Eclipse Workbench Part Interaction FSML
Technical Report 2006-09
draft version 0.2
last update July 26, 2006

Michat Antkiewicz and Krzysztof Czarnecki
Generative Software Development Lab
University of Waterloo
http://gp.uwaterloo.ca
{mantkiew,kczarnec}@swen.uwaterloo.ca

Abstract

In this technical report we present the details of the Eclipse Workbench Part Interaction (WPI) FSML design
and its prototype implementation. We describe the WPI domain, abstract syntax, mapping of the abstract syntaz
to the framework completion code, and agile round-trip engineering. Finally, we describe technical details of the
WPI FSML prototype.

1 Introduction

Object-oriented frameworks are one of the most effective and widely used software reuse technologies today.
Unfortunately, using a framework can be challenging. Application programmers need to know what framework
classes to subclass, what interfaces to implement, and what methods to override or call in order to get the desired
effect. Furthermore, they need to be able to see how the framework-provided concepts are instantiated and
configured in the application code. The latter is challenging since some concepts, such as collaborations among
objects, are usually scattered in the application code.

Framework-Specific Modeling Languages [1] address the problems related to framework instantiation and round-
trip engineering. Models created using a FSML can express the design of applications based on the framework
supported by the FSML. The round-trip engineering support of an FSML enables the automatic creation of
application code from models and vice versa and keeping the models and code synchronized throughout the
application development.

In this technical report we describe the design and prototype implementation of the Eclipse Workbench Part
Interaction (WPI) FSML.

2 The Domain: Eclipse Workbench Part Interaction

Eclipse [2] is a universal, open-source platform for building and integrating tools, which is implemented as a
set of Java-based object-oriented frameworks. Eclipse Workbench is the working area of an Eclipse user [3]. In
Eclipse, tools are implemented as plug-ins and implementing a new tool is equivalent to implementing a set of
Eclipse plug-ins. Each plug-in can contribute its functionality to the Eclipse Workbench by extending provided
extension points. Plug-in contributions are declared in a special configuration file called plugin.zml.

In this technical report, we consider a particular part of the Eclipse Application Programming Interface (API),
which is concerned with workbench parts and their interactions.

Workbench parts include editors and views. An editor is used for creating and modifying resources, referred to
as input resources. Many different editors can be opened in the workbench simultaneously, but at most one can
be active at any given time (i.e., have the focus). Furthermore, multiple instances of the same editor must have
different input resources. An example of an editor is the Java editor included in the Eclipse Java Development
Tools (JDT) [4]. Editors must implement the IEditorPart interface and can be contributed to the workbench by
extending the org.eclipse.ui.editors extension point. Views are also used for presenting and editing information,
but unlike editors, views are not associated with any particular input resource. Examples of standard Eclipse
views are Content Outline and Property Sheet views. The Content Outline view is used to display an outline of
a document opened in an active editor. The Property Sheet view is used to display the properties of the current
selection and modify their values. Views must implement the IViewPart interface and can be contributed to the
workbench by extending the org.eclipse.ui.views extension point.

Other elements of the workbench such as tool bars, menu bar, status line and perspectives are outside the scope
of our example.

Workbench parts interact in various ways [5], and part interaction is the main area of concern of our example.

For example the Content Outline view listens to part activation events. When an editor, such as Java editor,
is activated, the view asks the editor for a IContentOutlinePage adapter, which is used to display outline of the
input resource of the activated editor. Furthermore, the Property Sheet view listens to selections and displays the
properties of the element selected by the user anywhere in the workbench.

The Eclipse platform provides support for implementing various kinds of workbench part interactions. The
Workbench runs many services, among which Page Selection Service and Part Service support part interactions.
Page Selection Service allows workbench parts to register as selection listeners and receive selection changed events.
Any part wanting to receive selection changed events must implement ISelectionListener interface and provide
implementation for selectionChanged (IWorkbenchPart, ISelection) method, which will be called by selection
provider (in this case Page Selection Service). Additionally, the part has to register with the Page Selection Service,
by calling ISelectionService.addSelectionListener(ISelectionlListener) method and deregister by calling
ISelectionService.removeSelectionlListener (ISelectionListener) upon its disposal.

Analogously, parts wanting to receive part events have to implement IPartListener interface, provide imple-
mentation for the interface methods such as partActivated (IWorkbenchPart) or partClosed(IWorkbenchPart),
and register and deregister with Part Service by calling IPartService.addPartListener (IPartListener) and
IPartService.removePartListener (IPartListener) methods respectively.

The registrations are performed through a workbench page, which can be obtained by the part through its part
site by calling IWorbenchPart.getSite() .getPage (). Part site is an intermediate layer between a part and the
workbench.

A part may also be the source of selection events for Page Selection Service, in which case the part has to
implement the ISelectionProvider interface and register itself as a selection provider by calling PartSite.set-
SelectionProvider (ISelectionProvider) method.

