
GSDLAB TECHNICAL REPORT

Intermodeling, queries and Kleisli categories

Zinovy Diskin

GSDLAB–TR 2011–10–01 October 2011

Generative Software Development Laboratory
University of Waterloo

200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1

WWW page: http://gsd.uwaterloo.ca/

The GSDLAB technical reports are published as a means to ensure timely dissemination

of scholarly and technical work on a non-commercial basis. Copyright and all rights

therein are maintained by the authors or by other copyright holders, notwithstanding

that they have offered their works here electronically. It is understood that all persons

copying this information will adhere to the terms and constraints invoked by each author’s

copyright. These works may not be reposted without the explicit permission of the

copyright holder.

Intermodeling, queries and Kleisli categories?

Zinovy Diskin1,2

1 NECSIS, McMaster University, Canada
2 Generative Software Development Lab,

University of Waterloo, Canada

diskinz@mcmaster.ca

Abstract. Specification and maintenance of relationships between mod-
els are vital for MDE. We show that a wide class of such relationships can
be specified in a compact and precise manner if intermodel mappings in-
volve derived model elements computed by corresponding queries. Com-
position of such mappings is not straightforward and requires specialized
algebraic machinery. We present a formal framework, in which such ma-
chinery can be generically defined for a wide class of metamodel defini-
tions, and thus important intermodeling scenarios can be algebraically
specified.

1 Introduction

Model-driven engineering (MDE) is a prominent approach to software devel-
opment, in which models of the domain and the software system are primary
assets of the development process. Normally models are inter-related, perhaps
in a very complex way, and to keep them consistent and use them coherently,
relationships between models must be accurately specified and maintained. As
noted in [1], “development of well-founded techniques and tools for the creation
and maintenance of intermodel relations is at the core of MDE.” The goal of
our paper is to present a theoretical framework for specifying a wide class of
intermodel relationships in a compact and formal way. Then many practically
useful operations over inter-related models can be algebraically specified.

To illustrate the issues we are going to address, let us consider a simple
example of model integration in Fig. 1. Subfigure (a) presents four object models.
The expression o:Name in the upper compartment of a model box declares an
objects o of class Name; the lower compartment shows o’s attribute values, and
ellipses in models P1, P2 refer to other attributes not shown. In model A, class
Woman extends class Actor. When we need to refer to an element e (an object
or an attribute) of model X, we write e@X. Arrows between models denote
intermodel relationships explained below.

We suppose that models P1 and P2 are developed by two different teams
charged with specifying different aspects of the same domain—different attributes
of the same person in our case. Bidirectional arrow between objects p1@P1 and

? Minor revision in November 2012

 s:Student
 name=Ann
 age=22

Model S Model P1
 p1:Person
 name=Ann
 bdate=01/01/90
 - - - -

 p2:Person
 tname=Ms.Lee
 - - - -

 w: Woman Actor
name=Lee

Model P2 Model A

a2p s2p pp

(a) four models linked informally

S ≈≈≈≈≈
s2p
⇒ P1 ⇐∝∝∝∝∝∝∝∝∝∝∝∝∝∝∝

pp
⇒ P2 ⇐≈≈≈≈≈

a2p
A

[merge]

P
��

--

(b) schema of the system

Fig. 1. Running example: four models and their relationships, informally

p2@P2 means that these objects are different representations of the same person.
Model P1 gives the first name whereas P2 provides the last name and the title
of the person (’tname’). We thus have a complex relationship between the at-
tributes shown by a dashed link (brown with a color display): both attributes talk
about names but are complementary. Together, the two links form an informal
mapping pp between the models.

We also assume that model P1 is supplied with a secondary model S repre-
senting a specific view of P1 to be used and maintained locally at its own site
(in the database jargon, S is a materialized view of P1). Mapping s2p consist-
ing of three links defines the view informally. Two solid-line links declare “the
sameness” of the respective elements. The dash-dotted link shows relatedness of
the two attributes but says nothing more. Similarly, mapping a2p is assumed to
define model A as a view to model P2: the solid link declares the “sameness” of
the two objects, and the dash-dotted link shows relatedness of their attributes
and types. Mappings s2p, pp and a2p bind all models together so that a virtual
integrated (or merged) model, say P , should say that Ms. Ann Lee is a student
and actor born on Jan 1, 1990. Diagram Fig. 1(b) presents the merge informally:
horizontal fancy arrows denote intermodel mappings, and dashed inclined arrows
show mappings that embed the models into the merge.

Building model management tools capable to perform integration like above
for industrial models (normally containing thousands of elements) requires clear
and precise specifications of intermodel relationships. Hence, we need a frame-
work in which intermodel mappings could be specified formally, then operations
on models and model mappings could be described in precise algebraic terms. For
example, merging would appear as an instance of a formal operation that takes
a diagram of models and mappings and produces an integrated model together
with embeddings as shown in Fig. 1(b). We want such descriptions to be generic
and applicable to a wide class of scenarios over different metamodels. Category
theory does provide a suitable methodological framework (cf. [2–4]), e.g., homo-
geneous merge can be defined as the colimit of the corresponding diagram [5, 6],

2

and heterogeneity can be treated as shown in [7]. However, the basic prerequisite
for applying categorical methods is that mappings and their composition must
be precisely defined. It is not straightforward even in our simple example, and
we will briefly review the problems to be resolved.

Thinking in terms of elements, a mapping should be a set of links between
models’ elements as shown by ovals in Fig. 1(a). We can consider a link for-
mally as a pair of elements, and it works for those links in Fig. 1(a), which are
shown with solid lines; semantically, such a link means that two elements rep-
resent the same entity in the real world. However, we cannot declare attributes
’age’ in model S (we write ’age’@S) and ’bdate’@P1 to be “the same” because
they are related yet different. Even more complex is the relationship between
attribute ’tname’ (name with title) in base model P2 and the view model A:
it involves attributes and types (the Woman-Actor subclassing) and is shown
informally by a two-to-one dash-dotted link. Finally, the dashed link between el-
ements ’name’@P1 and ’tname’@P2 encodes a great deal of semantic information
described above.

In the literature, indirect relationships like above are usually specified by
correspondence rules [8] or expressions [9] attached to the respective links. When
such annotated links are composed, it is not clear how to compose the rules;
hence, it is difficult to manage scenarios that involve composition of intermodel
mappings. The importance and difficulty of the mapping composition problem
is well recognized in the database literature [9], we think it will also become
increasingly important in software engineering with advancing and maturing
MDE methods. The main goal of the paper is to demonstrate that the problem
can be solved by standard means of categorical algebra (which are, however, to
be applied in a non-standard way).

