initial cost of DE can be large, but it may be amortized over

the individual products generated and the improved quality of the software produced.

1.1.3 Reusable Assets

Reusable assets describe any artifact which is part of the reuse process. There are many forms and

granularities for reusable assets, including object-oriented design patterns [Gam95], individual

classes and mixins, components [Szy03], domain specific languages (DSLs) [Cza05a], domain

specific business patterns such as Enterprise Architecture Patterns [Fow03a], or frameworks

which implement common architectural styles [Sha96]. These assets can be classified as part of

the problem space and solution space. The problem / solution space relationship is shown in

figure 1.1.

Figure 1.1: The Problem and Solution Space Pattern [Cza05a]2

The problem space describes the set of artifacts that represents the domain knowledge, such as

requirements, glossaries, DSLs and models of the domain. The solution space describes the set of

2 This is a modified version of the diagram which concatenates information from multiple diagrams in the
source.

 4

implementation artifacts used to generate a product, such as algorithms, concrete components and

code templates. The two spaces are related through the transformation knowledge, which

describes the mappings from the product configuration to the implementation. Mappings between

the two are not necessarily one-to-one. For example, multiple DSLs can be mapped to the same

implementation, where different DSLs are available for users with different proficiencies.

1.2 Model-Driven Software Product Lines

Model-Driven Software Product Lines (MDSPL) is a particular implementation of the GSD

approach [Cza05b]. It combines two emerging practices in software engineering: Software

Product Line Engineering (SPLE) and Model-Driven Software Development (MDSD). SPLE is a

synonymous with the system family approach, which focuses on building system families. One

way of realizing MDSPL is to use feature models and feature-based model templates.

1.2.1 Model-Driven Software Development

MDSD is a development process which uses models, as opposed to source code, as the primary

implementation artifact. Models tend to be better at capturing the intent of requirements because

they are closer to the requirements than source code. Modeling languages, such as the Unified

Modeling Language (UML), provide semantics which allow the user to be more precise in stating

requirements, rather than worrying about implementation language details which can lead to

implementation bias. It is important to note that having models as primary development artifacts

means that the models should be treated the same way as source code in traditional programming.

1.2.2 Feature Models

Feature modeling was proposed by [Kan90] as a mechanism to manage variability in a system

family. It was done as a part of the Feature-Oriented Domain Analysis (FODA). FODA defined

some of the basic constructs of feature models, such as mandatory and optional features, and the

relationships between sets of features, such as exclusive-or groups of features. The original

FODA notation has been extended through cardinality-based feature modeling [Cza05c], feature

attributes, references to feature models and reference attributes, multi-staged and multi-level

configurations [Cza05d], external constraints, and grouped feature cardinality [Cza05e]. These

extensions allow a greater degree of expression and unlock a greater potential for its application

 5

in GSD. The process of removing variability from a feature model through the selection or

elimination of features is referred to as configuration. Feature modeling is described in greater

detail in section 2.2.

1.2.3 Feature-Based Model Templates

Feature-based model templates, proposed by [Cza05f], allow semantics to be associated to

features through the annotation of presence conditions (PCs) or metaexpressions (MEs) on model

elements. The PCs and MEs are based on the features; their effect is dependent on whether or not

the feature is selected during configuration. The novel aspect of this approach is that all

variability is superimposed in the model template, so that template instantiations only involve the

removal of elements. A model template can be instantiated based on a configuration to generate a

model which represents a concrete product. Feature model templates are described in greater

detail in section 2.3.

1.3 E-Commerce Systems

E-Commerce Systems describe software systems which enable companies to do business over the

Internet. They must be able to deal with a large number of visitors and transactions, and

coordinate multiple stakeholders to deliver the product or service to the customers. Three

common transaction patterns are Business-to-Consumer (B2C), Business-to-Business (B2B), and

Consumer-to-Consumer (C2C) [Raj00]. B2C sites, like amazon.com, enable retail transactions

where a company sells goods or services to an individual. This is done through an e-shop web

site, which is sometimes referred to as a shopping cart solution. B2B sites are meant for the

exchange of products, services or information between multiple companies. They include

company web pages, product supply and procurement exchanges, information sites, and

brokerage services. C2C site allows individuals to sell to other individuals. Sites can be run by an

intermediary business, such as E-Bay or the Amazon Marketplace, or by consumers themselves.

 6

1.4 Research Overview

The primary objectives of this research are:

• to demonstrate that the MDSPL approach is viable for software systems inspired by realistic

applications, as opposed to just toy examples;

• to identify areas which impede usability and may discourage developers from adopting the

tool;

• to make recommendations on the identified problem areas.

Due to the immense size of the e-commerce domain, the scope of the research was limited to B2C

solutions with fixed purchase prices.

Over the course of the research period, the following tasks were performed:

• domain analysis of e-commerce systems,

• application of the feature-based model template development approach to constructing an

online B2C system,

• analysis of the development approach.

The tasks are explained in detail within the context of the research methodology in chapter 3.

1.5 Research Contribution

The following contributions were made throughout the course of the research:

• application of the feature-based model template development process to develop and model

an e-commerce system of moderate complexity,

• evaluation of the development process based on the experience with the e-commerce model;

the evaluation was used to derive guidelines for feature modeling and model template

creation, as well as recommendations for process and tool improvement.

Both are unique contributions; the first contribution is the only example known to the author of a

moderately complex system being modeled using the feature-based model template approach.

Previous models have been smaller in scope and used for examples in papers [Cza05f]. The

 7

second contribution is the first evaluation performed on the process after the initial tool release. It

is also unique because the analysis is based on a larger example than in previous papers and

performed by a member of the research team who was not directly involved with the original

design of the approach and implementation of the tool. The size of the example helps support the

findings in this work.

1.6 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 describes background material for

concepts used in the research. Chapter 3 presents the research methodology in detail, based on the

tasks described in section 1.4. Chapters 4 and 5 document the domain analysis through the feature

model, based on the store front and business management features respectively. Chapter 6

describes the design of the feature-based model templates. Chapter 7 evaluates the feature-based

model templates approach based on experiences with the e-commerce model, and presents a set

of recommendations to improve the process and implementation tool. Chapter 8 concludes the

thesis and discusses areas for future work. Two appendices are included: Appendix A contains a

table which summarizes the additional constraints in the e-shop feature model, and Appendix B

contains the raw data that was obtained during the annotation analysis.

 1.7 Summary

In summary, GSD is an approach to software development that is touted to address some of the

issues raised in Booch’s factors of complexity. The purpose of this research is to perform an

analysis on the e-commerce domain to develop an example that can be used in the MDSPL

approach. This research will result in an example that can be used to demonstrate the viability of

this approach and a set of recommendations that can be used to improve the process.

In this chapter, the research problem and the motivation for the work were introduced. This

chapter included a brief overview of GSD and related concepts, a high-level overview of the e-

commerce domain, a summary of the research methodology and contributions, and a description

of the thesis organization.

 8

Chapter 2 Background

This chapter describes key concepts which are relevant to the remainder of the thesis. It covers

aspects of the Unified Modeling Language (UML) and the diagrams presented in the thesis,

feature models and feature-based model templates. In each section, the theory is presented first,

followed by any tool-specific details or notations which are used in the models.

2.1 Unified Modeling Language

The UML is “the standard language for specifying, visualizing, constructing, and documenting all

artifacts of a software system.” [Qua03] The standard is owned and maintained by the Object

Management Group (OMG). It is meant to be used as a notation for modeling object-oriented

systems. The standard defines a series of models that can be used to capture the structure,

behaviour or organization of a piece of software. All UML models presented in the thesis

conform to UML 2.0, the most recent version of the standard.

The UML metamodel is defined by the Meta Object Framework (MOF) model, another OMG

standard that is used to define modeling languages. MOF is meant to be platform-independent

and can be serialized into the XML Metadata Interchange (XMI) format for portability between

applications which support MOF models [Omg05a].

The models defined by UML are very general; domain specificity can be added by extending and

/ or restricting the language through profiles. OMG defines profiles as a package which “contains

mechanisms that allow metaclasses from existing metamodels to be extended to adapt them for

different purposes.” [Omg05b] These mechanisms include stereotypes, tagged values and

constraints. Stereotypes are tags which can be used to add or restrict semantics of a metaclass. A

stereotype can be specified by constraints, attributes or icons.

The two types of UML models which are used in the research are class diagrams and activity

diagrams; both are discussed in the following subsections.

 9

2.1.1 Class Diagrams

Class diagrams are used to depict the structure of the software by describing “the types of objects

in the system and the various kinds of static relationships among them”, as well as “the properties

and operations of a class and the constraints that apply to the way objects are connected”

[Fow03b]. An example of a class diagram rendered with IBM Rational Software Modeler (RSM)

is shown in figure 2.1; different elements in the diagram are labeled. The formal definition for

each labeled element is given in the UML2 Super Structure document [Omg05b].

Figure 2.1: Labeled Class Diagram Rendered in RSM

Figure 2.2 is an example of a class diagram which uses stereotypes to denote components and

services.

Figure 2.2: Class Diagram with Stereotypes Rendered in RSM

2.1.2 Activity Diagrams

Activity diagrams are used to model behaviour in the software through series of actions. They are

similar to flowcharts with the main difference being that activity diagram support parallelism in

 10

the workflow [Fow03b]. An example of an activity diagram rendered with RSM is shown in

figure 2.3; different model elements in the diagram are labeled. In addition, the Action and

CallBehaviourAction nodes are named after their respective element types. The formal definition

for each labeled element, except for those in quotations, and some of the named nodes are

described in the UML2 Super Structure document [Omg05b].

Figure 2.3: Labeled Activity Diagram Rendered in RSM

It is useful to define three terms to describe regions in an activity diagram. The first term is path,

which describes a consecutive sequence of nodes and flows. The second term is branch, which

describes a set of model elements between a pair of decision and merge nodes. A branch is

identified by its guard. The third term is parallel branch, which consists of a set of model

elements along a single path, starting at a fork node and ending at a corresponding join node. A

parallel branch is identified by its ordinal position.

 11

In the example, two parallel branches execute in the activity. The first parallel branch executes

Action, which passes an object of type DataObject to CallBehaviourAction. The

CallBehaviourAction receives the object through its input pin and invokes the target activity.

Once the target activity has executed, control returns to this activity and waits at the join node for

the other parallel branch to complete. The second parallel branch begins with a decision. If the

outcome is branch_B, it will execute the Branch_Action action, which requires an object of type

Data from the data store, and proceed to the merge node. If the outcome is branch_A, no actions

are executed and it proceeds directly to the merge node; this single flow is often referred to as a

bypass branch. Once both parallel branches have completed execution, the activity reaches the

final node and the execution of the activity is complete. Unless otherwise indicated, all flows in

the activity diagram are control flows.

2.2 Feature Models

Feature models represent the variability perspective of a product line through the definition of

features and their relationships. They describe the set of all valid products in a product line. The

instantiation of a concrete product from a feature model requires the removal of variability, which

can be achieved through the selection or elimination of features; this process is called

configuration and is discussed in section 2.2.1.

A feature is a characteristic of a system which is of interest to a stakeholder and each feature

represents a common or variable aspect of a product [Cza00]. Features can take the form of

functional or non-functional requirements. In the example studied later, it is often found that

software requirements can be described directly as features. Features may model parts of a system

which correspond to entities, entity attributes, processes, or non-functional properties.

Features can be related through relationship types, which include relation through hierarchy,

feature cardinality, group cardinality and additional constraints. Hierarchy structures the feature

model through subfeatures. There are two main purposes for using subfeatures. The first is for

modularization purposes; subfeatures allow a feature to be decomposed into greater detail. The

second is for implication purposes; the selection of a feature implies the selection of all of its

ancestors. There are two common types of features: a solitary feature, which is a feature that is

made a subfeature directly under another feature, and a grouped feature, which is a feature that is

placed directly under a feature group.

 12

Feature cardinality is “an interval denoting how often a feature with subfeatures can be cloned as

a child of its parent when specifying a concrete system.” [Cza05f] Feature cardinalities are placed

on solitary features and denoted using square brackets; for example, a feature cardinality of [1..k]

indicates that at least one and at most k clones must be present in a concrete product. Two

common feature cardinalities are [1..1] and [0..1], which denotes a mandatory feature and an

optional feature respectively. A mandatory feature must be present exactly once in a concrete

system, and an optional feature may or may not be present in a concrete system.

Group cardinality is an interval placed on a feature group that denotes how many grouped

features can be selected from the feature group in a concrete system. Group cardinalities are

denoted using angle brackets; for example, a group cardinality of <1..k> indicates that at least one

and at most k features can be selected from the feature group, and that k is the total number of

grouped features in the feature group.

Additional constraints specify additional relationships in the feature model. There are two types

of additional constraints: a strong constraint and a weak constraint. A strong constraint takes the

form of requires or excludes, whereas a weak constraint takes the form of recommends or

discourages. Additional constraints are described in greater detail in appendix A.

Relating the use of feature models back to GSD, the feature models themselves are reusable

assets and their development, through domain and variability analysis, is part of DE. Reuse

occurs when a concrete product is created during AE.

2.2.1 Configuration

Configuration is the process of eliminating variability in a feature model through the selection or

elimination of features; the output of the process is either a specialization, which is a feature

model with some variability remaining, or a feature configuration, which is a feature model that

represents a concrete product because all of the variability has been eliminated.

A specialization is created when it is undesirable to remove all of the variability in the product

line in a single iteration; therefore, instantiating a concrete product occurs over multiple

iterations. This process is called multi-staged configuration. A specialization in any given

iteration will contain the same or less variability than in the previous iteration. Any decisions are

 13

propagated to all subsequent iterations. Furthermore, cardinality can also be configured through

refinement. Refinement is the process of narrowing the bounds of the cardinality such that the set

of possible values in the refined cardinality is a subset of the set of possible values in the original

cardinality.

Another form of configuration is multi-level configuration [Cza05d]. In this type of

configuration, there are multiple levels, each represented by a different feature model. During

configuration, a feature model at one level is manually configured. This results in the automatic

specialization of all feature models in subsequent levels through some specified configuration

knowledge. The intention is to have feature models at different levels represent different levels of

abstraction; thus, multi-level configuration allows higher-level choices from the requirements to

configure lower level details in an implementation.

2.2.2 Binding Time

Binding time refers to the time at which the decision regarding a feature’s selection or elimination

is made. The definition for binding times is strongly influenced by workflows, such as the

development and deployment process. In this thesis, it is convenient to define two binding times:

build-time and run-time. Build-time refers to the period of time up to the configuration of the

product during AE. Decisions made during build-time often result in the inclusion or exclusion of

a feature in the concrete product. These decisions are usually based on product requirements or

specifications. Run-time refers to the period of time after the concrete product has been

configured. This encompasses the deployment, daily operation, and use of the product. Decisions

made during run-time often deal with the configuration of the product options.

In practice, there are cases where it can be difficult to qualify when build-time ends and when

run-time begins. For example, during multi-staged or multi-level configuration, one user's run-

time can be another user's build-time. In another example, the distinction between binding times

can be blurred by the use of dynamic plug-ins. Depending on the process, there can be different

qualifications of what can be defined as build-time and run-time.

Furthermore, there are many granularities of binding times to consider. For example, a product

may be able to support multiple features which are mutually exclusive. It will continue to do so

until it reaches a point where only one feature can be selected. That point in time may be at

 14

deployment, at the definition of a rule, or during a user session. In such a case, it is clear that

there are several sub-stages within run-time, such as the decisions made per installation, per

policy or per user.

For simplicity, discussions about binding times will be based on the definitions of build-time and

run-time presented in this section. There may be some cases which involve a more specific or

finer-grained binding time. In those cases, the discussion will describe the binding times in

relation to build-time or run-time.

2.2.3 Tool Support

Feature modeling is supported through fmp, an Eclipse plug-in which was developed by the

research group [Cza05g]. fmp is supplied with a default metamodel which defines the structure of

the feature model, along with the feature types described in the parent section. It includes

definitions for feature properties, which include a name, id and description for every feature. It

also supports metamodel editing to allow the user to define additional feature attributes. Table 2.1

displays the icons used to denote the commonly used feature modeling concepts.

Table 2.1: Feature Modeling Notation in fmp [Kim05]

Icon Explanation
 Solitary feature F with feature cardinality [1..1] (i.e. mandatory feature)

 Solitary feature G with feature cardinality [0..1] (i.e. optional feature)

Solitary feature H with feature cardinality [0..m], m > 1 (i.e. optional cloneable
feature)

Solitary feature J with feature cardinality [m..n], m > 0 ^ n > 1 (i.e. mandatory
cloneable feature)

 Grouped feature K with feature group cardinality [0..1]
 Grouped feature L with feature group cardinality [1..1]

 Feature M with attribute of type T and value of value
 Feature group with group cardinality <1-1> (i.e. exclusive-or group)

Feature group with group cardinality <1-k>, k = group size (i.e. inclusive-or
group)

 Feature group with group cardinality <i-j>

The tool also provides support for configuring a feature model through a checkbox interface. A

checkbox can have three states: empty, denoting that the feature state is undecided and that no

decision has been made yet; checked, denoting that the feature has been selected and will be

included in the concrete product; and crossed, denoting that the feature has been eliminated and

 15

will be excluded in the concrete product. In addition, the tool also provides support for automatic

constraint propagation, which enables the system to automatically select or eliminate features

based on the relationships between the features.

A research prototype version of the tool, fmp 0.6.1, was used to create the models presented in

this thesis.

2.3 Feature-Based Model Templates

Although a feature is given context within the feature model, there is no satisfactory way of

defining a feature’s semantics within the model so that it can be processed and transformed into

an implementation. Feature-based model templates, which are later referred to as model templates

for simplicity, allow the modeler to define structure and behavioural models in a MOF-compliant

language, and to provide semantics for features by associating them to model elements through

annotations. In addition, models for concrete products can be instantiated based on a

configuration.

The novel aspects of feature-based model templates are that they separate the representation of

the variability into the feature model and that all of variability is represented through

superimposed variants. Like the feature model, the model template represents well-formed

models for all valid products in a product line; however, the model template itself does not have

to be well-formed with respect to the target modeling language due to the need to superimpose

variability. The benefit of the superimposed variability is that models can be automatically

instantiated through the removal of model elements and the application of patching

transformations to ensure well-formedness.

There are two types of annotations which can be used to associate features to model elements:

metaexpressions (MEs) and presence conditions (PCs). MEs allow the modeler to calculate a

value based on the presence of features in a configuration through the specification of an

expression. PCs are Boolean expressions which determine the presence of the annotated model

element based on the selection or elimination of the features in the configuration. In addition to

PCs, there are also implicit presence conditions (IPCs). IPCs are defined for model elements to

determine the presence of a model element in the absence of an explicit annotation. IPCs are

 16

based on the modeling language syntax and are used to reduce the annotation effort required and

ensure the well-formedness of the template instance.

During template instantiation, model templates undergo additional processing steps, which

include patching transformations and simplification. Patching is a transformation which corrects

certain errors that may result from the removal of elements [Cza05f]. An example is flow closure

in an activity diagram, which is required to connect a broken flow as a result of removing an

action. Simplification is a transformation which removes any redundant model elements that

result after the removal of elements. An example is the removal of a merge node which has only

one incoming and one outgoing flow.

There are four steps in the template instantiation process:

1) the MEs and PCs are evaluated. The evaluation of PCs is performed depth-first on the

containment hierarchy of the elements in the models to prevent unnecessary processing of

nested elements, e.g. if the containing model element is removed;

2) removal analysis is performed to calculate the values of the IPCs. In addition, removal

analysis is also used to determine where patching transformations will be necessary;

3) the elements with false PCs or IPCs are removed. Any patch transformations are also applied

at this time;

4) simplification transformations are applied.

Due to the way PCs are evaluated, the presence of all model elements that are contained depends

on the annotation on the container elements. In this situation, it is convenient to define the term

implicit annotation, which denotes the transitive effect of a parent element’s annotation on a child

element. For example, when an activity is annotated with feature F, one can state that all of the

nodes and flows contained by the activity are implicitly annotated with feature F.

Relating the use of model templates back to GSD, the model templates themselves are reusable

assets and their development, through the template design and annotation, is part of DE. Reuse

occurs when the model is generated through template instantiation, which is a part of AE.

 17

2.3.1 Tool Support

Model templates are supported through fmp2rsm, a plug-in for IBM Rational Software Modeler

(RSM) or Rational Software Architect (RSA). The plug-in was developed by the research group

[Cza05g]. fmp2rsm depends on fmp for the feature modeling and it depends on RSM for the UML

diagrams. PC annotations are created through a context menu in the feature model editor, where a

PC in the form of a conjunction of selected features is created. The tool represents the annotations

as stereotypes, which are stored in a variability profile. The model files are associated with the

variability profile and a model element is annotated by applying stereotypes from the profile.

A research prototype version of the tool, fmp2rsm 0.0.4, was used to create the models presented

in the thesis. It works for all UML models; however, IPCs and additional processing steps are

only implemented for activity diagrams.

2.4 Summary

In this chapter, an overview of the background concepts was presented. The key concepts applied

in this thesis are UML class and activity diagrams, feature models and feature-based model

templates.

.

 18

Chapter 3 Research Methodology

This chapter describes, in detail, the steps taken throughout the research process. As mentioned in

section 1.4, the research consisted of three main steps:

• domain analysis of e-commerce systems,

• application of the feature-based model template development approach to constructing an

online B2C system,

• evaluation of the development approach.

Each step is expanded upon in the following subsections. Please note that, unless otherwise noted,

all of the work described in this chapter was performed by the author.

3.1 Domain Analysis of E-Commerce Systems

The motivation for choosing e-commerce systems as the domain was the need to find a relatively

large, well-understood domain with a large degree of variability on which a serious evaluation of

the approach could be performed. In addition, e-commerce systems form an important part of

many business strategies as companies expand their presence to the Internet; this guaranteed

applicability of the research, which was another reason why the domain was an attractive choice.

Initial research indicated there were different types of e-commerce sites, as described in section

1.3. It also suggested that the domain was too large to model in its entirety given the research

time frame; therefore, the research project was scoped to focus on a B2C e-shop solution with

fixed-price purchasing only. The initial research suggested that there was a significant amount of

material available, including the ability to do field research on real e-shops. Several sources were

used when performing the domain analysis for the e-shop model; some of the information

gathered was integrated into the model designs. These sources included:

• Literature Research. Much has been written and published on the subject of e-commerce

systems. One set of books deals with the implementation of e-commerce solutions; however,

they tend to be skewed to a particular platform. Two platform-specific books were consulted

for domain information and examples: 1) [Alu01, Sun02] describes an online pet store

example implemented using the Java 2 Enterprise Edition (J2EE) Software Development Kit

 19

(SDK), and 2) [Ped03] describes how to build an e-shop solution using Microsoft Commerce

Server 2002 and the .net framework. The other set of books deals with the domain itself,

although they vary in their focus and the amount of detail. Software Factories [Gre04]

contains a chapter which discusses modeling the e-commerce domain and presents a high-

level feature model of the domain. [Raj00] provides an overview of e-commerce systems,

both from the technical perspective and the marketing perspective; it was useful for clarifying

some domain concepts. [Fow03a] focuses on enterprise systems3 of which an e-commerce

system is an example. The concepts are presented through a set of patterns which provided

some inspiration for the model templates. For example, the modeling for the price attributes

in the Product class was taken from Fowler’s Money class.

• Web Research. Various sites were browsed for information, but one web site in particular

[Hos05] provided a concise summary of the features in shopping cart solutions, as well as a

directory of online B2C solutions.

• IBM WebSphere Commerce Documentation [Ibm05]. IBM provides detailed information

about the workflows that can be configured and incorporated into an e-commerce product

which is built using IBM’s WebSphere Commerce tools. The ConsumerDirect documentation

describes a simple e-shop with many process definitions, such as ordering products or

maintaining registration information. The activity diagram model templates were based on a

subset of the models presented in the documentation.

• Existing Implementation Study. A pre-existing shopping cart solution, AbleCommerce

[Abl06], was deployed and studied for the different types of configuration options which

were available. AbleCommerce stores all of the store data and configuration in an eXtensible

Modeling Language (XML) file; this file was reverse-engineered to derive the XML schema.

The schema highlighted different features which were not readily apparent through the web

site itself.

• Field Research. A few large e-commerce sites were studied based on their web sites.

American e-shops, such as amazon.com, barnesandnoble.com and circuitcity.com, were

studied based on the interface without making any purchases; therefore, they contributed

primarily to the analysis of store front features. Canadian e-shops, such as bestbuy.ca,

chapters.indigo.ca, futureshop.ca, and staples.ca, were studied based on both the browsing

interface and through the shopping experience when products were ordered; therefore, they

3 Fowler does not provide a definition for enterprise systems. Instead, he describes four characteristics of
enterprise systems: 1) they deal with large quantities of complex, persistent data, 2) the data must be
concurrently accessible by a large number of users, 3) there are a large number of user interface screens,
and 4) enterprise systems require integration with other enterprise applications [Fowler 99].

 20

contributed to the analysis of the store front and business management4 features from the

customer's point of view. For example, registration profiles, payment options, and checkout

processes were studied in these e-shops and incorporated into the descriptions and the

models. The incorporation of field research helped justify the inclusion or exclusion of

certain features in the model based on their frequency of occurrence.

3.2 Applying the MDSPL Approach

The research performed during the domain analysis helped build an understanding of the domain,

which was translated into a series of models through the MDSPL approach. The first model was

the feature model. The first version of the feature model was created by Dr. Simon Helsen. It

consisted of approximately thirty features, which modeled the catalog structure, payment options,

and some business management features. This model was extended by Dr. Krzysztof Czarnecki,

who added approximately two hundred features detailing many aspects of the e-shop, such as

targeting mechanisms and buy path elements. The thesis presents the extended version of the

feature model. The extended model contains some additional refinements to certain features, such

as the subfeatures of the wish list, and some reorganization in the model, such as promoting the

user behaviour tracking feature to the store front level. The extended version of the model has

never been documented; therefore, a major contribution of this thesis is the definition of each

feature in terms of domain concepts and specific examples. Some of the examples suggest further

decomposition of features; however, these additions were not incorporated into the thesis version

of the feature model due to time constraints.

The model templates were the second set of models developed. The model templates focused on

the structure and behaviour of the store front. The primary goal was to capture, at minimum, the

entities and workflows needed to allow a customer to visit the e-shop and make a purchase. There

are two types of model templates: class diagrams and activity diagrams.

The class diagrams consist of the store front entity model and the service model, both of which

were heavily influenced by the feature model; the classes, services and operations were all

created directly from features. The store front entity model incorporates some earlier work that

4 Business management features deal with back-office operations in an e-shop; however, these features are
presented from the customer’s perspective because no specific information was available from the business
perspective.

 21

was presented in an earlier paper [Cza05f]. The earlier work consisted of model fragments with

annotations, such as the Product and Catalog classes, which were used to demonstrate key points

in the paper. The version of the store front entity model presented in this thesis adds much more

detail to reflect the store front features in the feature model, such as classes for wish lists,

shopping carts, orders, and taxation rules. The service model is an original creation that was

designed to depict the e-shop from a higher-level of abstraction, as well as to illustrate the actors

involved.

The activity diagrams consist of activities which support site browsing, registration, customer

administration tasks, wishlist management, item purchase, and order processing. Most of the

activities were heavily influenced by the ConsumerDirect workflows [Ibm05]; some of the

activities are a direct translation from the IBM workflow notation to the UML activity diagram

notation. Some modifications, such as adding paths or actions, were required to model the

variability in the model template.

After the models were created, all of the model templates were annotated with PCs and MEs.