Eclipse platform also provides support for interactions not involving any services. In our example we consider
listens to selection changed and requires adapter interactions. Listens to selection changed interaction is an un-
derlying mechanism used by Page Selection Service and can be implemented between any parts. In the latter
case, a part being a selection provider is responsible for maintaining references to parts that registered as selec-
tion listeners. The difference is that selection listeners have to implement ISelectionChangedListener interface
and provide implementation for selectionChanged(SelectionChangedEvent) method!. A part being a selection
changed listener has to register directly with the provider.

Requires adapter interaction occurs between two parts when one part asks for an adapter of certain kind by
calling TAdaptable.getAdapter(Class) and the other part provides the requested adapter. Every workbench
part implements TAdaptable interface and therefore can take part in this type of interaction.

3 Definitions of framework-provided concepts

Framework-based application development involves writing framework completion code. Framework completion
code implements the difference in functionality between the framework and the desired application.

INote that this is different than ISelectionListener.selectionChanged(IWorkbenchPart, ISelection).

The API of a framework provides a set of domain concepts for creating applications within a particular domain.
Domain concepts for our example include editor, view, listens to parts, and requires adapter. Writing framework
completion code amounts to instantiating and configuring domain concepts provided by the framework.

The framework also provides a set of implementation choices for each concept. For example, concept editor
is instantiated by creating a class which implements the IEditorPart interface. Optionally, an editor can be
contributed to the workbench and have a part id, have a contributor that contributes actions to menus and
toolbars, or be a multi-page editor. For an editor to be a multi-page editor, it needs to extend framework-provided
MultiPageEditorPart class and, if it has a contributor, the contributor has to extend another framework-provided
class, namely MultiPageActionBarContributor.

The set of framework-stipulated implementation choices for a concept and the dependencies among these choices
define all correct ways in which the concept can be instantiated as foreseen by the framework design. We can think
of the implementation choices as features of a concept and formalize the concept’s definition as a feature model. A
feature model is a tree with the concept as its root and children representing its features [6]. Filled circles denote
mandatory features and open circles denote optional features. A feature may have an attribute, which is denoted
by its type shown in parenthesis. Additional dependencies between features can be expressed as constraints, such

as requires or exzcludes. Conceptually, a feature model describes a set of all valid configurations (selections) of
features.

A, EditorPart
#® name (STRING)

® qualifier (STRING)
& partld (STRING) A, ListensTaoParts A, Reqguiresadapter
& contributor (STRING) # source (Part) # source (Part)
implementsIEditorPart and—l] # target (PartService) # target (Part)
S & muItiF‘agE—l requires requires # sourceImplementsIPartlistener # interface (STRING)
extendsMultPageEditorPart J’ # sourceRegistersWithPartService # sourceRequestsAdapter
& contributorExtendsMultiPageActionBar Contributor # sourceDeregistersWithPartService # targetProvidesAdapter
(a) editor concept (b) listens to parts concept (c¢) requires adapter con-
cept

Figure 1. Feature models describing some of the framework-provided concepts

For example, Fig. 1(a) shows a feature model describing the editor concept. Mandatory features have to be
implemented by every instance of a concept, for example every editor has to have the implementsIEditorPart
feature, meaning it has to implement the IEditorPart interface. Optional features, such as multiPage, are not
required for every instance of a concept. Two additional constraints contributor A multiPage = contributor-
FExtendsMulti Page Action BarContributor and contributor ExtendsMulti PageAction BarContributor = contri-
butor are also represented on the figure.

E}!L Configuration 1 of EditorPart
name (SampleEditor' : STRING)
qualifier (testPlugin.ui' : STRING)
E partld (testPlugin.sampleEditor . ID' : STRING)
Bl contributor (STRING)
implementsIEditorPart and]
=[5 multiPage _ 1 :lquireg requires
extendsMultPageEditorPart
5] contributorExtendsMultiPageActionBarContributor

Figure 2. Sample configuration of an editor concept instance

Fig. 2 presents a sample feature configuration for the instance of the editor concept, where some features have
been selected (partId) and some eliminated (e.g., multiPage) and values of attributes have been specified (e.g.,
‘SampleEditor’ for name). The feature configuration satisfies all constraints implied by the feature model and,
therefore, the implementation choices corresponding to the selected features (including the mandatory ones) are
consistent. Note that recognizing the implementation of features of a given concept in the code also produces a
configuration, which can then be checked for possible constraint violations.

WorkbenchPartInteractions .
Interaction | Target
ProvidesSelection PageSelectionService
1 1 1 17"~ stReconciled ListensToSelections PageSelectionService
Part
* * - * . ListensToParts PartService
- parts - SEI:\'ICES = |ntemict|0n5 ListensToSelectionChanged Part
Part Service Interaction RequiresAdapter Part

(b) Valid Interaction Targets
(a) WPI Overview

Part Element Service
- «k» name : String [1]
- «K» gualffier : String [1] «K» - source 1|~ target
- partld : String [0..1] ko
- local : boolean [0..1] 1
- implementsIWorkbenchPart : boolean[1] * * «singletan: «singleton:»
= PageSelectionService PartService
Interaction
EditorPart ViewPart
- contributor : String [0..1] -
- implementsIEditorPart : boolean[1] RequiresAdapter
1 - «l» interface : String [1]

ListensToSelections ProvidesSelection - sourceRequestsAdapter : boolean [1]

