
Deploying Loosely Coupled, Component-based Applications into
Distributed Environments

Abbas Heydarnoori and Farhad Mavaddat
School of Computer Science,

University of Waterloo,
Waterloo, ON,

Canada, N2L 3G1
{aheydarnoori, fmavaddat}@cs.uwaterloo.ca

Farhad Arbab
Department of Software Engineering,

Centrum voor Wiskunde en Informatica,
P.O. Box 94079, NL-1090 GB,
Amsterdam, The Netherlands

Farhad.Arbab@cwi.nl

Abstract

With significant advances in software development
technologies in recent years, it is now possible to
have complex software applications, which include a
large number of heterogeneous software components
distributed over a large network of computers with dif-
ferent computational capabilities. To run such applica-
tions, their components must be instantiated on proper
hardware resources in their target environments so that
some requirements and constraints are met. This pro-
cess is called software deployment. For large, dis-
tributed, component-based applications with many con-
straints and requirements, it is difficult to do the de-
ployment process manually, and some automated tools
and techniques are required. This paper presents a
graph-based approach for this purpose that is not depen-
dent on any specific component technology and does the
deployment planning with respect to the communica-
tion resources required by application components and
communication resources available on the hosts in the
target environment. In our approach, component-based
applications and distributed environments are modeled
with the help of graphs. Deployment of an application
is then defined as the mapping of the application graph
to the target environment graph.

1 Introduction

In the past, software applications were stand-alone
systems, without any connections to other software ap-
plications. In recent years, software applications have
become more and more complex. They may consist
of a large number of different components distributed
over a large number of computers, and large networks

have moved to the center of software applications. Fur-
thermore, with the arrival of the Internet and new ad-
vances in Internet infrastructure, it is possible to have
completely distributed applications that may consist
of many heterogeneous components. In these appli-
cations, since different components provide their func-
tionality with different constraints and requirements,
they should be installed on proper hardware resources
in the distributed environment so that their constraints
are satisfied and they provide the desired quality of ser-
vice (QoS). In addition, different resources have differ-
ent computational capabilities, making it impossible
to install any kind of software components on them.
Thus, after the development of an application, a se-
quence of activities should be done to place that ap-
plication into its target environment and bring that
application into an executing state. This sequence of
activities is referred to as the software deployment pro-
cess, and includes the following activities: acquiring
the developed application from its producer; planning
where and how different components of the application
should be installed in the target environment, resulting
in a deployment plan; installing the application into its
target environment according to its deployment plan;
configuring it; and finally executing it.

For simple stand-alone software systems that should
be deployed only to a single computer, deployment ac-
tivities can be easily done manually. But, suppose
a complex component-based application is being de-
ployed into a large distributed environment so that
some QoS parameters, such as performance or relia-
bility, are also maximized. In this situation, the de-
ployment process is not so straightforward, and auto-
mated tools and techniques are required for this pur-
pose. Consequently, the software deployment process
has been given special attention both in research and

1

industry in recent years and it is possible to find many
tools and papers addressing different activities of the
software deployment process from different perspec-
tives [1, 2, 3, 4, 5]. However, to our knowledge, few if
any of these deployment approaches notices the char-
acteristics (e.g., behavior, cost, speed, security, etc.)
of interconnections among the components of the ap-
plication. However, these characteristics have signifi-
cant effects on application’s QoS. This paper presents
a graph-based approach that focuses on these proper-
ties for planning the deployment of loosely coupled,
component-based applications into distributed envi-
ronments. For this purpose, the concept of channel
is used to model intercommunications among compo-
nents. A channel is a point-to-point communication
medium with well-defined behavior. A component-
based application is then modeled as a graph of com-
ponents connected by a number of channels, possibly
with different characteristics. A distributed environ-
ment is also modeled as a graph of hosts connected
by different channel types that can exist between ev-
ery two hosts. Then, deployment planning is defined
as the mapping of the application graph to the target
environment graph so that the desired QoS parame-
ter is maximized. As an example of this approach, we
present how this mapping can be effectively done so
that the cost of a deployment is minimized.

This paper is organized as follows: Section 2 talks
about the Reo coordination model which is used
as an example of channel-based coordination models
throughout this paper. In Section 3, the inputs of the
deployment planning process are discussed. In Section
4, our graph-based approach for deployment planning
is described and finally in Section 5, concluding re-
marks are provided.