Some of the model templates went through a few revisions due to experimentation with different

modeling styles and annotations. Although new features were discovered through modeling the

activities, the feature model was not updated. For example, none of the elements in the

ResetPassword activity, as described in section 6.2.15, are annotated; however, one could derive

several optional features based on the workflow, such as the use of challenge questions and

temporary passwords. It is important to note that most elements in an activity diagram model

template are not annotated because they represent common aspects in a product; the scenario

described for the ResetPassword activity is a special case because it represents a work in

progress.

3.3 Evaluation of the Approach

The evaluation of the approach consisted of analyzing the experience during the development

process. The experience led to some discussion of various aspects in feature modeling, such as

binding time analysis and model template design. All of the annotations in the models were

studied to discover any frequently occurring annotation patterns. The iterations in experimenting

with different modeling styles and annotations were documented in the form of modeling

 22

guidelines. In general, the documentation of observations during the process took the form of

modeling guidelines or recommendations.

3.4 Summary

In this chapter, the research methodology was presented. The research was divided into three

major activities: the domain analysis of the e-commerce system, the application of the MDSPL

approach using feature models and feature-based model templates, and the evaluation of the

approach. The domain analysis consisted of consulting various literature resources and field

research. The application of the approach consisted of developing the feature-based model

templates and documenting the feature models. The evaluation of the approach consisted of an

analysis of the modeling experience and the models produced; candidates for modeling guidelines

and recommendations were proposed.

 23

Chapter 4 E-Commerce Domain Analysis: Store Front5

The store front is the interface that the customer uses to access the e-shop. The features described

in this chapter are related to the interface; many are directly visible to the customer and impact

their experience at the e-shop. Figure 4.1 illustrates the store front feature and its subfeatures.

Figure 4.1: Store Front Feature

The required store front feature consists of a set of functional features representing the home

page, catalog, and buy path. The store front may also include registration, wish lists, customer

service and / or user behaviour tracking capabilities.

4.1 Home Page

Every e-shop has a home page which serves as a welcome page. It is the first page that a customer

will see when they enter the site. A customer will be directed to the home page when they enter

the top-level Uniform Resource Locator (URL), such as “www.amazon.com”. The e-shop may

also be configured to redirect the customer to the home page if the URL points to an expired

session, an invalid product page, or a restricted page. Figure 4.2 shows the home page feature and

its subfeatures. The primary content of the home page consists of a welcome message and

featured products. The content can be generated statically or dynamically. A page is classified as

dynamically generated if any page element, such as a frame, is dynamically generated; otherwise,

the page is classified as statically generated. At build time, the choice is inclusive-or since the e-

shop product can have the capability of doing both; however, during the creation of individual

pages at run-time, the choice is exclusive-or since the page is either statically or dynamically

generated.

5 Additional constraints in the model are described in table A.1 in appendix A.

 24

Figure 4.2: Home Page Feature

An alternate way of interpreting the static and dynamic content features is to scope them for

individual elements on the page as opposed to entire pages. Using this interpretation, a page can

contain both static and dynamic content, meaning that the feature group is inclusive-or for all

binding times.

4.1.1 Static Content

Static content is ideal for content which changes infrequently. In a typical implementation with

static content, customers see identical information on the home page. The page is created once,

stored on the server, and served to every client that makes a request for the page. Any changes to

the page will require a new page to be generated and uploaded to the server.

4.1.2 Dynamic Content

Dynamic content is ideal for content which changes frequently. In a typical implementation with

dynamic content, the content is generated on demand and every customer receives a customized

home page for each session. There are two required parameters for customization: the content

type and the variation source.

• Content Type. Content type describes which elements can be dynamically generated. Two

common content types are the welcome message and special offers. A welcome message is a

greeting which is usually rendered as text. Special offers are promotions for customer, which

 25

may include sales on products or discounts on orders. Support for special offers requires the

selection of the discounts feature; however, the selection of the discounts feature has no

impact on the special offers feature.

• Variation Source. Variation sources provide information that is used to generate the content.

Two common variation sources are time dependence and personalization. Time dependence

generates content based on the time at which the customer enters the e-shop. Time can refer

to the time of day, such as morning or evening, or the time of year, such as summer or

Christmas time. Personalization generates content based on customer information or inferred

information. Customer information is data that is stored in the registration profile. Inferred

information is data that is not provided explicitly, such as the country which a guest is

visiting from6. Personalization is strongly related to targeting because targeting mechanisms

are often used to generate customized advertisements and content for customers.

Based on the two parameters, different types of dynamic content can be generated. An example of

simple dynamic content is a personalized greeting based on the time of the day. An example of

complex dynamic content is a set of personalized special offers based on the customer's personal

information. This can be extended by generating special promotions, such as a discount, for a

customer each time they visit. Amazon.com’s “Gold Box” is an example of this feature.

4.2 Registration

An e-shop may enable registration, which allows a customer’s information to be solicited,

persisted and reused. This is a convenient feature for customers because they do not have to re-

enter their information every time they make a purchase. In addition, this information may also be

useful for creating targeting strategies. Figure 4.3 shows the registration feature and its

subfeatures. Registration requires decisions to be made about enforcement and the information

that is collected. In addition, user-behaviour tracking information can be optionally associated

with a profile.

6 This information can be deduced by examining the HyperText Transfer Protocol (HTTP) request and
performing an Internet Protocol (IP) lookup.

 26

Figure 4.3: Registration Feature

4.2.1 Registration Enforcement

If registration is enabled, there must be a policy to determine which actions in the e-shop are

restricted to registered users only. Figure 4.4 shows three policies: register to browse, register to

buy and none. An e-shop product can be configured to support any combination of the three at

build-time, but only one policy can be in effect at any given time after the e-shop is deployed at

run-time.

Figure 4.4: Registration Enforcement Feature

• Register to Browse. This policy restricts browsing to registered customers; it is the most

restrictive policy. There are many ways to define browsing permissions. A fine-grained

policy would define permissions on certain products or specific details about products,

whereas a coarse-grained policy would define permissions on a page type, such as product or

search pages. One implementation of this policy restricts access to all product pages to

registered customers, but allows guests to see lists of products.

• Register to Buy. This policy requires customers to register before they can make a purchase.

This can be implemented by requiring customers to log in before they can add an item to their

shopping cart or start the checkout process.

• None. This is an unrestricted policy. Any visitor can freely browse and purchase items in the

e-shop without going through the registration process.

 27

4.2.2 Registration Information

Registration requires that the customer provide information about themselves. This information is

stored in a customer profile. Figure 4.5 shows the fields which can be contained by a customer

profile; most of the fields are optional.

Figure 4.5: Registration Information Feature

The only mandatory field in a profile is the login credentials, which allow a customer to identify

themselves when they log in. The credentials include a unique identifier, such as an e-mail

address, and a password. The remaining profile fields, discussed below, are optional.

• Shipping Address. A shipping address specifies where to send the order. Storing multiple

shipping addresses may also be supported. This may require the selection of a default

 28

shipping address, either by the customer or the system. There are two possible ways of

modeling the multiple shipping addresses feature: 1) making it an optional subfeature, or 2)

making the shipping address feature a cloneable feature. The former was chosen because it

provides a better level of abstraction. Furthermore, the complexity between building a system

that supports a single address and multiple addresses is more significant than the complexity

between building a system that supports n and n+1 addresses, where n > 1 . If the shipping

address is stored in the profile, it is recommended that the shipping feature7 be supported;

however, support for shipping has no impact on the storage of the shipping address in the

profile.

• Billing Address. A billing address specifies where to send the invoice. Storing multiple billing

addresses may also be supported; the same points presented about multiple shipping

addresses apply here as well. An application of the billing address is to validate credit card

information; many e-shops require that the billing address matches the address registered

with the credit card company.

• Credit Card Information. Credit card information consists of the information that is needed to

validate the card and process the payment. This information includes the name of the

cardholder, card number, expiry date and, optionally, any other additional security

information on the card. If the profile supports storing credit card information, the acceptance

of credit cards as a form of payment is recommended; however, the acceptance of credit cards

has no impact on whether or not the profile can store credit card information.

• Demographics. Demographics include information, such as age, income and education, about

the customer [Wik06a]. A custom demographic field allows the e-shop to specify new

demographic data fields at run-time. Demographics are used primarily for business

intelligence activities. One application is to use previous purchase data for a customer to

recommend products to other customers who have similar information in their demographic

profile. Another application is to group customers with similar information into a consumer

group in order to study and predict trends in consumer behaviour for future marketing efforts.

• Personal Information. Personal information includes any data that can be used to better

understand the needs of the customer, excluding any information that is covered by the

demographics feature. Examples of personal information are the customer’s hobbies or

interests.

7 Shipping, described in section 5.1.1.2, is a subfeature of the physical goods fulfillment feature.

 29

• Preferences. Preferences are options that allow a customer to customize their e-shop

interface. They can include site options, such as the site layout, how many items to display in

a product list, and the preferred language for rendering the site and any other correspondence.

• Reminders. Reminders are customer-requested notifications for pre-defined events.

Notification events include informing a customer when a product becomes available or when

the price of the product changes. When the event occurs, the customer will receive a

notification through a communications channel, such as an e-mail or an on-screen reminder

while browsing the e-shop. A customer can create, edit and delete their reminders.

• Quick Checkout Profile. The quick checkout profile is stored in the customer profile and

contains default information that is used when placing an order. The information includes the

payment information and, if necessary, the shipping information. If there is support for a

quick checkout profile, it is recommended that the quick checkout type also be selected;

however, if the quick checkout type is selected, the quick checkout profile is required.

• Custom Fields. The custom fields allow the e-shop to define additional information to be

stored in the registration profile after the e-shop is deployed at run-time. Enabling custom

fields requires a mechanism for the e-shop staff to define these fields in terms of their

representation, such as the data type, value range, and semantics. The applicability of the

custom fields in other e-shop workflows, such as business intelligence, depends on the ability

to modify the workflows within the e-shop.

4.2.3 User Behaviour Tracking Information

User behaviour tracking information allows the e-shop to associate data that it collects on user

actions to a registration profile. The additional information can be used to interpret the data from

a marketing perspective. For example, it can combine the information sources to determine what

types of products are browsed by high income visitors or what other sites younger customers tend

to visit. This feature requires the selection of the user behaviour tracking feature; however, there

is no implication on this feature if the user behaviour tracking feature is selected.

4.3 Catalog

A catalog contains the goods and / or services that an e-shop offers; therefore, an e-shop must

support the use of a catalog. The catalog provides a framework to organize the information for

goods and services, which can significantly influence the navigability and usability of the e-shop.

 30

The catalog feature is shown in figure 4.6. Since every e-shop offers products, it must define a

format for the product information. The remainder of the features, which include categories,

multiple catalogs, searching, browsing, and custom views, are optional.

Figure 4.6: Catalog Feature

4.3.1 Product Information

Product information, shown in figure 4.7, describes all of the attributes that are recorded for a

product. Every product shares two common features: the product type and basic information

about the product. The remaining features are optional.

4.3.1.1 Product Types

Every product can be categorized as one of three types: electronic goods, physical goods or

services. Electronic goods exist in digital form only. Examples of electronic goods include e-

books or e-certificates8. Physical goods have a physical manifestation and are traditionally sold

through brick and mortar9 retail locations. Examples of physical goods include books, electronic

equipment or hardware. A service is the “non-material equivalent of a good” [Wik06b] in which

the application of specialized resources, such as an expert or a computing resource, is used to

satisfy a customer’s need. Traditional services tend to be installation, repair and maintenance

jobs, but services can also include things like consulting and data processing.

An e-shop can offer any combination of product types, but the selection of each type imposes

additional requirements. Electronic goods require a mechanism to manage the digital rights and a

8 An e-certificate is an electronic gift certificate which can be redeemed at the e-shop.
9 This term is commonly used to describe a physical store.

 31

secure distribution channel. Physical goods require shipping support in order to deliver the

product to the customer. Services require a scheduling facility for appointments and resource

management. These additional requirements correspond to the fulfillment features. Each product

type has a corresponding fulfillment feature which is required; however, if a fulfillment feature is

selected, it is recommended that the corresponding product type be selected also. Finally, since

some product type specific features, such as weight, are not specified as subfeatures of the

product type, additional constraints are required to express these relationships.

Figure 4.7: Product Information Feature

4.3.1.2 Basic Information

Basic information describes a product. The minimal set of information is the product name and a

unique identifier for the product, such as a company-assigned product ID, a Stock Keeping Unit

(SKU), or a Universal Product Code (UPC).

4.3.1.3 Detailed Description

The detailed description provides additional information about the product’s features, as well as

any other details that the e-shop or supplier feels are relevant for the customer. It does not have

 32

any specific structure; it is usually represented as freeform text. The detailed description is

displayed on the product page.

4.3.1.4 Warranty Information

Warranty information provides details about how long the manufacturer, supplier or retailer will

guarantee the functionality of a product or the work produced by a service. It can also provide

information about the policy for defects. A warranty can be broken down for different

components, such as different part types or different defect types, and each component can be

covered differently. The key information is usually the period of time for the warranty coverage.

If there are additional terms or conditions, they can also be specified. Depending on the warranty

information required, it can be rendered in a tabular format or as freeform text.

4.3.1.5 Customer Reviews

Customer reviews allow customers to share their opinion of a product by rating the product and /

or posting comments. This information is displayed on the product page. Ratings tend to be a

numerical value on a pre-defined scale and comments tend to be freeform text. Due to the

interactive nature of this feature and the potential for libel, the ability to post reviews requires the

customer to be registered. In addition, a moderator may review the comments before making

them visible publicly.

4.3.1.6 Associated Assets

Associated assets are a set of files that describe or illustrate a product. They can be used to

preview electronic goods, present physical goods, or demonstrate a service. The structure of the

associated assets feature is shown in figure 4.8. The two file types are documents and media files.

Document files consist of product brochures, installation manuals and supplemental information

about the product; they can be implemented as a separate file, such as a Portable Document File

(PDF), or as another web page. Media files consist of image, sound and video files. Sound and

video files do not exhibit a high degree of variability with the exception of the encoding formats

that are supported. Choices for these formats are technical in nature and, therefore, too low level

for this model. In addition, there are many encoding formats for images which are omitted for the

 33

same reasons, but there are also many image types that can be support by the e-shop. The image

types are described next.

Figure 4.8: Associated Assets Features

• Thumbnail. Thumbnails are relatively small, preview-sized image files that are usually linked

to a full-sized image. They are used in product lists and product pages to conserve space on

the page, thus allowing more information to be displayed. The smaller file size also allows

the page to load faster.

• 2D Image. 2D images are regular pictures, such as photographs.

• 3D Image. 3D images are pictures which appear three-dimensional. They may require

additional technology, such as 3D glasses, to view the three-dimensional effect.

• 360 Degree Image. 360 degree images provide images that encircle the subjects on a plane.

These images are popular when documenting locations. In such images, the camera is rotated

on a single spot and images are taken from different angles. The images are then combined

into a single image. An example of a 360 degree image is a panoramic image.

• Different Perspectives. Different perspectives provide multiple images which show the

product from different angles. It may also be an interactive image which allows the viewer to

manipulate the viewing angle. Common perspectives are front, rear, side, overhead and

angled shots on the subject. For example, books are usually shown from two perspectives: the

front cover and the back cover. Different perspectives can also mean different situations, such

 34

as a low-lighting environment for products that glow or time elapsed perspectives for

products that grow.

• Gallery. A gallery contains a set of product images.

4.3.1.7 Product Variants

Product variants are a set of related products where individual products are uniquely identifiable

by some variability criteria. An example is a shirt that is available in four sizes and three colours.

Although the base product, the shirt, is the same, every combination of size and colour forms a

unique product and the set of twelve unique products form the product variants10. Optionally, the

e-shop product can support complex product configuration, which allows customers to create

their own configurations of a product for purchase. This feature is ideal for products that require

heavy customization, such as computer systems. For example, Dell has a site where customers

can specify a computer system by selecting options for the processor, amount of memory, video

card and other components. Due to the number of possible configurations, customized products

usually have to be built before they can be shipped to the customer.

4.3.1.8 Size

Size is a measurement of the physical dimensions of a product. For physical goods, it is a

measure of the length, width and height of the product. This information may play a role in

determining shipping options and cost. For electronic goods, size can be interpreted as the file

size, which is provided as supplemental information.

4.3.1.9 Weight

Weight specifies the mass of a physical product, which can factor heavily into shipping decisions.

Weight is not required for any other product type.

10 It should be noted that each variant is usually tracked separately using its own SKU [Wik06c]. The
current set of models (feature model and store front entity model) does not take this into consideration.

 35

4.3.1.10 Availability

Availability indicates if a product is in-stock in the warehouse and, if not, how long it will take to

restock the product. It can also display the number of items remaining for purchase. Supporting

availability requires the selection of the inventory tracking feature in order to obtain the necessary

data; however, if the inventory tracking feature is selected, selection of the availability feature is

recommended.

4.3.1.11 Custom Fields

Custom fields for product information are similar to the custom fields for registration information

described in section 4.2.2. It allows the e-shop to define additional data fields to be stored with

the product information after the e-shop has been deployed at runtime. The discussion about the

limitations and applicability of custom registration information fields applies here as well.

4.3.2 Categories

Categories are grouping mechanisms which allow products to be grouped together based on

product characteristics or attributes. A product’s category can be assigned manually by an

operator or inferred automatically based on a set of attribute values. In a simple category system,

the catalog contains multiple categories and every product is contained by a single category. A

more complex category system can be created by selecting the optional multi-level and / or

multiple classification features. The categories feature and its subfeatures are shown in figure 4.9.

Figure 4.9: Categories Feature

• Multi-level. Multi-level categories allow categories to be nested. Nested categories allow

categories to be decomposed into finer levels of detail. This can help improve site

 36

navigability by reducing the scope of a category page. Products can be contained at any

category level.

• Multiple Classification. Multiple classification categories allow a product to be classified

under more than one category. For example, an electrical shaver can be classified as both an

appliance and a lifestyle product.

4.3.3 Multiple Catalogs

Multiple catalogs provide another method to organize the products in the e-shop. This is useful

when an e-shop deals with a large variety of goods. If the products belong to different thematic

categories, such as clothing and electronics, these different product categories can be placed in

different catalogs. Multiple stores can be setup within the e-shop, where each store sells a

particular type of good and is sourced by a different catalog. Another possibility is to use multiple

catalogs for back-end organization, but to provide a unified view of the catalogs in the store front.

4.3.4 Searching

The searching feature allows the customer to query the catalog and display the results. The query

tools are dependent on the search type, but the results are always in the form of a product list. The

search feature is shown in figure 4.10. There are two search types: basic search and advanced

search.

Figure 4.10: Searching Feature

• Basic Search. A basic search is a based on a few common attributes, such as the product

name or keywords. The interface usually consists of a single text box that allows for the

search term to be entered. The search term can include common search syntax, such as phrase

searching using quotations, and basic Boolean operators, such as AND, OR and NOT. If the

 37

categories feature is selected, the interface may also include a combo box that allows a

category to be selected to narrow the scope of the search.

• Advanced Search. An advanced search allows a larger set of attributes to be used in the query,

such as the product identifier and manufacturer name. It may also search through product-

specific attributes. For example, a book has a publisher, but a movie has a production studio

and a distributor. The interface must provide the ability to refer to these attributes, associate

search values to them, and apply Boolean conditions to form an advanced query.

4.3.5 Browsing

The browsing feature, shown in figure 4.11, allows the catalog to be rendered and viewed by

customers. If the feature is selected, the e-shop must support product pages, but category page

and index page support is optional.

Figure 4.11: Browsing Feature

• Product Page. A product page is a web page which describes a single product. The

information is usually rendered in the form of text, associated assets or links. It also contains

a link to add the item to the shopping cart or wish list. Every product has its own product

page.

• Category Page. A category page presents a view of the catalog filtered by a category. It can

take the form of a product listing of all products in a category, a specially formatted page

designed to showcase featured products within a category, a listing of all categories within a

 38

container11, or a combination of the three forms. Value-added information pertinent to the

category can also be provided on the category page. One example is a book category page,

which can feature new books, a future release schedule, and links to different book

categories, such as science-fiction and non-fiction. The category page requires the categories

feature to be selected; if the categories feature is selected, it is recommended that this feature

is selected also.

• Index Page. An index page can be a master list of all products available in the e-shop or a list

of products belonging to the same category12. Due to the potential size of such lists, the

optional sorting filters feature allows sorting criteria to be applied to the list. Filters can

include sorting by the product price, quality rating, price-to-quality ratio, the manufacturer’s

name or by some custom filter criteria that is defined at run-time. If the sorting filter is not

selected, the products are presented in some default order, such as the order of the data entry.

4.3.6 Custom Views

A custom view defines filters on one or more catalogs in order to create a specialized store or

highlight certain products. The filters are based on product attributes or, if available, categories. It

may be possible to define the view and manually add products to it, but e-shops with a large

number of products are unlikely to use such an approach. Similar to database views, custom

views on the catalog do not affect the underlying structure of the catalog or products. Two

potential applications of a custom view, as shown in figure 4.12, are to create a seasonal product

view or a personalized view for customer groups or distributors.

Figure 4.12: Custom Views Feature

11 A category can be directly contained by the catalog or by another category if the multi-level feature is
selected.
12 Although multiple definitions are presented for the category and index page features, it is up to the reader
to choose a set of definitions which do not conflict with each other.

 39

4.4 Wish Lists

A wish list is a view of the catalog defined by the customer. It allows them to keep track of

products in the e-shop that they would like to purchase or receive as gifts. Wish lists can also be

used by customers to keep track of products and their prices or by the marketing department to

gather business intelligence data for targeting consumers. A wish list is stored with the registered

customer's profile; however, guests can keep wish lists if the wish list saved after session

subfeature is selected. Therefore, the wish list feature requires the selection of the registration

feature and / or the wish list saved after session subfeature.

Figure 4.13 shows that wish lists can be augmented by optional features, such as saving them

after a session, enabling them to be sent to others, allowing a customer to have multiple wish lists,

allowing permissions to be set on them, and updating them automatically.

Figure 4.13: Wishlists Feature

• Wish List Saved After Session. This feature is required to allow guests to keep a wish list. The

guest's wish list is stored locally on the guest's computer. The saving mechanism is implicit

since it is assumed that a guest who puts the effort into creating a wish list intends to access it

later. This feature does not affect registered users since their wish list is stored automatically;

however, this feature is required if the wish lists feature is selected and the registration

feature is eliminated because a wish list must be accessible to guests if registered customers

are not supported. If this feature is selected, only the wish lists feature is required due to the

subfeature relationship; there is no implication on the registration feature.

 40

• E-mail Wish List. The e-mail wish list feature allows a customer to send their wish list to

friends, family members and other potential gift-givers. The e-mail will contain either a link

to the wish list or a list of products on the wish list with links to the product pages. This

feature is only available to registered users.

• Multiple Wish Lists. Multiple wish lists allow customers to create and maintain more than one

wish list. Each wish list must be named for identification purposes. A practical application for

multiple wish lists is to use them to generate a unique list for each gift giver to prevent the

receipt of duplicate items.

• Permissions. Permissions allow the customer to set the visibility of a wish list for other

visitors. When selected, this feature allows potential gift givers to search the site for the

customer’s wish list. Permissions can include making the list publicly accessible, restricting

access by password or e-mail invitation, or restricting access completely. If there are multiple

lists, permissions may be coarse-grained, meaning the same permission applies to all lists, or

fine-grained, meaning each list can have different permissions. This feature requires the

registration feature since lists can only be accessible to other visitors if they are stored on the

server; however, there is no implication on the registration feature if this feature is selected.

• Automatic Updating. Automatic updating modifies the wish list by removing items as they

are purchased, either by the customer or a gift giver. One way to implement this is to update

the wish list only if the item is purchased through the link on the wish list page.

4.5 Buy Path

Buy path is a grouping of features relating to the customer purchases workflow. It starts with the

checkout process and ends with order placement [Ped03]. This can include actions like displaying

items in a shopping cart and entering order information. Buy path, shown in figure 4.14, consists

of three required features: shopping cart, checkout and order confirmation.

Figure 4.14: Buy Path and Shopping Cart Features

 41

4.5.1 Shopping Cart

The shopping cart allows a customer to keep track of the items that they wish to purchase during

their shopping session. The cart contains a list of products and each product is associated with the

quantity that the customer would like to purchase. Placing an item in the shopping cart implies

the intent to purchase, but there is no obligation for the customer to complete the transaction.

Selection of the shopping cart feature also requires the inventory management policy and cart

content page features to be selected. The shopping cart can be further enhanced by the optional

cart summary page and cart saved after session features.

• Inventory Management Policy. This feature allows the e-shop to specify how actions on the

shopping cart affect the inventory systems. When an item is placed into a cart, the e-shop

may reserve an item from the inventory. This is good in the sense that it ensures that the

customer is guaranteed the item when they order it, but it becomes problematic if there are

many customers who are placing the item into the cart but not purchasing them. Therefore, it

may make sense to release the inventory when the customer's session ends. When an e-shop

is selling distinct items, such as tickets for events with reserved seating, items can be sold out

very quickly. Therefore, the e-shop must associate a timer for each item once it is presented

to the customer. If the item is not ordered before the timer expires, the item will be released.

Another policy is to delay item reservation until later in the checkout process; however, a

customer may be irritated if they learn that an order cannot be fulfilled after they have entered

all of their order information. Depending on the policy selected, this feature may require the

inventory management feature.

• Cart Content Page. The cart content page allows a customer to view all of the items that have

been placed in the cart. This page also allows the customer to edit the quantity of an item or

remove an item from the shopping cart. Each product is listed along with the desired quantity

and the subtotal; the cart total may also be included. Tax and shipping costs are usually

excluded since they require additional information before they can be calculated. The page

also contains a link that is used to start the checkout process.

• Cart Summary Page. The cart summary page contains information that is similar to the

information found in the cart content page; however, the information may be condensed. The

cart summary page does not provide the ability to edit the cart contents directly, but it will

contain a link to the cart content page. It can be used to confirm the addition of an item into

 42

the cart, which is what Amazon.com does, or to display a summary of the items for

confirmation purposes before the order is placed.

• Cart Saved After Session. This feature allows customers to save their cart contents for their

next visit, which is useful if they leave the store unexpectedly (e.g. due to accidental browser

closure, browser failure or network problems) or want to complete the purchase at a later

time. There are two factors which affect this feature. The first factor is the types of customers

to which this feature applies; it can apply to registered customers, guests or both. The second

factor is where the cart data is saved; it can be saved locally on the visitor's machine or

remotely on the e-shop’s servers. Table 4.1 defines the issues that arise depending on the

combination of factors. Regardless of the factors, cart synchronization must be addressed

when the product's price or availability changes while the product is sitting in a saved cart.

The synchronization strategy must be one that maintains data consistency while ensuring that

the customer is informed and their inconvenience is minimized.

Table 4.1: Behaviour Analysis of Cart Saved After Session Feature

Applicable Groups Data
Storage Registered Customers Guests

Stored
Locally

This requires the use of a local file cache and
implies that the cart data is not portable. It is
possible to associate the cache to a registered
customer so that other users who visit the e-
shop from the computer will not have access to
the cart. This technique can be combined with
storing the data on the server to improve
performance for the customer.

This requires the use of a local file
cache. Since there is no
identification to distinguish
different guests, anyone who visits
the e-shop as a guest from the
computer will have full access to
the cart.

Stored
on
Server

This applies if the cart data is stored in the
profile; it implies that the cart data is portable
and loaded every time the customer logs in. If
the data is not stored with the profile, then the
same method for storing guest data on the
server can be used.

This requires a method to allow
the guest to retrieve the cart, such
as a parameterized URL. An
expiry date is needed to prevent
server storage space from being
depleted by orphaned cart data.

4.5.2 Checkout

The checkout feature, shown in figure 4.15, encapsulates the features related to the checkout

process. In the process, the customer reviews the items they have added to their shopping cart,

enters their payment and shipping information, selects any shipping and gift options, and

confirms the order. The process begins when the customer has finished selecting their items and

ends with the submission of the order to the order processor. Checkout requires that the checkout

 43

type, taxation options and payment options features be selected; the shipping options feature may

also be selected if it is necessary.

