
fmp and fmp2rsm: Eclipse Plug-Ins for Modeling Features
Using Model Templates

Krzysztof Czarnecki, Michał Antkiewicz,
Chang Hwan Peter Kim, Sean Lau, Krzysztof Pietroszek

University of Waterloo

{kczarnec,mantkiew,chpkim,sqlau,kmpietro}@swen.uwaterloo.ca

ABSTRACT
Feature-based model templates have been proposed as a
technique for modeling software product lines. We describe
a set of tools supporting the technique, namely a feature
model editor and feature configurator, and a model-template
editor, processor, and verifier.

Categories and Subject Descriptors: D.2.1 [Software
Engineering]: Requirements / Specifications—Tools D.2.2
[Software Engineering]: Design Tools and Techniques—Com-
puter-aided software engineering (CASE) D.2.4 [Software
Engineering]: Software/Program Verification

General Terms: Design, Documentation, Verification

Keywords: Feature modeling, model-driven development,
product configuration, software-product lines, variability man-
agement

1. INTRODUCTION
In our other contribution, which is located in the poster

section of this volume, we gave the motivation for model-
driven product lines and explained the concepts underly-
ing feature-based model templates [5], which is a particular
technique for model-based development of software product
lines.

In this short paper, we present a set of tools supporting
feature-based model templates.

2. PLUG-IN FOR FEATURE MODELING
fmp is an Eclipse plug-in for feature modeling and configu-

ration [1]. It supports a particular form of feature modeling,
which is referred to as cardinality-based [7]. A summary of
the main capabilities of fmp follows.

Feature model editor. Feature models can be edited in
an explorer-style view as shown in the top part of Figure 1.

Feature-based configurator. Feature configurations
can be created in a check-box view or using a wizard. Both
partial and full configurations are supported. Partial con-
figurations can be rendered as feature models and used as a
basis for creating further configurations (this idea is referred
to as staged configuration [6]).

Support for constraints. Additional constraints among
features and feature attributes can be defined using XPath
and/or propositional formulas.

Copyright is held by the author/owner.
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

Figure 1: Sample feature model and a UML class
model template

Constraint checking and propagation. A feature
model can be checked for consistency (i.e., whether it has at
least one valid configuration). Furthermore, concrete config-
urations can be checked to see whether they satisfy all the
constraints from their corresponding feature models. The
exact number of full configurations represented by a partial
configuration is shown. Finally, constraint propagation is
used to guide the user during configuration, e.g., selecting
a feature that requires another feature will automatically
select the latter. Distinction is made between choices that
are undecided, made by the user, and automatically made.
The guidance is optional and there are several levels of as-
sistance. The support for constraint-based configuration is
provided by the configuration toolkit Configit [4], which is
based on Binary Decision Diagrams.

Synchronization between feature models and con-
figurations. Changes to a feature model can be automati-
cally propagated to its subsequent stages of partial and full
configurations by treating models and configurations in a
uniform way. The approach used for this propagation is
described elsewhere [9].

Model and configuration exchange. Feature models
and configurations can be exported and imported using an

200



XML format. The XML representing configurations can be
fed into other tools, such as code generators. A special XML
format for configurations is provided that allows template
code to access configurations easily and in a readable manner
using XPath.

User-extensible metamodel. The user can easily de-
fine the format for additional information to be associated
with features, such as priorities, binding times, implementa-
tion status, etc., by extending the metamodel of the feature
modeling notation, which is a feature model, too.

The plug-in was implemented using the Eclipse Modeling
Framework (EMF).

3. PLUG-IN FOR FEATURE-BASED MODEL
TEMPLATES

fmp2rsm is a plug-in that adds support for model tem-
plates to IBM Rational Software Modeler (RSM), an Eclipse-
based UML2 modeling environment. The support for fea-
ture models is given by fmp, which can be run within RSM.
In fact, Figure 1 shows a screen shot of RSM with fmp and
fmp2rsm running inside it.

Currently, fmp2rsm only supports presence conditions and
meta-expressions; support for iteration directives is planned.
Annotations are represented as stereotypes, which are col-
lected in a profile. A summary of the main capabilities of
the plug-in follows.

Support for all sub-notations of UML. Any kind
of UML models (e.g., class, activity, interaction, and state
models) can be templetized.

Profile generation. A profile containing stereotypes
with presence conditions for all or selected features can be
generated from a feature model.