0.1 - mulkiPage BEEE - targetProvidesAdapter : boolean [1]

MultiPageFeature ListensToSelectionChanged ListensToParts
- contributorExtendsMultiPageABC : boolean [0..1]] - ... - sourcelmplementsIPartListener : boolean [1]
- extendsMultiPageEditorPart : boolean [1] - sourceReqisters\WithService : boolean [1]

- sourceDereqisters\WithService : boolean [1]

(¢) WPI Concepts

Figure 3. WPI FSML Metamodel and Valid Interaction Targets

4 Eclipse Workbench Part Interaction (WPI) FSML
WPI FSML is a modeling language for modeling Eclipse workbench part interactions described in section 2.
4.1 Abstract syntax

Figure 3 presents the metamodel of WPI FSML. Class WorkbenchPartInteractions from Fig. 3(a) represents
the whole model and contains parts, services and interactions. Figure 3(c) shows the details of the metamodel. It
contains four abstract classes: Part, Element, Interaction, and Service. An Interaction can occur between a
Part and an Element. Kinds of concrete workbench parts are EditorPart and ViewPart. Class Service is used to
represent standard Eclipse Workbench services and has two concrete, singleton subclasses PageSelectionService
and PartService.

WPI supports five different kinds of part interactions described in section 2. The interactions are represented
using concrete subclasses of the Interaction class. Abstract syntax class diagram from Fig. 3(c) is supplemented
with a set of constraints restricting possible interactions to occur only between valid elements as described in
Table 3(b). Note, that interaction ListensToSelections occurs in two variants: global and specific. A part is
a global selection listener if it registers with Page Selection Service using ISelectionService.addSelection-
Listener(ISelectionListener) call. A part is a specific selection listener if it specifies the part id of the
part which events it is interested in listening to. In that case, the part registers with selection service using
ISelectionService.addSelectionListener(String, ISelectionListener) call.

Classes Part and Service are abstractions of existing framework concepts. Attributes name, multiPage,
qualifier, and partId of class Part represent actual part attributes defined in the framework. Read-only,
boolean attribute local is a derived attribute and is true if a class representing the part is a source class and
belongs to the current project. Parts with attribute local valued false represent either binary classes or source

classes but located in referenced projects. Only local parts can be modified using WPI FSML by changing their
attribute values and/or specifying part interactions.

Note, that there is no one-to-one mapping between WPI FSML interaction concepts and framework classes.
The interaction concepts are therefore abstractions of usages of the base framework. The framework only provides
mechanisms for implementing the interactions by means of interfaces, adapters and services, but does not provide
ready to use implementations.

Abstract syntax class diagram from Fig. 3 is derived from feature models presented in Section 3, Fig. 1. Features
from concept feature models map to class diagram elements in various ways. Root features such as EditorPart
(Fig. 1(a)) and ListensToParts (Fig. 1(b)) describe concepts and therefore map to classes.

Atomic subfeatures such as name or partId map to class attributes. Stereotype <<K>> indicates an attribute is
a key and is used to unambiguously identify a concept. For example an EditorPart is identified by its name and
qualifier, RequiresAdapter interaction is identified by source, target and interface.

Attribute multiplicities 1 and 0. .1 indicate that an attribute is mandatory or optional, respectively. Key
attributes are always mandatory. For example, attribute partId is optional, because an editor is not required to
have a part id, in which case, the value of the partId attribute will be null and indicate the absence of the feature.
Mandatory features which do not have any attributes are represented as boolean attributes. In this case, false
indicates absence of the feature.

Composite features such as multiPage are represented by classes and containment association. Class Mul-
tiPageFeature corresponds to feature multiPage. Its attributes extendsMultiPageEditorPart and contribu-
torExtendsMultiPageABC correspond to subfeatures of the multipage feature. Optional cardinality of feature
multiPage is represented by multiplicity 0..1 of the multiPage containment association end.

4.2 Mapping abstract syntax to the framework API

Framework concept can be identified in the code by identifying all of its mandatory features. Analogously, a
concept can be implemented in the code by implementing its features accordingly to feature configuration (i.e.,
a selection of features). Therefore the mapping between the model concepts and their implementation code is
specified as mappings for individual features.

Features may have reverse and forward mappings. Reverse mapping defines how the value of attribute corre-
sponding to a feature is computed. Forward mapping defines how the value of the attribute is translated into code.
Forward mapping has three flavors: addition, refactoring and removal. Features without attributes can only be
added or removed. Features with attributes can also be refactored, when their value changes. Read-only features
have a reverse mapping only.

In our prototype, we have implemented the mappings in Java. For better presentation, however, here we define
a number of predicates and statements that correspond to commonly used functions from our implementation.

Often, a statement performs addition, refactoring and removal, depending on values of arguments. For example,
null argument forces removal, non-null argument forces addition if an instance of the feature does not exist in
the code or refactoring if the instance exists.

For code generation we choose to use template syntax from Meta-Aspect]J [7] as it allows us using AspectJ
pointcuts, method introductions and intertype declarations to specify where the code should be woven. In short,
¢ [<code>] is the quote operator, #<variable> and #[<expression>] are the unquote operators. The unquote
operator splices the value of a variable or an expression. Statement WEAVE (template code) executes the weaving
of Meta-AspectJ template code specified as its argument. Consequently, UNWEAVE (template code) is used to
execute reverse operation and is used for removal in forward mappings?.