4.5.2.1 Checkout Type

Figure 4.15 shows the details of the checkout type feature. There are two checkout types:

registered and guest. An e-shop can support both types simultaneously, but the customer will

select which checkout type to use during their session at run-time.

Figure 4.15: Checkout and Checkout Type Features

• Registered Checkout. The registered checkout requires customers to log in before they can

start the checkout process. During the checkout, customers must enter or select their shipping

and payment information for the order. Support for a registered checkout requires the

selection of the register to buy policy in the registration enforcement feature; if the register to

buy feature is selected, the selection of this feature is recommended. The quick checkout is an

optional feature that allows customers to place an order for the items in their shopping cart by

using a default set of information from their profile. This feature requires the quick checkout

profile feature in order to store the default shipping and payment information. Amazon.com’s

“1-Click Ordering” is an implementation of such a feature except that it applies to a single

item instead of the cart contents. The optional enable profile update on checkout feature

allows customers to automatically propagate any profile information or default selection

changes to the quick checkout profile when they are using the regular checkout.

• Guest Checkout. The guest checkout allows a guest to purchase products from the e-shop.

Guests have to enter their personal information to place an order. The information will be

 44

stored to fulfill the order and for regulatory reasons, but it will not be available for reuse in a

future purchase.

4.5.2.2 Shipping Options

The shipping options feature describes the options pertaining to shipping which the customer has

control over while going through the checkout. Shipping options require the selection of the

shipping feature13; if the shipping options feature is selected, there are no implications on the

shipping feature since the shipping options only determine the degree of control the customer has

on the shipping process. Figure 4.16 shows the details of the shipping options feature. There are

many optional features in shipping options, including quality of service selection, carrier

selection, gift options and multiple shipments; however, the shipping cost calculation feature is

mandatory since it is needed to generate the total cost of the order.

Figure 4.16: Shipping Options Feature

• Quality of Service Selection. The quality of service selection feature requires the customer to

specify the level of service they want. It is usually expressed in terms of the number of days it

takes for the shipment to arrive. Some common options for quality of service include

“express”, “air”, “priority” and “next-day shipping”. If this feature is eliminated, the quality

of service is determined by the e-shop.

• Carrier Selection. The carrier selection feature requires the customer to choose the company

to perform the delivery service. There may be constraints between the carrier and quality of

services available; however, those constraints are dependent on any business arrangements

13 Shipping, described in section 5.1.1.2, is a subfeature of the physical goods fulfillment feature.

 45

made between the e-shop and the carrier. This option is very rarely used in practice. If this

feature is eliminated, the carrier is chosen by the e-shop.

• Gift Options. The gift options feature allows the customer to designate an order or part of an

order as a gift. This means that the gift portion of the order may be sent to a different

recipient. Some e-shops cannot process multiple shipping addresses for a single order, so

placing multiple orders may be necessary. In addition, a gift receipt should be issued and gift

wrapping options must be performed before the gift is shipped.

• Multiple Shipments. The multiple shipments feature allows the customer to partition their

order into multiple deliveries. Each delivery can be configured individually with its own

shipping options. This is a useful feature when the customer wants to expedite the delivery of

some items in an order. It is also useful when items have different availabilities; this prevents

the customer from having to wait for all the items to become available before receiving their

order. The most common way to charge for multiple shipments is to perform the shipping

cost calculation as if each individual shipment comes from a separate order. If this feature is

eliminated, the customer will only have the option to receive their order when all of the items

are available. It is important to note that this feature does not affect the e-shop’s ability to

partition shipments and adjust the shipping costs manually.

• Shipping Cost Calculation. The shipping cost calculation feature allows the e-shop to assess

shipping costs. Many implementations use base shipping rates, which are pre-calculated for

different qualities of service and carriers. The base shipping rates are applied against various

factors, such as the number of items ordered, the type of items ordered, the size or weight of

the items, or the total order cost. For example, an e-shop may have a set of rates for books

which state that the first book costs $x and each additional book costs $y when the books are

shipped using the express service. Another example is when a company offers free shipping if

the total order amount exceeds a threshold value. Each e-shop must define and implement its

own policies for shipping cost calculation.

4.5.2.3 Taxation Options

The taxation options feature describes all of the options available for applying the tax laws and

calculating the amount of tax to be charged on an order. Taxation can be affected by many

factors, including the location of the purchaser, the location of the e-shop's company, and the

items purchased. Exemptions may also be applicable to certain orders depending on the purchaser

or the intended use; special information, such as exemption codes and tax numbers, needs to be

 46

taken into consideration in these cases. In addition, tax laws can vary from region to region.

Taxation can be handled through custom taxation rules, a tax gateway or both. The details of the

taxation options feature is shown in figure 4.17.

The inclusive-or feature groups under the taxation options and tax gateways features apply to all

binding times since an e-shop may want to support custom tax rules and multiple tax gateways

simultaneously. For example, an e-shop may specify a set of custom tax rules to handle special

situations and refer everything else to a tax gateway. Multiple tax gateways may also be required

during a tax calculation depending on the circumstances surrounding the order and the

capabilities of each tax gateway. Therefore, a single order submitted during a session at runtime

may require a combination of these features.

Figure 4.17: Taxation Options Feature

 47

• Custom Taxation. The custom taxation feature allows the e-shop to define tax calculation

strategies. There are two types: fixed-rate taxation and rule-based taxation. In addition, the

amount specification feature is needed to determine how to express the tax rate. Both

surcharge and percentage methods can be supported, although a tax rate is only specified with

one.

o Fixed-Rate Taxation. Fixed-rate taxation charges a fixed percentage or amount on every

order, regardless of the circumstances. This is the simplest way that tax can be calculated.

It is rarely sufficient to apply fixed-rate taxation only since tax laws tend to contain many

provisions which must be observed.

o Rule-Based Taxation. Rule-based taxation allows the e-shop to define its own tax rules.

The tax rules are defined using tax codes and addresses. A tax code defines a category

that is associated with a tax; a product is assigned one or more tax codes so that the

appropriate taxes can be charged. For example, some regions have an environmental

surcharge on electronic products because the products contain materials which are

harmful to the environment. Therefore, a tax code can be defined for this environmental

surcharge and associated with electronic products sold at the e-shop.

The address allows the location to be taken into consideration, which is necessary since

tax codes define rules for products only. Current Canadian tax laws for Internet purchases

state that customers are only responsible for any taxes that are charged within their own

province; customers do not have to pay provincial taxes for the province in which the e-

shop has a physical presence. Both the shipping and billing addresses can affect the tax

calculation. The customer's location is often used to determine which taxes to apply.

Since customers usually reside at the shipping address, the e-shop must support it. The

billing address may be supported since it is required for tax calculations in some

jurisdictions; furthermore, it may also be useful if the shipping address and billing

address differ. Finally, the resolution feature is required to determine the granularity of

the address. Different tax laws may be applicable at different levels of government, so the

address must be resolvable to the country, region, or city. The main problem with using

rule-based taxation is that there are a large number of tax rules which are liable to change

periodically. This can make it difficult for the e-shop to keep all of the tax rules in

compliance with the tax laws and it can cause problems over the long run.

• Tax Gateways. Due to the complexity of tax laws, an e-shop may want to outsource the tax

calculations. Tax gateways are third parties who provide tax calculation services; most

gateways operate as a web service and can be integrated into the e-shop’s checkout process.

 48

Tax gateways can include CertiTAX and Cybersource, but the e-shop can also support the

run-time addition of custom tax gateways.

4.5.2.4 Payment Options

The payment options feature describes details pertaining to purchase payments from the

customer. The payment types feature must be selected since the e-shop cannot process any

payments without it. In addition, payment options can be further supported by two optional

features: fraud detection and payment gateways. Figure 4.18 displays the details of the payment

options feature.

Figure 4.18: Payment Options Feature

• Payment Types. The payment types feature denotes the forms of payment that can be handled

by the e-shop. Payment types can include Cash On Delivery (COD), credit cards, debit cards,

electronic cheques, fax mail orders, purchase orders, gift certificates, phone orders, and a

 49

custom payment type. The feature group remains inclusive-or for all binding times because

the e-shop may be required to accept multiple forms of payment for a single order. For

example, a customer may make a purchase which exceeds the value of a gift certificate;

therefore, a second payment type is needed to cover the balance. Depending on the e-shop,

some payment types also have specific information that must be collected during checkout.

• Fraud Detection. The fraud detection feature performs checks on the payment information to

verify its authenticity. This can be accomplished through card authorization and verification

services. Fraud detection also makes use of purchase data, neural networks and rule-based

systems to generate a risk score for the e-shop [Vis05]. This feature requires expertise that is

usually available through an external service, such as a payment gateway. The specific fraud

detection capabilities are dependent on the external service chosen; the actual details are

service-specific and beyond the scope of this model.

• Payment Gateways. The payment gateways feature allows the e-shop to outsource payment

services. Payment gateways are third parties that can handle the verification of the payment

information, fraud detection, and payment arrangements with financial institutions.

Furthermore, different payment gateways can handle different payment types, so the payment

types selected can limit the payment gateways which are available and vice-versa. The

feature group remains inclusive-or for all binding times since each gateway has a distinct set

of capabilities and processing an order payment may require access to capabilities from

multiple gateways. Payment gateways can include Authorize.Net, CyberSource, LinkPoint,

Paradata, SkipJack, and VerisignPayflowPro. If the custom payment gateway feature is

selected, a payment gateway can be defined and configured after the e-shop is deployed at

run-time.

4.5.3 Order Confirmation

The order confirmation feature, shown in figure 4.19, provides an acknowledgement to the

customer that the order was received by the order processor and placed successfully. An order

number is usually provided to the customer for future reference. This feature is mandatory since

customers require feedback after placing an order; otherwise, they may believe that the order

submission was unsuccessful and place another order. Order confirmation can be provided

through the following communication channels: electronic page, e-mail, phone or mail. Multiple

channels may be used to achieve a higher-level of service; therefore, the feature group is

inclusive-or for all binding times.

 50

• Electronic Page. An electronic page is a web page that is displayed after the checkout process

is complete for immediate confirmation. In some implementations, an electronic page can

serve as a preliminary acknowledgment for the order. The official confirmation, indicating

that the order has been received by the order processor, arrives through another channel at a

later time.

• E-mail Confirmation. An e-mail confirmation can be sent immediately after the order is

placed, after the order processor receives the order, or at both times.

• Phone. A phone call can be made to confirm the order if the customer does not provide an e-

mail address. It is especially useful for high-risk transactions, such as those involving an

expensive purchase.

• Mail. A hard copy of the order confirmation from the e-shop can serve as an official

document for the customer’s records.

Figure 4.19: Order Confirmation Feature

4.6 Customer Service

The customer service feature, shown in figure 4.20, contains subfeatures that enhance a

customer’s shopping experience. The optional subfeatures include question and feedback forms,

product returns, order status viewing, and shipment status tracking. These subfeatures are usually

implemented through additional screens and workflows.

4.6.1 Question and Feedback Forms

Question and feedback forms allow a customer to submit a question or comment to the customer

service department directly from the web site. The form can solicit contact information in order to

 51

provide a response to the visitor. There is also the option to track submissions through the

question and feedback tracking feature, which allows the e-shop to aggregate the submissions and

use the information to identify areas requiring improvement. For example, several similar

questions about searching for products may indicate a poor design for the search interface or a

lack of documentation for the search functionality. Tracking is done primarily to aggregate the

content as opposed to tracing the source of the information; therefore, customers do not have to

be logged in to use these forms. This allows visitors to easily pose questions before they commit

to sharing their personal information through registration.

Figure 4.20: Customer Service Feature

4.6.2 Product Returns

Product returns allow customers who are dissatisfied with their purchases to return the items and

receive a refund. This feature is only used to accept returns for physical products. The return

process for an e-shop is more complicated than the return process for a brick and mortar store

because an e-shop requires several actors to be coordinated throughout the process. First, the e-

shop must have an interface which allows customers to submit a return request. If the request is

approved, a return merchandise authorization (RMA) number, which is used to authorize and

track the return, and a shipping label for the return package are generated for the customer. The

return package is sent to the warehouse, where personnel inspect the item, confirm that the item’s

condition is acceptable, and process the item. Once the warehouse personnel have verified the

 52

condition of the item, the original payment is refunded to the customer. The e-shop is also

responsible for tracking the state of the transaction throughout the return process.

4.6.3 Order Status Viewing

Order status viewing allows a customer to track orders after they are placed. Customers can

retrieve a list of their orders, which can be sorted or filtered by the order number, date, or status.

A selection from an order list brings up the order status page. The order status page displays the

order number, payment information, shipping information for each delivery, items ordered, costs,

discounts, item statuses, and expected arrival dates. The order status viewing feature requires the

registration feature; however, the selection of the order status viewing feature has no implication

on the registration feature. There is also the request order hardcopy feature, which is an optional

subfeature that allows the customer to request a hardcopy of the order page to be sent by mail.

The hardcopy can be used as an official proof-of-purchase. The order page is distinct from the

packing slip which is included with the product shipment. The difference is that the packing slip

is an itemized list of the package contents, whereas the order page includes the full payment

details, such as the methods of payment and the total order amount, and is usually sent to the

billing address.

4.6.4 Shipment Status Tracking

Shipment status tracking allows a customer to query the state and location of their order once it

leaves the warehouse. The information is provided by the shipping company’s systems. This

feature requires the shipping feature14 to be selected; however, the selection of this feature makes

no implication on the selection of the shipping feature. The two ways of tracking the shipment are

internal tracking and partner tracking.

• Internal Tracking. The internal tracking feature allows the shipping information to be

retrieved from the shipping company's system and displayed on the order status page. Most

sites that use internal tracking only display the current shipment status due to the limited

screen space on the order status page and / or the limited amount of information provided by

the shipping company.

14 This refers to the subfeature of the physical fulfillment feature. It is described in section 5.1.1.2.

 53

• Partner Tracking. The partner tracking feature redirects customers to the shipping company’s

website so that they can obtain the shipment status. The e-shop’s order status page will

provide a tracking number and / or a link to the shipping company’s website. The link may be

parameterized with the tracking number or customers may have to enter the tracking number

manually. Since the information is being displayed on the shipping company’s website, the

shipping company usually provides more detailed information, such as the shipment history,

which indicates where the package has been and what time it was there, and the current

shipment status.

4.7 User Behaviour Tracking

The user behaviour tracking feature, shown in figure 4.21, allows the e-shop to monitor and

record a customer’s actions while browsing and shopping. This data can be associated with data

from the customer's profile to study trends and consumer behaviour; however, this requires the

selection of the user behaviour tracking information feature. The user behaviour tracking feature

requires the e-shop to specify which types of behaviour are tracked.

Figure 4.21: User Behaviour Tracking Feature

An e-shop can track users anonymously by session. A session begins when the visitor enters the

site and ends when the visitor leaves the site. The data from a session constitutes the behaviour of

a single anonymous user.

4.7.1 Behaviour Tracked

Several types of behaviour can be tracked, including locally visited pages, external referring

pages and previous purchases.

 54

• Locally visited pages. Locally visited pages refer to pages in the e-shop which are visited by

the user. Information can be recorded about which internal pages are visited, the order of

page traversal, the duration spent on browsing each page, entry and exit points for the e-shop,

and whether a page led to a sale. This type of information is helpful when assessing the

performance and effectiveness of the e-shop. In addition, this information can also be used

for targeting efforts, such as developing personalized advertisements based on the pages

visited.

• External referring pages. External referring pages refer to tracking entries into the e-shop

which originate from links on external sites. There are many applications for this type of

information; three examples are 1) to help determine the effectiveness of any external

marketing campaigns and the exposure of the e-shop on the internet; 2) to gauge how visible

the e-shop is in search engines, since external links are considered in some page ranking

algorithms; and 3) to calculate the commission for affiliates.

• Previous purchases. Previous purchases refer to tracking purchases made by customers. This

can involve keeping a list of items and the quantities that have been purchased or storing all

previous order data. This type of information can be used to understand individual and global

trends. An example of an individual trend would be studying a consumer’s purchasing

patterns to determine what and when an individual is most likely to make a purchase. An

example of a global trend would be correlating the purchase information with other data to

assess the effectiveness of the web site. For example, a low purchase rate on a product may

be correlated with a low hit rate on the corresponding product page; this may indicate a

navigability problem to that particular product page.

4.8 Summary

In this chapter, the domain analysis for the store front features in the e-shop was presented. The

store front consists of features which affect the interface and affect the customer’s shopping

experience. The key features in the store front include: registration, which allows customers to

enter their information so that it can be reused for future purchases; catalog, which defines the

structure of the product information and determines which types of products are offered by the e-

shop; wish lists, which allow customers to maintain a list of items they would like to purchase;

buy path, which describes the features relating to the purchase of an item; and user behaviour

tracking, which allows the e-shop to record a visitor’s actions for future study and marketing

purposes.

 55

Chapter 5 E-Commerce Domain Analysis:Business Management15

Business management deals with aspects pertaining to the e-shop’s operation. Most of these

aspects are back-office concerns, such as product management, order processing and marketing,

which are handled by the e-shop staff. Business management features can involve different

stakeholders from both inside and outside the company. An internal stakeholder is the e-shop

management; external stakeholders are suppliers and third parties providing gateway services.

Figure 5.1 illustrates the top-level details of the business management feature. Business

management requires the order management and administration features, which enable order

processing and general e-shop management capabilities respectively. Business management

capabilities can be augmented by selecting optional features, such as targeting, affiliates,

inventory tracking, procurement, reporting and analysis, and external systems integration16.

Figure 5.1: Business Management Feature

5.1 Order Management

The order management feature, illustrated in detail in figure 5.2, deals with the workflow that

describes the complete lifecycle of an order. The order workflow combines order handling and

order processing activities to complete the business transaction. Order handling is responsible for

“paperwork” activities; it performs four tasks: 1) creates the order when a request is submitted by

the customer, 2) stores the order in the database for future processing and viewing, 3) updates the

order status as it is being processed, and 4) closes the order once it has been fulfilled. Order

processing carries out the steps needed to fulfill the order, which requires communication

15 The additional constraints are described in table A.1 in appendix A.
16 The level at which a section is nested may not correspond to the depth of the feature because some
branches contain features which are used to organize subfeatures only; however, the bullet points always
represents the relative depth within each branch.

 56

between stakeholders. Order processing performs four tasks: 1) checks for product availability

with the fulfillment centre, 2) verifies the payment information, 3) sends a request to the

fulfillment centre to dispense the goods or have the service performed, and 4) makes

arrangements for the payment. The order workflow is executed by the order processor. The

degree of automation in the workflow depends on the e-shop’s policies. For example, an e-shop

may require orders over a certain value to be manually released for shipping to prevent fraud.

Most e-shops have a fully automated workflow, especially large e-shops with a high volume of

transactions, because manual operations would increase costs significantly. Certain anomalies or

error conditions may require an order to be flagged for inspection by e-shop staff, but the order

processor can still manage the order status and customer notification automatically. Some e-shops

use a system where customers are notified if a problem occurs with their order; it is the

customers' responsibility to contact the e-shop or they risk having their order cancelled.

Figure 5.2: Order Management and Fulfillment Features

The fulfillment feature is mandatory17 and configures options for two tasks: 1) storing inventory

in the fulfillment centre until it is sold to customers, and 2) delivering the goods or services to the

customer. There are three types of fulfillment: physical goods fulfillment, electronic goods

fulfillment, and services fulfillment. Like the product types feature in the store front, the feature

group is inclusive-or for all binding times. There is an implication between each product type and

its respective fulfillment type; however, if the fulfillment type is selected, it is recommended that

the corresponding product type be selected also.

17 Although fulfillment is the only subfeature of order management, order management can consist of much
more than just fulfillment; however, those other features are beyond the scope of this model.

 57

5.1.1 Physical Goods Fulfillment

Figure 5.3 describes the details of the physical goods fulfillment feature. Fulfillment of physical

goods requires a real-world fulfillment centre, such as a warehouse. The operations of the

warehouse are handled by the warehouse management feature. Product delivery is achieved

through the shipping feature, which provides back-office shipping options.

Figure 5.3: Physical Goods Fulfillment Feature

5.1.1.1 Warehouse Management

The warehouse management feature provides tools that allow the warehouse staff to “control the

movement and storage of materials within an operation and process the associated transactions”

[Inv03]. Since all physical inventories reside in the warehouse at some point, the system must be

capable of organizing the flow of products into and out of the warehouse. To support this

functionality, the system enables the staff to perform various tasks, including 1) providing

 58

directives to workers or machines on how to sort and where to direct incoming shipments from

suppliers, 2) querying the location and quantity of inventory in the warehouse, 3) ordering

inventory to be packaged for delivery and arranging a pick-up with the shipping company, and 4)

receiving items meant for return processing.

To accomplish these tasks, the warehouse needs to have the technology to link data acquisition

devices to the warehouse database. In addition, a communications infrastructure with other units,

such as the order processor, is required. Warehouse management systems are separate from the

rest of the e-shop; they can be built in-house or purchased as a third-party solution.

5.1.1.2 Shipping

The shipping feature allows the e-shop to define options for the delivery of physical goods. There

are two ways in which shipping can be handled: a custom shipping method and shipping

gateways. The feature group is inclusive-or for all binding times up to the placement of an

individual shipment at run-time because an order may require multiple shipping methods to

satisfy different quality of service requirements. For example, if an order has multiple shipments,

the e-shop can employ a driver for rush items and a third party for the rest of the order. For an

individual shipment, the feature group becomes exclusive-or since only one shipping method will

be used per shipment. Finally, the selected subfeatures determine the shipping options which are

available to the customer when they are placing an order at run-time.

• Custom Shipping Method. The custom shipping method allows the e-shop to define a

shipping method. It can be used as a standalone shipping method, such as hiring a driver for a

special delivery, or it can be used to implement special shipping policies, such as offering

free shipping on certain orders. The pricing subfeature describes ways of calculating the

shipping cost. The simplest way is to use the flat rate feature, which assigns the same

shipping cost to every order. It is a mandatory feature because it is a basic accounting feature

for shipping. The base case, which is no charge for shipping, can be implemented by setting

the fixed rate to zero. A more realistic implementation involves taking the order details into

consideration. The rate factors feature allows four different criteria to be used in the

calculation of shipping costs.

o Quantity Purchased. Quantity purchased refers to the number of items in an order. More

items in an order usually leads to higher shipping costs; however, many companies

 59

charge a higher shipping rate on the first item to cover initial costs and a reduced rate on

additional items. The initial costs include the packing materials and labour.

o Order Total. Order total refers to the total amount of the order. This can be used to set a

threshold amount for free shipping or it may use different value ranges to determine the

shipping cost.

o Weight. Some shipping services charge for deliveries by weight. There can be a

graduated pricing scale based on the range that the weight falls in or a fixed rate per unit

of measure.

o Product Classification. Product classification refers to different classifications of physical

goods, such as books, clothing, or electronics. These goods may have similar physical

characteristics, so the shipping requirements may also be similar; therefore, a rate can be

defined for the class of products.

• Shipping Gateways. Shipping gateways are third parties who provide the shipping service.

Shipping gateways allow shipping costs to be calculated and deliveries to be scheduled. The

former is handled during the checkout process, although the e-shop may perform some pre-

processing to apply its own shipping policies; the latter occurs when the product is ready to

be shipped from the warehouse. The shipping gateways consist of major shipping companies,

including FedEx, UPS, United States Postal Service (USPS), and Canada Post. The custom

shipping gateway feature allows the e-shop to define and configure different shipping

gateways after the e-shop has been deployed at runtime. The feature group for the shipping

gateways feature varies according to the binding time in the same way as the feature group

for the shipping feature due to the same line of reasoning that was presented for the latter

feature group.

5.1.2 Electronic Goods Fulfillment

Figure 5.2 describes the details of the electronic goods fulfillment feature. For electronic goods,

the role of the fulfillment centre is handled by the file repository feature. Product delivery is

usually handled through a file transfer or an e-mail. The license management feature is also

required to prevent unauthorized duplication of copyrighted content. This is usually achieved

using some form of Digital Rights Management (DRM).

 60

5.1.2.1 File Repository

Electronic goods have no physical presence but they exist in various forms. Digital content, such

as music or e-book files, can exist in the form of a source file. When customers purchase digital

content, they receive a licensed copy of the file which is encoded with copy protection

mechanisms. Alternatively, an electronic goods product like an e-certificate may exist in the form

of a unique key; these keys may be automatically generated on demand or they may be pre-

defined. In both cases, the keys must be stored for future redemption. Since both forms of

electronic goods require storage, the role of the fulfillment centre is handled by the file repository

feature, which securely stores the content for distribution or retrieval. The inventory for electronic

goods is handled differently than the inventory for physical goods because the digital product is

usually replicated on demand; therefore, only one copy of the product needs to be stored and the

inventory will never be depleted. Furthermore, the capacity of an electronic fulfillment centre is

only limited by hard drive space, which is cheaper and easier to expand than physical space.

5.1.2.2 License Management

License management protects digital content from unauthorized use and duplication. It allows the

e-shop to track the content, set access policies, and encode the product with access rights. Access

rights include the ability to control the number of times the content can be viewed, the content

expiry date, and the copy privileges, such as the ability to transfer the content to another device.

Enforcement of the digital rights can occur through the use of a proprietary content viewer, such

as Apple’s iTunes; the online verification of the content each time the content is viewed, such as

the Digital Video Express (DIVX) movie format [Wik06d]; or the use of a special type of media,

such as disposable Digital Video Discs (DVDs) which can only be read for a set time limit. Many

large software companies and media companies have their own encoding schemes and standards

for DRM. The license must be encoded into the product after it is replicated from the file

repository, but before it is served to the customer.

5.1.3 Services Fulfillment

Figure 5.2 describes the details of the services fulfillment feature. Fulfillment of services is

different from the other two fulfillment types because there are no goods to store in inventory or

deliver to customers. To fulfill a service, a company requires resources, such as service personnel,

 61

facilities and equipment. These resources are managed by tools which are defined by the optional

appointment scheduling and resource planning features.

• Appointment Scheduling. The appointment scheduling feature allows the e-shop to define and

manage appointments. Appointments are constrained by the availability of the customer and

the company's resources. Scheduling can be performed by the e-shop staff or by the customer.

In either case, the e-shop usually defines a set of appointment slots and the customers pick a

slot. A basic implementation of this feature involves managing appointments only. Additional

features, such as automatic notifications to service personnel when an appointment is

scheduled or reminders to customers for upcoming appointments can help streamline the

fulfillment process. Appointment scheduling is required for all services except those that

operate on a first-come, first-serve basis. For example, an online service that converts

documents into PDF files can provide an immediate turn-around or, if it is heavily loaded,

service in the order of arrival; there is no need to schedule an appointment to have this service

performed.

• Resource Planning. The resource planning feature allows the e-shop staff to allocate

resources to projects and assess the e-shop’s capacity for providing services. This can be used

for both long-term planning, such as determining how many more service personnel and how

much more equipment would be required to increase the service capacity by x%, and short-

term planning, such as determining how much supplies are required for a job and whether or

not they have to be restocked. This feature is optional since resource planning can be

performed offline also.

5.2 Targeting

Targeting refers to marketing efforts which focus on meeting the needs and preferences of

individual users [Ped03]. The objective is to improve business by attracting new customers,

increasing store traffic and increasing overall sales. Targeting can be pre-emptive, which implies

the execution of a marketing strategy based on an analysis of the collected data, or reactive,

which implies a dynamic response based on a customer’s actions.