In more detail, the paper makes three contributions. First, we show that for
a wide class of intermodel relationships, informal mappings as in Fig. 1(b) can
be presented by combinations of simple formal mappings (functions): each one
goes from a source model to a target model and consists of pairs of models’
elements. The key idea is that we allow target elements in such pairs to be
derived rather than basic elements of the target model, that is, be results of
some operations performed with basic elements; the next section will explain
this in detail. We call such operations queries; the reader may think of some
predefined query language that determines a class of legal operations and the
respective derived elements. We will call links and mappings involving queries q-
links and q-mappings. Q-links allows us to eliminate multi-ary links and replace
them by binary links targeting at elements derived with multi-ary queries.

Although for this paper model merge is a sample intermodeling scenario
rather than a central point, we believe that clarity and compactness of the ap-
proach based on q-links and q-mappings is itself an important contribution. It
proves to be instrumental for specifying and guiding the difficult problem of
model merge.

Third, we build a mathematical framework, in which q-mappings can be
formally specified and modeled algebraically (the q-framework). An important

3

feature of the framework is that models and q-mappings are structured as a cat-
egory, and so operations with models and mappings can be specified by standard
algebraic means developed in category theory. In more detail, we model a query
language by a monad (a well-known constructs of categorical algebra) , and then
q-mappings can be formalized as Kleisli morphisms of the monad (see [10] for
a brief exposition). Thus, intermodeling scenarios can be placed into respective
Kleisli categories and become amenable to algebraic treatment.

The structure of the paper is as follows. In Section 2 we consider our running
example in more detail, and show how the idea of q-links and q-mappings works.
We also demonstrate important issues to be addressed in the q-framework. Sec-
tion 3 explains the main points of the formalization: models’ conformance to
metamodels, retyping, and the query mechanism and q-mappings. Section 4 de-
scribes related work and Section 5 concludes. Due to space limitations, several
important discussions and mathematical explanations are omitted, but can be
found in our technical report [11] accompanying the paper. Below we will refer
to it as “the TR”. Particularly, definitions of categorical notions not defined in
the paper can be found in the TR.

2 Intermodeling and Kleisli mappings

We consider our running example and consecutively introduce main features of
our specification framework.

2.1 From informal to formal mappings

 s:Student
 name=Ann

 p:Person
 name=Ann

Model S0:S f0:m

 Student
 name:Str

m

Metamodel
 S

 Person
 name:Str

Metamodel
 P

Model P0:P

Type discipline. Before mapping models we
need to map their metamodels. Suppose we
need to match models S0 and P0 over cor-
responding metamodels SSS and PPP resp. (see
the inset figure on the right), and link ob-
jects s@S0 and p@P0 as being “the same”.
However, these objects have different types
(’Student’ and ’Person’ resp.) and, with a
strict type discipline, cannot be matched. In-
deed, the two objects can only be “equaled”
if we know that their types actually refer to
the same, or, at least, not disjoint, classes
of real world objects. For simplicity, we assume that classes Student@SSS and
Person@PPP refer to the same class of real world entities but are named differ-
ently; and their attributes ’name’ also mean the same. To make this knowledge
explicit in our specification, we match the metamodels SSS and PPP via mapping mmm
as shown in the inset figure. After metamodels are matched, we can type-safely
match objects s and p, and their attributes as well. The notation f0:mmm means
that each link in mapping f0 is typed by a corresponding link in mappingmmm. Be-
low we will often omit metamodel postfixes next to models and model mappings
if they are clear from the context.

4

Student
 name: Str
 age: Int

Person
 name: Str
 bdate: Int3

 . . .
?

Metamodel S Metamodel, P1

Indirect linking, queries and q-mappings.
As argued above, to specify relationships be-
tween models S and P1 in Fig. 1, we first need
to relate their metamodels (the inset figure on
the right). However, we cannot directly relate
attributes ’age’ and ’bdate’. The cornerstone
of our approach to intermodeling is the idea
to specifying indirect relationships by direct links to derived elements computed
with suitable queries. For example, attribute ’age’ can be derived from ’bdate’
with an evident query Q1:

/age = Q1(bdate) = 2011− bdate.byear,

where we follow UML and prefix the names of derived elements by slash,Q1 is the
name of the query, and the last term is its body (definition); ’byear’ denotes the
year-field of the bdate-records. Now the relation between metamodels SSS andPPP1 is
specified by three directed links, i.e., pairs, (Student, Person), (name, name) and
(age, /age) as shown in Fig. 2(a) (basic elements are shaded whereas the derived
attribute ’/age’ is blank). The three links form a direct mapping m1m1m1: SSS → PPP+

1 ,
where metamodel PPP+

1 denotes PPP1 augmented with derived attribute /age. Since
mapping m1m1m1 is total, it indeed defines metamodel SSS as a view of PPP1.

Query Q1 can be executed for any model over metamodel PPP1, in particular,
P1 (Fig. 2(a) top), which results in augmenting model P1 with the corresponding
derived element; we denote the augmented model by P+

1 . Now model S can be
directly mapped to model P+

1 as shown in Fig. 2(a), and each link in mapping
f1 is typed by a corresponding link in mapping m1m1m1.

The same idea works for specifying mapping a2p in Fig. 1. The only difference
is that now derived elements are computed by a more complex query (with two
select-from-where clauses) as shown in Fig. 2(b): mapping m2m2m2 provides a view
definition, which is executed for model P2 and results in view model A and
traceability mapping f2. In this way we formalize informal mappings s2p, a2p
in Fig. 1 by formal mappings into models and metamodels augmented with
derived elements. Recall that we will call such mappings q-mappings. Note that
ordinary mappings can be seen as degenerate q-mappings that do not use derived
elements.

Links-with-new-data via spans. Relationships between models P1 and P2

in Fig. 1 were informally explained in Introduction. A more precise description
is given by Fig. 3. We first introduce a new metamodel PPP12 (the shaded part
of metamodel PPP+

12), which specifies new concepts assumed by the semantics.
Then we relate these new concepts to the original ones via mappings rrr1, rrr2;
the latter one essentially uses derived elements. Queries Q41,2 are projection
operations, and query Q3 is the pairing operation. Particularly, mapping rrr2
says that attribute ’fname’@PPP+

12 does not match any attribute in model PPP+
2 ,

’lname’@PPP+
12 is the same as ’/name’@PPP+

2 (i.e., the second component of ’tname’),
and ’tname’@PPP+

2 “equals” to the pair of attributes (title, lname) in PPP+
12.