2 Case Study: Reo Coordination
Model

Reo is a channel-based coordination model that ex-
ogenously coordinates the cooperative behavior of com-
ponent instances in a component-based application [6].
From the point of view of Reo, an application con-
sists of a number of component instances communicat-
ing through connectors that coordinate their activities.
The emphasis of Reo is on connectors, their composi-
tion and their behavior. Reo does not say much about
the components whose activities it coordinates. In Reo,
connectors are compositionally constructed out of a set
of simple channels. Thus, channels represent atomic
connectors. A channel is a communication medium
which has exactly two channel ends. A channel end
is either a source channel end or a sink channel end.

A source channel end accepts data into its channel. A
sink channel end dispenses data out of its channel. Al-
though every channel has exactly two ends, these ends
can be of the same or different types (two sources, two
sinks, or one source and one sink). Reo assumes the
availability of an arbitrary set of channel types, each
with well-defined behavior provided by the user. How-
ever, a set of examples in [6] show that exogenous co-
ordination protocols that can be expressed as regular
expressions over I/O operations correspond to Reo con-
nectors which are composed out of a small set of only
five primitive channel types:

• Sync: It has a source and a sink. Writing a value
succeeds on the source of a Sync channel if and
only if taking of that value succeeds at the same
time on its sink.

• LossySync: It has a source and a sink. The source
always accepts all data items. If the sink does
not have a pending read or take operation, the
LossySync loses the data item; otherwise the chan-
nel behaves as a Sync channel.

• SyncDrain: It has two sources. Writing a value
succeeds on one of the sources of a SyncDrain
channel if and only if writing a value succeeds on
the other source. All data items written to this
channel are lost.

• AsyncDrain: This channel type is analogous to
SyncDrain except that the two operations on its
two source ends never succeed simultaneously. All
data items written to this channel are lost.

• FIFO1: It has a source and a sink and a channel
buffer capacity of one data item. If the buffer is
empty, the source channel end accepts a data item
and its write operation succeeds. The accepted
data item is kept in the internal buffer. The ap-
propriate operation on the sink channel end (read
or take) obtains the content of the buffer.

In Reo, a connector is represented as a graph of
nodes and edges such that: zero or more channel ends
coincide on every node; every channel end coincides
on exactly one node; and an edge exists between two
(not necessarily distinct) nodes if and only if there ex-
ists a channel whose channel ends coincide on those
nodes. As an example of Reo connectors, Fig. 1 shows
a barrier synchronization connector in Reo. In this
connector, a data item passes from A to C only simul-
taneously with the passing of a data item from B to D
and vice versa. This is because of the “replication on
write” property in Reo, and different characteristics of

2

Figure 1. Barrier synchronization connector
in Reo

different channel types. In Reo, it is easily possible to
construct different connectors by a set of simple compo-
sition rules out of a very small set of primitive channel
types [7].

2.1 Example: Modeling a Flight Reserva-
tion System with Reo

In this section, we provide a simple example of a
flight reservation system which is used as the running
example throughout this paper. In this example, the
barrier synchronization connector in Reo is used to
compose a number of Web services together. Web ser-
vices refer to accessing services over the Web [8]. In
this example, they are treated as black-box software
components.

Suppose a travel agency wants to offer a Flight
Reservation Service (FRS). For some destinations, a
connection flight might be required. Suppose some
other agencies offer services for International Flight
Reservation (IFRS) and Domestic Flight Reservation
(DFRS). Thus, FRS commits successfully whenever
both IFRS and DFRS services commit successfully.
This behavior can be easily modeled by a barrier syn-
chronization connector in Reo (Fig. 2). The FRS ser-
vice makes commit requests on channel ends A and B.
These commits will succeed if and only if the reserva-
tions at the IFRS and DFRS services succeed at the
same time. This behavior is because of the semantic of
the barrier synchronization connector in Reo.

3 Deployment Planner Inputs

To generate deployment plans, the following inputs
should be specified: (1) the component-based applica-
tion being deployed, (2) the distributed environment
in which the application will be deployed, and (3) the
user-defined constraints regarding this deployment. In
the following, these inputs are described in more detail.