Targeting impacts all areas of the e-shop, from creating additional promotional web pages to

modifying the checkout workflow to accept coupon codes. Targeting is defined by three

mandatory features: targeting criteria, targeting mechanisms, and display and notification. In

 62

addition, a cohesive targeting strategy can be defined, implemented and executed through the

optional campaigns feature. The targeting feature is shown in figure 5.4.

Figure 5.4: Targeting Feature

5.2.1 Targeting Criteria

The targeting criteria feature, shown in figure 5.5, defines a set of features for selecting a group of

customers, also referred to as a target audience. The commonality between the customers will

make it easier to design an effective marketing strategy. The feature group is inclusive-or for all

binding times. Many of the criteria are the same as the fields defined in the registration profile; in

those cases, selection of the grouped feature here requires selection of the corresponding feature

in the profile. However, there are no implications on the grouped features if the corresponding

feature is selected in the registration profile.

• Customer Preferences. Customer preferences relate to the preferences feature defined in the

registration profile. It can be used to group customers based on their language preferences,

which is useful for e-shops that sell multilingual products.

• Personal Information. Personal information can be used to select products that relate to the

customer’s interests and a promotion can be created based on the selected products. The

information can be obtained directly from the profile or inferred from other pieces of data,

such as the customer's newsletter subscriptions.

• Demographics. Demographics provide objective attributes for comparing customers and

defining customer groups because demographic information, such as age, income and

education, can be clearly defined and the values require no subjective interpretation.

Demographics can also be used to predict consumer behaviour; for example, customers with

higher incomes are more likely to purchase high-end products.

 63

Figure 5.5: Targeting Criteria Feature

• Previous Purchases. Previous purchase data is analyzed for trends in consumer purchasing

patterns. This information can be used to devise product recommendations in the form of

"customers who bought this product also bought these products". Since previous purchase

data is implicitly recorded in the orders, this information is always available unless it is

explicitly deleted.

• Shopping Cart Content. Since placing an item in the cart signals the intent to purchase, an

examination of the shopping cart contents can be used to understand consumer behaviour and

relationships between products. For example, an item that is left in the cart after a session

ends may indicate that the customer is unsure about the item. If this occurs frequently among

many customers, it may indicate that the item is overpriced and may benefit from a discount.

In another example, items that are placed together in a cart may indicate a relationship

between the items. Like previous purchases, this information may be used to devise product

recommendations. Since the shopping cart is a mandatory feature and this data can be

implicitly recorded based on the cart actions, there are no additional constraints.

• Wish List Content. The motivation for examining the items in a wish list and the resulting

analysis is similar to the information presented for the shopping cart content feature. The only

difference is that adding an item to a wish list signals a weaker intent to purchase than adding

an item to a shopping cart; therefore, a more substantial trend must exist before the same

conclusions can be drawn. Support for this feature requires the selection of the wish list

feature in the store front; however, the selection of the wish list feature has no implication on

this feature.

 64

• Previously Visited Pages. This feature involves an examination of the pages visited by a user.

This information can be used to assess the popularity of certain products, the navigability of

the site, the process of comparison shopping or product research, the effectiveness of external

links, and other e-shop characteristics. Conclusions can be used to generate promotions or

improve the site. In the latter case, the data may be used to restructure the site to enable faster

or easier access to popular products. This feature requires the selection of the locally visited

pages feature or the external referring pages feature18; however, the selection of the locally

visited pages feature or the external referring pages feature has no implication on this feature.

• Date and Time. There are two interpretations for this feature. In the first interpretation, the

targeting efforts are based on the date or time at which customers visit the site. For example,

date-specific or time-specific promotions are offered to increase the number of visitors during

periods with low site traffic. In the second interpretation, targeting efforts are based solely on

the date or time. For example, promotions for snow blowers products are usually featured

prominently during the winter months.

• Custom Targeting Criteria. The custom targeting criteria feature allows other targeting

criteria to be defined after the e-shop is deployed at run-time. This is useful if the registration

profile is extended with custom fields which contain marketing information. This feature

requires the e-shop to be extensible so that analysis algorithms can be specified to make use

of the new information.

5.2.2 Targeting Mechanisms

The targeting mechanism feature, shown in figure 5.6, provides methods for implementing a

marketing effort. Once the target audience is selected, marketing staff must choose the

appropriate methods for targeting the customers. The mechanisms can be divided into three

categories: advertisements, discounts, and sell strategies. The inclusive-or feature group applies

during all binding times because an effective marketing strategy typically involves a combination

of mechanisms, such as advertising a discount on a product.

18 Locally visited pages and external referring pages are grouped features under the behaviour tracked
feature in the store front. The features are described in section 4.7.1.

 65

Figure 5.6: Targeting Mechanisms Feature

5.2.2.1 Advertisements

Advertisements, also referred to as ads, are promotions which are displayed to a customer while

they are visiting the e-shop. Each advertisement is defined by two mandatory features:

advertisement types and advertisement sources. The effectiveness of the advertisements can be

improved by selecting the advertisement response tracking feature and / or the context sensitive

ads feature. Figure 5.7 describes the details of the advertisement feature.

Figure 5.7: Advertisements Feature and Subfeatures

• Advertisement Types. There are two advertisement types which can be served on a web page:

banner ads and pop-up ads. Banner ads are rectangular boxes that are embedded into the web

page. These ads usually contain images, videos or text; they also link to whatever is featured

in the ad. Banner ads are used primarily to promote other products, services or websites. Pop-

 66

up ads open a separate window or overlay a window on top of the current page. The window

typically contains a stand-alone web page. Pop-up ads can attract more attention because they

can take the focus off the original page and redirect it to the ad. There is greater flexibility for

the content in a pop-up ad because it resides in its own frame. The inclusive-or feature group

applies to all binding times up to the definition of an ad during run-time since a web page can

serve both advertisement types simultaneously; however, when an ad is defined, the feature

group becomes exclusive-or because an ad must be one of the two types.

• Advertisement Sources. Advertisements have one of two purposes: 1) to promote products

within the e-shop, or 2) to generate revenue by promoting things from external sites. This

leads to two possible sources for advertisements: house advertisements and paid

advertisements. The inclusive-or feature group applies to all binding times up to the

definition of an ad during run-time since a web page can serve advertisements from both

sources simultaneously; however, when an ad is defined, the feature group becomes

exclusive-or because an ad is either a house advertisement or a paid advertisement.

o House Advertisements. House advertisements are internal ads; they advertise in-store

promotions or featured products. Banner ads which link to promotional pages are usually

preferred because they are less intrusive and integrate better into the site; however, pop-

up ads can also be effective for special promotions. For example, Amazon.ca uses a pop-

up ad to advertise special discounts for new customers when it detects a new visitor.

o Paid Advertisements. Paid advertisements are ads for a third party client. The differences

between house advertisements and paid advertisements are the content is defined by the

client, the links lead to external sites, and the client must pay each time the ad is served

and / or clicked. To satisfy these differences, the Advertisement Management Interface

(AMI) feature is required. The AMI provides interfaces for both the client and the e-shop

staff. The client interface allows the client to upload ads and view the ads’ serving

statistics. The e-shop staff interface allows the staff to schedule ads and track the number

of times an ad has been served. The AMI is general enough to handle both types of ads

and includes facilities for banner management and website frame rentals.

• Advertisement Response Tracking. Advertisement response tracking allows the e-shop to

assess the effectiveness of an ad by recording how many visitors see the ad and how many

click on it. The closer the ratio between the number of views and the number of clicks is to

1:1, the more effective the advertisement.

• Context Sensitive Ads. Context sensitive ads are an example of reactive targeting. The ad is

selected based on the information that is present on the page. An example of context sensitive

 67

ads is "Ads by Google". "Ads by Google" uses banner ads which list sponsored links; the

links are determined based on the keywords on the page and the Google search engine.

5.2.2.2 Discounts

The discounts feature provides mechanisms for defining and managing temporary price

adjustments on products or orders. For example, it may be convenient to have a mechanism

which allows the e-shop to set a temporary discounted price for a product, as opposed to

manually changing the price field at the beginning and end of the discount period. Discounts are

defined using the following mandatory subfeatures: discount conditions, award, eligibility

requirements and graduation. In addition, there is an optional feature for accepting coupons and a

mandatory feature for handling multiple discounts. The details of the targeting feature and all of

its subfeatures are shown in figure 5.8.

Figure 5.8: Discounts Feature

• Discount Conditions. Discount conditions define the conditions that must be satisfied in order

to apply the discount. The simplest discount condition is when a customer receives a discount

 68

for purchasing a specific product during the discount period. A more complex discount

condition would depend on the order amount and certain products being purchased. A

discount condition is defined by the product and quantity scope, time scope and, optionally,

purchase value scope.

o Product and Quantity Scope. The product and quantity scope feature allows discounts to

be assigned to a limited quantity of a given product. The quantity scope is used to limit

the number of units that are available at the discounted price; the limit may apply to

individual customers or the entire e-shop. An individual customer limit is useful for

restricting the number of units which a customer can purchase in a single order or in total.

An e-shop limit is particularly useful for special promotions. For example, “door crasher”

specials require a limited number of units to be sold at a large discount. An e-shop limit is

also useful for regular sales; the quantity scope can be set to the available inventory or no

limit. In the former case, the discount applies to everyone who orders before the product

goes out of stock; in the latter case, the discount applies to everyone who places an order.

The equivalent concepts in brick and mortar stores are “while quantities last” and

raincheques respectively. Raincheques allow customers to purchase an out-of-stock item

at the discounted price once the item becomes available; they are unnecessary for an e-

shop since orders can be held indefinitely in the order processor.

o Time Scope. The time scope feature allows a time period to be associated with the

discount. This enables price adjustments to be made automatically.

o Purchase Value Scope. The purchase value scope feature allows a discount to be applied

against an order. The discount can be applied against individual items or the entire order.

• Award. The award feature defines the discount amount. The discount amount can be specified

as a percentage discount, a fixed discount or a discount in the form of a free item. The feature

group relationship is inclusive-or for all binding times up until the definition of a discount

rule during run-time. At that time, the feature group becomes exclusive-or because a discount

rule can be specified with one discount amount only.

• Eligibility Requirements. Eligibility requirements allow a discount to be restricted to a subset

of customers; by default, a discount is available to all customers. The optional subfeatures,

customer segments and shipping address19, are pre-defined eligibility requirements. Customer

segments restrict the discount to members of a target audience. Shipping address restricts the

discount to customers residing in a geographical region; this is determined by the shipping

address which is entered during the checkout. The shipping address feature requires the

19 This shipping address feature is distinct from the shipping address feature described in section 4.2.2.

 69

selection of the shipping feature20; however, the selection of the shipping feature has no

implication on the shipping address feature.

• Graduation By. This feature allows discounts to vary depending on the total amount of the

order or the number of items which were purchased. The discounts are graduated; for

example, a discount involving the total amount could be expressed as "receive $10 off a $50

order, receive $20 off a $100 order, and receive $50 off a $250 order". The discount amounts

are usually proportional to the discount factor.

• Coupons. Coupons are certificates issued by the e-shop which can be redeemed for a

discount. In an e-shop, coupons are usually implemented as a code that the customer inputs

during the checkout process. Coupon codes can be single use, meaning that the redemption

code is unique and must be invalidated after it is redeemed, or general use, meaning that the

redemption code can be used by any customer who obtains it.

• Handle Multiple Discounts. The handle multiple discounts feature defines a policy for dealing

with multiple discounts on an order. This may result from multiple discount conditions being

satisfied, multiple coupon codes being redeemed, or a combination of both. The e-shop may

define restrictions on combining promotions. Another issue that arises from allowing multiple

discounts is to ensure that the end result is consistent. For example, if an x% discount and a

$y discount are applied on an order, the amount of the discount will depend on the sequence

in which the discounts are applied. Some strategies to deal with this are to apply coupons in

whatever sequence the customer inputs them, apply the best or worst discount possible based

on the discounts present, or define a global priority for all discounts to create a deterministic

order of application.

5.2.2.3 Sell Strategies

The sell strategies feature, shown in figure 5.9, provides mechanisms for increasing sales by

promoting related or better products to customers while they are shopping. The sell strategies,

which include product kitting, up-selling and cross-selling, are reactive, context-sensitive product

recommendations. The feature group is inclusive-or for all binding times up until the definition of

a concrete sell strategy at run-time. At that time, the feature group becomes exclusive-or because

a concrete sell strategy must be defined based on one of the three strategies.

20 This refers to the subfeature of the physical fulfillment feature. It is described in section 5.1.1.2.

 70

Figure 5.9: Sell Strategies Feature

• Product Kitting. Product kitting is a sell strategy where multiple related products are bundled

together and the bundle is sold as a single unit. The products may be part of a series or have a

related theme. Product kitting is a useful technique for highlighting related products and

grouping products which are usually purchased together into a single item. Additional

discounts may be offered on the bundle, such that the price of the bundle is less than the sum

of the individual item prices. In that case, the bundle can be used to pair a more popular

product with a less popular product to increase sales on the latter. Product kits are listed and

displayed in a product page like regular products. An example of a product bundle would be a

home theater package which includes a TV, a sound system and a DVD player; the package is

sold as a single product as opposed to three separate products.

• Up-Selling. Up-selling is a sell strategy where customers are encouraged to consider products

which are better quality than the one they are considering. This can assist customers in their

product research because it allows them to explore related products, learn about additional

product features, and compare the price and value of better products. Discounts may have the

unintended effect of making the higher quality product cheaper than the lower quality

product, which would defeat the purpose of the up-sell from the perspective of the e-shop; a

policy may be required to deal with this scenario. Up-selling is implemented through the

substitute products subfeature, which provides recommendations for better products. The

recommendations are determined through product analysis or customer reviews. Substitutes

can also be offered when the desired product is out of stock. The substitutes are often

presented as a series of product links on the product page; it is meant to influence the

customer’s decision before the product is added to the cart.

 71

• Cross-Selling. Cross-selling is a sell strategy where customers are encouraged to consider

additional, related products. This can help customers discover other products which may

interest them. Cross-selling is implemented through the past customers also bought

subfeature, which provides recommendations for related products. The recommendations are

determined through previous purchase data, browse data or recommendations from

customers. The related products can be presented while the customer is browsing the product

page, after the product is added to the cart, or after the order is completed through a follow-up

e-mail; it is meant to generate additional sales either through the current order or a future

order.

5.2.2.4 Display and Notification

The display and notification feature, shown in figure 5.10, describes the techniques which can be

used to communicate marketing efforts to the customer. The three techniques are assignment to

page types for display, product flagging and e-mails. For all binding times up until a concrete

technique is selected at run-time, the feature group is inclusive-or since multiple techniques can

be supported and used to communicate the promotion to the customer; however, when a concrete

technique is selected, the feature group becomes exclusive-or since a concrete technique must be

defined as one of the three techniques.

Figure 5.10: Display and Notification Feature

• Assignment to Page Types for Display. This feature allows the e-shop to associate a targeting

mechanism with a page type for display purposes. A page type refers to a set of related web

pages, such as checkout pages or product pages. For example, if cross-sells are associated

with product pages, all product pages will include related products automatically. With this

 72

feature, the e-shop staff can avoid mapping targeting mechanisms to individual pages

manually.

• Product Flagging. This feature allows products that are on promotion to be highlighted in a

product list and on the product page. The highlighting distinguishes the product from non-

promotional products in the list and provides details about the discount.

• E-mails. This feature allows promotions to be communicated to customers outside of their

shopping sessions. A promotion can be communicated through e-mail by including a list of

links to discounted products, a link to the promotion page, a coupon code for the recipient, or

a combination of the three. The use of e-mails may be enhanced through the selection of the

personalized feature and / or the response tracking feature.

o Personalized. This feature allows e-mails to be customized for registered customers. The

customization can use information from the registration profile to generate an appropriate

message and / or select the most relevant products to be included in the e-mail.

Personalization may also entail generating a unique coupon code for the customer. This

feature requires the registration feature since it uses information from the profile;

however, the selection of the registration feature has no implication on this feature.

o Response Tracking. This feature allows the e-shop to evaluate the effectiveness of the e-

mails by determining what percentage of recipients click on a link in the e-mail. This is

implemented by embedding links which can be tracked by the server. For example, a

product link can be encoded with parameters to allow the server to record who clicked

the link, when they clicked it and if they ended up purchasing the product.

5.2.2.5 Campaigns

The campaigns feature allows the e-shop to run and manage campaigns. A campaign implements

a marketing effort by defining the target audience via the targeting criteria, selecting the

appropriate targeting mechanisms to attract the customer, determining the sell strategies to help

increase sales, and choosing the display and notification techniques to inform the customer of the

promotion. Each element in the marketing effort is referred to as a campaign item. Campaign

items can be combined to create a highly focused marketing effort. The effectiveness of a

campaign can be assessed by measuring the promotion response rate and the conversion of

responses into purchases.

 73

5.3 Affiliates

Affiliates are business partners who collaborate with the e-shop by referring other customers or

by providing links to the e-shop and its products on external sites. These collaborations are meant

to increase traffic and sales through word-of-mouth or external advertisement. If the e-shop

supports affiliate relationships, it must support affiliate registration and commission tracking also.

The affiliates feature is shown in figure 5.11.

Figure 5.11: Affiliates Feature

• Affiliate Registration. Affiliate registration provides an interface for business partners to

register. They must provide personal information for contact and compensation purposes, as

well as information about their web site if they are providing links. The affiliate registration

page also describes how to generate affiliate links, which are site or product links encoded

with the affiliate’s information. Many e-shops that offer affiliate relationships allow almost

anyone to become an affiliate; in that case, the affiliate registration page must be publicly

accessible.

• Commission Tracking. Commission tracking manages the compensation that is owed to the

affiliate. If the affiliate provides links, the server keeps track of when an affiliate link is

clicked so that the commission can be calculated and paid out. Commissions can be earned

for referrals to the site or it may require that the referred visitors make purchases. If the

affiliate refers customers, the customer must enter a referral code when making a purchase.

The referral code is used to track the commission.

5.4 Inventory Tracking

Inventory tracking deals with tracking and controlling the inventory to ensure that there is an

adequate supply to meet consumer demand. In the definition of this feature, it is assumed that

only inventories of physical goods are being tracked. The inventory tracking feature, shown in

figure 5.12, provides tool support that allows the e-shop staff to track the amount of inventory

 74

sold, on-hand and on-order. The availability of an item can be determined using this information.

If the inventory on-hand exceeds zero, the item will be available for ordering. Otherwise, it is

considered to be out-of-stock. The amount of inventory can also be displayed on the product page

as the number of items remaining, which may be useful for generating a sense of urgency on

popular or promotional items. The information can also be used to determine if additional stock

must be acquired from the supplier.

Figure 5.12: Inventory Tracking Feature

Although the inventory tracking feature can operate as a standalone feature, this limits its

effectiveness. For example, the availability data may not be accurate since the data is only based

on orders and sales; it does not reflect the actual state of the stock. Some of the stock may have

been lost in transit, but this data would not be reflected until an operator updates it manually. In a

practical scenario, the inventory feature requires the selection of the warehouse management

feature and the fulfillment system feature21. When these features are selected, it enables the e-

shop to monitor several characteristics of the inventory, including how much stock is remaining,

the state of the stock, the location of the stock and if any additional stock has been ordered from

the supplier. This provides up-to-date inventory data from the warehouse for customers who are

browsing the e-shop.

• Allow Backorders. Backorders are orders which are placed against an item that has no

available stock; they are filled as the stock is replenished. The strict interpretation of this

feature is that a customer may order out-of-stock items regardless of the circumstances;

however, it may be reasonable to impose a restriction where a backorder may be placed if and

only if the number of items on order from the supplier is greater than the number of

backorders already placed. There is also the possibility that a supplier may not be able to

replenish the stock. In this situation, the e-shop must handle all of the outstanding backorders

by notifying customers and, optionally, offering the customers a substitute product. If the

21 This is a subfeature of the external systems integration feature. Both features are described in section 5.7.

 75

allow backorders feature is eliminated, customers will be unable to place an out-of-stock item

into their shopping cart. In addition, changes to the availability of items that are left in a

saved shopping cart must be synchronized.

5.5 Procurement

The procurement process deals with the acquisition of goods or services between businesses, such

as the e-shop and its suppliers. The suppliers provide the inventory, in the form of goods for end-

users or resources needed to perform services, for the e-shop to sell. The selection of the

procurement feature, shown in figure 5.13, means that there is tool support, such as a B2B

system, for handling the acquisition transactions. The stock replenishment feature allows the e-

shop to replenish its inventory through the tools provided by the procurement feature. Stock

replenishment can be performed manually or automatically, but the manual process is mandatory

since it is required to maintain the continuity of business operations if the automatic process fails.

The tool support implies that the procurement system feature22 is required; however, if the

procurement system feature is selected, then the selection of this feature is also recommended.

Figure 5.13: Procurement Feature

• Manual. The manual feature requires stock replenishment to be performed by human

operators. The operators are responsible for monitoring the inventory levels, making the

decision to replenish the inventory, and placing an order with the supplier. If a mistake is

made, it may result in overstock in the warehouse or disruptions to sales due to a lack of

inventory. The operator must also take into consideration how much additional inventory to

procure, which can be influenced by the sales history of the item. The amount of tool support

that the operator has in making these decisions depends on the selection of other features,

such as inventory management, external systems integration, and reports and analysis.

22 This is a subfeature of the external systems integration feature. Both features are described in section 5.7.

 76

• Automatic. The automatic feature allows stock replenishment to occur based on a set of

predefined rules with no or minimal human intervention. Automatic stock replenishment

requires the system to monitor several conditions, such as inventory stock and sales, and

make the same decisions that operators make in the manual process. For example, the system

may be programmed to submit an order for an item when the inventory remaining reaches a

threshold value. Some manual interaction may be added to the process as a check and balance

for the system’s decisions. The automatic procurement process requires the selection of the

inventory tracking feature in order for the system to acquire the necessary data for making the

ordering decisions; however, the selection of the inventory tracking feature has no

implication on this feature. The automatic process requires a non-repudiation service, which

is a service that prevents either the e-shop or the supplier from denying the existence or

content of an order transaction. This is especially important when order submissions are made

by the system automatically because it maintains an irrefutable record of the transaction and

holds both parties responsible for the order.

5.6 Reporting and Analysis

The reporting and analysis feature, shown in figure 5.14, provides tools which allow the e-shop to

interpret collected data and format the interpreted data into a report. The information is used to

assess the e-shop’s performance and effectiveness. An e-shop can record a great deal of data

about how customers interact with the site, such as the pages viewed, links clicked, and items

purchased. Essentially, any action that requires a mouse click can be recorded for analysis. The

data collection required by this feature is supported by the user behaviour tracking feature;

however, the selection of the user behaviour tracking feature has no implication on the selection

of this feature.

Figure 5.14: Reporting and Analysis Feature

 77

Reports are defined by three characteristics: report types, report formats, and level of detail. The

report type describes the focus of the report, such as daily operations, customer satisfaction or

transactions. Each type represents a viewpoint for a subset of the underlying data and pertains to

some operational aspect of the e-shop. The report format describes how the report is organized

and how the data is presented. For example, data presentation can take the form of a graphical

representation, which can be used to visualize trends or outlier data, or a tabular representation,

which can be used for further data processing. The level of detail describes the amount of

information that is presented in the report, which is dependent on the intended audience. For

example, an executive report may contain key points and store-wide trends, while an engineering

report may contain detailed descriptions and analyses for each incident that is found in the data.

The combination of these three characteristics allows the reporting tools to create flexible, useful

reports for different stakeholders.

The reports are used to make business decisions or to perform further analysis. For example, the

reports can be used to identify ways of improving the business, such as focusing on customer

service, or identify any problems with the site, such as navigability issues. In some cases, the

direction of the analysis drives the data interpretation in the report; in other cases, the report

summarizes the findings of the analysis.

5.7 External Systems Integration

External systems integration allows the e-shop to work with other systems, such as suppliers,

warehouses, order processors and business management systems. These systems can be integrated

on many levels, including the User Interface (UI), workflow and data levels. With UI integration,

screens or UI widgets from external systems can be merged into the e-shop's interface such that it

appears to be native to the e-shop interface. For example, a supplier may provide a button for the

e-shop product management screen which allows an e-shop operator to replenish the inventory

with a single click. Workflow integration allows the e-shop to define workflows which span

multiple systems. The RefundOrder activity is a good example of workflow integration between

the e-shop, the order processor and the warehouse. Data integration implies that data is shared

between the systems. An example of data integration is the order database, which is used by both

the order processor and the e-shop. There are four external systems which can be integrated with

the e-shop: fulfillment system, inventory management system, procurement system, and external

distributor system. The external systems integration feature is shown in figure 5.15. The feature

 78

group is inclusive-or for all binding times since multiple external systems can be integrated

simultaneously and multiple sources may be required to fulfill a particular request in the e-shop.

Figure 5.15: External Systems Integration Feature

• Fulfillment System. The fulfillment system refers to systems which are involved in order

fulfillment, such as the order processor and the warehouse management system. Integrating

the system allows order information, such as the order status, to be queried by the customer

and displayed in the e-shop. It also makes up-to-date inventory information from the

warehouse available to both the e-shop and its customers.

• Inventory Management System. The inventory management system refers any systems which

are involved with the inventory replenishment and managing inventory availability. This is

only required when the inventory tracking system is external to the e-shop. Integrating the

system provides the same information which is available through the inventory tracking

feature.

• Procurement System. The procurement system refers to supplier systems. Integrating the

system provides information about the amount of inventory a supplier has and if the supplier

intends to continue to carry a product. This information may be required for the backordering

policy in the e-shop and can also be used by the e-shop for planning promotions, such as

putting discontinued items on clearance.

External Distributor System. The external distributor system refers to the systems of parties that

are involved with the distribution of the products to the customer, such as the shipping

companies. Integrating their systems allows shipping information, such as the current package

location, to be displayed through the store front.

 79

5.8 Administration

The administration feature, shown in figure 5.16, provides tools for operating and maintaining the

e-shop. These tools configure both offline and online options. Offline options are parameters

which are read and applied during load time. The server must be restarted before it takes effect.

Changes to static configuration files and some global options fall into this category. Online

options are parameters which can be changed while the system is running and takes effect

immediately. Options can be configured through a configuration file, a specialized program, or a

secure web page on the site. The administration tools fall into two main categories: content

management and store administration. Both categories are required to keep the e-shop running.

Figure 5.16: Administration Feature

5.8.1 Content Management

Content management deals with the information in the e-shop. The most crucial information is

the product data. Content management tools perform two specific tasks: 1) manage product

information, and 2) define the manner in which product information is presented. Managing

product information is achieved through the product database management feature. This entails

adding or updating product attributes, such as the product name, description, and any associated

multimedia files. It may also include defining categories and assigning products to categories.

Defining the presentation style is achieved through the presentation options and general layout

management features. Presentation options affect the look and usability of the e-shop web pages,

such as the default number of items to display in a product list page. General layout management

specifies page layouts through the arrangement of elements, such as text boxes, banner ads,

images and links, on a page. Page layout has a significant impact on the navigability and

 80

aesthetics of the e-shop, which can affect its performance. The selection of the content approval

feature adds a check-and-balance to the process. This feature prevents any changes from being

published until someone other than the change author reviews and approves the change. This can

help filter out mistakes which may cause the e-shop to lose money, such as having to honour

pricing errors caused by typos, or customer inconvenience, such as having a customer return an

item because the wrong product image was displayed.

5.8.2 Store Administration

Store administration deals with the e-shop’s operational aspects, which are comprised of three

features: site search, search engine registration and domain name setup.

• Site Search. The site search feature provides an interface for e-shop staff to perform queries

on the site itself. It can search both the content and the meta-aspects of the site. For example,

a query can be executed to find all products which do not have a product image. The purpose

of the site search is to facilitate e-shop maintenance by allowing queries to turn up anomalous

formatting or content on the site. The main difference between this site search feature and the

search functionality in the store front is the ability to use meta-aspects as query parameters;

the customer is only interested in searching through the product data. The two features are

completely independent.