Table 1 shows forward and reverse mappings for the features of the EditorPart concept. The first row is a
mapping declaration that binds two variables: editor to the code class and ep to the model editor part. Variable
editor is used in reverse mappings and ep is used in forward mappings. The execution of the EditorPart
mapping in a forward direction takes an instance of the abstract syntax class EditorPart as a parameter and
creates, modifies or removes a class in the code. The execution in the reverse direction takes a code class and
produces model element. Each row contains the definition of attribute corresponding to the feature which reverse
mapping is indicated by <, and forward mapping is indicated by +—. The reverse mapping is an assignment to
the attribute. Forward mapping is a sequence of statements executing code transformation.

2Not shown for brevity.

mapping EditorPart (EditorPart ep <-> Class editor);

key name

< ep.name = editor.name;

— RENAME (editor, ep.name);

key qualifier

< ep.qualifier = editor.package;

— MOVE(editor, ep.qualifier);

mandatory implementsIEditorPart

«— ep.implementsIEditorPart = IMPLEMENTS(editor, IEditorPart);
— WEAVE(’ [declare parents : #[ep.name] implements IEditorPart]);
optional partld

< ep.partId = EDITORID(editor);

— EDITORID(ep.qualifier + "." + ep.name, ep.partId);
read-only, optional local

< local = editor.isSource() && INCURRENTPROJECT (editor);
optional contributor

< ep.contributor = CONTRIBUTOR(editor);

— CONTRIBUTOR(ep.qualifier + "." + ep.name, ep.contributor);
optional multiPage

< ep.multiPage = REVERSE(MultiPageFeature(ep <-> editor));
— FORWARD (MultiPageFeature(ep <-> editor));

Table 1. Definitions of features for EditorPart concept.

mapping MultiPageFeature(EditorPart ep <-> Class editor)

optional contributorEztendsMultiPageABC

< contributorExtendsMultiPageABC =
IMPLEMENTS (ep.contributor, MultiPageActionBarContributor) ;

— if (ep.contributor !'= null) WEAVE(’ [declare parents : #[ep.contributor]
extends MultiPageActionBarContributor;]);

mandatory extendsMultiPageEditorPart

< extendsMultiPageEditorPart = IMPLEMENTS(editor, MultiPageEditorPart);

— WEAVE(’ [declare parents : #[ep.name] extends MultiPageEditorPart;]);

Table 2. Definitions of features for the MultiPageFeature concept.

Predicate IMPLEMENTS(x, type) returns true if type x, directly or indirectly, implements interface type or
extends class type. Parameter x can be either a class or a fully qualified name of the class.

Information about part ID and action bar contributor has to be retrieved from the plugin.xml file of the analyzed
project. XML node containing information about editor can be accessed using XPath expression. Expression
/extension[point=’org.eclipse.ui.editors’]/editor[class=’name’] selects editor node for an editor with
fully qualified name name. The editor node is used by EDITORID and CONTRIBUTOR predicates and statements.
Predicate EDITORID(x) returns the value of the id attribute for editor x. Statement EDITORID(x, partId) sets
the value of the id attribute to the value partId. Predicate CONTRIBUTOR (x) returns the value of the contributor
attribute for editor x. Statement CONTRIBUTOR (this, c) sets the value of the contributor attribute to the value
c.

Statement RENAME (x, name) executes rename refactoring on class x. Statement MOVE(x, package) executes
move refactoring on class x. Predicate INCURRENTPROJECT (x) returns true if class x resides in the current project.

Statement FORWARD (feature) executes forward mapping for given concept.

Table 3 shows the definitions of features of the RequiresAdapter interaction. The first row of the mapping
definition binds two variables source and target if Part(source) and Part(source), i.e., both source and

mapping RequiresAdapter (RequiresAdapter ra <-> Class source, Class target)
when Part(source <-> sourcePart) and Part(target <-> targetPart);
mandatory sourceRequestsAdapter
< ra.sourceRequestsAdapter = CALLS(source, ‘[IAdaptable.getAdapter(?ra.interface)]);
— WEAVE(‘[
private void #[sourcePart.name].request#[ra.interface]Adapter(IWorkbenchPart part) {
part.getAdapter (#[ra.interface].class);];
}D;
mandatory targetProvidesAdapter
«— ra.targetProvidesAdapter = RETURNS(‘[IAdaptable.getAdapter(Class)], target, ra.interface)
— WEAVE(‘[
before(): returning #[targetPart.name] .getAdapter(Class 7key) {
if (#key.equals(#[ra.interface].class))
return get#[ra.interface] Adapter();
}
private #[ra.interface] #[targetPart.name].get#[ra.interface]Adapter() {
return null;

} 1)

Table 3. Definitions of features for RequiresAdapter interaction concept.

target are workbench parts.

Predicate CALLS (type, method template) returns true if there exists a call to method method template within
the supertype hierarchy of type (including the type itself). Any variables used in the template and prefixed a
? (question mark) are bound to actual method parameter values when the template is matched. Predicate
RETURNS (method, type, return type) returns true if method method of type type returns an object of return
type.