3.1 Specification of the Application being
Deployed

Any loosely coupled, component-based application
consists of a number of components and interconnec-
tions that connect them. The nature of these compo-
nents and interconnections are irrelevant to this spec-
ification. For example, components could be threads,
processes, services, Java beans, CORBA components,
and so on. In our model, a software component is
viewed as a black-box software entity which reads data
from its input port and writes data to its output port.
How it manipulates the data, or its internal details
are not important. The communication among these
black-box entities is done via their interconnections.
Again, these component interconnections could be any-
thing connecting them; for example, glue code, middle-
ware, connectors, and so on. Regardless of the type
of these interconnections, different components send
data/messages to other components and receive data/
messages from other components of the application.
Thus, it is possible to assume that the communication
among the application components is done via a num-
ber of channels with different characteristics. Specially,
it is proved that the primitives of other communication
models (such as message passing, shared spaces, or re-
mote procedure calls) can be easily modeled by the
channel-based communication model [6].

In summary, the specification of the application
should specify different components of the application
and the channel types among them (e.g., Fig. 2).

3.2 Specification of the Target Environ-
ment

In this paper, the target environment for the deploy-
ment of the application is a distributed environment
consisting of a number of hosts with computational ca-
pabilities (e.g., PCs, laptops, servers, etc.) connected
by a network. Furthermore, the required software for
the communication among the application components

Figure 2. Modeling a flight reservation sys-
tem with Reo

3

Figure 3. A sample target distributed environ-
ment for the deployment of the flight reserva-
tion system

(e.g., the Reo coordination middleware) has been al-
ready installed on them. However, since different hosts
may have different hardware properties, it might be
impossible to install some sorts of communication soft-
ware on them, or they may not be able to support some
features of the communication software installed on
them. It is also possible that different features/versions
of the communication software are installed on differ-
ent hosts because of some reasons (e.g., cost, security,
etc.). With respect to this discussion, available hosts
in the target environment may provide different sorts
of communication resources required to interconnect
applications’ components. In particular, since we are
modeling the interconnections among the application
components as a set of channels with different charac-
teristics, different hosts might be able to support dif-
ferent sets of channel types (or implementations) with
different behaviors and QoS characteristics. Thus, in
this paper, communication resources available on dif-
ferent hosts are different channel types (or implementa-
tions) they can support. As an example, Fig. 3 shows
a sample target environment for the flight reservation
system consisting of five hosts H1 − H5, connected by
a network (solid lines). In this figure, Tds represent
different channel types (or implementations) that dif-
ferent hosts can support. For example, in the case of
using Reo coordination model, T1−T5 could be defined
as the following channel types (or implementations):

• T1: Sync channel type implemented by shared
memory;

• T2: Sync channel type implemented by encrypted
peer-to-peer connection;

• T3: Sync channel type implemented by simple

peer-to-peer connection;

• T4: SyncDrain channel type;

• T5: SyncSpout channel type.

Logically, T1−T3 are all implementations of the same
channel type (Sync). However, their hardware require-
ments and QoS characteristics differ.

3.3 Specification of the User-defined Con-
straints and Requirements

Users may have special requirements and constraints
regarding the deployment of the application that
should be taken into account during the deployment
planning. For example, users may want a special com-
ponent to be run on a certain host, or they may have
certain QoS requirements such as security, cost, or reli-
ability. The deployment planner needs this information
to generate a plan that answers these requirements too.

For example, in the flight reservation system, sup-
pose users require the transfer of data between FRS
and IFRS to be encrypted. In addition, they want
FRS to be run on H1, IFRS to be run on either H2 or
H3.

4 Deployment Planning

After specifying the deployment planner inputs,
they can be used to generate the actual deployment
plan. Fig. 4 shows one sample deployment for the
flight reservation system. As can be seen in this figure,
different components of the application and channels
among them are mapped to different hosts in the tar-
get environment and network links among them for the
purpose of this deployment. In this section, we show
how graphs can be used to solve this mapping problem.

4.1 Modeling the Deployment Planner In-
puts

The deployment planner inputs should be modeled
with well-defined structures in order to be used for ef-
fective deployment planning purposes. In this section,
we show that it is easily possible to develop graph rep-
resentations of these inputs. This graph-based model-
ing can have several advantages. First, it is possible
to have visual representation of the inputs. Second,
graph theory algorithms can help us in designing de-
ployment planning algorithms. Third, it is possible
to use graph theory symbols to formally represent de-
ployment planner inputs and to prove the correctness
of designed deployment planning algorithms.