• Search Engine Registration. The search engine registration feature allows the e-shop site to

interface with search engines. The feature's primary function allows the e-shop to register its

top level domain name with different search engines and, if possible, specify keywords to be

used in the indexing process. Registration makes the search engine crawlers aware of the e-

shop's site. In addition, this feature can also make site pages accessible or inaccessible to the

search engine. First, this feature allows the e-shop to specify which pages should not be

indexed, such as checkout pages. Secondly, link rewriting can be performed. Link rewriting is

the process of converting complex URLs, such as URLs with several parameters, into a

simpler URL which is recognizable to the search engine crawler. This is useful since many

crawlers impose a limit on the number of parameters; if the limit is exceeded, the crawler

ignores the page. Finally, this feature can also store static versions of dynamic e-shop pages.

This is necessary to allow search engines crawlers to reach these pages.

• Domain Name Setup. The domain name setup feature configures the e-shop so that it is

accessible through a friendly URL, such as the top level domain name. This type of option

 81

can be set through the web server, such as with Apache’s redirect command, or by using a

proxy server to redirect the traffic. There are two applications for server redirection: 1)

sending the request to the least busy server in the server pool for load balancing, and 2)

sending the request to an appropriate handling server. An example of the latter is to direct a

request to the regional server, depending on the origin of the request. This feature allows the

configuration to be performed manually or through a wizard interface.

5.9 Summary

In this chapter, the domain analysis for the business management features in the e-shop was

presented. In contrast to the store front, the business management features deal with back-office

operations. The key features in business management include: order management, which enables

the fulfillment of orders; targeting, which enables the e-shop to launch marketing efforts;

inventory tracking, which determines how item availabilities are dealt with; external systems

integration, which determine how different services can be leveraged by the e-shop; and

administration, which provides tools which manage the e-shop.

 82

Chapter 6 Model Template Descriptions

This chapter describes the set of feature-based model templates used to specify the e-shop. The

primary focus of the model templates is to represent the store front and a full workflow that

allows a customer to visit the e-shop and make a purchase. The chapter is divided into two main

sections: the first describes the class diagram model templates and the second describes the

activity diagram model templates. The design of each model template and highlights of their

annotations are presented.

6.1 Class Diagram Model Templates

There are two class diagram model templates; the first deals with the store front entity model and

the second deals with the service model. In the class diagrams, three stereotypes, which are not

annotations denoting PCs, are used: id, entity and service. The id stereotype denotes an attribute

with a unique value which is used to identify instances of the class. The entity stereotype denotes

a class whose instances require persistence. The service stereotype denotes an active component.

6.1.1 Store Front Entity Model

The store front entity depicts the entities in the store front. The model is composed of regular

class diagram model elements, such as classes, attributes, associations, composite aggregations

and enumerations. There are two major parts to the model. The first part, shown in figures 6.1 and

6.2, describes information about the products offered by the e-shop. The second part, shown in

figures 6.3, 6.4 and 6.5, describes information about the customer and entities used to facilitate

their shopping experience. The store front entity model is fairly large, so the description will only

cover key entities with notable annotations; elements which are annotated with features of the

same name will not be covered in much detail.

The first part is centered on the EShopArtifact class. EShopArtifact is an abstract class used to

describe any unit of information relating to the structure of products in the e-shop. The class

contains common attributes needed for rendering and storing the information, such as an id field

and a description. EShopArtifact is subclassed by the Catalog, Category, Product and Asset

classes.

 83

Figure 6.1: EShopArtifact, Catalog, Category, Product and Money Classes

The key features of the classes are as follows:

• The Catalog class, shown in figure 6.1, contains a set of products; every e-shop contains at

least one catalog. There are no annotations since the catalog feature is mandatory.

• The Category class, shown in figure 6.1, can be used to organize products. Instead of

containing products, a category is associated with products so that it can be deleted without

deleting all of the products associated with it. This also simplifies the representation of the

multiple classification feature because multiple classification can be modeled as a

multiplicity. This would not be possible if containment was used because a product cannot be

contained by multiple categories. The MultiplicityME changes the multiplicity on the

category side to “1..*” based on the presence of the multiple classifications feature to

accommodate multiple associations between a product and a category. The composite

aggregation which is used to represent the multilevel feature is also of interest. Containment

is used since the multilevel feature allows categories to be nested. It is important to note that

if the categories feature is eliminated, the association and composite aggregation, which are

annotated with subfeatures of categories, will also be removed.

• The Product class, shown in figure 6.1 and 6.223, contains several attributes. One of particular

interest is the thumbnail attribute because it demonstrates the simplicity of expressing

variability by focusing on the concept instead of the structure. The attribute is annotated with

23 The associations and generalizations between the Product class and other classes have been divided into
two diagrams (figures 6.1 and 6.2) for clarity.

 84

the image feature. No additional annotations are required to depict the selection of the

image's superfeatures to include this attribute. For example, if the associated assets feature is

eliminated, the thumbnail attribute will be automatically removed because the image feature

is a subfeature of the associated assets feature.

Figure 6.2: EShopArtifact, Product, and Asset Classes

The Asset class, shown in figure 6.2, is an abstract class used to represent files that are associated

with the product. The most interesting annotation is in the media types enumeration. The

respective enumeration values are annotated with the image, sound and video features. In

addition, the enumeration itself is annotated with the media files feature. The feature model

depicts image, sound and video as grouped features of an inclusive-or feature group under the

media files feature; therefore, the selection of media files implies that one of the grouped features

will be selected. Although the media files annotation seems redundant, its purpose is to ensure

that the empty enumeration is removed if the media files feature is eliminated.

The second part deals with several entities; the simplest way to describe it is to focus on five

classes: Customer, ShoppingCart, Wishlist, Order and TaxRule.

 85

Figure 6.3: Customer and BillingInformation Classes24

The Customer class is an abstract class which relates the customer types, as shown in figure 6.3,

and associates the customer with a shopping cart and a wish list, as shown in figure 6.4. It

contains no common attributes because the GuestCustomer class does not contain any identifiable

information. The RegisteredCustomer class defines a registration profile. It can contain

information about the customer, their preferences, and their billing information. Information

about the customer and their preferences is represented by attributes in the class. Figure 6.3

shows that the billing information is represented by an association to one or more

BillingInformation classes, which encapsulates the payment information and billing addresses.

The registration profile also contains a CheckoutProfile class, which references a set of billing

24 The attributes for the Order class are not shown in this diagram; full details are given in figure 6.4.

 86

information and shipping instructions stored in the profile. The class is used by the quick

checkout feature. Finally, customers can be associated with orders, as shown in figure 6.4. The

association between GuestCustomer and Order is meant to allow a guest to place an order,

whereas the association between RegisteredCustomer and Order is meant to allow orders to be

retrieved by customers. All of the required information for an order is stored in the Order class,

which is depicted in figure 6.4.

Figure 6.4: Order, ShoppingCart and Wishlist Classes25

The ShoppingCart class, shown in figure 6.4, represents the list of items that a customer intends

to purchase. The cart contains instances of the ShoppingCartItem class, which references a

25 The attributes for the Product and RegisteredCustomer classes are not shown in this diagram.

 87

product and associates it with the quantity to be purchased. To reduce diagram clutter, the

ShoppingCart class is not annotated because the shopping cart is a mandatory feature; however, it

is possible that one may wish to annotate the class for traceability reasons.

Wish lists and shopping carts share a similar structure; however, there are two main differences:

1) a single customer may be associated with multiple wish lists if the corresponding feature is

selected, and 2) wish list items also keep track of the date the item was added. It is interesting to

note that the WishList class is annotated with a feature, wish lists, and an attribute is annotated

with a subfeature, multiple wish lists. This is a simple way of incrementally adding features into a

class.

The Order class, shown in figure 6.4, contains all of the attributes needed to store order

information. Some of the attributes, such as firstName and lastName, seem redundant; however,

the duplication of information is required to store information for guest purchases. Furthermore, it

keeps the order information consistent if changes are made to the profile information after the

order is submitted. The order contains instances of the OrderItem class, which tracks the product,

the quantity ordered, and the item status. The order is also associated with the

ShippingInstructions class, which provides details on what options a customer has control over

for their shipment. It is interesting to note that the annotations on the ShippingInstructions class

and its attributes represent a partial view of the variability in the entity.

Figure 6.5: Tax Rule Classes26

26 The attributes for the Product class are not shown in this diagram.

 88

The TaxRule class, shown in figure 6.5, defines the tax calculation rules for each product. Every

product can be associated with one or more tax rules. Annotations are used in a similar manner as

in previous classes.

6.1.2 Services Model

The services model depicts the actors in the e-commerce solution as individual, high-level

services. Modeling the system in this fashion allows for greater modularity and abstraction of

underlying details. A service can be implemented as a wrapper to a local implementation or an

invocation to a web service provided by a third-party gateway. The service model is shown in

figures 6.6 and 6.7.

Figure 6.6: E-Shop Interactions with Warehouse, Payment Gateway and Order Processor

The model is centered on the EShop component which represents the store front. The EShop

component depends on a set of services which are accessed through a set of interfaces. The

services are provided by the warehouse, tax gateway, tax calculator, shipping gateway, in-house

 89

shipping, payment gateway and order processor. The interactions with the payment, warehouse

and order processor services are shown in figure 6.6. The interfaces for some services are divided

into front-end and back-end operations, which are accessed by the e-shop component and the

order processor services respectively.

Figure 6.7 depicts the tax and shipping services. Each interface is supported by two different

services. For example, the TaxGateway and TaxCalculator services correspond to the tax

gateways and custom taxation grouped features respectively.

Figure 6.7: E-Shop Interactions with Tax and Shipping Services

6.2 Activity Diagram Model Templates

There are seventeen activity diagram model templates which deal primarily with workflows in the

store front. The activities can be divided into six categories, as shown in table 6.1. The model

templates are presented in the order shown in the table.

 90

Table 6.1: Activity Categories

Category Related Activities
Top Level StoreFront
Shopping FindProduct, SearchProduct, SelectProductFromCatalog,

SelectProductFromWishlist
Customer Purchases CheckoutItems
Order Related CreateOrder, OrderProducts, ProcessOrder, CheckOrderStatus,

RefundOrder
Customer Administration RegisterWithTheStore, UpdatePersonalProfile,

CreateQuickCheckoutProfile, ResetPassword
Wish List CreateWishList, SendWishList

6.2.1 StoreFront Activity

The StoreFront activity, shown in figure 6.8, is a top-level representation of the customer’s

choices while the customer visits the e-shop. Every choice leads to a call behaviour action, which

invokes the target activity. There are no implicit annotations since this is a top-level activity.

Unless the call behaviour represents the semantics of a mandatory feature, each call behaviour is

explicitly annotated with the feature which enables it.

Figure 6.8: StoreFront Activity

 91

6.2.2 FindProduct Activity

The FindProduct activity, shown in figure 6.9, deals with the selection of a product from one of

several sources and returns the product. Products can be selected from a promotional e-mail, the

e-shop catalog, the product search facility or a customer’s wish list. The selection process is

represented by the respective call behaviour or action after the “Product Source” decision node.

In the first three sources, the selected products can be further configured using the set of actions

following the merge node. In the wish list source, the customer is selecting a configured product

since a product must be configured before it can be added to a wish list or shopping cart. The

FindProduct activity is used as an intermediate step.

This model template describes a great deal of variability. There are no implicit annotations on any

of the elements since the presence of the FindProduct activity is independent of any feature. The

Select* call behaviours and actions are all annotated with their respective features, except for the

catalog since it is a mandatory. Although the catalog call behaviour could be annotated for

traceability, the annotation would make it more difficult to distinguish the commonality in the

product line. The central buffer following the merge node after the three Select* elements is

annotated with a TypeME; the ME is based on the product variants feature. If the feature is

selected, then the element type should be an unconfigured product, which is denoted as “General

Product”; otherwise, it is denoted as a regular “product”. This is particularly important due to the

path that follows the buffer. The path deals with the configuration of a product, which is required

when there are product variants; therefore, the three actions, two central buffers and four flows in

the path are all annotated with the feature. If the feature is eliminated, the entire path is removed

and flow closure is performed, meaning that the customer will not have to perform any product

configuration when selecting a product through an e-mail, the catalog or the search function.

 92

Figure 6.9: FindProduct Activity

6.2.3 SearchProduct Activity

The SearchProduct activity, shown in figure 6.10, describes the workflow for invoking the search

functionality. The process begins with the store front soliciting the search parameters from the

customer. For a basic search, the search interface typically consists of a text box with a search

button and is accessible from almost any page in the e-shop. For an advanced search, the

additional parameters require an advanced search form to be displayed. Once the customer enters

 93

the search parameters and invokes the search, the store front executes the query on the products

database and displays the results in the form of a product list. The customer selects a product

from the product list and the product is returned by the activity through the activity parameter.

The SearchProduct activity is used by the FindProduct activity as an intermediate step to retrieve

a product.

Figure 6.10: SearchProduct Activity

All elements are implicitly annotated with a conjunction with the searching feature, due to the

annotation of the searching feature on the activity27. There are two sets of annotations in this

model template. The first set pertains to the advanced search functionality. It consists of the

"advanced" branch following the “Search Type” decision node, which includes the

DisplayAdvancedSearchForm action and the adjacent flows. The second set pertains to the basic

search functionality. It consists of the "basic" branch of the “Search Type” decision node, which

is a single control flow between the decision and merge node. The annotations are set up to allow

27 Annotations on activities are not visible through the figures.

 94

either one or both branches to be present. In the event that only one of the two features is

selected, flow closure and simplification will reduce the region into a sequential path.

6.2.4 SelectProductFromCatalog Activity

The SelectProductFromCatalog activity, shown in figure 6.11, describes the workflow for

browsing the catalog and selecting a product from it..The process begins when the store front

retrieves the catalog and passes it to the data extraction branch. The data extraction branch

includes all of the elements starting from the outgoing flow of the first merge node and ending

with the DisplayInformation action. The branch is responsible for extracting categories and

products. The GetCategoriesAtContainerLevel and GetProductsAtContainerLevel actions are

generic routines which extract information from the container that is passed to them. A container

can be a catalog, category or sub-category; this design allows a container to contain products as

well as other categories. The two actions generate an element list which is rendered on the page;

the rendering is dependent on which element types are present. The elements in the element list

correspond to the EShopArtifact class in the entity model. When control is returned to the

customer, they select an element. The store front checks the type of the selection. If the selection

is a product, it is returned and the activity ends; otherwise, the selection is a container and the

store front checks if there are any more subcategories to determine which part of the data

extraction branch needs to be run. The SelectProductFromCatalog activity is used by the

FindProduct activity as an intermediate step to retrieve a product.

There are two sets of PCs and one TypeME used in this model template. The first set of PCs

references the categories feature and is used to annotate a part of the data extraction branch and a

part of the decision process after the customer selects the element. The second set of PCs

references the multi-level feature and is used to annotate the part of the decision process that

checks for subcategories. It is important to note that the “no” branch of the “More Subcategories”

decision node is annotated with the categories feature instead of the multi-level feature to ensure

that flow closure will preserve that branch even if the multi-level feature is eliminated. The

TypeME changes the type of the central buffer following the GetProductsAtContainerLevel

action so that the DisplayInformation action can render the page correctly. There are no implicit

annotations on the model template elements.

 95

Figure 6.11: SelectProductFromCatalog Activity

6.2.5 SelectProductFromWishlist Activity

The SelectProductFromWishlist activity, shown in figure 6.12, describes the workflow for

selecting a product from a wish list with the intent of adding the product to the shopping cart or

browsing its product page. The process begins with the customer making a request for the wish

list; if the customer has multiple wish lists, they must also specify the wish list identifier.

Depending on the customer type, the wish list is retrieved from the server or client side. The wish

list is returned in the form of a product list. The customer selects a product from the list and the

product is returned through the activity parameter. The SelectProductFromWishlist activity is

used by the FindProduct activity as an intermediate step to retrieve a product.

 96

Figure 6.12: SelectProductFromWishlist Activity

All elements are implicitly annotated with a conjunction with the wish list feature, due to the

annotation of the wish list feature on the activity. In addition, there are three sets of annotations in

this model template. The first set consists of annotations on the first central buffer and the

adjacent flows, which are annotated with the multiple wish lists feature. The information is

required only when the system needs a parameter to determine which wish list to retrieve. There

is an additional control flow which is present if the multiple wish lists feature is eliminated. This

additional flow is necessary because it introduces the correct flow type to connect the actions

when the central buffer is removed.

The second set of annotations reference the registration feature. All of the elements in the

“registered” branch of the “Customer Type” decision node, as well as the data store used by the

RetrieveWishListOnServer action, are annotated. This branch is removed if the e-shop does not

support registered customers.

 97

The third set of annotations involves the wish list saved after session feature, which allows guests

to maintain wish lists. All of the elements in the “guest” branch of the “Customer Type” decision

node, as well as the data store used by the RetrieveWishListLocally action, are annotated. This

branch is removed if the e-shop does not allow wish lists to be persisted for guest customers.

6.2.6 CheckoutItems Activity

The CheckoutItems activity describes the checkout workflow, which includes the process of

collecting information from the customer, performing calculations on the order and cleaning up

following the submission of the order. The entire process can be dividing into three phases, which

are described as follows.

The first phase, shown in figure 6.13, deals with selecting the checkout type and, if necessary,

entering the shipping information. It consists of all the elements from the initial activity node to

the merge node which precedes the HandleItemAvailability action. The process begins with

determining the customer type and is followed by selecting the checkout type. Registered

customers may have the option of selecting between a quick checkout and a registered checkout,

while guests can only make purchases through the guest checkout. A quick checkout involves

retrieving the quick checkout profile and bypassing the shipping information entry, which leads to

the end of the phase. The registered and guest checkouts28 are functionality identical and require

the customer to select their shipping destination and options. Once that is done, the phase is

complete.

The second phase, also shown in figure 6.13, is a linear sequence of actions which handles

calculations. It contains all of the elements from the HandleItemAvailability action to the

outgoing flow of the DisplayOrderSummary action. The HandleItemAvailability action reads in

the shopping cart contents and retrieves information about the availability of the items. This gives

the customer up-to-date information about when they can expect their order to arrive. The

ApplyShippingCosts, ApplyDiscounts, and CalculateTaxes actions perform shipping cost,

discount and tax calculations which are applied against the order total respectively. These actions

are implementation independent; the calculations can be performed in-house through a local

function call or by a third party gateway through a web service invocation. The phase ends with

DisplayOrderSummary, which displays the order summary with the final order total on the page.

28 These two checkout types are also referred to as a regular checkout.

 98

Figure 6.13: CheckoutItems Activity – Phases One and Two

The third phase, shown in figure 6.14, completes the process. It contains all of the elements from

the merge node before the EnterPromotionCode action to the final activity node. The region

 99

preceding the CreateOrder call behaviour deals with entering payment data. Promotion codes are

entered first, followed by payment information if a regular checkout is being used. The customer

then confirms the order in the SubmitInformation action. This causes the CreateOrder activity to

be invoked. If the order creation fails either due to an invalid coupon code or payment

information, an error message is displayed and the customer is allowed to re-enter the

information; otherwise, the store front will clean-up the wish list and the shopping cart. The store

front may also display a confirmation to the customer that the order has been submitted

successfully.

Figure 6.14: CheckoutItems Activity – Phase Three

 100

The checkout process contains many points of variability. These points will be described with

respect to the phases established previously. In the first phase, the grouped features of the

checkout type are referenced by PCs which are used to annotate the different decision branches.

The flow that bypasses the checkout type selection is annotated with the guest checkout feature.

The quick checkout PC is used to annotate the elements starting from the DisplayCheckoutTypes

action to the outgoing flow of the GetQuickCheckoutProfile action; this region corresponds to the

semantics of the quick checkout feature. The registered checkout feature is used to annotate two

flows: the “registered” branch of the “Customer Type” decision node and the “regular” branch of

the “Checkout Type” decision node. The annotations were strategically placed to maximize the

benefits of flow closure and simplification. In the case where the registered checkout feature is

selected and the quick checkout feature is eliminated, the quick checkout region will be removed

and the two remaining flows will be merged. This will make it identical to the guest checkout

branch. In addition to these annotations, a PC referencing the shipping feature is used to annotate

the EnterShippingAddress action and a PC referencing to the disjunction of the

QualityofServiceSelection and CarrierSelection features is used to annotate the

SelectShippingMethod action.

In the second phase, only two actions are annotated: the ApplyShippingCosts action is annotated

with the shipping feature and the ApplyDiscounts action is annotated with the discounts feature.

This allows the actions to be removed from the path if necessary.

In the third phase, four elements are annotated with different features. The first element is the

EnterPromotionCodes action, which is annotated with the coupons feature since codes are the

most common way to implement coupons in an e-commerce environment. The second element is

the “quick” branch from the “Checkout Type” decision node, which bypasses the

EnterPaymentInformation action if the quick checkout is selected. If the feature is eliminated, it

results in the removal of the flow, thus requiring the customer to enter their payment information

each time the customer makes a purchase. The third element is the UpdateWishLists action,

which is annotated with the automatic update feature. If the feature is eliminated, the action is

removed from the path and the wish list is not modified at all. The last element is the

ShowOrderConfirmation action, whose presence is controlled by the electronic page feature. If

the feature is eliminated, the workflow ends after the post-order clean-up, meaning that the

customer is immediately returned to the home page after the order is created successfully.

 101

6.2.7 CreateOrder Activity

The CreateOrder activity, shown in figure 6.15, describes the process of using the submitted

information to create an order. The activity takes places within the order processor, where it is

invoked by the CheckoutItems activity. It is important to note that the store front requires a

response before the customer’s session can continue in the CheckoutItems activity.

Figure 6.15: CreateOrder Activity

 102

The process begins after the order information is submitted to the order processor. Coupons, if

present, are redeemed and processed first. Although the model only depicts the

RedeemAndApplyCoupons action pulling information from the coupons database to validate the

coupon, the action encapsulates all of the details which are required to handle both unique and

reusable coupon codes. The couponValid guard on the outgoing flow ends the activity if the

coupon code is invalid, resulting in an unsuccessful order creation. Once the coupons have been

redeemed, the payment information is checked. If the information is valid, the order processor

will make a request to reserve inventory in the fulfillment centre. Afterwards, it will generate and

store the order in the orders database. If the information is invalid, the order processor will

generate error information for the order.

This model template only contains a set of annotations pertaining to the coupons feature. Only the

“yes” branch of the “Coupon” decision node, along with the required data store, is annotated with

the coupons feature. If the feature is eliminated, all of the processing associated with coupons is

removed. There are no implicit annotations on the model elements.

6.2.8 OrderProducts Activity

The OrderProducts activity, shown in figure 6.16, describes the ordering process from the

customer’s perspective. It assumes that the ordering process begins after the last item is added to

the cart; the addition of the final item is modeled in the activity. The last item can be selected and

added to the shopping cart either through the FindProduct activity or the entry of the product

SKU. The latter method is ideal for gaining quick access to a product if the customer had

obtained the product SKU previously. The Add* actions are responsible for retrieving the cart

and adding the item to it. Once the product has been added to the cart, the cart must be stored to

prevent the loss of the cart contents before the transaction is completed. Both remote and local

storage of the shopping cart are taken into consideration. Finally, the call behaviour invokes the

CheckoutItems activity. The process ends upon the completion of the activity. There are no

implicit or explicit annotations in this model template.

 103

Figure 6.16: OrderProducts Activity

6.2.9 ProcessOrder Activity

The ProcessOrder activity, shown in figure 6.17, describes the workflow involved with managing

an order after it is created. It is run within the order processor, which goes through the orders and

attempts to fulfill and close each of them. It is based on the IBM Websphere Commerce model

for order processing [Ibm05], but it is simplified to focus on aspects that that directly relate to the

variability presented in the feature model. The activity deals with the workflow for a single order,

but the workflow is carried out in the same manner for each submitted order. Different orders can

be processed simultaneously as long as concurrency mechanisms are in place in the

RetrieveOrder action.

 104

Figure 6.17: ProcessOrder Activity

The activity begins with the RetrieveOrder action, which retrieves a single, open order from the

database. It sends a fulfillment request to the fulfillment centre; this has been kept general enough

to accommodate all product types since the fulfillment feature is a common to all product types.

If the order cannot be completed, it is placed in a suspended state and the order status is updated.

The order status will have to be updated by the fulfillment centre before the order can be retrieved

 105

and processed again. Once the order is fulfilled, the payment is processed either automatically or

manually, depending on if the automated process is successful. Once payment is received, the

transaction is complete, the order is closed and the status is updated. For simplicity, this model

does not take the multiple shipments feature into consideration. An order is considered atomic, so

all of the order items must be available or the order will be suspended.

The only annotations in this model template are the PCs which reference the shipping feature on

the “no” branch of the “Can Order Be Completely Fulfilled” decision node. A fulfillment request

is defined such that it can fail only if there is no inventory to send to the customer. This is only

possible when shipping is required for a physical product.

6.2.10 CheckOrderStatus Activity

The CheckOrderStatus activity, shown in figure 6.18, describes the workflow that allows

customers to check their orders through the store front.

Figure 6.18: CheckOrderStatus Activity

 106

The process begins when the customer makes the request. The isLoggedIn guard ensures that the

customer is logged in, which allows the store front to determine which customer’s orders to

display with the DisplayOrderListWithStatus action. The customer selects one of the orders,

which is retrieved and displayed by the store front. The DisplayOrderStatusDetail action opens

the order status page, which is used to display all of the order details.

In this model template, the activity is annotated with the order status viewing feature. Therefore,

all of the model elements in this activity are also implicitly annotated with the order status

viewing feature.

6.2.11 RefundOrder Activity

The RefundOrder activity, shown in figure 6.19, describes the workflow for returning an order at

the e-shop due to problems with the merchandise or customer dissatisfaction. It requires

communication between several different actors. In this model, the activity focuses on returning

physical goods. In addition, many of the details have been simplified to keep the model size

manageable.

The process begins with the customer making a request to return the item. The request is passed

through the store front to the order processor, which makes a decision about whether or not to

accept the return in the ObtainApprovalForReturn action. The approval of the request leads to the

generation of a RMA number, which is stored in the returns database and sent to the store front

for return label generation. The customer uses the label to ship the item back to the warehouse,

which is responsible for processing the item. The isMatched guard indicates that the item must

match an approved return file in order for the process to continue; otherwise, the workflow ends

with an error condition, which is not specified in this model. The returned goods are also

inspected for its condition and the warehouse will notify the order processor of the status.

Depending on the condition of the goods, the warehouse will notify the order processor to issue a

refund or to contact the customer for an explanation.

The RefundOrder activity does not model any variability in the return process; however, the

activity itself is annotated with the product returns feature. Therefore, all model elements

contained in this activity are implicitly annotated with the product returns feature.

 107

Figure 6.19: RefundOrder Activity

6.2.12 RegisterWithTheStore Activity

The RegisterWithTheStore activity, shown in figure 6.20, describes the workflow for the

registration process in the e-shop. The process begins with the store front soliciting the customer

for registration information. In the EnterRegistrationInformation action, the customer enters

information for different profile fields, such as login credentials. The information is validated to

ensure well-formedness and conformance to any policies, such as ensuring that the password

follows a specific format. If the validation fails, an error message is displayed and the customer

can re-enter the information; otherwise, the store front will create the profile and send an e-mail

confirmation. As a security precaution against bots and spammers, the profile remains inactive

until the customer clicks the link in the e-mail to activate the account. The link must be clicked

 108

before the confirmation period expires; otherwise, the profile expires and the registration process

must be restarted. There are no explicit annotations, but all model elements are implicitly

annotated with the registration feature due to the annotation of the registration feature on the

activity.