Note, that there is no direct definition for interface attribute, because its value is set when the method pattern
in reverse definition of sourceRequestsAdapter attribute is matched.

Both forward definitions from table 3 introduce new methods, so that the requirements for requesting an adapter
by the source part and providing the adapter by the target part are satisfied. Another function of the generated
code is to provide sample code for the developers.

The ordering of the execution of reverse mappings for features from Table 3 is important. The mapping
for feature targetProvidesAdapter has to be executed after the mapping for feature sourceRequestsAdapter
because the latter binds the value of the RequiresAdapter.interface attribute (?ra.interface) which is than
used in determining that the target indeed returns objects implementing the required interface. Note, that in this
case the order of the execution of forward mappings does not matter.

The before() advice is used to add an additional if clause to the getAdapter method. In this case, the
temporary variable 7key matches the name of the parameter which is later used in generating the additional if
clause (#key.equals).

Table 4 shows the definitions of features of the ProvidesSelection interaction.

Table 5 shows the definitions of features of the ListensToParts interaction.

Table 6 shows the definitions of features of the ListensToSelections interaction for a global listener.

Table 7 shows the definitions of features of the ListensToSelections interaction for a specific listener.

Table 8 shows the definitions of features of the ListensToSelectionChanged interaction.

mapping ProvidesSelection(ProvidesSelection ps <-> Class source)
when Part(source <-> sourcePart) and PageSelectionService(target <-> sevice);

mandatory sourcelmplementslSelectionProvider
« ps.sourcelmplementsISelectionProvider = IMPLEMENTS(source, ISelectionProvider);
— WEAVE(’ [declare parents : #[sourcePart.name] implements ISelectionProvider; 1]);

mandatory sourceRegisters WithPageSelectionService
< ps.sourceRegistersWithPageSelectionService =
CALLS(source, ‘[PartSite.setSelectionProvider(ISelectionProvider)]);
— WEAVE(‘[
after(): execution #[sourcePart.name].createPartControl() {
getSite() .setSelectionProvider (this);
D

Table 4. Definitions of features for ProvidesSelection interaction concept.

mapping ListensToParts(ListensToPart 1ltp <-> Class source)
when Part (source <-> sourcePart);
mandatory sourcelmplementsIPartListener
« 1tp.sourceImplementsIPartListener = IMPLEMENTS(source, IPartlListener);
— WEAVE(’ [declare parents : #[sourcePart.name] implements IPartListener]);
mandatory sourceRegisters WithPartSeruvice
< ltp.sourceRegistersWithPartService =
CALLS(source, ‘[IWorkbenchPage.addPartListener(IPartListener)]);
— WEAVE(‘[
private void #[sourcePart.name].registerWithPartService() {
getSite() .getPage() .addPartListener (this);
1D;
mandatory sourceDeregisters WithPartService
< ltp.sourceDeregistersWithPartService =
CALLS(source, ‘[IWorkbenchPage.removePartListener (IPartListener)]);
— WEAVE(‘[
private void #[sourcePart.name].deregisterWithPartService() {
getSite() .getPage() .removePartListener(this);
3);

Table 5. Definitions of features for ListensToParts interaction concept.

mapping ListensToSelectionsGlobal (ListensToSelections 1lts <-> Class source)
when Part(source <-> sourcePart) and PageSelectionService(target <-> service);
mandatory sourcelmplementslSelectionListener
< 1ts.sourceImplementsISelectionListener = IMPLEMENTS(source, ISelectionListener);
— WEAVE(’ [declare parents : #[sourcePart.name] implements ISelectionListener;]);
mandatory sourceRegisters WithPageSelectionService
+ lts.sourceRegistersWithPageSelectionService =
CALLS(source, ‘[IWorkbenchPage.addSelectionListener(ISelectionListener)]);
— WEAVE(‘[
private void #[sourcePart.name] .registerWithPageSelectionService() {
getSite() .getPage() .addSelectionListener (this);
11);
mandatory sourceDeregisters WithPageSelectionService
< lts.sourceDeregistersWithPageSelectionService =
CALLS(source, ‘[IWorkbenchPage.removeSelectionListener(ISelectionListener)]);
— WEAVE(‘[
private void #[sourcePart.name].deregisterWithPageSelectionService() {
getSite() .getPage() .removeSelectionListener (this) ;
LADK

Table 6. Definitions of features for ListensToSelections (global) interaction concept.

mapping ListensToSelectionsSpecific(ListensToSelections 1lts <-> Class source, Class target)
when Part(source <-> sp) and Part(target <-> tp);

mandatory sourcelmplementslSelectionListener
< 1ts.sourceImplementsISelectionListener = IMPLEMENTS(source, ISelectionListener);
— WEAVE(’ [declare parents : #[sourcePart.name] implements ISelectionListener;]);

mandatory sourceRegisters WithPageSelectionService
< lts.sourceRegistersWithPageSelectionService =
CALLS(source, ‘[IWorkbenchPage.addSelectionListener (#[tp.partId], ISelectionListener)]);
— WEAVE (‘[
private void #[sourcePart.name] .registerForSelectionFrom#[tp.name] () {
getSite() .getPage() .addSelectionListener (#[tp.partId], this);
35

mandatory sourceDeregisters WithPageSelectionService
< lts.sourceDeregistersWithPageSelectionService =
CALLS(source, ‘[IWorkbenchPage.removeSelectionListener (#[tp.partId], ISelectionListener)]);
— WEAVE (‘[
private void #[sp.name].deregisterFromSelectionsFrom#[tp.name] () {
getSite() .getPage() .removeSelectionListener (#[tp.partId], this);
1D;