4

Figure 4. A sample deployment for the flight
reservation system

4.1.1 Modeling the Application Being De-
ployed

In section 3.1, we mentioned that loosely coupled,
component-based applications can be viewed as a num-
ber of components connected by a number of chan-
nels with different characteristics through which they
communicate. With respect to this description of
component-based applications, it is possible to model
any loosely coupled, component-based application as a
graph whose nodes are application components and its
edges are channels among these components.

Definition 4.1 (Application Graph) Suppose Cis
represent different components of the application, and
Tds represent different channel types. Then, applica-
tion graph AG = (VAG, EAG) is defined as a graph on
VAG = {C1, C2, ..., Cn} in which each edge e ∈ EAG

has a label le ∈ {T1, T2, ..., Tk}.
For example, Fig. 5 shows the application graph for

the flight reservation system. This graph is built with
respect to both the specifications of the application
being deployed, and user-defined constraints regarding
this deployment. For example, in the specification of
the application (Fig. 2), Sync channels are used to con-
nect FRS and IFRS components. But, as mentioned

Figure 5. Application graph for the flight
reservation system

in section 3.3, users want the transfer of data between
FRS and IFRS to be encrypted. Thus, in the applica-
tion graph presented in Fig. 5, Encrypted Sync channel
type is used between FRS and IFRS components.

4.1.2 Modeling the Target Environment

As mentioned in section 3.2, in this paper the target
environment for the deployment of the application is a
number of hosts with different computational capabil-
ities connected by a network in a distributed environ-
ment and each of them can support a set of channel
types. With respect to this description of the target
environment, it is possible to model the target envi-
ronment with the help of a graph in which:

• Nodes represent available hosts in the distributed
environment;

• Edges represent different channel types that can
exist between every two hosts.

To generate such a graph, first it is required to notice
to the following definitions.

Definition 4.2 (Adjacent Hosts) Two distinct
hosts Hx and Hy are adjacent if there is a direct phys-
ical link between them in the distributed environment.

As an example, hosts H1 and H4 in Fig. 3 are ad-
jacent.

Definition 4.3 (Virtually Connected) Two dis-
tinct hosts Hx and Hy are virtually connected if there
is not any direct physical link between them in the dis-
tributed environment. But, they are connected indi-
rectly through intermediate hosts.

As an example, hosts H1 and H2 in Fig. 3 are vir-
tually connected.

5

Definition 4.4 (Transitive Channel Type) Sup-
pose two hosts Hx and Hy are virtually connected. A
channel type Td is transitive if it is possible to create a
channel of type Td between them when (1) both of them
can support channel type Td, and (2) all intermediate
hosts between them can also support channel type Td.

For example, in the Reo coordination model, chan-
nel type Sync is a transitive channel type.

Definition 4.5 (Non-transitive Channel Type) A
channel type Td is non-transitive if it is possible to cre-
ate a channel of type Td between two hosts Hx and Hy

only when (1) both of them can support channel type
Td, and (2) they are adjacent.

As an example, in the Reo coordination model,
channel type SyncDrain is a non-transitive channel
type.

With respect to the above definitions, target envi-
ronment graph is defined in the following way:

Definition 4.6 (Target Environment Graph)
Suppose His represent different hosts in the target
environment, Tds represent different channel types,
and eHx,Hy,Td

represents an edge from node Hx to
node Hy with label Td. Then, the target environment
graph TG = (VTG, ETG) is defined as a graph on
VTG = {H1,H2, ...,Hm} in which the set of edges
ETG =

⋃{eHx,Hy,Td
} is determined in the following

way:

• If Td is a transitive channel type, then there exists
an edge eHx,Hy,Td

between two distinct nodes Hx

and Hy only if (1) both of them are adjacent or vir-
tually connected, (2) both of them support channel
type Td, and (3) if they are virtually connected, all
intermediate hosts support channel type Td.

• If Td is a non-transitive channel type, then there
exists an edge eHx,Hy,Td

between two distinct nodes
Hx and Hy only if (1) they are adjacent, (2) both
of them support channel type Td.

• If Td can be supported by host Hx, then there is an
edge eHx,Hx,Td

from Hx to Hx (loopback edge).