Figure 6.20: RegisterWithTheStore Activity

6.2.13 UpdatePersonalProfile Activity

The UpdatePersonalProfile activity, shown in figure 6.21, allows a registered customer to make

changes to their profile information. A pre-condition is defined by the isLoggedIn guard, which

checks that a registered customer is logged in before allowing the process to continue; otherwise,

 109

it will display the log in page and end the workflow. The process begins when the customer

selects the profile that they want to update. The workflow for both profile types is similar and

consists of two steps: 1) the profile information is retrieved and displayed, and 2) the customer is

able to make modifications to the data, which is sent back to the store front to update the profile.

The only difference lies in the profile retrieval; when the store front executes the

GetQuickCheckoutProfile action, it determines if a quick checkout profile exists. If the profile

exists, the workflow proceeds normally; otherwise, the CreateQuickCheckoutProfile activity is

invoked.

Figure 6.21: UpdatePersonalProfile Activity

There is only one set of explicit annotations in this model template; they pertain to the quick

checkout profile feature. All elements in the “quickCheckoutProfile” branch of the “Profile Type”

decision node are annotated with the feature since the entire region deals specifically with the

quick checkout profile. If the feature is eliminated, only the branch for updating the registration

profile will remain. All model elements are also implicitly annotated with the registration feature

 110

since the activity is annotated with the registration feature; this is because profiles are stored for

registered users only.

6.2.14 CreateQuickCheckoutProfile Activity

The CreateQuickCheckoutProfile activity, shown in figure 6.22, allows a customer to define a

quick checkout profile. The process begins with the store front displaying a form which allows

the information to be input. There are three components to the quick checkout profile: the

shipping address, the shipping options, and the payment information. The EnterShippingAddress

and EnterPaymentInformation actions allow the customer to select pre-existing data in their

profile or to enter a new set of information. The SelectShippingMethod action is identical to the

one in the CheckoutItems activity. Once the information is fully specified, the store front creates

the profile and stores it in the database. The CreateQuickCheckoutProfile activity is used by the

UpdatePersonalProfile activity when the UpdatePersonalProfile activity is unable to find a pre-

existing quick checkout profile.

Figure 6.22: CreateQuickCheckoutProfile Activity

The annotations on the EnterShippingAddress and SelectShippingMethod actions are identical to

the ones in the CheckoutItems activity. All model elements are implicitly annotated with the

 111

quick checkout profile feature due to the annotation of the quick checkout profile feature on the

activity.

6.2.15 ResetPassword Activity

The ResetPassword activity, shown in figure 6.23, describes the process of having a customer

reset their password because s/he has forgotten it.

Figure 6.23: ResetPassword Activity

The process begins with the customer entering their account id, which is used to confirm if the

user is registered with the e-shop and retrieve the challenge question. The challenge question

prevents unauthorized users from resetting a customer’s password. If the customer answers the

 112

challenge question correctly, the password is reset to a temporary password and the temporary

password is sent to the customer by e-mail. When the customer logs in the next time, the store

front will authenticate them using the temporary password and display the change password form.

The customer must set a new password at that time. If any part of the process fails, an error

message is displayed and the activity ends. Also, the isAuthenticated guard following the

AuthenticateCustomer action simply ensures that the log in has completed successfully;

otherwise, it will display an error message and allow the customer to try again. There are no

explicit annotations, but all of the elements are implicitly annotated with the registration feature

due to the annotation of the registration feature on the activity. The activity is annotated because a

customer will have an e-shop password only after they register.

6.2.16 CreateWishList Activity

The CreateWishList activity, shown in figure 6.24, allows a customer to create a wish list. This

activity does not deal with naming the new wish list or creating multiple wish lists since those

tasks fall under wish list management, which is beyond the scope of this set of models. The

process begins when the customer adds the first product to the wish list, assuming that there are

no other existing wish lists. The AddToWishList action initializes the wish list and adds the

product selected by the FindProduct activity. Depending on the customer type, the wish list is

stored locally or remotely. Since registered customers have a profile, their lists are stored with the

profile on the server side. Guest customers will require local storage; the store front serializes the

wish list in the e-shop format and sends it to the client side for storage.

There are two sets of explicit annotations in this model template. The first set pertains to the

registration feature, which is used to annotate elements in the “registered” branch of the

“Customer Type” decision node. The second set pertains to the wish list saved after sessions

feature, which is used to annotate elements in the “guest” branch of the “Customer Type”

decision node. Both sets of annotations are based on the storage method, similar to the way the

annotations were used in the SelectProductFromWishlist activity. Finally, there is an implicit

annotation of the wish lists feature on all model elements, which is caused by the annotation of

the wish lists feature on the activity.

 113

Figure 6.24: CreateWishList Activity

6.2.17 SendWishList Activity

The SendWishList activity, shown in figure 6.25, allows a customer to send their wish list to a

potential gift-giver by e-mail. The process begins with the store front displaying a list of the

customer’s wish lists. The customer selects a wish list, which is retrieved by the store front29 and

displayed along with a form to enter the recipient information. The customer enters the recipient’s

name and e-mail address, which is used to generate the e-mail with the wish list. The e-mail can

take the form of a greeting message combined with a product list containing all of the items in the

wish list or a link to view the wish list at the e-shop. After the e-mail is composed, the store front

sends the e-mail to the recipient.

There is one set of explicit annotations on the elements in this model template. A path of

elements, starting from the DisplayCustomerWishlists action and ending with the “WishList

Name” central buffer, is annotated with the multiple wish lists features. In addition, there is an

additional control flow between the SelectWishListFromList action and the RetrieveWishList

action which is present if the multiple wish lists feature is eliminated. This additional flow is

29 It should be noted that the additional constraints state that this feature is only available to registered
customers; therefore, routines for retrieving a local copy of the wish list are not included.

 114

needed to perform flow closure between the initial activity node and the RetrieveWishList action

because it introduces the correct flow type to connect the two elements. In addition, all model

elements are also implicitly annotated with the e-mail wish list feature due to the annotation of

the feature on the activity.

Figure 6.25: SendWishList Activity

6.3 Summary

In this chapter, the design of the model templates and notable annotations were presented. The e-

shop model templates consist of the store front entity model, the service model and the activity

diagrams. The store front entity model describes the structure of entities, such as products,

customers, orders, shopping cards and wish lists. The service model describes how the e-shop can

leverage services. The activity diagrams consist of seventeen models; through the combination of

workflows presented, one can see how a customer could browse and purchase products at the e-

shop.

 115

7 Evaluation of the Feature-Based Model Template Approach

This chapter is devoted to an evaluation of the feature-based model template approach through

the development of the e-commerce models. Feature model and model template development was

performed using fmp2rsm [Cza05g], hereafter referred to as the development tool. Key points are

supported by examples that were observed throughout the development process. Unless otherwise

indicated, examples are taken from the final version of the models.

There are five sections in this chapter. The first two sections describe the analysis of specific

aspects of feature modeling and model template development respectively. The third section

builds upon the analysis and describes candidates for modeling guidelines. The fourth section

presents a set of recommendations that are based on observations or key challenges encountered

throughout the development process; the recommendations suggest improvements for both the

process and the development tool. The final section summarizes the chapter.

7.1 Analysis of Variability Modeling in Feature Models

A common part of the feature modeling process is to express requirements in terms of features

and to model the relationship between the features. In some cases, the requirements provide

enough information to express domain entities or entity operations as features directly; however,

there are some cases where further analysis is needed to discover binding time and variability

issues.

In this section, an example of integrating a new requirement into the existing e-commerce feature

model is presented. The entire process is examined in detail and several candidate models are

proposed and analyzed. The discussion is concluded with an examination of how binding time

plays a role in modeling variability. The requirement to be used in this example is defined as

follows:

An e-shop may have the option to restrict access to and use of wish lists to registered

customers only.

The three key points in this requirement are 1) the option to restrict wish list access to registered

customers implies that there are two possible outcomes: allow only registered customers to access

 116

wish lists or allow both registered customers and guests to access wish lists; 2) the ability to

restrict wish list access may or may not be available in an e-shop; and 3) the decision to restrict

wish list access is a policy that is decided by the e-shop at run-time30. As a side note, there is no

mention about the validity of a scenario where wish list access is restricted to guest customers

only. This scenario was never observed during domain analysis, so it was decided that it would

not be included in the model.

An examination of the feature model indicates that the wish list and registration features are

orthogonal. Their common ancestor feature is the store front, meaning that the only commonality

between them is that they are both features in the store front. Two different techniques for

modeling this requirement are proposed, followed by an analysis of the trade-offs for each

technique.

The first technique models the requirement by using a subfeature relationship. An optional

feature, “requires registration”, is introduced and made a subfeature of wish list as shown in

figure 7.1. Selection of the “requires registration” feature implies that a customer must be

registered before being able to access the wish list31. This representation of the requirement fails

to recognize the binding time property of the feature. Assuming that the instantiation of a

concrete e-shop occurs only when a feature configuration is reached and the configuration

process occurs over a single level, the “requires registration” feature must be selected or

eliminated before the e-shop product can be deployed at run-time. Therefore, the choice is made

at a binding time which prevents the e-shop administrator from changing the policy; this violates

the third key point.

The problem with this technique is that it does not address the fact that there are two decisions

that must be made at different binding times. The decisions are:

1) if wish list access should have any dependency on registration. If it does not, the default

behaviour is to allow wish lists to be accessed by both guests and registered users. If it does,

30 To be more precise, this decision is made at a later binding time than the decision in the second point,
meaning that this decision could be made during build-time; however, the intent of the requirement is to
allow the decision to be made for each e-shop individually at run-time..
31 In this technique, an additional constraint, (requiresRegistration) requires (registration) must be added;
however, the presence of the constraint does not impact the rest of the example.

 117

the second decision, specified below, must be made. This decision is the essence of the

second key point and is used to scope the feature for the e-shop product line at build-time,

2) the run-time policy for dealing with whether or not registration is required for wish list

access. This is the essence of the first and third key points with the two possible outcomes

being described in the first key point. This decision is used to configure the e-shop at run-

time after it is deployed.

Figure 7.1: Adding Wish Lists Subfeature for Modeling Requirement

The second technique models the decision structure directly, as shown in figure 7.2. An optional

feature, “dependent on registration”, is introduced and made a subfeature of wish lists32. The

inclusive-or feature group is added to represent the two policies in the form of the grouped

features “requires registration” and “does not require registration”. Although allowing both

policies to be selected simultaneously seems contradictory, this model allows the concrete e-shop

to support one or both policies. This feature model can be specialized over multiple stages also.

There are no restrictions on when the decisions are made except that the dependency on

registration feature must be decided upon before the policy selection. Therefore, this technique

produces a model that best represents the requirement because it takes binding time issues and the

decision making process into consideration33.

32 In this technique, an additional constraint, (dependentonRegistration) requires (registration), must be
added; the subfeature relationship covers the requires registration feature.
33 The same process was used to model the registration enforcement feature described in section 4.2.1.

 118

Figure 7.2: Adding Policy Subfeatures for Modeling Requirement

From a configuration point of view, it is interesting to note that the model produced by the first

technique accurately describes the system from a run-time perspective because the choice of

requiring registration for wish list access can be reduced to an optional feature, as shown in figure

7.1(b). This indicates that the first technique is appropriate if the requirement focuses on the run-

time configuration only. Another interesting point about the configuration is that if the

“dependent on registration” feature is eliminated, it is functionally equivalent to selecting the

“does not require registration” feature because both will allow registered customers and guests to

access the wish list; however, the differences lie in who makes the decision and the actual

configuration of the e-shop product due to the binding time difference.

7.2 Analysis of Annotations in Model Templates

The annotation analysis focuses on examining how feature annotations are applied to model

elements. The objective of the analysis is to to determine if there are any frequently occurring

patterns for annotations which can be leveraged in the model template development process. The

analysis involves the examination of each model template and the categorization of the sets of

adjacent model elements which are annotated with the same feature34. This section summarizes

the findings of the analysis and presents the annotation categories which were observed in the

model templates. The results of the analysis are provided for class diagrams and activity diagrams

in separate sections. The complete set of the analysis results is presented in appendix B.

34 From this point forward, these categorizations will be referred to as “annotation categories” for brevity.

 119

7.2.1 Class Diagram Model Templates

The two class diagrams in the e-commerce model were of different types; one used regular

classes to depict entities in the store front, whereas the other used stereotypes to depict services

which interacted with the store front. The annotation categories were different for the two class

diagrams; therefore, the diagrams are described in separate subsections.

7.2.1.1 Store Front Entity Model

Adjacent model elements in the store front entity model tend to be annotated with different

features. Furthermore, the annotations in this model only referred to a single feature. The results

of the annotation analysis for the store front entity model are presented in table B.1 in appendix

B. The following is a summary of the annotation categories which were observed in the model.

Most of the annotation categories, which have been bolded, correspond to individual elements in

a class diagram.

Class denotes any concrete class in the model that is annotated with a single set of features. The

class may be involved in generalization, association or dependency relationships, but this

classification implies that none of the model elements pertaining to those relationships are

annotated with the same set of features as the concrete class. The context in the model element

column of table B.1 describes two things: 1) the corresponding class in the model, and 2)

indicates if the class is a subclass and, if so, what the superclass is. Classes are typically annotated

with features that represent key concepts, such as a wish list or a registered customer, whereas

subclasses are usually annotated with types, such as physical and electronic goods.

Abstract class denotes the annotation of an abstract class. Like the class annotation category, this

classification applies when the abstract class is the only annotated element. The context in the

model element column of table B.1 describes the corresponding class in the model. Abstract

classes are often used as a grouping mechanism, as seen in the AssociatedAssets class.

Attributes denote any member variable that is explicitly annotated. Implicit annotations that are a

result of the containing class or abstract class are not considered in this category. The context in

the model element column of table B.1 is used to denote the class which the annotated attribute

 120

belongs to. An example of the annotation category is the quality of service selection feature on

the serviceType attribute in the ShippingInstructions class.

Enumeration denotes the annotation of an enumeration. The context in the model element

column of table B.1 is used to denote the name of the annotated enumeration. Enumerations are

often annotated with a feature that describes a type, e.g. an abstraction used to describe type

values. An example is the MediaTypes enumeration.

Enumeration value denotes the annotation of an enumeration value. The context in the model

element column of table B.1 is used to denote the enumeration which contains the enumeration

value. The features used in these annotations typically represent type values. The annotations on

the sound, video and image enumeration values are examples of this annotation category.

Composite denotes the annotation of a composite aggregation. The context in the model element

column of table B.1 describes the relationship defined by the composite aggregation. It only

occurs once in the entity model where the subcategories relationship in the Category class is

annotated with the multilevel feature. In this case, the feature in the annotation denotes the

nesting of categories, which is best represented by composition.

Association denotes the annotation of a non-containment relationship between classes. The

context in the model element column of table B.1 denotes the classes which are involved in the

association. Associations are applied in two ways: 1) a directed association that begins and ends

with the same class, and 2) a regular association. An example of the former is the substitute

product feature in the Product class; an example of the latter is the shipping address feature for

the RegisteredCustomer class. The number of associations without annotations greatly exceeds

the number with annotations, which is a direct result of the IPC for associations.

MultiplicityME denotes the annotation used for calculating the value of a multiplicity on an

association end. This is used in several places, such as calculating the multiplicity for Category

based on the multiple classification feature.

 121

7.2.1.2 Service Model

Adjacent model elements in the service model also tend to be annotated with different features.

Furthermore, the annotation in this model on referred to a single feature. Only three types of

model elements are annotated: operations, services and interfaces. These types make up the three

annotation categories observed in this model. The results of the annotation analysis for the service

model are presented in table B.2 in appendix B. The following is a summary of the annotation

categories which were observed in the model; the categories have been bolded.

Operation denotes the annotation of service or interface operations. The context in the model

element column of table B.2 denotes the name of the operation container. An example of this

annotation category is the product returns feature for the processRefund operation in the IOrder

interface. It should be noted that operations which are contained within an interface or service are

implicitly annotated with the container's annotation; the implicit annotation is not considered as

an instance of this annotation category. This is the most common form of annotation in service

models, although it should be noted that operations are also the most frequently occurring type of

model element in this model.

Interface denotes the annotation of an interface. The context in the model element column of

table B.2 denotes the name of the annotated interface. An example of this annotation category is

the warehouse management feature on the IWarehouseBackend and IWarehouseFrontend

interfaces. The annotation serves to enable a set of functionality for the Store Front component.

Service denotes the annotation of a stereotyped class that implements an interface. The context in

the model element column of table B.2 denotes the name of the annotated service. An example of

this annotation category is the shipping gateways feature on the Shipping Gateway service. The

annotation of a service is independent of the annotation on the service's interface.

7.2.2 Activity Diagram Model Templates

There are a significant number of cases in which adjacent model elements in the activity diagram

model templates are annotated with the same feature. This resulted in a large number of

annotation categories. In addition, there are two instances in which an annotation refers to a

disjunction of features; these are the only occurrences of an annotation referencing multiple

 122

features in the entire model. The results of the annotation analysis for activity diagrams are

presented in table B.3 in appendix B. The descriptions used in the model elements annotated

column of the table are described in detail in appendix B. The following is a summary of the

annotation categories which were observed in the model. Half of the categories correspond to

individual elements while the other half corresponds to regions in the activity diagram; the

annotation categories have been bolded.

Action denotes the annotation of an action node. This classification applies when only the action

is annotated; there are other classifications when adjacent flows or actions are annotated with the

same feature. This annotation category occurs frequently, although the feature used in the

annotation usually describes an entity which is related to the action. For example, the

RedeeemAndApplyCoupon action in the CreateOrder activity is annotated with the coupons

feature because there is no coupon redemption feature in the feature model; the ability to redeem

coupons is assumed when the coupon feature is selected.

Activity denotes the annotation of an activity. The purpose is to control the presence of all

elements contained within the activity through a single annotation. It can be thought of as an

enabling condition on the activity. For example, the CreateWishList activity is annotated with the

wish list feature since one cannot create a wish list if it is not supported in the first place.

Call Behaviour denotes the annotation of an action that invokes another activity. It is rare to find

a call behaviour that is annotated without some adjacent elements being annotated with the same

features also. Call behaviours are annotated to control the invocation of an activity within a

workflow. Thus, it is used to prevent an activity from being called when it is not appropriate for

the workflow; however, most of the annotations on the call behaviours are used to control the

presence of the activity, which is supposed to be done through the annotation on the activity. This

is due to the fact that the IPC on call behaviour is not implemented in the tool at this time; once it

is, the number of annotated call behaviours is likely to decrease.

TypeME denotes the annotation used for calculating the type of an element on a data node, data

pin or activity parameter. This occurs twice in the model. The first occurrence is when a central

buffer node in the FindProduct activity is annotated with a TypeME that is used to calculate the

type of the central buffer based on the product variants feature. The second occurrence involves

 123

the same types of elements, but it is in the SelectProductFromCatalog activity, where the

TypeME is used to calculate the type of a central buffer based on the categories feature.

Decision Branch denotes the annotations on a set of adjacent model elements along a path,

starting from the outgoing flow of the decision node and ending at the incoming flow of the first

merge or decision node encountered. In this situation, the feature represents a decision outcome

that is tied to a series of actions; selection of the feature makes the decision outcome available.

This annotation category was observed several times, such as with the advanced search feature in

the SearchProduct activity and the coupons feature in the CheckoutItems activity.

Decision Branch Bypass is a special case of a decision branch where the set of adjacent model

elements consists of a single element only – the outgoing flow from a decision node35. Like the

decision branch, the annotation captures the feature’s implication of the decision outcome. The

purpose of creating a separate classification is to capture situations where a feature corresponds to

no additional actions with respect to the other decision outcomes. There are a few occurrences of

this annotation category in the model, such as the basic search feature in the SearchProduct

activity.

Sequential Path36 is a more general case of a decision branch. A sequential path consists of a

contiguous sequence of model elements that is annotated with a common PC. The conditions on

the start and end points of the sequence are more relaxed than those in a decision node branch; the

points can be any two distinct model elements. The sequential paths found in the model were

either a subset of model elements within a branch, such as the product variants feature in the

FindProducts activity, or a path that includes a decision or merge node within it, such as the quick

checkout feature in the CheckoutItems activity. None of the sequential paths in the models were

annotated with features that modeled entities.

The characteristics of the decision branches, decision branch bypasses and sequential paths are

almost identical; however, the limited number of occurrences of the latter two prevents any

definite conclusions about the usefulness of those annotation categories from being made.

Therefore, these annotation categories will be kept for future study.

35 This implies that the flow is also the incoming flow to the first decision or merge node encountered.
36 Sequential path is also referred to as “sequence” for brevity in certain situations.

 124

Another interesting observation is that there are many types of model elements in activity

diagrams which are rarely annotated. They include decision and merge nodes, parallel branches,

and fork and join nodes. This is most likely due to the fact that they are often adequately covered

by their IPCs.

7.3 Candidates for Modeling Guidelines

This section focuses on deriving some candidates for modeling guidelines37. Guidelines are

derived for both feature modeling and model template design. These guidelines are based on the

experiences during modeling, as well as observations from the previous sections; therefore, some

of the guidelines make reference to earlier versions of models. In some cases, multiple modeling

approaches are presented and the trade-offs for each approach are discussed.

7.3.1 Applying Binding Time Analysis to Feature Modeling

As mentioned in section 7.1, an understanding of the binding times of individual features and the

decision making process are essential for accurately capturing a set of requirements in a feature

model. The structure of the feature model can be significantly impacted by the intent of when a

feature is meant to be configured and the ability to use multi-staged configuration. The best

strategy for modeling the decision structure is to apply a subfeature relationship for each

subsequent set of decisions. In other words, features with later binding times can be placed at a

lower depth in the model. There are three reasons for this: 1) it clearly separates the levels of

decision making; 2) it defines an order in which decisions should be made without forcing it upon

the user38; and 3) it allows decisions with later binding times to be hidden by preventing the

expansion of a node, thus allowing the modeler to decide if certain decisions should be made

unavailable until a later point in the configuration. In addition, this structure, coupled with the

branch hiding capability, can allow different levels of feature models to be generated

systematically by interpreting a binding time attribute39 and pruning branches as necessary. In

contrast, a non-hierarchical structure would most likely require a manual definition for each level

or a model transformation.

37 From this point forward, “candidates for modeling guidelines” are referred to as “guidelines” for brevity.
38 Due to constraint propagation in a configuration, selection of a late-binding decision will automatically
cause all previous decisions to be selected.
39 This would require a metamodel extension to add a binding time attribute to all nodes. The attribute
could be an integer value that is interpreted relative to other features in the same branch or across the entire
feature model as the level in which a feature would appear in the model.

 125

In addition, one should also take into consideration whether the binding time for a decision is

build-time or run-time. Run-time policies, in particular, often provide a set of options that have

mutually exclusive meanings. These policies tend to be captured in feature groups as individual

grouped features. Some of the grouped features can represent opposing policies. For example, the

registration dependency feature shown in figure 7.2(b) contains a “requires registration” policy

and a “does not require registration” policy. These policies are mutually exclusive when the e-

shop administrator selects a policy at run-time, either during or after deployment of the e-shop;

however, prior to that, the inclusive-or relationship is necessary because the features are being

scoped for the e-shop.

Finally, the modeling of feature groups also varies depending on the binding time. Experience

suggests that feature models which are intended for use in multi-staged configuration should

strive to capture the widest variability possible at an early binding time; therefore, feature groups

should be modeled with the relationship which can select the largest number of grouped features

from the set, meaning an inclusive-or relationship. This is ideal because inclusive-or expresses

the largest amount of variability. The feature group can be refined in subsequent stages to select a

smaller group of features40, thus constraining the variability in future stages. At later binding

times, the feature group relationship depends on the domain. In some cases, the feature group is

refined into an exclusive-or relationship, which is the case for the award feature described in

section 5.2.2.2. On the other hand, some feature groups retain an inclusive-or relationship for all

binding times, which is the case for the taxation rules feature described in section 4.5.2.3.

7.3.2 Modeling Feature Groups in Model Templates

In the e-commerce model, feature groups are often used to model types, such as payment or

product types. This section describes the methods for translating a feature group into a set of

elements and annotations in a model template.

Since feature groups cannot be named directly41, it is a good practice to introduce a solitary

feature to contain the feature group and use the solitary feature for describing the relationship

40 This can be achieved by refining the group cardinality or by selecting and eliminating grouped features.
41 The feature id is not displayed directly on the model; it must be accessed via the properties. Furthermore,
it is a unique identifier over the scope of the entire feature model, so two types which are the same but
under different features would have different identifiers.

 126

between the grouped features. Under this organizational structure, the solitary feature is the group

type and the grouped features are the type values. Feature groups are modeled differently

depending on the model type and the way in which the feature group is used.

7.3.2.1 Modeling Feature Groups in Class Diagram Model Templates

In a class diagram, feature groups can be modeled through an inheritance hierarchy or an

enumeration. An inheritance hierarchy uses generalization relationships to express the grouping

construct. In a strict form of an inheritance hierarchy, the type is represented by the superclass

and the type values are represented by the subclasses. Following the convention described above,

the superclass corresponds with the solitary feature and the subclasses correspond to the grouped

features. The superclass can be abstract or concrete depending on the implementation

requirements, but they are usually abstract. Examples include the Product and

PaymentInformation classes in the store front entity model. In a relaxed form of an inheritance

hierarchy, only a subset of the elements from the strict form is required. A relaxed form is used

when the modeler decides that it does not make sense to represent every grouped feature in the

feature group as a subclass. One example of this would be when there are two grouped features

and only one has a concrete class representation; if the solitary feature is only used for grouping

purposes, there is no point of modeling it as a superclass42. An example would be the taxation

feature, which has two grouped features: custom taxation and tax gateway. In the entity model,

only the custom taxation feature is represented as a subclass; the tax gateway is modeled as a

service. Therefore, there is no concrete superclass representation of a taxation entity either. In

both forms of an inheritance hierarchy, the solitary feature and the grouped features can each be

traced to their respective class, provided that there is a concrete representation of the feature.

With the enumeration representation, the type is represented by the enumeration and the type

values are represented by enumeration values. Following the convention described above, the

enumeration corresponds to the solitary feature and the enumeration values correspond to the

grouped features. Each enumeration value is annotated with its corresponding grouped feature

and the enumeration can be annotated with the solitary feature to ensure that there are no empty

42 Although one can argue that the result of this relaxed form is a seemingly ad-hoc solution, the inheritance
hierarchy provides a framework for constructing the solution. Furthermore, in a scenario with multiple
levels of feature groups, some parts may use a strict form and others may use a relaxed form of the
inheritance hierarchy. This gives the modeler the ability to choose the most succinct representation rather
than enforcing a scheme that would add unnecessary elements to the model.

 127

enumerations generated in the template instance. In addition, attributes of the enumeration type

should also be annotated with the solitary feature to ensure that the attributes are removed if the

enumeration is removed. The MediaTypes enumeration in the store front entity model is a good

example of this. The enumeration is annotated with the media files feature and the enumeration

types are annotated with the corresponding media file types, thus mirroring the structure of the

media files feature.

The key difference between the two types of representation is that the inheritance hierarchy is

useful for capturing additional attributes or semantics which are associated with the type or type

values, whereas the enumeration is better suited if the type value is used primarily to influence

processing behaviour. Other considerations for choosing between the two include the readability

of the model template, preference of the modeler, and implementation concerns.