Table 7. Definitions of features for ListensToSelections (specific) interaction concept.

mapping ListensToSelectionChanged(ListensToSelectionChanged ltsc <-> Class source, Class target)
when Part (source <-> sp) and Part(target <-> tp);

mandatory sourcelmplementsISelectionChangedListener
«— 1ltsc.sourcelmplementsISelectionChangedListener = IMPLEMENTS(source, ISelectionChangedListener) ;
— WEAVE(’ [declare parents : #[sp.name] implements ISelectionChangedListener;]);

mandatory targetImplementslSelectionProvider
< 1ltsc.targetImplementsISelectionProvider = IMPLEMENTS(target, ISelectionProvider);
— WEAVE(’ [declare parents : #[tp.name] implements ISelectionProvider; 1);

mandatory sourceRegisters WithTarget
< ltsc.sourceRegistersWithTarget =
CALLS(source, ‘[#[tp.name].addSelectionChangedListener(ISelectionChangedListener)]);
— WEAVE(‘[
after(): execution #[sp.name].createPartControl() {
target.addSelectionChangedListener (source);

1)

mandatory sourceDeregisters With Target
< ltsc.sourceDeregistersWithTarget =
CALLS(source, ‘[target.removeSelectionChangedListener(ISelectionChangedListener)]);
— WEAVE(‘[
before(): execution #[sp.name].dispose() {
target.removeSelectionChangedListener (source) ;

D;

mandatory targetNotifiesListeners
< ltsc.targetNotifiesListeners =
CALLS(target, ‘[ISelectionChangedListener.selectionChanged(ISelectionChangedEvent)]);
— WEAVE(‘[
private void #[tp.name].provideSelectionChanged(ISelectionChangedListener listener,
ISelection selection) {
listener.selectionChanged(new SelectionChangedEvent (this, selection));

35

Table 8. Definitions of features for ListensToSelectionChanged interaction concept.

10

4.3 Round-Trip Engineering

Our Eclipse WPI FSML supports full round-trip engineering, meaning that the model and the completion code
can be edited independently and synchronized whenever desired. The result of synchronization is a model and code
that are consistent. We also refer to this state of model and code as reconciled. The synchronization procedure
follows a concurrent-versioning paradigm, which is inspired by the Concurrent Versioning System (CVS) and its
Eclipse user interface [8]. Figure 4 shows the artifacts involved in the synchronization procedure. The intention of
the synchronization procedure is to synchronize the current asserted model and the current framework completion
code. In order to achieve this, the current implementation model is automatically derived from the current code.
Furthermore, we assume that the last reconciled model has been archived (containment lastReconciled from
Fig. 3(a)), which has been the result of the previous execution of the synchronization procedure before the model
and/or the code were edited again. Special cases occur when last reconciled model, asserted model, and/or code
are missing. These cases include situations where the code has to be first created from an existing model, the model
has to be first created from existing code, or where independently created model and code need to be synchronized.

framework — _
—>(completion relversg implementation
code engineering model

last-reconciled model

comparison

asserted model

—_

A o

1 | synchronization states ‘ A
I I
[. S |
b——— —{_ _recongciliation_ _r————————— 4

T, ‘

. . reconciliation decisions
engineerin

model update

IDI persistent artifact — data flow O automatic process —> automatic update

D temporary artifact {_) manual process ——= manual update

Figure 4. Artifacts and processes of agile round-trip engineering

Given an asserted model, a completion code, and a last reconciled model, the synchronization procedure involves
the following steps:

1. Rewverse engineering. The reverse mapping is executed on the code to create the implementation model.
Consider the mapping from EditorPart to Class (Table 1) as an example. For every class in the code, the reverse
mappings of the EditorPart features are executed, and an instance of EditorPart is created iff all mandatory
features are present in the code or an EditorPart instance for that class already exists in the asserted model or
in the last reconciled model. Reverse mappings for interactions are executed afterwards for exery pair of parts
(e.g., RequiresAdapter) or for single classes (e.g., (ListensToParts)). In the case that there is no code, the
implementation model is empty.

2. Comparison. This process compares the asserted model and the implementation model using the last rec-
onciled model as a reference. The comparison involves establishing correspondence links among the corresponding
concept instances in the three models. The correspondence among two or more concept instances is established
if the values of their key attributes match. For every two corresponding concepts from the asserted model and
the implementation model, an instance of a concept-correspondence object of type ConceptSyncItem is created
(Fig. 5). The object keeps references to the concept instances from both the asserted and implementation mod-
els (if any). Furthermore, the concept-correspondence object contains other concept-correspondence objects for
composite subfeatures and attribute-correspondence objects of type AttributeSyncItem for attributes®. All cor-
respondence objects store the synchronization state and reconciliation decision for the particular elements they

3Note that the type of AttributeSyncltem.feature is Property. Property is the MOF type used for modeling of class attributes and
allows AttributeSyncltems to ’point’ at individual attributes.