As an example, Fig. 6 shows the target environment
graph generated by this method for the distributed en-
vironment presented in Fig. 3. To make the figure
simpler, loopback edges are not shown. For a more
specific example, consider hosts H1 and H2 which are
virtually connected (i.e., through host H4). As men-
tioned in section 3.2, in this example, T1 − T3 are dif-
ferent implementations of the Sync channel type which

Figure 6. Target environment graph for the
distributed environment presented in Fig.
3. T1 − T3 are transitive channel types.
T4 − T5 are non-transitive channel types.
For simplicity, loopback edges are not
shown.

is a transitive channel type. Thus, it is possible to
have channels of types T1 − T3 between H1 and H2.
Furthermore, both H1 and H2 support channel type
T4 (i.e., SyncDrain) which is a non-transitive channel
type. However, since H1 and H2 are not adjacent, it is
impossible to have a channel of type T4 between them.

4.1.3 Target Environment Graph for a Peer-
to-Peer Distributed Environment

In a peer-to-peer (P2P) distributed environment (e.g.,
Internet), two or more computers (called nodes) can di-
rectly communicate with each other, without the need
for any intermediary devices [9]. In this situation, it is
not required to consider the issues related to the phys-
ical connectivity among hosts, i.e., transitive property
of channel types. In this case, the definition of the
target environment graph becomes much simpler.

Definition 4.7 The target environment graph TG =
(VTG, ETG) for a P2P distributed environment is a
graph on VTG = {H1,H2, ...,Hm} in which there ex-
ists an edge eHx,Hy,Td

between two not necessarily dis-
tinct nodes Hx and Hy if and only if both of them can
support channel type Td.

4.2 Deployment Planning Algorithms

As mentioned at the beginning of section 4, during
the deployment planning, different application compo-
nents and channels among them are mapped to differ-
ent hosts in the target environment and network links

6

Component Name Candidate Hosts
FRS H1

IFRS H2, H3

DFRS H1, H2, H3, H4, H5

N1 H1, H2, H4, H5

N2 H1, H2, H4, H5

Table 1. Candidate hosts for the deployment
of the flight reservation system components

among them so that all requirements and constraints
are satisfied. If consider the sample deployment pre-
sented in Fig. 4 again, you may notice that in this
deployment, different nodes and edges of the applica-
tion graph AG shown in Fig. 5 are mapped to different
nodes and edges of the target environment graph TG
presented in Fig. 6. In this way, it is possible to see
the deployment planning as a graph mapping problem
from the application graph to the target environment
graph. In this section, we talk about the required algo-
rithms to solve this graph mapping problem. However,
before everything, we begin with defining some general
terms which are used in the rest of this paper.

Definition 4.8 (Candidate Host) Let TCi
=

{Td|Td ∈ T,∃{Ci, Cj} ∈ EAG : l{Ci,Cj} = Td} repre-
sent all required channel types by component Ci in the
application graph AG = (VAG, EAG) and let THx

=
support(Hx) represent the set of channel types that
host Hx can support. Then, host Hx is a candidate
host for the deployment of component Ci, only if (1)
TCi

⊆ THx
, and (2) host Hx satisfies user-defined con-

straints regarding the deployment of component Ci.

This definition implies that a host Hx is a candidate
host for the deployment of component Ci if it supports
all required channel types by component Ci in the ap-
plication graph and also the deployment of component
Ci on host Hx meets user-defined constraints. As an
example, Table 1 shows the candidate hosts for the de-
ployment of the flight reservation system components.
For a more specific example, consider component IFRS.
In the application graph presented in Fig. 5, IFRS just
requires channel type T2 and all of the hosts in the
target environment presented in Fig. 3 support this
channel type. But, as mentioned in section 3.3, users
want IFRS to be deployed on either hosts H2 or H3.
So, with respect to this constraint, candidate hosts for
the deployment of component IFRS are H2 and H3.

Definition 4.9 (Candidate Deployment) Suppose
CHCi

represents the set of candidate hosts for the de-
ployment of component Ci. Then, a candidate deploy-

ment Dc is a set of pairs (Ci,Hx) in which every com-
ponent Ci in the application graph AG = (VAG, EAG)
is mapped to a host Hx in the target environment
graph TG = (VTG, ETG) so that host Hx is a can-
didate host for the deployment of component Ci, i.e.,
Dc = {(Ci,Hx)|Ci ∈ VAG,Hx ∈ VTG,Hx ∈ CHCi

}.
For example, {(FRS �→ H1), (IFRS �→

H2), (DFRS �→ H3), (N1 �→ H4), (N2 �→ H5)} and
{(FRS �→ H1), (IFRS �→ H3), (DFRS �→ H3), (N1 �→
H4), (N2 �→ H5)} are two candidate deployments for
the flight reservation system.