5

 p1:Person
 name=Ann
 bdate=01/01/90
/age=2012-1990
 = 22
 . . .

s:Student
name=Ann
age=22

Model P1
+: P1

+ Model S:S f1:m1

 Student
 name: Str
 age: Int

m1 Metamodel, P1
+ Metamodel S

 Person
 name: Str
 bdate: Int3
/age=Q1(bdate)
 : Int
 . . .

 Person
 tname: {Mr,Ms} x Str

Metamodel P2
+

 w:Woman
 name=Lee

 Actor
 name: Str

Metamodel A

 Woman

 Man

 p2:Person
 tname=Ms.Lee

/p2‘: MsPerson

/name=Lee

f2:m2

m2

/MsPerson
 /name: str

/MrPerson
 /name: str

Model P2
+:P2

+ Model A:A

(a) (b)

Fig. 2. Indirect matching via queries and direct mappings

Person
 name: Str
 bdate: Int3

 . . .

Metamodel P12
+ r1

 Person
tname: {Ms,Mr} x Str
/title =Q41(tname):{Ms,Mr}
/name=Q42(tname):Str
 . . .

Metamodel P2
+ r2

 Person
 fname: Str
 title: {Ms,Mr}
 lname: Str
/tname = Q3(_, _):
 {Ms,Mr} x Str

Metamodel P1

p1:Person
 name=Ann
 bdate=01/01/90
 . . .

Model P12
+ e1

 p2:Person
tname: Ms.Lee
/title = Ms
/name = Lee
 . . .

e2
 p:Person
 fname=
 title=
 lname=
/tname=

Model P1 Model P2
+

Fig. 3. Matching via spans and queries

6

 Person
 name: Str
 bdate: Int3

Metamod.P12
+

r11

 Person
 fname: Str
 title: {Ms,Mr}
 lname: Str
/tname: Str

Metamod.P1

Person
 name: Str

Metamod. r1

r12

Fig. 4. Partial mappings via spans

On the level of models, we in-
troduce a new model P12 to de-
clare sameness of objects p1@P1

and p2@P2, and to relate their at-
tribute slots. The new attribute
slots are kept empty—they will
be filled-in with the correspond-
ing local values during the merge.

It is well-known that the alge-
bra of totally defined functions is
much simpler than of partially de-
fined ones. Neither of the mappings rrrk, ek (k = 1, 2) is total (recall that PPP2 and
P2 may contain other attributes not shown in our diagrams). To replace these
partial mappings with total ones, we apply a standard categorical construction
called a span, as shown in Fig. 4 for mapping rrr1. We reify rrr1 as a new model rrr1
equipped with two projection mappings rrr11, rrr12, which are totally defined.

Thus, we have specified all our data via models and functional q-mappings
as shown in the diagram below: arrows with hooked tails denote inclusions of
models into their augmentations with derived elements computed with queries
Qi.

S Q1 (P1) P1 P2 A

f1 f2 e1

P12

e2

Q4 (P2) Q3 (P12)
η2

η1

Q2 (P2)

2.2 Model merging: a sample multi-mapping scenario

We want to integrate data specified by the diagram above. We first need to merge
models P1, P2 and P12 without data loss and duplication. The type discipline
prescribes merging their metamodels first. To merge metamodels PPP+

1 , PPP+
2 , and

PPP+
12 (see Fig. 3), we take their disjoint union (no loss), and then glue together

elements related by mappings rrr1,2 (to avoid duplication). The result is shown
Fig. 5(a). There is a redundancy in the merge since attribute ’tname’ and pair
(title, lname) are mutually derivable. We need to choose either of them as a
basic structure, then the other will be derived (see Fig. 5(b1,b2)) and could be
omitted from the model. We call this process normalization. Thus, there are two
normalized merged metamodels. Amongst the three metamodels to be merged,
we favor metamodel PPP12 in which attribute ’tname’ is considered derived from
’title’ and ’last name’, and hence choose metamodel PPP+

n1 as the merge result
(below we omit the subindex).

Now we take the disjoint union of models P+
1 , P

+
2 , P+

12 (Fig. 3), and glue
together elements linked by mappings e1,2. Note that we merge attribute slots
rather than values; naming conflicts are resolved in favor of names used in meta-
model PPP+

12. The merged model is shown in Fig. 6; the merged metamodel is clear

7

(a)

Person
 fname: Str
 title: {Ms, Mr}
 lname: Str
 /tname = Q3(title,name):
 {Ms,Mr} x Str
 bdate=01/01/90

Metamodel Pn1
+

 Person
 fname: Str
 /title =Q41(tname): {Ms,Mr}
 /name=Q42(tname): Str
tname:
 {Ms,Mr} x Str
bdate=01/01/90

Metamodel Pn2
+

(b1) (b2)

 Person
 fname: Str
 title = Q41(tname):Str
 name= Q42(tname):Str
 tname=Q3(title,name):
 {Ms,Mr}xStr
bdate=01/01/90

Metamodel P

Fig. 5. Normalizing the merge

 p:Person
 fname=Ann
 title=Ms
 lname=Lee
/tname=Ms.Lee
bdate=01/01/90
 . . .
 . . .

p1:Person
 name=Ann
 bdate=01/01/90
 . . .

 p2:Person
tname: Ms.Lee
/title = Ms
/name = Lee
 . . .

i1
 i2

+ Model P1:P1
 Model P2

+:P2
+ Model P+:P+

Fig. 6. Result of the merge modulo match in Fig. 3

and implicit. Note the interplay between basic-derived-element links in mapping
e2 in Fig. 3. Without them, the merge would contain redundancies. Note also
that all three component models are embedded into the merge by injective map-
pings i1,2,3 (mapping i3 is evident and not shown).

Merge and integration, abstractly. The hexagon area in Fig. 7 presents the
merge described above in an abstract way. Nodes in the diagram denote models,
and arrows are functional mappings. Arrows with hooked tails are inclusions of
models into their augmentations with derived elements computed with queries
Qi. Computed mappings are shown with dashed arrows (blue if colored), and
computed model P+ is not framed.

However, building model P+ does not finish integration. Our system of mod-
els also has two view models, S and A, and to complete integration, we need to
show how views S and A are mapped into the merge P . For this goal, we need to
translate queries Q1 and Q2 to, resp., models P1 and P2 from their original mod-
els to the merge model P+ using mappings i1, i2. We first replace each element
x@Pk occurring in the expression defining query Qk (k = 1, 2) by the respective
element ik(x)@P+. In this way query definitions are translated to model P+.
Then we execute them and augment model P+ with the respective derived ele-
ments as shown by inclusion mappings η]k (k = 1, 2) within the lane (a-b) in the
figure. That is, we add to model P+ derived attribute /age (on the left) and two
derived subclasses, ’title=Ms’ and ’title=Mr’ (on the right). Since model P+ is
embedded into its augmentations Qk(P+) (k = 1, 2), and queries Qk preserve

8

S

Q1 (P1)

P1 P2

Q2 (P2)

A

f1
P+

f2

e1

P12

e2

Q4 (P2) Q3 (P12)

Q2 (P+) Q1 (P+)

P++

i1 i2
+

i2

i1
i2

η2

η2
η1

η1

(a)

(b)

i3
+

η12
iS iA

Fig. 7. The merge example, abstractly

data embedding (are monotonic in the database jargon), the result of executing
Qk against model Pk can be embedded into the result of executing Qk against
P+. Hence, we have mappings i]k making the squares [Pk P

+ Qk(P+) Qk(Pk)]
(k = 1, 2) commutative.