11

Syncltem «enumeration» «anumeration:=
- syncronizationState @ Svnchrgnuatignstate ReconciliationDecision SvnchanizatiDHState
- recondiliztionDecision : ReconciliationDecision + enforce + consistent
+ update + forwardModification
=" ". chidren + enforceAndUpdate + forwardAddition
+ replaceAndEnforce + forwardRermoval
+ replaceAndUpdate + reverseModification
1 + unspecified + reverseAddition
+ reverseRemoval
ConceptSyncltem - + modified
- intendedConcept : Object AttributeSyncltem + conflict

- implementedConcept : Object - feature : Property + unspecified

Figure 5. Correspondence Objects, Synchronization States and Reconciliation Decisions

link (see enumerations on Fig. 5). Synchronization state indicates what reconciliation actions have to be executed
and in which direction in order to make concepts and attributes consistent.

Synchronization state consistent means that a concept or a feature from the asserted model is the same as
its instance in the code. State forwardModification means that the value of a non-boolean feature attribute
changed in the asserted model and needs to be propagated to the code. For the concept it means that concept’s
features have only forward or consistent states. State forwardAddition means that a new concept or a feature
which didn’t exist in the code appeared in the asserted model and therefore needs to be propagated to the code.
State forwardRemoval means that a concept or a feature which did exist in the code was removed from the
asserted model and therefore needs to be removed from the code. The reverse counterparts reverseModification,
reverseAddition and reverseRemoval mean that a concept or a feature has been modified, added or removed
in the code and these facts need to be reverse propagated to the asserted model. State conflict means that
incompatible changes have been made to both the code and the asserted model. Synchronization state modified
can only be applied to the concept and indicates that its subfeatures have at least one forward and at least one
reverse synchronization state, but without any confilicts.

Using the feature modeling terminology from Sec. 2, modification is only possible for features having an attribute
and/or having subfeatures; other features can only be added or removed.

The decision tables of how the synchronization states are established for attributes and than for concepts is given
in Tables 9 and 10 respectively. Each row should be read from left to right. The last column, attribute/concept
state, contains a synchronization state for an attribute or a concept when conditions from the preceeding columns
have been satisfied. First three columns assert the existence of the concept containing the attribute. Symbols m,
c and r stand for the existence of a concept from the asserted model, implementation model and last reconciled
model respectively (1 - present, 0 - absent). Symbols mv, cv and rv stand for the existence of attribute’s value in
asserted model, implementation model and last reconciled model respectively. For boolean attributes 1 indicates
true, 0 false. For other attributes 1 indicates non-null value, 0 null. Symbol “-” indicates the entry is irrelevant.

For example row #1 in Table 9 states that when a concept is present in both the asserted model and imple-
mentation model, and the attribute has a value in both models, and the values are equivalent then the attribute’s
synchronization state should be consistent. Row #6 illustrates the use of the last reconciled model as the point
of reference. In this case, the values of an attribute exist both in the asserted model and in the last reconciled
model, but is absent in the implementation model. Furthermore, both values are the same. That indicates, the
code has been modified and the value was removed. Therefore, the synchronization state for the attribute should
be reverseRemoual, that is, the model has to be updated to reflect the code. Row #7 is similar to row #6 and
states that the value was modified in the asserted model (because it is different than the value in the last reconciled
model) and removed in the code. Therefore, the synchronization state for the attribute should be conflict and the
user should decide which value should be kept in the reconciled model and code.

Table 10 presents how the synchronization state for the concept depends on the synchronization states of its
attributes. Symbol ac indicates that all attributes are consistent. Symbols ncf, ncr indicate that, among all
attributes there is no conflict and at least one forward or reverse synchronization state respectively. Symbol aloc
indicates that at least one attribute has conflict synchronization state.

For example, row #3 states that if a concept exists in both the asserted and the implementation models, and

12

|m ¢ r|mv cv rv condition attribute state
1 1 1 - 1 1 - mv == cv consistent

2 1 1 1 mu! = cv&&mv == av reverseModification
3 1 1 1 mv! = cv&&ev == av forwardModification
4 1 1 1 mo! = cv&&mu! = av&éeev! = av | conflict

5 1 1 0 muv! = cv conflict

6 1 0 1 mv == au reverseRemoval
7 1 0 1 mv! = av conflict

8 1 0 0 - forward Addition
9 0 1 1 cv == av forwardRemoval
10 0 1 1 cv! = av conflict

11 0 1 0 - reverseAddition
12 0 0 - - consistent

13/ 1 0 1 1 - 1 mu == qu reverseRemoval
14 1 - 1 mv! = av conflict

15 1 - 0 - reverseRemoval
16 0 - - - consistent
1711 0 0 1 - - - forward Addition
18 0 - - - consistent