Definition 4.10 (Valid Deployment) A candidate
deployment Dc is a valid deployment, if for all edges
eCi,Cj ,Td

in the application graph AG = (VAG, EAG) if
components Ci and Cj are mapped to two not neces-
sarily distinct hosts Hx and Hy in the target environ-
ment, then it should be possible to create a channel of
type Td between hosts Hx and Hy, i.e., there should
be an edge eHx,Hy,Td

in the target environment graph
TG = (VTG, ETG). Formally speaking, ∀eCi,Cj ,Td

∈
EAG ⇒ ∃eDc(Ci),Dc(Cj),Td

∈ ETG.

As an example, Dc = {(FRS �→ H1), (IFRS �→
H2), (DFRS �→ H1), (N1 �→ H1), (N2 �→ H2)} is an
invalid deployment for the flight reservation system.
Because, there is an edge eN1,N2,T4 in the application
graph presented in Fig. 5. But, there is not an edge
eDc(N1),Dc(N2),T4 = eH1,H2,T4 in the target environment
graph presented in Fig. 6. In other words, with respect
to the specification of the target environment presented
in Fig. 3, it is impossible to create a channel of type
T4 between hosts H1 and H2.

With respect to above definitions, it is typically pos-
sible to deploy a complex component-based application
into a large distributed environment in many differ-
ent ways. As an example, consider again the candi-
date hosts for deploying each of the components of the
flight reservation system shown in Table 1. As can
be understood from this table, it is possible to deploy
this application into the target environment in at most
160 = 1× 2× 5× 4× 4 different ways (because some of
them are invalid deployments). Obviously, this number
is much bigger for complex applications deployments.
However, when some QoS parameters, such as cost,
performance, reliability, etc., are considered, some of
these candidate deployments are equivalent, some are
better than others and only a few of them may accom-
modate the constraints and requirements of the appli-
cation. Thus, when QoS of the application is impor-
tant, it should be tried to deploy the application so
that its desired QoS parameter is maximized.

One naive solution to this problem is to generate
all candidate deployments by permuting the sets of

7

candidate hosts for different components of the ap-
plication. Then, the desired QoS parameter of all
valid candidate deployments is measured and the best
one is selected. The complexity of this algorithm is
O(mn+mn) = O(mn), where m is the number of avail-
able hosts in the target environment and n is the num-
ber of components of the application. As we see, this is
an exponentially complex solution to the deployment
problem. Thus, when the number of candidate deploy-
ments is large, it is impractical to generate all of them
and then select the best one. So, a set of algorithms
and heuristics should be designed and applied to ef-
fectively solve such an exponentially complex problem.
The following definition, provides a formal definition of
the deployment problem we intend to solve.

Definition 4.11 (Deployment Problem) Suppose
deployment planner inputs are used to build the ap-
plication graph and the target environment graph ac-
cording to the methods presented in section 4.1. CHCi

also represents the set of candidate hosts for the deploy-
ment of component Ci. Then, for the given application
graph AG = (VAG, EAG), target environment graph
TG = (VTG, ETG), and QoS parameter Q, the problem
is to find a polynomial time function D : VAG → VTG

such that the following three conditions are satisfied:

1. Application’s Q parameter is maximized;

2. D(Ci) = Hx ⇒ Hx ∈ CH(Ci). This means that
all components of the application must be mapped
to one of their respective candidate hosts for the
deployment;

3. ∀eCi,Cj ,Td
∈ EAG ⇒ ∃eD(Ci),D(Cj),Td

∈ ETG.
This means that the deployment D must be a valid
deployment.

This definition implies that during the deployment,
it is possible to map several application components to
a single host if that host is a candidate host for the de-
ployment of those components. Furthermore, if there
exists a channel of type Td between two components
in the application graph, then those components can
be mapped to two different hosts only if there exists a
channel of type Td between them in the target environ-
ment graph.