Finally, we merge queries Q1 and Q2 to model P+ into query Q12, whose
execution adds to model P+ both derived attribute /age and derived subclasses.
We denote the resulting model by P++ and η12: P+ ↪→ P++ is the corresponding
inclusion (see the lower diamond in Fig. 7). Now we can complete integration by
building mappings iS : S → P++ and iA: A→ P++ by sequential composition of
the respective components. These mappings say that Ms. Ann Lee is a student
and an actor — information that is not provided by either of models P+ or P++

as such.

2.3 The Kleisli construction

The diagram in Fig. 7 is precise but looks too detailed in comparison with the
informal diagram Fig. 1(b). We want to design a more compact yet still precise
notation for this diagram.

Note that the diagram heavily uses the following mapping pattern

X
f- Q(Y) �

η
⊃ Y,

where X,Y are the source and the target models, Q(Y) is augmentation of Y
with elements computed by a query Q to Y , and η is the corresponding inclusion.
The key idea of the Kleisli construction developed in category theory is to view
this pattern as an arrow K : X ⇒ Y comprising two components: a query QK to
the target Y and a functional mapping fK : X → QK(Y) into the corresponding

9

augmentation of the target. Thus, the query becomes a part of the mapping
rather than of model Y , and we come to the notion of q-mapping mentioned
above. We will often denote q-mappings by double-body arrows to recall that
they encode both a query and a functional mapping. By a typical abuse of
notation, a q-mapping and its second component (the functional mapping) will
be often denoted by the same letter; we write, say, f : X ⇒ Y and f : X → Q(Y)
using letter f for both. With this notation, the input data for integration (framed
nodes and solid arrows in diagram Fig. 7) are encoded by the following diagram

S ===
f1
⇒ P1 ⇐=

e1
•=⇒ P12 ⇐=

e2
•=⇒ P2 ⇐===

f2
A

where spans e1, e2 from Fig. 7 are encoded by arrows with bullets in the middle.
Note a nice similarity between this and our original diagram Fig. 1(b)(its upper
row of arrows); however, in contrast to the latter, the arrows in the diagram
above have the precise meaning of q-mappings.

Finally, we want to formalize the integration procedure as an instance of
the colimit operation: as is well-known, the latter is a quite general pattern for
“putting things together” [2]; see also [5, 12, 6] for concrete examples related to
MDE. To realize the merge-as-colimit idea, we need to organize the universe of
models and q-mappings into a category, that is, define identity q-mappings and
composition of q-mappings. The former task is easy: given a model X, its identity
q-mapping 11X : X ⇒ X is 1X : X → Q∅(X) where Q∅ is an empty query so that
Q∅(X) = X, and 1X is the identity mapping of X to itself.

X Y Z

Qf (Y)

η
Qf?

∩f

-

Qg(Z)

η
Qg?

∩g

-

Qf (Qg(Z))

η
Qf?

∩g #

-

Fig. 8. Q-mapping composition

Composition of q-mappings is, however,
non-trivial. Given two composable q-mappings
f : X ⇒ Y and g : Y ⇒ Z, defining their com-
position f ; g : X ⇒ Z is not straightforward, as
shown by the diagram in Fig. 8 (ignore the
two dashed arrows and their target for a mo-
ment): indeed, after unraveling, mappings f
and g are simply not composable. To man-
age the problem, we need to apply query Qf
to model Qg(Z) and correspondingly extend
mapping g as shown in the diagram. Compo-
sition of two queries is again a query, and thus
pair (f ; g#, Qf◦Qg) determines a new q-mapping from X to Z.

The passage from g to g#—the Kleisli extension operation—is crucial for the
construction. (Note that we have used this operation in Fig. 7 too). On the level
of metamodels and query definitions (syntax only), Kleisli extension is simple
and amounts to term substitution. However, queries are executed for models, and
an accurate formal definition of the Kleisli extension needs a certain amount of
non-trivial work to be done. We outline the main points in the next two sections.

10

3 Model translation, traceability and fibrations

The carrier structure. We fix a category G with pullbacks, whose objects are
to be thought of as graphs, or many-sorted (colored) graphs, or attributed graphs
[13]. The key point is that they are definable by a metametamodel itself being a
graph with, perhaps, a set of equational constraints. In precise categorical terms,
we require G to be a presheaf topos [14], and hence possessing limits, colimits,
and other important properties. In addition, it makes sense to say about objects’
elements. We will call G-objects ‘graphs’, and write e ∈ G to say that e is an
element of ‘graph’ G.

For a ‘graph’ M thought of as a metamodel, an M -model is a pair A =
(DA, tA) with DA a ’graph’ and tA: DA →M a mapping (arrow in category G)
to be thought of as typing. In a heterogeneous environment with models over dif-
ferent metamodels, we may say that a model A is merely an arrow tA: DA →MA

in G, whose target MA is called the metamodel of A, and source DA is the data
carrier. In our examples, a typing mapping for OIDs was set by colons: writing
p:Person for a model A means that p ∈ DA, Person ∈ MA and tA(p) = Person.
For attributes, our notation covers even more, e.g., writing ’name=Ann’ (nested
in class Person) refers to some arrow a: b→ Ann in ‘graph’ DA, which is mapped
by tA to arrow attrdom: name→ string in ‘graph’ MA, but names of a and b
are not essential for us. Details can be found in [12, Sect.3].

A model mapping f : A→ B is a pair of G-mappings, fmeta: MA →MB and
fdata: DA → DB , which commute with typing: fdata; tB = tA; fmeta. Below we
will also write fM for fmeta and fD for fdata. Thus, a model mapping is actually
a commutative diagram; we will usually draw typing mappings vertically and
mappings fM , fD horizontally. We assume the latter to be monic (or injective)
in G like in all our examples. This defines category Mod of models and (injective)
model mappings.