7.3.2.2 Modeling Feature Groups in Activity Diagram Model Templates

In an activity diagram, a feature group can be modeled using a decision structure, a set of parallel

branches, or a sequential set of actions. The choice of the modeling technique depends on the

semantics of the feature group. The most common modeling technique is the decision structure,

which is used to model a feature group when it allows for the selection of multiple grouped

features at build time, but forms a set of mutually exclusive alternatives at run-time43. The

decision node’s outgoing flows have guards which represent the different type values. In this

technique, a branch represents a set of actions which correspond to the type value. The decision

node can be annotated with the solitary feature and all of the elements in a branch are annotated

with the corresponding grouped feature. If the type value is eliminated, it results in the removal of

any model elements which provide a handling mechanism for the type value. Theoretically, the

type value should never appear at run-time, but if it did, the activity would immediately exit at the

decision node because none of the guard conditions would be satisfied. One must be careful to

annotate all of the model elements in the branch; if the flows are not annotated, the removal of the

nodes elements could result in flow closure and create a bypass flow. This means that if the type

value is encountered, the activity will continue to execute but there will be no actions associated

with it. This may result in erratic behaviour that may be difficult to debug. One example of

43 This is not a strict condition. If multiple alternatives can be applied in parallel, then parallel branches is
the most appropriate technique. If multiple alternatives from the set can be applied sequentially, a loop to
the decision node can be added to allow for multiple iterations; however, the scenario described in the main
body text is the most common application.

 128

applying the decision structure modeling technique can be seen in the SearchProduct activity. The

first decision node in the activity assesses the search type and there are separate branches for

dealing with basic and advanced searches.

A set of parallel branches can be used to model a feature group when multiple grouped features

can be selected at run-time and there is no sequential order imposed on them. In this technique,

each parallel branch is annotated with a feature that represents a type value; therefore, all model

elements in a branch are annotated with a corresponding grouped feature. The same precautions

for annotations, as described for the decision structure, should be observed; however, in the case

of the parallel branches, ensuring that the annotation is made on every element in the branch is a

matter of good form. This is because a bypass flow in a parallel flow would have no side effects

unless it is the only flow. There are no occurrences of this in the e-commerce model because

parallel flows are not used in any of the models templates.

A sequential set of actions can be used to model a feature group when more than one grouped

feature can be selected at run-time and their order of execution matters. In this technique, each

action corresponds to a grouped feature and is annotated as such. Therefore, any grouped feature

that is eliminated will simply remove the corresponding action from the sequence. Furthermore, it

does not matter how many features are selected since the resulting sequence will always be valid

due to flow closure. One can distinguish between a strict interpretation, in which every grouped

feature must correspond to a single action in the sequence, and a relaxed interpretation, in which a

subset of the grouped features correspond to a subset of actions in the sequence. Although there

are sequences of actions which are annotated with different features in the model, there are no

examples of this particular technique. An example which comes close can be seen in the second

phase of the CheckoutItems activity. There is a sequence of actions corresponding to the

calculation of the shipping costs, discounts, and tax. These actions form a sequential path and the

order in which they execute affects the outcome; however, the three corresponding features,

shipping, discounts and taxation options, do not share a common feature group.

7.3.3 Applying MetaExpressions to Increase Conciseness

The ME annotations are a useful mechanism for increasing conciseness in model templates. Many

situations which would normally require multiple, mututally exclusive model elements in order to

express the variability can be simplified. Simplification is achieved by annotating the element

 129

with a ME and specifying an expression to calculate the required value based on a set of features.

This section illustrates the application of the MultiplicityME to simplify a class diagram model

template.

In class diagram model templates, there are many examples of where multiplicity depends on the

presence of a feature. One example can be seen in the association between the Category and

Product classes with respect to the multiple classification feature. In this example, selection of the

multiple classification feature changes the multiplicity on the association at the category end from

“1” to “1...*”. In an earlier version of the model, as shown in figure 7.3, this was modeled as two

associations between the classes, each with a different multiplicity on the category end. These

two associations were annotated with mutually exclusive PCs; the association with “1” was

annotated with “!MultipleClassification” and the association with “1..*” was annotated with

“MultipleClassification”. Aside from that, everything else was identical44. The problem with this

approach is that the extra elements used to model alternatives tend to add clutter to the model

template, thus making the template difficult to read or maintain.

Figure 7.3: Using Multiple Associations to Model Multiplicity Variability45

This problem can be addressed with the MultiplicityME, which is used to calculate the

multiplicity on an association end. In the thesis version of the model shown in figure 7.4, only

one association is required. The variable multiplicity is annotated with the MultiplicityME, which

44 The association classifiers are actually different, but that is done by the tool to prevent ambiguity when
navigating the model. This difference is mainly for the tool because it does not interpret the associations as
mutually exclusive elements. The use of the MultiplicityME solves this problem implicitly.
45 This figure has been modified to highlight the associations of interest only.

 130

is given the following value: if (\\multipleClassification) then “1..*” else “1”.

multipleClassification is the identifier for the multiple classification feature and serves as a

Boolean variable in the expression. This expression is evaluated and the corresponding value is

replaced during template instantiation.

Figure 7.4: Using Multiplicity MetaExpression to Model Multiplicity Variability46

7.4 Recommendations

This section focuses on presenting a set of recommendations to improve the process and

development tool implementation. The recommendations focus on usability issues, primarily to

reduce the amount of effort required for template development and the occurrence of errors

during annotation.

7.4.1 Variability in the Ordering of Features and Model Elements

One area that has not been addressed in model templates is accounting for variability in the

ordering of nodes in activity diagram model templates. An ordering defines a sequence of model

elements; variability in ordering arises when one requires actions to be run in different orders. An

example in the model where ordering is important is in the second phase of the CheckoutItems

activity. In that phase, it can be seen that shipping costs are calculated before applying discounts

and assessing taxes. This implies that the shipping costs calculations cannot take discounts and

taxes into consideration. An e-shop may want to create a policy which applies the discounts

before calculating the shipping costs, especially if the shipping costs vary based on how much the

customer spends. This would require the order of the actions to be changed. In addition, one must

consider that not every single permutation of the ordering may be valid.

46 The stereotype on the association end is used for visualization purposes only because the tool does not
support the display of metaexpressions on the diagrams directly. In addition, this figure has been modified
to highlight the association of interest only.

 131

There are two major obstacles for dealing with ordering in model templates. They lie with the

representation of order in feature models and activity diagrams respectively. There is no pre-

defined attribute or model element to represent ordering in the feature model metamodel supplied

by the development tool. The modeler can extend the metamodel to include an attribute to

represent ordering; however, it is unclear what value can be assigned to capture the ordering

between features in general. Features that require ordering do not necessarily reside in the same

feature group; therefore, any ordering mechanism must be able to relate features globally within

the feature model. Furthermore, there must be some way to define a set of constraints on the

ordering. In activity diagrams, there are no existing annotations or constructs which can be used

to model the variability in ordering either.

Although there is only one example of a sequential set of elements in the model, many problems,

such as multiple discount handling or policy enforcement, could benefit from a solution to the

ordering problem. The problems and obstacles associated with ordering are non-trivial. Insofar,

no method has been found to satisfactorily and intuitively represent the ordering of features;

however, such a method would be useful for both feature models and model templates. Therefore,

it is recommended that further investigation on the ordering problem, in the context of feature

models and model templates, be pursued.

7.4.2 Additional Semantics for UML Class Diagram Model Templates

[Cza05f] already specifies a set of semantics for class diagrams which include IPCs for

generalization, dependency association, classes, and simplification rules for generalization chain

closure and containment chain closure47. In this section, additional semantics are proposed for

class diagrams.

The technique for modeling a feature group with enumerations is described in section 7.3.2. The

description indicates that the enumeration should be annotated with the solitary feature in order to

remove an empty enumeration; however, if the guidelines are followed, the enumeration will only

contain values which are annotated with group features. Therefore, if the solitary feature is

47 These rules are analogous to flow closure in activity diagrams.

 132

selected, at least one of the grouped features must also be selected48, which makes the annotation

on the enumeration redundant. This situation can be handled by defining a simplification rule for

enumerations; an empty enumeration can be determined by calculating the disjunction of the PCs

for all contained enumeration values. A stronger condition can be added such that the presence of

an enumeration is also dependent on whether or not any attributes are of the enumeration type.

This can be achieved by modifying the simplification rule so that it calculates a conjunction of the

previously defined rule with a disjunction of the PCs of attributes of the enumeration type over

the entire diagram. This is essentially performing garbage collection on unreferenced

enumerations.

Abstract classes are only useful if there is a concrete class which inherits from the abstract class

or if it contains additional attributes or relationships with other elements. The simplification rule

for an abstract class can be defined as a disjunction of two expressions: 1) a disjunction of the

PCs of all specializations, where the abstract class is the general classifier, and 2) a disjunction of

the PCs of all elements associated with or contained by the abstract class49. It may be argued that

having a non-empty abstract class without any implementation is useless; however, it is assumed

that implementation classes can be dynamically linked at run-time. This means that the abstract

class can still exist in the template instance even without a concrete class. The same line of

reasoning applies to interfaces, as seen through the service diagram; therefore, an analogous

simplification rule can be defined for interfaces.

7.4.3 Additional Semantics for UML Activity Diagram Model Templates

Since the focus of [Cza05f] was to develop semantics for activity diagrams, the set of IPCs, patch

transformations and simplifications are already fairly extensive; however, the analysis in section

7.2.2 indicates that there are some common annotation categories which may be leveraged to

reduce the annotation effort and / or improve the model template. Due to the length of some of

these proposed additions, each recommendation is accorded a separate subsection.

48 This holds as long as the group cardinality has a lower bound of 1, which is the default; however, a
scenario where the group cardinality has a lower bound of 0 can be normalized such that the solitary feature
which contains the feature group is made optional and the group cardinality lower bound is set to 1. Both
produce equivalent outcomes during configuration.
49 The model elements would include member variables, associations, and composite aggregations.

 133

7.4.3.1 IPCs for Data Stores and Generic Data Nodes

Data stores are a stereotyped data node in which data can be retrieved from or stored to; however,

in the case where all adjacent flows are eliminated, the data store becomes redundant. Therefore,

an IPC for data stores can be defined as the disjunction of the PCs of all incoming and outgoing

flows. The difference between the data store and the central buffer is that a data store is required

as long as one flow is present, whereas a central buffer requires both flows since it serves as an

intermediary for actions with object flows. Data stores and central buffers are just stereotypes on

a generic data node, which is available as a model element in the development tool; however, it is

difficult to define an IPC for the generic data node since its semantics are not well-defined.

7.4.3.2 Branch Annotations Semantics

The analysis of the activity diagram annotations indicates that there are a significant number of

features whose semantics require an entire branch of a decision node to be annotated. The branch

is inclusive of all model elements from the outgoing flow of the decision node to the incoming

flow of the merge node. In many cases, these branches contain a single entry point and a single

exit point. There are two approaches which can be used to model this. In the first approach, all of

the model elements in the branch are annotated with the set of features. For longer branches, this

causes a significant increase in the number of annotations required. Furthermore, the larger

number of annotations increases the likelihood of an annotation error, either due to missing an

element or forgetting to annotate the first or the last flow in the branch. In the second approach,

all of the model elements in the branch are extracted into a separate activity and the branch is

replaced with a call behaviour action. The activity is annotated with the set of features, thus

causing an implicit annotation on all of the model elements in the activity. This approach will

require fewer annotations, but the re-factoring of the actions may not be desirable due to the fact

that the information will be hidden.

These findings suggest that a special type of annotation, based on the annotation categories

described in section 7.2.2, may be useful when working with activity diagrams. One possible

solution is to define a special stereotype for decision branches. Like regular annotations, the

stereotype is created based on a set of features. It is used to annotate the first element in the

branch; the last element in the branch, which is the incoming flow to the first decision or merge

node that is encountered, is found automatically. Any model elements between the first and last

 134

elements would be automatically annotated with the set of features. For cases with simple

branching, such as the advanced search feature in the SearchProduct activity, this would be a

sufficient mechanism.

A more general solution would be to define a special stereotype for sequential paths. The idea

here is the same as the idea in the previous solution, except that there is a pair of annotations for

the first and last elements in the path. This solution would be able to handle a more general case,

such as the quick checkout feature whose path includes a decision node in the CheckoutItems

activity. To simplify the semantics of the annotation, every element along every valid path

between the first and last elements will be automatically annotated with the set of features.

Both solutions reduce the total number of annotations required, but the addition of another form

of stereotype adds complexity to the annotation language; however, experience with the e-

commerce model suggests that it would be a valuable mechanism for the annotator.

7.4.3.3 Automatic Flow Type Correction

A patching transformation which is missing from the activity diagram model templates is

automatic flow type correction, which is useful when flow closures fail due to mismatched flow

types. The problem occurs when regions have a mixture of control and object flows, where the

entry flow is a control flow and the exit flow is an object flow or vice-versa. If the entry and exit

flow types differ, the flow will not be closed. An example of this can be seen in the SendWishList

activity. The region with the multiple wish list annotations has a control flow as the entry point

and an object flow as the exit point50. If the multiple wish list feature is eliminated, the flow

cannot be closed. The current workaround is to add a control flow between the

SelectWishListFromList and RetrieveWishList actions. This control flow is present if the

multiple wish list feature is eliminated, thus allowing the flow to be closed.

The proposed solution is to create a patch transformation which checks for all of the conditions

on each flow to determine its correct type after the rest of the patching transformations have been

run. The time at which it is run is important since the template instance must be valid before

50 The entry flow starts from the initial node as a control flow and enters the region. The exit flow is the
incoming object flow to the RetrieveWishList activity. Since the RetrieveWishList activity will expect an
object flow, there is a mismatch.

 135

analyzing the flow type; otherwise, the development tool will have to determine the flow types

while handling disconnected flows and other anomalies. Once the flow type is corrected, the

effect must be propagated to adjoining elements. For example, an adjacent call behaviour action

may require the removal of its data pin51 to join a control flow to the call behaviour action.

7.4.4 Annotation Consistency Issues

Maintaining annotation consistency is one of the most difficult aspects of the feature-based model

template development process. The annotator must have a very through understanding of both the

feature model and the model templates, as well as an understanding of the potential impact of

each annotation. Annotation inconsistencies are caused by a set of annotations on a model

template that, when instantiated with a valid configuration, results in a semantically-incorrect or

ill-formed template instance. A semantically-incorrect template instance violates semantic

properties defined by the modeler or exhibits semantic errors with respect to the modeler’s

original intent. An ill-formed template instance exhibits syntax errors with respect to the

modeling language. Aside from a visual inspection of both the feature model and model

templates, the only way to detect these errors is to use the fmp2rsmVerifier tool [Cza05g].

There are three major factors which contribute to annotation inconsistencies: annotation errors,

hidden annotation effects, and unawareness of additional processing effects. Annotations errors

are mistakes which are made by the annotator due to carelessness or a misunderstanding; it is

analogous to making a syntax error with respect to the modeling language. For example, if the

annotator is annotating a decision node branch and forgets to annotate a flow at the end of the

branch, the omission is considered to be an annotation error. This omission in particular will

result in an ill-formed template since there will be a dangling flow. In general, such an error can

result in either type of inconsistency.

Hidden annotation effects are inconsistencies which arise when the effect of an implicit

annotation overshadows the effect of an explicit annotation. The primary cause is annotations on

51 Two assumptions are made: 1) the removal of the central buffer is intended and the remainder of the
transformations follow because of it. If the situation was reversed and the annotation was on the data pin,
the analysis would still hold. If there is a conflict between the annotations on the central buffer and data
pin(s), a mechanism would be needed to resolve it, 2) the IPC on the data pins respect the properties of the
actions to which they are attached to. For example, if an input pin is required as an input parameter on a
call behaviour and the adjacent central buffer is removed by a PC, the patching transformation will handle
the situation correctly, e.g. signal an error has occurred.

 136

container elements. Container elements can cause hidden annotation effects because the

annotations are implicitly applied as a conjunction with all of the model elements inside the

container. The problem with this is that the implicit annotations on the elements are not clearly

visible in the model; therefore, it is possible that the annotator may be unaware when s/he is

annotating an element. There are two potential problems with the annotation on the contained

element:

1) it may conflict with the annotation on the container element. In a conflict, the two annotations

have mutually exclusive PCs and there are two possible outcomes: a) if the container element

is present, then the contained element is not, or b) if the container element is removed, the PC

of the contained element will never be evaluated so it does not matter. Either way, it means

that the contained element will never be present, which means that the model is semantically

incorrect52.

2) the annotation is redundant. There are two possible scenarios: a) the contained element is

annotated with a PC which is inferred by the PC of the container element, or b) the container

element is annotated with a PC which is inferred by the PC of the contained element. In the

first scenario, the contained element will always be present. In the second scenario, the

annotation means that it is impossible to have the contained element without the container

element; however, this is always true by the containment property. In both cases, the

annotator may not expect this result if s/he believes that the presence of the model element is

being controlled solely by the selection of the feature. The overriding effect of the container

element may lead to a semantic error if the annotator is unaware of the container element

annotation or its relationship to the annotation on the contained element. Even if there are no

semantic errors, it still results in additional annotations.

In general, the best solution to the hidden annotation effects problem is to enable tool support for

propagating and visualizing implicit annotations on all model elements. The implicit annotations

would be based on what is annotated on higher-level elements; any constraints from the feature

model will still remain hidden and must still be taken into account by the annotator.

Additional processing can result in annotation inconsistencies if the annotator is unaware of the

effects of automatic transformations, such as simplifications. Current additional processing steps

52 The inclusion of an element in the model indicates that the modeler expects it will be present under some
condition.

 137

only handle unambiguous redundancy, such as removing decision nodes which have a single

outflow. There are cases where the redundancy is not clear, such as removing empty or

unreferenced enumerations as recommended in section 7.4.2. These cases can be handled by

explicit annotations, but their common occurrence suggests that adding additional processing

could improve the usability of the development tool. The problem occurs when the annotator is

unsure about which additional processing rules are available and makes assumptions about them.

Such assumptions can possibly lead to redundant or omitted annotations. For example, if a class

is contained by another class through composite aggregation, it is unclear what the effect on the

contained class should be if the container class is removed. Run-time semantics state that the

lifetime of the contained object is dependent on the container object; however, there is no such

restriction at build-time. The correct outcome is determined by the intent of the modeler; is the

composite aggregation intended to denote variability in the structure or is the modeler attempting

to describe run-time semantics? Without any explicit annotations, the removal of the container

class will cause the composite aggregation to be removed, but the contained class to remain.

Therefore, the tool supports build-time semantics by default. In order to have the contained class

removed also, the contained class must be annotated with the same PC as the container class. A

few examples in the model suggest that the run-time semantics may be more common. For

example, the Wishlist class contains the WishlistItem class. Since the wish list is composed of

several wish list items, the contained class should be removed if the container class is removed;

however, there are an insufficient number of occurrences to determine if this is the definitive

case. On the other hand, it should also be noted that no cases of the build-time semantics were

observed in the models. It is these unclear instances of redundancy which can cause the annotator

to make mistakes which lead to inconsistent results during model template instantiation. There are

a few possible solutions to this problem:

1) Restrict simplifications to unambiguous redundancies only; the unclear cases can be handled

by explicit annotations. This is a safe approach, but the additional annotations can reduce the

usability of the tool under certain circumstances.

2) Implement simplifications based on frequently occurring scenarios. This approach results in a

reduction of effort by essentially automating processing on the most common cases. The

other cases, however, will require explicit annotations53. The assumption is that the

53 The explicit annotations may be non-intuitive. For example, if contained elements were automatically
removed based on the container element, the only way to override this behaviour would be to annotate the
container class and the contained class with mutually exclusive PCs.

 138

occurrence of the most common case will greatly exceed the other cases, leading to a net

reduction in annotation effort.

3) Implement a set of additional processing rules which can be selected and configured by the

annotator. For example, the annotator can choose if they want containment chain closure to

be applied during template instantiation. This may be implemented as a special stereotype to

be annotated on certain elements or as a set of global options that control the application of

additional processing steps during template instantiation. This approach is a compromise

since it leaves the decision up to the annotator; it also implicitly provides a documentation set

for the additional processing steps.

4) Provide better documentation for the additional processing steps to allow the annotator to

understand what their effects and limitations are.

Finally, two more general solutions are recommended to help reduce the problems with

annotation consistency. The first solution is to provide more computer-aided assistance in the

form of wizards, pattern applications, and auto-completion mechanisms for annotations. These

tools can capture best practices and common scenarios so that the user can focus on using the tool

to model the domain, as opposed to learning all of the tool subtleties. The second solution is to

provide quick previews of template instances. It would consist of a configuration view placed

adjacent to a model template view. It allows the user to experiment with different configurations

to observe the effects of the annotations. Ideally, the preview is updated in real-time as the

configuration is modified and the corresponding effects on multiple model templates can be

viewed simultaneously.

The annotation consistency problem is a good representation of one of the key challenges in the

design of the feature-based model template approach. The challenge is to decide how much

automation to implement in the tool for additional processing. There are two extremes: 1)

minimize the amount of explicit annotations and allow the additional processing to handle the

rest, or 2) explicitly annotate everything. In the first case, the main benefit is that fewer explicit

annotations lead to reduced effort for the modeler and a lower probability for annotation error.

The IPCs tend to be adequate for guaranteeing the well-formedness of a template instance in the

absence of annotation errors, hence the chance for syntax problems is greatly reduced. On the

other hand, the reliance on the additional processing steps can introduce unintended side-effects,

which may lead to semantic errors in the model. The second case is the exact opposite due to the

increased number of explicit annotations. Syntax errors will become more likely since the

 139

annotator will have to take into account all valid configurations; on the other hand, the explicit

annotations are a clear declaration of intent by the annotator, so semantic errors are less likely. In

the end, it is the position adopted by the users which factors heaviliy into deciding what

additional processing steps should be supported by the development tool and how the support

should be implemented.

7.5 Summary

In this chapter, an analysis and evaluation of the feature-based model templates approach was

presented. The chapter began with an analysis of variability modeling in feature models, which

demonstrated the importance of binding time analysis when translating requirements into feature

models. This was followed by an analysis of the annotations in the model templates and the

discovery of annotation categories; the annotation categories illustrate certain patterns which may

be leveraged in the future to improve the development of model templates. Based on the

experiences from the e-commerce model and the analysis in this chapter, several candidates for

modeling guidelines and recommendations for process and tool improvement were proposed.

 140

8 Conclusion

The pervasiveness and criticality of software applications in modern times has increased the

demand for highly customized, high quality, industrial-strength software with great complexity.

The large number of software project failures, as reported by various studies, suggests that

traditional approaches to software development lack the capability needed to deal with this

software complexity. The MDSPL approach is touted to address some of the issues raised by

software complexity, such as reducing impedance mismatch through domain analysis, using

models to better characterize discrete states, and enabling behaviour tracing and validation

through model simulation [Bru95]. The initial cost of building reusable assets during DE may be

amortized over the increased speed at which individual products may be created and the higher

quality of product that may be produced in AE. The novelty of feature-based model templates is

the management of the variability through a separate feature model, coupled with the super-

imposed variants which allow template instantiation to be achieved by removing elements and

post-processing transformations.

This thesis presented an example of an e-commerce solution which was used to evaluate the

MDSPL approach, as well as an analysis of the development process. The goal was to

demonstrate the viability of the approach on an example inspired by a realistic application, as

well as to use the workflows in the example to determine characteristics of the process and the

tool which could be improved. This chapter presents a summary of the research findings, a

discussion on areas for future work, and a concluding remark.

8.1 Summary

The example that was created and described in the thesis is based on a subset of the e-commerce

domain, specifically B2C e-shops which sell goods or services using a fixed purchase price. The

domain analysis resulted in a feature model and a set of model templates.

The feature model consisted of over 200 features which were divided into two main categories:

store front and business management. Store front features dealt with web site features, many of

which were accessible by the customer and impacted their shopping experience directly. Business

management features dealt with back-office operations and business policies.

 141

The model templates consisted of two class diagrams and seventeen activity diagrams. The two

class diagrams were the store front entity model and the service model. The store front entity

model consisted of regular class diagram elements, such as classes, attributes, enumerations,

associations and composite aggregations, and contained entities which represented the products

offered in the e-shop and related to a customer’s shopping experience. The service model

depicted the system from a higher-level of abstraction, using stereotypes to represent components

and services. The model described the relationship between the store front and the other

stakeholders.

The activity diagrams depicted workflows which related primarily to the store front area of the e-

shop, including site browsing, registration, customer administration tasks, wish list management,

item purchase, and order processing. The set of activities included in the model is sufficient to

allow a customer to shop and make a purchase at the e-shop, but it should not be considered a

complete or definitive set of all possible workflows in an e-shop. The amount of annotations

varied depending on the activity and the process of building the model templates resulted in some

new features being discovered.

The evaluation of the development process using the e-commerce example was divided up into

multiple sections. The first section described an example of extending the feature model and

illustrating the importance of taking binding time and the decision making process into

consideration when modeling a feature.

The second section described the results of the annotation analysis, which examined all of the

annotations in the model templates to discover common annotation patterns specific to the model

type. For class diagrams, adjacent model elements tend to be annotated with different features.

For the entity model, annotations were made on almost all types of model elements, such as

classes, attributes, enumerations and associations. Conversely for the service model, annotations

were made on the stereotyped components, services and interfaces only; dependency and

implementation relationships were never annotated. For activity diagrams, a combination of

individual elements, such as actions and data nodes, and sets of elements, such as decision

branches and sequential paths, were annotated.

The third section presented a series of guidelines for the development process based on the

experience with the e-commerce example. The guidelines are summarized as follows:

 142

• Subsequent sets of decisions should be modeled using the subfeature relationship, where

features with later binding times should be placed at lower depths. In the general case, the

subfeature relationship is used to decompose features into greater detail.

• The widest group relationship, inclusive-or, should be used at an early binding time unless it

is restricted by the domain.

• The modeling of feature groups is dependent on the context. In class diagrams, feature groups

can be modeled as an inheritance hierarchy, if additional information needs to be attached the

type value, or enumeration values, if the type value is used solely for controlling process

behaviour. In activity diagrams, feature groups depend on the number of features to be

selected at build time and run time, as well as if the features have to be ordered.

o A decision node can be used if there are multiple features selected at build time but

only a single feature selected at run-time.

o A parallel branch can be used if there are multiple features selected at run-time but

there is no ordering.

o A sequential set of actions can be used if multiple features are selected at run-time

and the features are ordered.

• Metaexpressions can be used to express variability with a single model element instead of

using multiple model elements with multiple presence conditions.

The fourth section presented a series of recommendations, which can be summarized as follows:

• The ability to express ordering in feature models and activity diagram model templates would

be a useful feature; it is recommended that this be investigated further.

• Adding model template semantics for class diagrams which include simplification rules for

enumerations, abstract classes and interfaces.

• Adding model template semantics for activity diagrams which include an IPC definition for

data stores, additional stereotypes for the frequently occurring decision branch and sequential

path annotation patterns.

• Handling hidden knowledge issues by enabling the propagation and visualization of implicit

annotations.

• Handling unexpected behaviour resulting from additional processing steps by either doing

nothing, implementing additional processing steps for the most frequently occurring

 143

annotation patterns only, allowing the user to configure the set of additional processing steps

to apply, or improving the documentation for additional processing steps.

• Addition of a computer-assisted annotation feature and a quick preview mechanism for

testing annotated model templates.

8.2 Future Work

There are many opportunities to build upon the work described in the thesis. An immediate

follow-up to this work is to implement the recommendations presented, re-annotate the model

templates, and perform the annotation analysis again. The evaluation can be used to gauge the

effectiveness of the recommendations.

In terms of the example and the analysis, there are many dimensions which it can be extended

along. One possibility is to extend the features of the e-shop; the activity diagram model

templates suggest a series of features which can be used to extend the feature model. Afterwards,

new areas of the e-shop can be explored, such as the warehouse or supply chain capabilities.