As an example of how such efficient algorithms and
techniques can be applied to effectively solve the de-
ployment problem, in the following section, polynomial
time algorithms for minimizing the cost of a deploy-
ment when the target environment is a P2P distributed
environment are provided.

for each component Ci in the application do
Find the set of candidate hosts, CHCi

;
if CHCi

== null then
return “No Answer!”;

end
else

Hx = cheapest host in the set CHCi
;

Output: Ci �→ Hx

end
end

Figure 7: Cost-effective deployment algorithm
when the cost should be paid for each component

4.2.1 Cost-effective Deployment

Suppose different hosts in the target environment have
different costs and whenever they are being used, their
costs should be paid to their administrator(s). In this
situation, one QoS parameter of a deployment is its
cost and should be minimized in the deployment plan.
For this, two different cases can be considered:
Case 1: The cost should be paid for each component. In
this case, for every component to be run on each host,
its cost should be paid separately. For example, for
each component to be run on host H1, $1000 should be
paid to its administrator(s). Thus, if five components
to be run on host H1, 5×$1000 = $5000 should be paid.
The required algorithm of this case is simple. In this
case, in the set of candidate hosts for the deployment of
each of the application components, the cheapest one
is selected and that component is deployed on it. The
pseudocode of this algorithm is shown in Fig. 7. This
algorithm has the polynomial complexity O(mn).
Case 2: The cost should be paid for each host, no mat-
ter how many components will be run on it. In this
case, the number of components will be run on each
host is not important; if the cost of one host is paid, it
is possible to run as many components as you want on
it. The complexity of this case is much more than the
previous one. In this case, it should be tried to select a
subset of available hosts in the target environment so
that the total cost of the deployment is minimized and
all the components of the application are also assigned
to a host. It is easily possible to prove that this prob-
lem is equivalent to the Minimum Set Cover problem
[10].

Definition 4.12 (Minimum Set Cover Problem)
Given a finite set U of n elements, a collection of sub-
sets of U , S = {s1, s2, ..., sk} such that every element
of U belongs to at least one si, and a cost function
c : S −→ R, the problem is to find a minimum cost
subset of S that covers all elements of U .

8

X = Ø, τ = Ø;
while X �= U do

Find the set ω ∈ S that minimizes
c(ω)/|ω\X|;
X = X ∪ ω, τ = τ ∪ {ω};

end
Output: τ

Figure 8: Greedy approximation algorithm for the
minimum set cover problem

This case of the cost-effective deployment problem
can be converted to a minimum set cover problem in
the following way:

• Set U = {C1, C2, ..., Cn}, i.e., the components of
the application are set as the elements of the uni-
verse;

• Set S = {CSH1 , CSH2 , ..., CSHm
} in which each

CSHx
corresponds to host Hx and it represents

the subset of application components that can be
run on host Hx. In other words, each CSHx

is a
subset of application components which Hx is in
their lists of candidate hosts for the deployment.

• Define c : S −→ R so that c(CSHx
) = c′(Hx).

Function c′ : H −→ R returns the cost of each
host.

Theorem 4.1 If we define the elements of the mini-
mum set cover problem as mentioned earlier, then the
solution of the minimum set cover problem satisfies all
conditions of the deployment problem defined in defini-
tion 4.11.

To save space, the proof of this theorem is not pro-
vided here. However, it is proved that minimum set
cover problem is a NP-hard problem and it can not be
solved in polynomial time [11]. But, there exist some
greedy approximation algorithms that can find reason-
ably good answers in polynomial time. One of the key
algorithms for solving this problem is provided in Fig.
8 [11]. The main idea in this algorithm is to iteratively
select the most cost-effective si ∈ S and remove the
covered elements until all elements are covered. The
complexity of this algorithm is O(log(|U |)) [11].

To solve this case of the cost-effective deployment
problem, first it should be converted to the minimum
set cover problem as mentioned earlier. Then, it is
easily possible to use the greedy approximation algo-
rithm presented in Fig. 8 to find a reasonably good
solution for the problem. In other words, by using this
algorithm, all components of the application will be

assigned to at least one host and total cost of the de-
ployment will be close to minimum too. As an example
of using this greedy approximation algorithm, consider
the flight reservation system example. With respect to
Table 1, the elements of the minimum set cover prob-
lem are defined in the following way:

• U = {FRS, IFRS,DFRS,N1,N2};
• S = {{FRS,DFRS,N1,N2}, {IFRS,DFRS,N1,N2},
{IFRS,DFRS}, {DFRS,N1,N2}, {DFRS,N1,N2}};

• c′(H1) = $1000, c′(H2) = $2500, c′(H3) = $2000,
c′(H4) = $1500, c′(H5) = $1000.