As each model A is assigned with its metamodel MA, and each model map-
ping f : A→ B with its metamodel component fM : MA →MB , we have a pro-
jection mapping ppp: Mod→MMod where we write MMod for category G or
some its subcategory of ‘graphs’ that can serve as metamodels (e.g., all finite
‘graphs’). It is easy to see that ppp preserves mapping composition and identities,
and hence is a functor.

To take into account constraints, we need to consider metamodels as pairs
M = (GM , CM) with GM a carrier ‘graph’ and CM a set of constraints. Then not
any typing tA: DA → GM is a model: a legal tA must also satisfy all constraints
in CM . Correspondingly, a legal mapping f : M → N must be a ’graph’ mapping
GM → GN compatible with constraints in a certain sense (see [12] for details).
We do not formalize constraints in this paper, but in our abstract definitions
below, objects of category MMod may be understood as pairs M = (GM , CM)
as above, and MMod-arrows as legal metamodel mappings.

.

Retyping. Any metamodel mapping v : M ← N generates retyping of models
over M into models over N as shown by diagram on the right. If an element

11

D �
vt

D�v

↗↗rtp

M

t
?
�v

N

t�v
?

D′

D �
�

f

◦
�

!

↗↗rtp

M

t
?
�v N

?�

t
′ D �

1D
D

↗↗rtp

M
?
�1M M

?

D � ◦ � ◦

↗↗rtp ↗↗rtp

M
?
�v1

N
?
�v2

O
?

(a) definition (b) RtpMax (c) IdRtp (d) RtpRtp

Fig. 9. Retyping operation: an application instance (a) and properties (laws) (b,c,d)

e ∈ N is mapped to v(e) ∈ M , then any element in ‘graph’ D typed by v(e), is
retyped by e. Graph D�v consists of so retyped elements of D, and mapping vt
traces their origin.

Formally, elements of D�v can be identified with pairs (e, d) ∈ N×D such
that v(e) = t(d), and mappings t�v and vt are the respective projections. The
operation just described is well-known in category theory by the name pullback
(PB) : typing arrow t�v: D�v → N is obtained by pulling back arrow t along arrow
v. If we want to emphasize the vertical dimension of the operation, we will say
that traceability arrow vt is obtained by lifting arrow v along t. We will also use
a brief notation with names of derived models and mappings skipped as shown
by the inner square in Fig. 9(b): derived arrows are dashed, and the derived node
is blank.

If the type t(d) of an element d ∈ D is outside the range of mapping v,
then d does not appear in D�v. Particularly, v being an inclusion, ‘graph’ D�v is
exactly the t-preimage of N , or its inverse image along t, and vt is the respective
inclusion. We will use this terminology for injective v’s as well, and we assume
that our metamodel mappings are injective.

Retyping has three remarkable algebraic properties specified in Fig. 9(b,c,d).
Diagram (b) specifies maximality of the retyped ‘graph’ D�v in the following
sense. Any other ‘graph’ typed over N by mapping t′ and mapped into D by f
so that the outer square DMND′ commutes, can be uniquely mapped into D�v
(note the arrow ’ !’) such that the two triangle diagrams commute. Maximality
implies the uniqueness of the retyped graph up to isomorphism: any two retyp-
ings are isomorphic via the respective arrow !. (In category theory, this is the
defining property of the pullback operation: a square is a pullback if it is maxi-
mal in the sense above.) Diagram (c) says that identical retyping does nothing:
if v is identity, then vt is identity as well. Diagram (d) reads as follows: if the
two inner squares specify retyping, then the outer rectangle is also a retyping
over composed mapping v1; v2; the corresponding label is skipped to ease the
notation.

Abstract formulation via fibrations. Retyping can be specified as a special
property of functor ppp: Mod→MMod. For an arrow v : M ← N in MMod, and

12

an object A over M (i.e., such that ppp(A) = M), there is an arrow vA : A← A�v
over v (i.e., a commutative diagram as shown in Fig. 9(a)) being maximal in
the sense of diagram Fig. 9(b). Such an arrow is called the (weak) ppp-Cartesian
lifting of arrow v, and is defined up to canonical isomorphism. Functor ppp with a
chosen Cartesian lifting for any arrow v, which satisfies the two properties (c,d)
is called a split fibration (see, e.g., [15, Exercise 1.1.6]). Thus, the existence of
model retyping over metamodel mappings can be abstractly described by saying
that we have a split fibration ppp: Mod→MMod.
Definition 1 () An (abstract) metamodeling framework is a split fibration
ppp: Mod→MMod with the following terminology for its components. Elements
of category Mod are called models and model mappings; elements of MMod
are metamodels and metamodel mappings. For a model A and model mapping
f , we write A:M and f :v if ppp(A) = M and ppp(f) = v. Also, ppp-Cartesian arrows
in Mod are called model retyping. Given a metamodel mapping v : M ← N and
a model A:M , the corresponding retyping is denoted by vA : A← A�v (and is
called Cartesian lifting, as usual for fibrations).

4 Query mechanism via monads

In this section we consider querying and its basic properties in abstract terms.
In Section 4.1, we model querying algebraically as a diagram (tile) operation,
and establish its basic equational laws. Sections 4.2-4.3 consider interaction of
queries with model mappings also within the tile algebra framework; and new
respective laws are introduced. Section 4.4 presents an accurate formalization
based on monads.

4.1 Query as a tile operations and its basic properties.

Examples in Section 2 show that a query mechanism consists of two components:
query definition and query execution. The former acts on the level of metamod-
els: a query definition Qdef against metamodel M can be seen as an inclusion
ηQdef

M :M ↪→M.Qdef of M into its augmentation with derived elements.

DA
⊂
ηQexe

A- DA.Qexe

qEx↗↗e

M

tA
?
⊂

ηQdef

- M.Qdef

tA.Qexe
?

or

• ⊂ - ◦

qEx↗↗e [Q]

•

A
?
⊂ - •

?

Fig. 10. Query execution: the arity shape

Execution of Qdef for an M -
model A can be seen as an op-
eration specified in Fig. 10 (left).
Its input consists of two arrows,
query definition ηQdef and typing
mapping tA, and the output is
the pair of dashed arrows: the up-
per one is inclusion of the carrier

graph into its augmentation with the query results, and the vertical one is the
corresponding typing. The diagram is commutative and specifies an inclusion
ηQA :A ↪→ A.Q in category Mod. Diagram Fig. 10 (right) presents a terse nota-
tion, in which the name of the query Q appears as a parameter in the operation
label; the names of all other elements of the diagram can be restored.

13

D ⊂
1D - D

qEx↗↗e [idM]

M

t
?
⊂

1M - M
?

• ⊂ - ◦ ⊂ - ◦

qEx↗↗e [Q1] qEx↗↗e [Q2]

•
?
⊂ - •

?
⊂ - •

?