19 0 1 1 - 1 - - forwardRemoval
20 - 0 - - consistent

211 0 1 0 1 - - reverseAddition
22 - 0 - - consistent
2310 0 - - - - - consistent

Table 9. Attribute Synchronization State Decision Table.

m C r ac

ncf ncr aloc

concept state

OO OO

0 0 0 consistent

modified

OO = =

O = O =

_ o O O

forwardModification
reverseModification
conflict

reverseRemoval

forwardAddition

forwardRemoval

@oo\]o:cn,hww»—t:ﬁz

O = O =

reverseAddition

OO O |~
Ol = OO

—_
o

consistent

Table 10. Concept Synchronization State Decision Table.

there is no conflicting attribute and at least one of the attributes has forward synchronization state, than the

synchronization state for the whole concept should be forwardModification.

Row #6 states that if the concept exists in both asserted and last reconciled models but is missing in the
implementation model (was removed from the code), than the synchronization state for the whole concept should

be reverseRemouval.

Reconciliation decisions specify whether an addition, a removal, or a modification should be propagated form

the model to the code or vice versa. They are determined in the following step.

3. Reconciliation. For all elements with synchronization state other than consistent, a reconciliation decision

needs to be made by the user.

Table 11 summarizes possible reconciliation decisions for given synchronization states. For forward synchroniza-

13

Synchronization State Reconciliation Decisions
consistent

forwardModification, ~Addition, -Removal | enforce, replaceAndUpdate

reverseModification, —Addition, -Removal | update, replaceAndEnforce

modified enforceAndUpdate, replaceAndUpdate, replaceAndEnforce
conflict replaceAndUpdate, replaceAndEnforce

Table 11. Synchronization states and available reconciliation decisions

tion states possible decisions are enforce and replaceAndUpdate, for reverse states are update and replaceAnd-
Enforce, for conflicts only replaceAndEnforce and replaceAndUpdate. For modified state (both forward and
reverse, but no conflicts) an additional enforceAndUpdate decision is available. Reconciliation may also require
editing the asserted model, e.g., by providing new attribute values. At the end of the reconciliation step, the as-
serted model with the projected changes based on the reconciliation decisions needs to satisfy the well-formedness
constraints of the FSML.

4. Forward engineering and asserted model update. Finally, any necessary changes are executed accordingly
to the reconciliation decisions. Concepts and features with forward decisions (enforce, replaceAndEnforce and
enforceAndUpdate) are enforced in the code by executing the corresponding forward mappings. Concepts and
features with reverse decisions (update, replaceAndUpdate and enforceAndUpdate) are updated with values from
the implementation model. The execution of the individual forward mappings needs to be properly scheduled in
order to be correct.

5 Prototype Implementation

We developed a prototype of the WPI FSML as an Eclipse plug-in. Abstract syntax of the language, including
well-formedness constraints, is implemented using Eclipse Modeling Framework (EMF) and its model validation
framework. Reverse mappings use the AST, query, and pattern matching API of Eclipse’s Java Development
Tools (JDT) and type inference engine of the Infer Generic Type Arguments refactoring [9]. Forward mappings
use Eclipse’s JDT Java Model and AST rewriting API. The prototype supports agile round-trip engineering. The
reverse mappings are completely implemented. To date, the forward mappings support the creation of classes with
methods implementing the framework-stipulated behaviour, addition of interfaces and superclasses, and handling
the plug-in manifest files. Weaving of before and after advices, and code fragment removal are not yet implemented.

An on-line demonstration of the prototype is available at our web page.

References

[1] Antkiewicz, M., Czarnecki, K.: Framework-specific modeling languages with round-trip engineering. In Nier-
strasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Proceedings of MoDELS’06, Genoa, Italy. (2006)

[2] Eclipse Foundation: Eclipse. Available at http://www.eclipse.org/ (2006)

[3] Xenos, S.: Inside the Workbench—A guide to the workbench internals. IBM. (2005) Available at http:
//www.eclipse.org/articles/Article-UI-Workbench/workbench.html. Last accessed March 17, 2006.

[4] Eclipse Foundation: Java Development Tools (JDT). Available at http://www.eclipse.org/jdt/ (2006)

[5] Pandit, C.: Make your Eclipse applications richer with view linking. IBM India Software Labs. (2005) Available
at http://www.ibm.com/developerworks/java/library/os-ecllink/. Last accessed March 17, 2006.

[6] Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints: a progress report. In:
International Workshop on Software Factories, San Diego, California (2005)

14

[7] Zook, D., Huang, S.S., Smaragdakis, Y.: Generating Aspect] programs with Meta-AspectJ. In: Genera-
tive Programming and Component Engineering: Third International Conference Proceedings. Volume 3286 of
Lecture Notes in Computer Science., Springer (2004) 1 — 18

[8] Eclipse Foundation: Team CVS tutorial. (2006) Available in Workbench User Guide, Eclipse Help.

[9] Tip, F., Fuhrer, R., Dolby, J., Kiezun, A.: Refactoring techniques for migrating applications to generic Java
container classes. IBM Research Report RC 23238, IBM T.J. Watson Research Center, Yorktown Heights, NY,
USA (2004)

15