Automatic coloring. The stereotypes assigned to model
elements can be hidden and the assignment of the anno-
tations can be visualized through colors, where each color
represents a particular presence condition.

Template instantiation with patching transforma-
tions. Given a feature configuration, the corresponding
template instance is created automatically. The instanti-
ation process can apply the so-called patching transforma-
tions, which allow a more concise representation of tem-
plates. An example of such transformation is the closure of
an incoming and outgoing flow of an action in an activity
model template, when the action is removed in a particular
instance.

Automatic template verification. An automatic veri-
fier makes sure that no ill-structured template instance can
be created for a valid feature configuration. The desired
structural well-formedness constraints can be expressed in
OCL. Any violations are reported to the template designer
by highlighting the involved model elements and giving sam-
ple feature configurations for which the violation occurs.
The implemented verification procedure is described else-
where [8].

4. DISCUSSION AND FUTURE WORK
We have gained some early experience with the tools de-

scribed in this paper by creating feature models and busi-
ness model template of a configurable e-commerce platform.
The business model template consists of UML class model
templates for business entities and activity model templates
for business processes. The feature models contain several

hundred features and the model templates contain dozens
of classes and activities. The early experience has been very
encouraging, but more work is needed. In particular, guide-
lines on using templates with other mechanisms for repre-
senting variability in models, such as various analysis and
design patterns, are needed.

Several tools for feature modeling exist, e.g., XFeature [11],
pure::variants [3], GEARS [10], ReqiLine [12], and the con-
figuration wizard in the AHEAD toolsuite [2]. The main
unique capabilities of our tool include support for staged
and multilevel configuration, feature model synchronization,
and advanced support for constraints. We are not aware of
any model template tools comparable to fmp2rsm.

In future, we would like to gain more experience in apply-
ing the described approach and tools in different application
domains.

fmp and fmp2rsm are available at http:\\gp.uwaterloo.
ca\fmp and http:\\gp.uwaterloo.ca\fmp2rsm, respectively.

5. REFERENCES
[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature

modeling plug-in for Eclipse. In OOPSLA’04 Eclipse
Technology eXchange (ETX) Workshop, 2004. Paper available
from http://www.swen.uwaterloo.ca/~kczarnec/etx04.pdf.
Software available from gp.uwaterloo.ca/fmp.

[2] D. Batory. Feature Models, Grammars, and Propositional
Formulas. Technical Report TR-05-14, University of Texas at
Austin, Texas, Mar. 2005.

[3] D. Beuche. pure::variants Eclipse Plugin. User Guide.
pure-systems GmbH. Available from http:
//web.pure-systems.com/fileadmin/downloads/pv_userguide.pdf,
2004.

[4] Configit Software. Configit—Product Configuration Engine,
2005. http://www.configit-software.com/.

[5] K. Czarnecki and M. Antkiewicz. Mapping features to models:
A template approach based on superimposed variants. In
R. Glück and M. Lowry, editors, GPCE 2005 - Generative
Programming and Component Enginering. 4th International
Conference, Tallinn, Estonia, Sept. 29 – Oct. 1, 2005,
Proceedings, volume 3676 of LNCS, pages 422–437. Springer,
2005.

[6] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration using feature models. In R. L. Nord, editor,
Software Product Lines: Third International Conference,
SPLC 2004, Boston, MA, USA, August 30-September 2,
2004. Proceedings, volume 3154 of LNCS, pages 266–283,
Heidelberg, Germany, 2004. Springer-Verlag.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their specialization.
Software Process Improvement and Practice, 10(1):7–29, 2005.

[8] K. Czarnecki and K. Pietroszek. Verifying feature-based model
templates against well-formedness OCL constriants. Submitted
for publication, 2005.

[9] C. H. P. Kim and K. Czarnecki. Synchronizing
cardinality-based feature models and their specializations. In
Proceedings of ECMDA’05, 2005.
swen.uwaterloo.ca/~kczarnec/ecmda05.pdf.

[10] C. W. Krueger. Software mass customization. White paper.
Available from http:
//www.biglever.com/papers/BigLeverMassCustomization.pdf,
Oct. 2001.

[11] O. Rohlik and A. Pasetti. XFeature Modeling Tool. Automatic
Control Laboratory, ETH Zürich, 2005.
http://www.pnp-software.com/XFeature/.

[12] T. von der Maßen and H. Lichter. RequiLine. RWTH Aachen,
2005. http:
//www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline/.

201