By applying the greedy approximation algorithm,
we will have the following results and the minimum
cost will be $3000:

• {(FRS �→ H1), (DFRS �→ H1), (IFRS �→
H3), (N1 �→ H1), (N2 �→ H1)};

• {(FRS �→ H1), (DFRS �→ H3), (IFRS �→
H3), (N1 �→ H1), (N2 �→ H1)}.

Note that it is possible to use the algorithm pre-
sented here more generally for some other QoS param-
eters too, when you want to minimize the total usage
of some resources of available hosts in the target envi-
ronment. In this situation, it is possible to define the
cost function c to return the amount of that resource
for each host and then use the greedy approximation
algorithm presented in Fig. 8 to find the solution.

5 Conclusions and Future Work

The software deployment process is defined as a se-
quence of related activities for placing a developed ap-
plication into its target environment and making the
application available for use. For simple stand-alone
applications that should be installed only on a sin-
gle computer, this process is easy. But, for complex
component-based applications that should be deployed
into a large distributed environment and some QoS pa-
rameters should also be maximized, the deployment
process is not that straightforward. This paper pre-
sented a graph-based approach for this deployment
planning which uses the concept of channels to cap-
ture the properties of interconnections among the com-
ponents of the application. The approach presented
in this paper is general and is not dependent on any
specific component technology or model (e.g., COM,
CORBA, EJB, etc.) and can be used for deploying any
kind of loosely coupled, component-based applications
into distributed environments.

9

This paper also presented the required algorithms
for minimizing the cost of a deployment when some
costs must be paid upon using the hosts in the tar-
get environment. For future work, we plan to design
efficient algorithms for other QoS parameters such as
reliability, performance, security, and so on. We also
plan to devise some specification languages for specify-
ing the application being deployed, the target environ-
ment, and user-defined constraints.

References

[1] Hnetynka, P. Making Deployment of Distributed
Component-based Software Unified. In Proceed-
ings of CSSE 2004 (Part of ASE 2004), Austrian
Computer Society, Linz, Austria, Sep. 2004, 157-
161.

[2] Lestideau, V. and Belkhatir, N. Providing Highly
Automated and Generic Means for Software De-
ployment Process. In Proceedings of the 9th Inter-
national Workshop on Software Process Technol-
ogy (EWSPT 2003), Helsinki, Finland, September
1-2, 2003, 128-142.

[3] Mikic-Rakic, M., Malek, S., Beckman, N. and
Medvidovic, N. A Tailorable Environment for As-
sessing the Quality of Deployment Architectures
in Highly Distributed Settings. In Proceedings of
the Second International Working Conference on
Component Deployment (CD 2004), Edinburgh,
UK, May 20-21, 2004.

[4] Carzaniga, A., Fuggetta, A., Hall, R. S., Hoek, A.
V. D., Heimbigner, D., Wolf, A. L. A Characteri-
zation Framework for Software Deployment Tech-
nologies. Technical Report CU-CS-857-98, Dept.
of Computer Science, University of Colorado,
April 1998.

[5] Object Management Group, Deploy-
ment and Configuration of Component-
based Distributed Applications Specification.
http://www.omg.org/docs/ptc/04-05-15.pdf.

[6] Arbab, F. Reo: A Channel-based Coordination
Model for Component Composition. Mathemati-
cal Structures in Computer Science, 14, 3 (June
2004), 329-366.

[7] Arbab, F. and Mavaddat, F. Coordination
through channel composition. In Proceedings of
the 5th International Conference on Coordina-
tion Models and Languages (Coordination 2002),
LNCS 2315, Springer-Verlag, 21-38.

[8] Web Services Conceptual Architecture.
http://www-306.ibm.com/software/solutions/webserv
ices/pdf/WSCA.pdf.

[9] Schollmeier, R. A Definition of Peer-to-Peer Net-
working for the Classification of Peer-to-Peer Ar-
chitectures and Applications. In Proceedings of the
IEEE 2001 International Conference on Peer-to-
Peer Computing (P2P2001), Linkping, Sweden,
August 27-29, 2001.

[10] Hassin, R. and Levin, A. A Better-Than-Greedy
Approximation Algorithm For The Minimum Set
Cover Problem. SIAM Journal on Computing, 35,
1 (2005), 189-200.

[11] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and
Stein, C. Introduction to Algorithms, Second edi-
tion, MIT Press, 2001.

10