(a) IdExe (b) ExeExe

Fig. 11. Query execution: laws

Any query mechanism has
two remarkable algebraic prop-
erties specified in Fig. 11. Given
a metamodel M , we postulate
the existence of the identity
query idM with ηdefidM being the
identity 1M : M →M , and di-

agram (a) says that execution of this query for any model D over M
adds nothing to it. Diagram (b) says that composition of query executions,
say, exe[Q1] and exe[Q2], amounts to the execution of the composed query
η(Q1;Q2)def : M →M.Q1def .Q2def , that is, the outer rectangle specifies execution
of query Q1;Q2 (but the corresponding label is skipped to ease the notation).

We also require diagram Fig. 10 to be a pullback, i.e., data DA is exactly the
inverse image of M along tA.Qexe. This condition formalizes the fundamental
requirement that querying (in contrast to updating) does not affect data: any
item computed by a query has a new type.

4.2 Monotonicity.

DB
⊂

ηQexe

B - DB .Qexe

DA
⊂

ηQexe

A -

f -

DA.Qexe

f
′ -

M

tB

?
⊂

ηQdef

- M.Qdef

?

M

tA

?
⊂

ηQdef

-≡≡
≡≡
≡≡
≡

M.Qdef

?≡≡
≡≡
≡≡

Fig. 12. Query monotonicity

Let M be a metamodel and
Qdef is a query against it. Query
Qdef is said to be monotonic,
if it preserves dataset inclu-
sion, to wit: given a model
mapping f : A→ B (i.e., an
injection f : A→ B commut-
ing with typing as shown by
the left face of the cube in
Fig. 12), there is a model map-
ping f.Qexe: A.Qexe → B.Qexe,
i.e., injection

f ′: DA.Qexe → DB .Qexe,
which makes the entire cube
commutative.

It is well-know that a wide
class of practically important

relational queries — those without negation — are monotonic.

4.3 Query translation and locality.

Let Q be a query to model A as described by the front face of the cube in
Fig. 13. Given a model mapping f : A→ B, i.e., a pair of injective mapping
commuting with typing (see the right face of the cube and ignore the label [pb]),
we want to translate Q into a query Qf against B, and compare the results of
two executions.

14

Query definition translation is easy: we only replace each MA’s element e oc-
curring intoQdef byMB ’s element f(e); this gives us mapping f ′M : MA.Qdef →MB .Q

f
exe

and commutative bottom square of the cube. In fact, this is nothing but syntacti-
cal substitution (note the label subst on the bottom face). We may say that query
Qdef is applied to metamodel mappings too, and write f.Qdef for f ′M . Evidently,
given two consecutive mappings f : M → N , g: N → O between metamodels, we
have (f ; g).Qdef = (f.Qdef); (g.Qdef). Also, 1M .Qdef = 1M .

Interrelation between executions, DA.Q
f
exe and DB .Q

f
exe, is much more com-

plicated because query execution is about real operations with data (in contrast
to purely syntactical query definition). We will first consider two particular cases.
The first one is when model A is the inverse image of model B along mapping
fM , i.e., any DB-element whose type belongs to fM (MA) is carried to DA, and
so the left face of the cube is a pullback. In this case, execution of query Qf

against DB amounts to executing Q over DA up to OID-renaming via fD, and
hence DA.Qexe is an inverse image of DB .Q

f
exe along mapping f ′M . In other

words, if the left face is a pullback, and the bottom face is the query definition
translation (substitution), then query execution makes a commutative cube as
shown in Fig. 13, and the right face is a pullback too.

DB
⊂

η
Qf

exe

B - DB .Q
f
exe

DA
⊂

ηQexe

A -

fD
-

DA.Qexe

f
′
D
-

[pb] [pb]

MB

?
⊂

ηQ
f
def

- MB .Q
f
def

?

[subst]

MA

tA

?
⊂

ηQdef

-

fM
-

MA.Qdef

?
f
′
M
-

Fig. 13. Query translation and locality

A default assumption
in the above arguments is
that DB-elements whose
types are beyond fM (MA)
do not affect execution of
Qf . We may consider the
latter condition as locality
of query execution, and
typical queries are surely
local in this sense. Below
we will assume locality
by default. Thus, query
execution translates pulb-
backs to pullbacks.

The second special
case we consider is some-
what the opposite: now
we assume that two mod-
els are over the same

metamodel, MA = MB = M , but the data ‘graph’ DA is embedded into graph
of DB . This case is specified by the left face of cube Fig. 12, and we can apply
monotonicity law. (Note that this face can only be a pullback in the trivial case
of A and B being the same up to isomorphic OID renaming; in all other cases
DA can be considered as a proper ‘subgraph’ of DB .)

Now we note that any heterogeneous model mapping f = (fM , fD): A→ B
can be factorized into a homogeneous mapping into the inverse image of DB

along fM as shown in Fig. 9(b). Hence, conditions specified by Fig. 12 and

15

DA.Qexe
�µ

Qexe
A DA.Qexe.Qexe

MA.Qdef

?
�µ

Qdef
A MA.Qdef .Qdef

?

Fig. 14.

Fig. 13 together provide existence of mapping f.Qexe: DA.Qexe → DB .Qexe for
a local monotonic query Q. Thus, a query Q gives rise to a graph morphism
[Q]: [Mod]→ [Mod], where [Mod] is the underlying graph of category Mod.

It is a standard categorical exercise in diagram chasing to see that for two con-
secutive model mappings f : A→ B, g: B → C, we have (f ; g).Qexe = (f.Qexe); (g.Qexe)
(assuming that query Q is monotonic and local). Also, 1A.Qexe = 1A.Qexe

.

4.4 Query mechanism via monads and fibrations

Query languages are monads. So far, given a query language QL over a
metamodeling framework ppp: Mod→MMod, we have been considering individ-
ual QL-queries ηQA :A ↪→ A.Q (consisting of definition and execution as shown in
Fig. 11(a)). It is technically convenient to merge all these into one huge “query”
ηQA:A ↪→ A.Q, where A.Q denotes model A augmented with all possible derived
elements computed by all possible QL-queries to A. Our discussion above shows
that we need to require mapping Q to act also on model mappings and, moreover,
to be a functor Q: Mod→Mod. Moreover, if mapping f : A→ B is a pullback
square, then mapping f.Q: A.Q→ B.Q is a pullback square as well (recall local-
ity laws in Section 4.3).

Sequential query composition Fig. 11(b) gives rise to a mapping µQ
A: A.Q.Q→ A.Q.