Furthermore, non-functional requirements, such as performance and scalability can also be

considered. A second possibility is to pick another type of e-commerce site, such as a B2B site or

an auction-based service, perform domain analysis, and extend the feature model to include

related features. The interest will be in the configuration process, which will most likely to be

multi-level since the first level would configure a type of site and the second level would be used

to configure a specific e-commerce product. This would be a useful example to test the

effectiveness of multi-level configuration on a realistic example. A third possibility is to create an

extensive example for another domain, such as Voice over Internet Protocol (VoIP) telephony

systems. The same analysis would be performed and the results could be compared to the e-

commerce example. Finally, one could also extend the analysis methodology. In the annotation

analysis, annotation categories are only studied from the perspective of the model elements. In

addition, there was little focus on classifying the features in the analysis; a more detailed

classification for the features used by the annotations could be useful in gaining a better

understanding of the annotation categories.

In terms of GSD, there are many other areas to be explored. One direction is to examine the effect

of a multi-stakeholder scenario, where specific decisions can be made by different stakeholders at

different times. This is an extremely complex process since it involves categorizing features

 144

based on stakeholders, designing a framework to describe the role of stakeholders, determining

how one stakeholders’ feature can affect another and how to resolve conflicts should they occur

during the configuration process. The complexity of the problem increases even further if it is

assumed that any stakeholder can configure the feature model at anytime and that the process

occurs in a distributed environment. This scenario is referred to as a distributed configuration.

Another direction is based on the current trend in the research group, which is to adopt ontologies

for modeling the relationships in a domain. The domain analysis performed in the example can be

applied to the creation of an ontology. One possibility is to use ontologies as the primary

representation of a domain and to generate feature models as views on the ontology. This idea is

currently being explored by the research group.

The final direction proposed for future work is to focus on the code generation aspect of the

process. The template instances represent valid models for the concrete product; however, a

mapping between the models and the implementation code is still needed. The implementation

will need to be in the form of a reusable asset, like a code template. This particular feature may

allow the full scope of the MDSPL approach to be realized. Automated implementation

generation tends to be one of the most requested features for the tool.

8.3 Closing Remarks

History has shown that the most successful paradigms in software engineering, such as object-

oriented design, can influence all aspects of the field and change the way we think about

software. GSD is a new paradigm in the field of software engineering. The success of this

research can be gauged by the influence it has on other software researchers and practitioners, and

their willingness to try it out for themselves in academia and industry.

 145

Appendix A Additional Constraints in the E-Shop Feature Model

This appendix describes the additional constraints that are present in the domain. These additional
constraints are based on the domain analysis from chapters 4 and 5. Some of the relationships are
explicitly stated in the body, while others were implied.

Additional constraints define relationships between features which are not expressed by the
structure of the model. Constraints typically take the form of an implication. There are two types
of additional constraints: strong constraints and weak constraints. It is interesting to note that very
few feature relationships in the e-shop model are bidirectional. In most cases, the relationship was
different depending on the direction.

A strong constraint takes the form of A requires B or A excludes B. In the requires case, the
selection of A implies that B must also be selected. In the excludes case, the selection of A
implies that B must be eliminated. Strong constraints must be obeyed because one feature
depends on the other feature for its definition or operation. In other words, one feature will not
work without the other.

A weak constraint takes the form of A recommends B or A discourages B. In the recommends
case, if A is selected, then B should also be selected because the only purpose of selecting A is to
facilitate B; otherwise, A is meaningless. In the discourages case, if A is selected, then B should
be eliminated because there is no purpose of having B if A is selected.

Another interesting relationship is independence, which takes the form A is independent of B. It
states that the selection of A has no implication on the selection of B. There are many cases in the
model where there is a strong relationship one way, but an independence relationship the other
way. In these cases, it usually means that one of the features has a much wider scope of
application than the other; for that reason, many features may depend on the feature with the
wider scope.

Table A.1 describes the additional constraints in the e-shop feature model.

146

Table A.1: Additional Constraints

Feature(s) A Feature(s) B Relationship Context
A requires B Special offers consist of a series of discounts.

SpecialOffers (4.1.2) Discounts (5.2.2.2) B is independent of A Supporting discounts has no implication on if the e-shop
decides to display special offers on the home page.

A excludes B

If either the registration enforcement feature or the registration
to buy feature is eliminated, there is no way to force a customer
to login to checkout; therefore, a registered checkout cannot be
supported. !RegistrationEnforcement

(4.2.1) OR !RegisterToBuy
(4.2.1)

RegisteredCheckout (4.5.2.1)

B excludes A

If the registered checkout feature is selected, then both features
in A must be selected to enable support for enforcing the login;
the selection of register to buy implies the selection of
registration enforcement through the subfeature relationship.

A recommends B

The only purpose of storing a shipping address is if the e-shop
offers shipping on its products; however, the shipping process
does not require the address to be stored in the profile since it
can be manually entered every time. ShippingAddress (4.2.2) Shipping (5.1.1.2)

B is independent of A Supporting shipping has no implication on if the e-shop decides
to store this information in the profile.

A recommends B The only purpose of storing credit card information in a profile
is if the e-shop accepts credit card as a form of payment.

CreditCardInformation (4.2.2) CreditCard (4.5.2.4)
B is independent of A

The decision to store credit card information in a profile is
independent of accepting credit card as a payment method since
the credit card information can be solicited during checkout.

A recommends B The only purpose of the security info is to be used in fraud
detection and verification of the authenticity of payment.

SecurityInfo (4.2.2) FraudDetection (4.5.2.4)
B is independent of A

Many fraud detection schemes require the security info on the
credit card, but it does not have to be stored in the profile. In
fact, storing it in the profile might be a bad idea.

A recommends B
The only purpose of the demographic data is to use it for
promotional considerations; however, it can be collected
without being used in the targeting purposes. Demographics (4.2.2) Demographics (5.2.1)

B requires A
Using demographics information for targeting requires the
information to be available; demographics is only stored in a
customer profile.

147

Table A.1: Additional Constraints (continued)

Feature(s) A Feature(s) B Relationship Context

A recommends B
The only purpose of the personal information is to use it for
promotional considerations; however, it can be collected
without being used in the targeting purposes. PersonalInformation (4.2.2) PersonalInformation (5.2.1)

B requires A
Using personal information for targeting requires the
information to be available; personal information is only stored
in a customer profile.

A is independent of B
Preferences are used primarily by the customer to customize the
interface. The decision to use the information for targeting is
completely independent. Preferences (4.2.2) CustomerPreferences (5.2.1)

B requires A
Using customer preferences for targeting requires the
information to be available; preferences are only stored in a
customer profile.

A recommends B
Although it is possible to store a quick checkout profile without
offering a quick checkout option, the quick check out profile
would serve no other purpose. QuickCheckoutProfile (4.2.2) QuickCheckout (4.5.2.1)

B requires A The profile is required during the quick checkout process.

A requires B Associating registration profile information to behavioural data
only makes sense if the latter is collected. UserBehaviourTracking-

Information (4.2.3) UserBehaviourTracking (4.7)
B is independent of A The collection of customer behavioural data has no implication

on whether or not it is associated to profile information.

A requires B In order to offer and sell electronic goods, the corresponding
fulfillment method is required.

ElectronicGoods (4.3.1.1) ElectronicGoodsFulfillment
(5.1.2) B recommends A

It is possible to support the infrastructure for carrying electronic
goods without offering them, but there is no other purpose for
the fulfillment feature.

A requires B In order to offer and sell physical goods, the corresponding
fulfillment method is required.

PhysicalGoods (4.3.1.1) PhysicalGoodsFulfillment (5.1.1)
B recommends A

It is possible to support the infrastructure for carrying physical
goods without offering them, but there is no other purpose for
the fulfillment feature.

148

Table A.1: Additional Constraints (continued)

Feature(s) A Feature(s) B Relationship Context

A requires B In order to offer and sell services, the corresponding fulfillment
method is required.

Services (4.3.1.1) ServicesFulfillment (5.1.3)
B recommends A

It is possible to support the infrastructure for services without
offering them, but there is no other purpose for the fulfillment
feature.

A requires B Physical and electronic products require the size attribute as
part of their description. PhysicalGoods (4.3.1.1) OR

ElectronicGoods (4.3.1.1) Size (4.3.1.8)
B recommends A Size is used to describe physical and electronic goods only.

A requires B Physical products require the weight attribute as part of the
description for shipping purposes. PhysicalGoods (4.3.1.1) Weight (4.3.1.9)

B recommends A Weight is used to describe physical goods only.

A requires B Availability information is determined through the information
provided by inventory tracking. Availability (4.3.1.10) InventoryTracking (5.4)

B recommends A One of the primary purposes of inventory tracking is to provide
this data.

A requires B In order to support a page that lists categories, the e-shop must
support categories CategoryPage (4.3.5) Categories (4.3.2)

B recommends A It is very useful to have some mechanism for rendering the
categories, but it is not absolutely essential.

A requires B The wish list must support either guests or registered users,
although this is an indirect way of expressing this. WishList (4.4) OR

!Registration (4.2) WishListSavedAfterSession (4.4) B is partially
independent of A (see
relationship context)

Wish list saved after session implies the wish list feature
because of subfeature relationship, but it is independent of
registration.

A requires B E-mailing a wish list is a feature which is only available to
registered users. EmailWishList (4.4) Registration (4.2)

B independent of A The registration feature has no implication on whether or not
customers can e-mail their wish list.

A requires B
Since visitors can only view wish lists on the server and only
registered users wish lists stored on servers, setting permissions
on wish lists requires registered users with wish lists. Permissions (4.4) Registration (4.2)

B is independent of A The registration feature has no implication on whether or not
customers can set permissions on their wish list.

149

Table A.1: Additional Constraints (continued)

Feature(s) A Feature(s) B Relationship Context

A requires B The selection of the shipping feature allows other options to be
selected which are used for the shipping options. ShippingOptions (4.5.2.2) Shipping (5.1.1.2)

B is independent of A Support for shipping is independent of allowing customers to
make choices about the shipping options.

A requires B

The product returns feature only supports physical goods. In
order to have the return functionality, there is also a
dependency on a warehouse management system, which is
implicitly provided by the physical goods feature. ProductReturns (4.6.2) PhysicalGoods (4.3.1.1)

B is independent of A An e-shop which offers physical products is not obligated to
accept returns from customers.

A requires B In order to retrieve orders for a customer, they must be
registered and logged in. OrderStatusViewing (4.6.3) Registration (4.2)

B is independent of A The registration feature has no implication on whether or not
customers can view their previous orders.

A requires B Tracking a shipment requires that the e-shop support shipping
products. ShipmentStatusTracking

(4.6.4) Shipping (5.1.1.2)
B is independent of A The shipping feature has no implication on whether or not a

customer can track their shipments.

A requires B The use of wish list data for targeting purposes requires the e-
shop to support wish lists. WishListContent (5.2.1) WishList (4.4)

B is independent of A The decision to support wish lists is made independently of
using it for targeting.

A requires B The use of previously visited pages for targeting purposes
requires the e-shop to collect data about page traversals. PreviouslyVisitedPages (5.2.1) LocallyVisitedPages (4.7.1) OR

ExternalReferringPages (4.7.1) B is independent of A Collecting the page traversal data has no implication on how the
data is used.

A requires B If the shipping address is used as an eligibility requirement for a
discount, the system must support shipping. ShippingAddress (5.2.2.2) Shipping (5.1.1.2)

B is independent of A Shipping products has no implication on whether or not it is
used to determine discount eligibility.

150

Table A.1: Additional Constraints (continued)

Feature(s) A Feature(s) B Relationship Context

A requires B Personalized e-mails require information from the registration
profile. Personalized (5.2.2.4) Registration (4.2)

B is independent of A Registration has no implication on if the profile data is used to
personalize an e-mail.

A requires B The warehouse management system and fulfillment system
provides the data that is required by inventory tracking. InventoryTracking (5.4) WarehouseManagement (5.1.1.1)

AND FulfillmentSysten (5.7) B is independent of A Supporting the features has no implication on whether or not
the store should perform inventory tracking.

A requires B The information from the supplier is needed to make stock
replenishment decisions. Procurement (5.5) ProcurementSystem (5.7)

B recommends A There is no reason to link to the suppliers’ systems if it is not
being used for re-ordering purposes.

A requires B
The information provided by inventory tracking is the most up
to date and linked with the warehouse, which the system
requires if it has to make ordering decisions automatically. Automatic (5.5) InventoryTracking (5.4)

B is independent of A The use of inventory tracking has no implication on whether or
not stock is replenished automatically.

A requires B The reporting and analysis depends on the data collected
through user behaviour tracking.

ReportingAndAnalysis (5.6) UserBehaviourTracking (4.7)
B is independent of A

Tracking user behaviour has no implication on how the tracked
data is used. (although could be recommended – used for: this,
targeting criteria)

 151

Appendix B Annotation Analysis Data

This appendix includes all of the raw data collected for the annotation analysis. The analysis
consisted of assessing each annotation and determining how it was used. This data is analyzed
and interpreted in section 7.2.

Tables B.1 and B.2 describe the annotations in the class diagrams. Adjacent model elements tend
to have different annotations; therefore, annotations are identified by the individual model
elements names. The context defines where the annotation can be found or how it is used.

Table B.1: Class Diagram (Store Front Entity Model) Annotation Analysis

Feature Model Element (context)
AssociatedAssets abstract class (Asset)
Availability enumeration (Availability), attribute (in PhysicalGoods)
BillingAddress association (PaymentInfo to Address)
CarrierSelection attribute (in ShippingInstructions)
Categories class (Category)
City enumeration value (AddressResolutionTypes)
COD class (subclass of PaymentInfo)
Country enumeration value (AddressResolutionTypes)
CreditCard enumeration (CreditCardTypes), class (PaymentInfo)
CustomTaxation class (TaxRule)
DebitCard class (subclass of PaymentInfo)
DetailedDescription attribute (in Product)
Documents class (Documents)
ElectronicCheque class (subclass of PaymentInfo)
ElectronicGoods class (ElectronicProduct, subclass of Product)
FaxMailOrder class (subclass of PaymentInfo)
FixedRateTaxation MultiplicityME
GuestCheckout class (GuestCustomer)
Image enumeration value (MediaTypes), attribute (in Product), attribute (in

EShopArtifact)
Language enumeration (Languages), attribute (in RegisteredCustomer)
MediaFiles class (Media), enumeration (MediaTypes)
MultipleClassification MultiplicityME
MultiLevel composite (to Category – self-containment)
MultipleWishLists MultiplicityME, attribute (in Wishlist)
PastCustomersAlsoBought association (self-directed to Product)
Percentage class (PercentageTaxRule)
PhoneOrder class (subclass of PaymentInfo)
PhysicalGoods class (PhysicalProduct, subclass of Product)
PurchaseOrder class (subclass of PaymentInfo)
QualityofServiceSelection attribute (in ShippingInstructions)
QuickCheckout class (CheckoutProfile)
Region enumeration value (AddressResolutionTypes)
Registration class (RegisteredCustomer)
RuleBasedTaxation 3x attributes (in TaxRule), enumeration (AddressResolutionTypes)
Services class (Service, subclass of Product)
Shipping class (ShippingInstructions), enumeration (Carriers), enumeration

(ServiceTypes)
ShippingAddress association (RegisteredCustomer to Address)

 152

Table B.1: Class Diagram (Store Front Entity Model) Annotation Analysis (continued)

Feature Model Element (context)
Size 3x attributes (in PhysicalProduct), 1 attribute (in ElectricalProduct)
Sound enumeration value (MediaTypes)
SubstituteProduct association (self-directed to Product)
Surcharge class (SurchargeTaxRule)
Video enumeration value (MediaTypes)
Weight 1 attribute (in PhysicalProduct)
WishLists 2x classes (WishList, WishListItem), MultiplicityME

Table B.2: Class Diagram (Service Diagram) Mapping Analysis

Feature Model Element (context)
CreditCard operation (in IPaymentFrontend)
CustomShippingMethod service (InHouseShipping)
CustomTaxation service (TaxCalculator)
DebitCard operation (in IPaymentFrontend)
ElectronicCheque operation (in IPaymentFrontend)
InventoryTracking 2x operations (in IWarehouseFrontend)
MultipleShipments operation (in IWarehouseBackend)
OrderStatusViewing operation (in IOrder)
ProductReturns 3x operations (in IWarehouseBackend), 2x operations (in

IPaymentBackend, in IOrder)
Shipping interface (IShipping), operation (in IWarehouseBackend)
ShippingGateways service (ShippingGateway)
TaxGateways service (TaxGateway)
WarehouseManagement service (Warehouse), 2x interfaces (IWarehouseBackEnd,

IWarehouseFrontEnd)

Many adjacent model elements in activity diagrams are annotated with the same feature;
therefore, it was convenient to define some descriptive notation for these situations. Under the
mode elements annotated column in table B.3, the following descriptions were used:

• "[branchLabel] branch of DecisionNodeName decision node" is used to describe a set of

model elements which correspond to a branch off a decision node. The set consists of an
action or call behaviour and the adjacent flows. If the term "bypass branch" is used, the set
consists of a single flow from the decision node to the next decision or merge node.

• "action (context)" is used to describe a single action being annotated. The context is defined
as either disjunction, which means that the PC is a disjunction of multiple features, or
sequential path, meaning that the action is part of a chain of actions;

• "sequence (elements)" is used to describe a set of nodes or flows that occur sequentially. The
elements define the model elements which are included in the sequence.

• "activity (activityName)" is used to describe the annotation of an activity.
• "control flow" is used to indicate that the annotation applies to a single flow. This is used

primarily for flow type correction.

 153

Table B.3: Activity Diagram Annotation Analysis

Feature Diagram Model Elements Annotated
AdvancedSearch SearchProduct [advanced] branch of Search Type

decision node
AutomaticUpdates CheckoutItems action (sequential path)
BasicSearch SearchProduct [basic] bypass flow of Search Type

decision node
CarrierSelection CheckoutItems action (disjunction with

QualityofServiceSelection)
CarrierSelection CreateQuickCheckoutProfile action (disjunction with

QualityofServiceSelection)
Categories SelectProductFromCatalog sequence (action, flow, central

buffer), TypeME on central buffer,
[yes] branch of Is Category
decision node, [no] branch of More
Subcategories node

Coupons CheckoutItems action (sequential path)
Coupons CreateOrder [yes] branch of Coupons Submitted

decision node, data store + adjacent
flow

Discounts CheckoutItems action (sequential path)
ElectronicPage CheckoutItems action (sequential path), data store

+ adjacent flow
Emails FindProduct [e-mail] branch of Product Source

decision node
EmailWishList SendWishList activity (SendWishList)
EmailWishList StoreFront [sendWishList] branch of Select

Action node
GuestCheckout CheckoutItems [guest] bypass flow of Customer

Type decision node
Multilevel SelectProductFromCatalog [yes] branch of More Subcategories

node
MultipleWishLists SelectProductFromWishList sequence (control flow, central

bufffer, control flow)
!MultipleWishLists SelectProductFromWishList control flow
MultipleWishLists SendWishList sequence (2x actions, 2x central

buffers, 4x flows), incoming flow
from data store

!MultipleWishLists SendWishList control flow
OrderStatusViewing CheckOrderStatus activity (CheckOrderStatus)
OrderStatusViewing StoreFront [checkOrderStatus] branch of

Select Action node
ProductReturns RefundOrder activity (RefundOrder)
ProductReturns StoreFront [refundOrder] branch of Select

Action node
ProductVariants FindProduct TypeME, sequence (3x actions, 2x

central buffers, adjoining flows)
QuickCheckout CheckoutItems sequence (2x actions, 2x flows),

sequence (2x flows, 1x actions),
[quick] bypass flow of Checkout
Type decision node

QuickCheckoutProfile CreateQuickCheckoutProfile activity
(CreateQuickCheckoutProfile)

 154

Table B.3: Activity Diagram Annotation Analysis (continued)

Feature Diagram Model Elements Annotated
QuickCheckoutProfile UpdatePersonalProfile [quickCheckoutProfile] branch of

Profile Type decision node
(consists of the entire region up to
the final merge node)

QualityofServiceSelection CheckoutItems action (disjunction with
CarrierSelection)

QualityofServiceSelection CreateQuickCheckoutProfile action (disjunction with
CarrierSelection)

RegisteredCheckout CheckoutItems [registered] out flow of Customer
Type decision node, [regular] out
flow of Checkout Type decision
node

Registration CreateWishList [registered] branch of Customer
Type decision node, data store +
adjacent flow

Registration RegisterWithTheStore activity (RegisterWithTheStore)
Registration ResetPassword Activity (ResetPassword)
Registration SelectProductFromWishList [registered] branch of Customer

Type decision node, data store +
adjacent flow

Registration StoreFront 3x branches ([registerWithStore],
[updateProfile], and
[resetPassword] branch of Select
Action node

Registration UpdatePersonalProfile activity (UpdatePersonalProfile)
Searching FindProduct [search] branch of Product Source

node
Searching SearchProduct Activity (SearchProduct)
Shipping CheckoutItems 2x actions
Shipping CreateQuickCheckoutProfile action (sequential path)
Shipping ProcessOrder [no] branch of Can Order Be

Completely Fulfilled decision node,
outgoing flow to data store

WishLists CreateWishList activity (CreateWishList)
WishLists FindProduct [wishlist] branch of Product Source

decision node
WishLists SelectProductFromWishlist activity

(SelectProductFromWishlist)
WishLists StoreFront [createWishList] branch of Select

Action node
WishListSavedAfterSession CreateWishList [guest] branch of Customer Type

decisioni node, data store +
adjacent flow

WishListSavedAfterSession SelectProductFromWishList [guest] branch of Customer Type
decision node, data store + adjacent
flow

 155

References

[Abl06] Shopping Cart Software: eCommernce Solutions & Hosting, www.ablecommerce.com,
Last accessed: January 3, 2006.

[Alu01], D. Alur, J. Crupi, D. Malks, Core J2EE patterns: best practices and design strategies,
Sun Microsystems Press, 2003.

[Ant04] M. Antkiewicz, K. Czarnecki, FeaturePlugin: feature modeling plug-in for Eclipse, In
Proc. Eclipse Technology eXchange (ETX) Workshop, OOPSLA’04.

[Boo91] G. Booch, Object-oriented design with applications, Benjamin/Cummings, 1991.

[Bru95] G. Bruno, Model-based software engineering, Chapman & Hall, 1995.

[Cut05] Cutter Consortium, Software project success and failure,
http://www.cutter.com/press/050824.html, 2005. Last accessed: January 3, 2006.

[Cza00] K. Czarnecki, U.W. Eisenecker, Generative programming: methods, tools, and
applications, Addison-Wesley, 2000.

[Cza05a] K. Czarnecki, Overview of generative software development, In Proc. Unconventional
Programming Paradigms (UPP), LNCS 3566, Springer, 2005, pp. 313–328.

[Cza05b] K. Czarnecki, M. Antkiewicz, C.H.P. Kim, S. Lau, K. Pietroszek, Model-driven
software product lines, In companion proc., OOPSLA’05.

[Cza05c] K. Czarnecki, S. Helsen, U. Eisenecker, Formalizing cardinality-based feature models
and their specialization, In Software Process Improvement and Practice, Vol. 10, No. 1, 2005, pp.
7-29.

[Cza05d] K. Czarnecki, S. Helsen, U. Eisenecker, Staged configuration through specialization
and multi-level configuration of feature models, In Software Process Improvement and Practice,
Vol. 10, No. 2, 2005, pp. 143-169.

[Cza05e] K. Czarnecki, C.H.P. Kim, Cardinality-based feature modeling and constraints: a
progress report, In Proc. International Workshop on Software Factories, OOPSLA’05.

[Cza05f] K. Czarnecki, M. Antkiewicz, Mapping features to models: a template approach based
on superimposed variants, In proc. International Conference on Generative Programming and
Component Engineering (GPCE’05), LNCS 3676, Springer, pp. 422-437.

[Cza05g] K. Czarnecki, M. Antkiewicz, C.H.P. Kim, S. Lau, K. Pietroszek, FMP & FMP2RSM:
Eclipse plug-ins for modeling features using model templates. In companion proc. OOPSLA’05.

[Fow03a] M. Fowler, Patterns of enterprise application architecture, Addison-Wesley, 2003.

[Fow03b] M. Fowler, UML distilled: a brief guide to the standard object modeling language,
Addison-Wesley, 2004

 156

[Gam95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable
object-oriented software, Addison-Wesley, 1995.

[Gre04] J. Greenfield, K. Short, S. Cook, S. Kent, J. Crupi, Software factories: assembling
applications with patterns, models, frameworks, and tools, Wiley, 2004.

[Hos05] Shopping Cart Solutions, http://www.hostpronto.com/article/15, 2005. Last accessed:
November 3, 2005

[Ibm05] IBM, Welcome to the WebSphere Commerce information center, International Business
Machines, publib.boulder.ibm.com/infocenter/wchelp/v5r6/index.jsp, 2005. Last accessed:
January 3, 2006.

[Inv03] Inventoryops, Warehouse Management Systems (WMS), INVENTORYOPS.COM,
http://www.inventoryops.com/warehouse_management_systems.htm, 2003. Last accessed:
January 3, 2006.

[Kan90] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-oriented domain analysis
(FODA) feasibility study, Technical Report, Carnegie Mellon University, Software Engineering
Institute, CMU/SE-90-TR-21, 1990.

[Kim05] C.H.P. Kim, K. Czarnecki, Synchronizing cardinality-based feature models and their
specializations, In Proc. European Conference on Model Driven Architecture, LNCS 3748,
Springer, 2005, pp. 331-348.

[Nat68] P. Naur, B. Randell (eds), Software engineering: Report of a conference sponsored by the
NATO Science Committee, Scientific Affairs Division, NATO, 1969.

[Omg05a] OMG, Meta-Object Facility (MOF), Object Management Group,
http://www.omg.org/mof/, 2005. Last accessed: January 3, 2006.

[Omg05b] OMG, Unified Modeling Language: Superstructure version 2.0 formal/05-07-04,
Object Management Group, http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf, 2005.
Last accessed: January 3, 2006.

[Ped03] C.C. Peddy, D. Armentrout, Building solutions with Microsoft Commerce Server 2002,
Microsoft Press, 2003.

[Qua03] T. Quatrani, Introduction to Unified Modeling Language, White Paper, IBM, 2003.
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/2003/intro_rdn.pdf, Last accessed:
January 3, 2006.

[Raj00] W.E. Rajput, E-commerce systems architectures and applications, Artech House, 2000.

[Sha96] M. Shaw, D. Garlan, Software architecture: perspectives on an emerging discipline,
Prentice-Hall, 1996.

[Sta94] Standish Group, CHOAS, The Standard Group Report, http://dimsboiv.uqac.ca/~sboivin/
C2005/8GIF200_Aut05/raw/process/CHAOS_1994.pdf, 2005. Last accessed: January 3, 2006.

 157

[Sun02] SUN, J2EE Patterns Catalog, Sun Microsystems,
http://java.sun.com/blueprints/corej2eepatterns/Patterns, 2002. Last accessed: January 3, 2006.

[Szy03] C. Szyperski, Component software: beyond object-oriented programming, Addison-
Wesley, 2003

[Vis05] VISA, Card-Not_Present Fraud Detection, Visa,
http://usa.visa.com/business/accepting_visa/ops_risk_management/technical_information.html,
2005. Last accessed: January 3, 2006.

[Wik06a] Wikipedia Entry: Demographics, http://en.wikipedia.org/wiki/Demographics. Last
accessed: January 3, 2006.

[Wik06b] Wikipedia Entry: Service, http://en.wikipedia.org/wiki/Service. Last accessed: January
3, 2006.

[Wik06c] Wikipedia Entry: Service, http://en.wikipedia.org/wiki/Stock_Keeping_Unit. Last
accessed: January 17, 2006.

[Wik06d] Wikipedia Entry: Service, http://en.wikipedia.org/wiki/DIVX. Last accessed: January
18, 2006.

[Wit96] J. Withey, Investment analysis of s/w assets for PL, Technical Report, Carnegie Mellon
University, Software Engineering Institute, CMU/SEI-96-TR-010, Software Eng Inst, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