Indeed, if Q1 is a query to A and Q2 is a query to A.Q1, then each derived ele-
ment in A.Q1.Q2 is actually an element of A.(Q1;Q2) ⊂ A.Q, hence the mapping
µQ
A above. In more detail, this mapping is the commutative diagram in Fig. 14.

Note also all elements in model A.Qexe.Qexe are, in fact, already computed in
A.Qexe and thus are copied from A.Qexe to A.Qexe.Qexe and correspondingly re-
typed according to mapping µdef

A . That is, the diagram we discuss is a pullback.
Thus, a monotonic query language gives rise to a triple (Q, ηQ, µQ) with Q

an endofunctor on category Mod, and ηQ, µQ two mappings that assign to any
model A ∈Mod model mappings ηQM and µQ

A as above. It is straightforward to
check that we should also require commutativity of three (standard for categor-
ical algebra) diagrams in Fig. 15.

A triple (Q, ηQ, µQ) satisfying the three commutativity conditions is called a
monad, and so we define a monotonic query language as a monad over Mod.

Importantly, constituting mappings of this monad have special properties
related to pullbacks. To wit: for any model A, mappings ηQA: A→ A.Q and

16

µQ
A: A.Q.Q→ A.Q are pullback squares (the former is due to the requirement

of data preservation, and the latter is just discussed). Locality condition dis-
cussed in Section 4.3 means that functor Q preserves pullback squares. Three
conditions above mean that the monad Q is Cartesian.

A.Q3
µQ
A.Q- A.Q2

A.Q2

µQ
A.Q
?

µQ
A- A.Q

µQ
A

?

A.Q
ηQA.Q- A.Q2 �

ηQA.Q A.Q

A.Q

µQ
A

?� 1A
.Q

1
A
.Q -

(a) (b1) (b2)

Fig. 15. Laws for a query monad

Query execution vs.
query definition. A
fundamental feature of
querying (in contrast to
updating) is that query
execution always “run”
over the respective query
definition (Section 4.1).
We formalize this prop-
erty by (a) postulating a query definition monad (Qdef , η

Qdef , µQdef) over the
category of metamodels MMod, and (b) requiring that projection functor
ppp: Mod→MMod be a monad morphism, that is, for any model A the fol-
lowing three conditions hold: (b1) A.Q.ppp = A.ppp.Qdef , (b2) ηQA.ppp = ηQdef

A , and

(b3) µQ
A.ppp = µQdef

A for any model A.
Recall that projection functor ppp is actually a (retyping) fibration as discussed

at the end of Sect. 3. In these terms, the three special pullback properties of the
query monad mean that mappings ηQA and µQ

A are ppp-Cartesian for any model A,
and functor Q preserves Cartesianity. We will thus call monad Q ppp-Cartesian.
We summarize the discussion by the following main definition.

Definition 2 (main) A monotonic query language over an abstract metamod-
eling framework ppp: Mod→MMod is a pair of monads (Q,Qdef) over categories
Mod and MMod resp. such that ppp is a monad morphism (conditions (b1-b3)
above), and monad Q is ppp-Cartesian, i.e., functor Q preserves ppp-Cartesianity, and
mappings ηQA, µQ

A are ppp-Cartesian for any model A.

5 View mechanism via Kleisli construction

X.Q2 �f.Q Y.Q �
g

Z

X ⊂ - X.Q

µQ
X.Q ?

�f
�

f
]

Y
∪

6

Fig. 16. The Kleisli construction

Background. A monad Q over a cate-
gory C generates its Kleisli category CQ

as follows. It has the same objects as C,
but a CQ-arrow f : Y ⇒ X is a C-arrow
f : Y → X.Q. Composition of CQ-arrows,
say, g: Z → Y.Q and f : Y → X.Q, is not
immediate since f ’s source and g’s tar-
get do not match. It is defined as shown in Fig. 16: g;f : Z ⇒ X in CQ is
g;f#: Z → X.Q in C, where f] = f.Q;µQ

Y.Q. The CQ-identity loop of object X,

1X : X ⇒ X is C-arrow ηQX : X → X.Q. Monad axioms guarantee associativity of
composition and unitality of identity, thus, CQ is indeed a category.

17

A ⊂
ηQexe
A- Q(A) �

f
B

MA

tA
?
⊂
η
Qdef
M- Q(M)

?
�v MB

tB
?

A ⊂
ηQexe
A - Q(A) �

vQ(A)
Q(A)�v

qEx↗↗e r↗↗tp

M

tA
?
⊂
η
Qdef
M- Q(M)

?
� v

N
?

A ⇐
vA
= = A�v

vEx↗↗e

M

tA
?
⇐======

v
N

tA�v
?

(a) (b1) (b2)

Fig. 17. Q-mappings (a) and view mechanism (b1,b2)

Lemma 1 ([16]). If category C has colimits of all diagram from a certain class
D, then the Kleisli category CQ has D-colimits as well.

Kleisli for query monads. In terms of a metamodeling framework, the Kleisli
construction has an immediate practical interpretation. Let (Q,Qdef) be a mono-
tonic query language over a metamodeling framework ppp: Mod→MMod. Ar-
rows in the Kleisli category ModQ are shown in Fig. 17(a). They are, in fact,
the q-mappings we considered in our examples, and we will also denote category
ModQ by qMapQ (we thus switch attention from objects of the category to its
arrows). It immediately allows us to state (based on Lemma 1) that if D-shaped
configurations of models related by ordinary (not q-) model mappings are merge-
able, then D-shaped configurations of models and q-mappings are mergeable as
well. For example, merge in our running example can be specified as the colimit
of the chain of models and Kleilsi mappings in Fig. ??

Metamodel-level components of q-mappings between models are arrows in
MModQdef

, and they are nothing but view definitions: they map elements of the
source metamodel to queries against the target one. Hence, we denote MModQdef

by viewDefQdef
(and Lemma 1 is applicable again). View definitions can be

executed as shown in Fig. 17(b1): first the query is executed, and then the
result is retyped along the mapping v (recall that dashed arrows denote derived
mappings).

The resulting operation of view execution is specified in Fig. 17(b2), where
double arrows denote Kleisli mappings.Properties of the view execution mecha-
nism are specified by Theorem 1.

Theorem 1. Let (Q,Qdef) be a monotonic query language over an abstract
metamodeling framework ppp: Mod→MMod. It gives rise to a split fibration
pppQ: qMapQ → viewDefQdef

between the corresponding Kleisli categories (and
hence the view execution mechanism satisfies the laws in Fig. 18(a,b)).

Proof. Functoriality of projection mapping pppQ is evident. Maximality property
of retyping Fig. 9(b) provides similar maximality of view execution. Thus, view
execution arrows in Fig. 17(b2) (residing in qMapQ) are pppQ-Cartesian, which
defines the lifting operation. Law Fig. 18(a) is implied by the definition of iden-
tity loops in qMapQ(which are inclusions ηQA in Mod) and law Fig. 11(a). To
prove Fig. 18(b), consider sequential Kleisli composition defined in Fig. 16. If
f is Cartesian (prefix ppp is skipped), then f.Q is also Cartesian by Cartesianity
of Q. Arrows µQ

A are always Cartesian, and hence arrow f] = f.Q;µQ
A is also

Cartesian because ppp is fibration. Hence, if g and f are both Cartesian, then

18

composition g; f] is Cartesian as well. But this composition in Mod is nothing
but composition in the Kleisli category qMapQ = ModQ. ut

D ⇐
1D
= = D

vEx↗↗e

M
?
⇐====

1M
M
?

D ⇐ = = ◦ ⇐ = = ◦

vEx↗↗e vEx↗↗e

M
?
⇐====
v1

N
?
⇐=====
v2

O
?

(a) IdExe (b) ExeExe
Fig. 18.

Law Fig. 18(b) says that exe-
cution of a sequentially composed
view amounts to sequential com-
position of executions of the com-
ponents. It is an evident require-
ment to a reasonable view mech-
anism; Theorem 1 shows that im-

plementing view computation via querying followed by retyping does ensure this
property, and that our formal model works well.

6 Related work

Modeling inductively generated syntactic structures (term and formula algebras)
by monads and Kleisli categories is well known, e.g., [17, 10]. Semantic structures
(algebras) then appear as Eilenberg-Moore algebras of the monad. In our ap-
proach, carriers of algebraic operations stay within the Kleilsi category. It only
works for monotonic query languages, but the latter form a large, practically in-
teresting class. (E.g, it is known that Select-Project-Join queries are monotonic.)
We are not aware of a similar treatment of query languages in the literature.

Our notion of metamodeling framework is close to specification frames in
institution theory [18]. Indeed, inverting the projection functor gives us a func-
tor ppp−1Q : viewDefopQdef

→ Cat, which may be interpreted in institutional terms
as mapping theories into their categories of models, and theory mappings into
translation functors. The picture still lacks constraints, but adding them is not
too difficult and can be found in [19]. Conversely, there are attempts to add
query facilities to institutions via so called parchments [20]. Semantics in these
attempts is modeled in a far more complex way than in our approach.

In several papers, Guerra et al. developed a systematic approach to inter-
modeling based on TGG (Triple Graph Grammars), see [1] for references. The
query mechanism is somehow encoded in TGG-production rules, but precise
relationships between this and our approach remain to be elucidated.

Our paper [7] heavily uses view definitions and views in the context of defining
consistency for heterogeneous multimodels, and is actually based on constructs
similar to our metamodeling framework. However, the examples therein go one
step “down” in the MOF-metamodeling hierarchy in comparison with our exam-
ples, and formalization is not provided. The combination of those structures with
structures in our paper makes a two-level metamodeling framework (a fibration
over a fibration); studying this structure is left for future work.

7 Conclusion

The central notion of the paper is that of a q-mapping, which maps elements in
the source model to queries applied to the target model. We have shown that

19

q-mappings provide a concise and clear specification framework for intermod-
eling scenarios, particularly, model merge. Composition of q-mappings is not
straightforward: it requires free term substitution on the level of query defini-
tion (syntax), and actual operation composition on the level of query execution
(semantics). To manage the problem, we model both syntax and semantics of
a monotonic query language by a Cartesian monad over the fibration of mod-
els over their metamodels. Then q-mappings become Kleilsi mappings of the
monad, and can be respectively composed. In this way the universe of models
and q-mappings gives rise to a category (the Kleisli category of the monad),
which provides a manageable algebraic foundation for specifying intermodeling
scenarios.

References

1. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F.: Inter-modelling: From theory
to practice. In: MoDELS. Volume 6394 of LNCS., Springer (2010) 376–391

2. Goguen, J.: A categorical manifesto. Mathematical structures in computer science
1(1) (1991) 49–67

3. José Fiadeiro: Categories for Software Engineering. Springer (2004)
4. Batory, D.S., Azanza, M., Saraiva, J.: The objects and arrows of computational

design. In: MoDELS. Volume 5301 of LNCS., Springer (2008) 1–20
5. Sabetzadeh, M., Easterbrook, S.M.: View merging in the presence of incomplete-

ness and inconsistency. Requir. Eng. 11(3) (2006) 174–193
6. Rossini, A., Rutle, A., Lamo, Y., Wolter, U.: A formalisation of the copy-modify-

merge approach to version control in mde. J. Log. Algebr. Program. 79(7) (2010)
636–658

7. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models
for global consistency checking. In: MoDELS Workshops. Volume 6627 of Lecture
Notes in Computer Science., Springer (2010) 165–179

8. Romero, J., Jaen, J., Vallecillo, A.: Realizing correspondences in multi-viewpoint
specifications. In: EDOC, IEEE Computer Society (2009) 163–172

9. Bernstein, P.: Applying model management to classical metadata problems. In:
Proc. CIDR’2003. (2003) 209–220

10. Moggi, E.: Notions of computation and monads. Information and Computation
93(1) (1991) 55–92

11. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and Kleisli cate-
gories. Technical Report GSDLab-TR 2011-10-01, University of Waterloo (2011)
http://gsd.uwaterloo.ca/QMapTR .

12. Diskin, Z.: Model synchronization: mappings, tile algebra, and categories. In R.
Lämmel et al., ed.: Postproceedings GTTSE 2009. LNCS#6491, Springer (2011)

13. Ehrig, H., Ehrig, K., Prange, U., Taenzer, G.: Fundamentals of Algebraic Graph
Transformation. (2006)

14. Barr, M., Wells, C.: Category theory for computing science. PrenticeHall (1995)
15. Jacobs, B.: Categorical logic and type theory. Elsevier Science Publishers (1999)
16. Manes, E.: Algebraic Theories. Springer (1976)
17. Jüllig, R., Srinivas, Y.V., Liu, J.: Specware: An advanced evironment for the formal

development of complex software systems. In: AMAST. Volume 1101 of Lecture
Notes in Computer Science., Springer (1996) 551–554

20

18. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of ACM 39(1) (1992) 95–146

19. Diskin, Z.: Towards generic formal semantics for consistency of heterogeneous mul-
timodels. Technical Report GSDLAB 2011-02-01, University of Waterloo (2011)

20. J.Goguen, Burstall, R.: A study in the foundations of programming methodol-
ogy: Specifications, institutions, charters and parchments. Volume 240 of Springer
Lect.Notes in Comp.Sci. (1986) 313–333

21

