
Cool Features and Tough Decisions:
A Comparison of Variability Modeling Approaches

Krzysztof Czarnecki
University of Waterloo,

Canada
czarnecki@acm.org

Paul Grünbacher
Johannes Kepler University

Linz, Austria
paul.gruenbacher@jku.at

Rick Rabiser
CD Lab for Autom. Softw.
Eng., JKU Linz, Austria
rabiser@ase.jku.at

Klaus Schmid
University of Hildesheim,

Germany
schmid@sse.uni-

hildesheim.de

Andrzej Wąsowski
IT University of Copenhagen,

Denmark
wasowski@itu.dk

ABSTRACT
Variability modeling is essential for defining and managing the
commonalities and variabilities in software product lines. Numer-
ous variability modeling approaches exist today to support domain
and application engineering activities. Most are based on feature
modeling (FM) or decision modeling (DM), but so far no system-
atic comparison exists between these two major classes of approaches.
Over the last two decades many new features have been added to
both FM and DM and it is tough to decide which approach to use
for what purpose. This paper clarifies the relation between FM and
DM. We aim to systematize the research field of variability mod-
eling and to explore potential synergies. We compare multiple as-
pects of FM and DM ranging from historical origins and rationale,
through syntactic and semantic richness, to tool support, identify-
ing commonalities and differences. We hope that this effort will
improve the understanding of the range of approaches to variabil-
ity modeling by discussing the possible variations. This will pro-
vide insights to users considering adopting variability modeling in
practice and to designers of new languages, such as the new OMG
Common Variability Language.

Keywords
variability modeling, feature modeling, decision modeling, product
lines

1. INTRODUCTION AND MOTIVATION
Variability modeling is used to understand and define commonal-

ities and variabilities in software product lines and to support prod-
uct derivation. It also helps to bring modeling concepts into other-
wise mostly code-driven projects. For example, in some real-world
projects, such as the Linux kernel and the embedded operating sys-
tem eCos, variability modeling is the only form of modeling that is
used [13]. Among the existing approaches to variability modeling,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VaMoS’12, January 25–27, 2012, Leipzig, Germany.
Copyright 2012 ACM 978-1-4503-1058-1 ...$10.00.

feature modeling (FM) and decision modeling (DM) have gained
most importance. Most existing FM approaches are more or less
directly derived from the work on Feature-Oriented Domain Anal-
ysis (FODA) by Kang et al. [42]. Several papers compare FM ap-
proaches from different viewpoints [19, 61, 12]. DM exists nearly
as long as FM, and, similarly, most (if not all) existing DM ap-
proaches [60] have been influenced by the Synthesis method [64].
Among other variability modeling approaches, one should mention
Orthogonal Variability Management (OVM) [51]. In this paper,
however, we focus solely on comparing DM and FM, as the cur-
rently most popular classes of methods, leaving a broader survey to
future work.

Despite their significant role in product line research and prac-
tical applications, a systematic comparison of FM and DM ap-
proaches is still lacking. Existing general surveys of variability
modeling techniques [17, 63] do not discuss the differences and
commonalities of FM and DM. Over the last two decades, the orig-
inal FM and DM proposals have been extended with many new
features. Without a thorough understanding of the differences, de-
ciding between FM and DM approaches is difficult. As we will see,
however, the capabilities of modern FM and DM approaches have
significantly converged.

Fig. 1 depicts an example of a feature model using a slightly
adapted FODA notation [23] (a) and an example of a decision model
in two different notations (b and c) for a fictitious mobile phone
product line. Fig. 1(b) is based on the style of Mansell and Sell-
ier [46] and Schmid and John [59]; Fig. 1(c) shows the original Syn-
thesis notation [64]. We will refer to this example throughout the
paper to clarify differences and commonalities of FM and DM.

Our aim is to clarify the relation between the two major classes
of variability modeling approaches and increase clarity in the re-
search field, in which, as we show later, a number of seemingly
contradictory statements on DM and FM exist. We also aim to ex-
plore potential synergies.

The paper is based on our experiences as experts in the respec-
tive areas of DM and FM and on our knowledge of the literature in
these fields. The results are based on 3 face-to-face meetings and
11 phone conferences with a typical duration of 1,5 hours in which
we first agreed on the dimensions and then discussed the relation
between DM and FM in detail for each dimension. We did not make
the attempt to involve additional experts in this work. We also did
not follow a systematic method to analyze the literature (such as
a systematic literature review). Obviously, this process represents
a threat to validity. However, the group of five authors carefully

discussed all cases of disagreement and the authors achieved con-
sensus on all reported results.

Our work is of interest to researchers and practitioners deciding
on approaches and tools to variability modeling as well as to tool
builders who want to improve the variability modeling capabilities
of their tools. We also regard this comparison as an important step
towards standardization of variability modeling [1].

Sect. 2 describes the background and history of FM and DM.
Sect. 3 discusses the commonalities and differences of FM and DM
in detail using ten dimensions defined based on comparison frame-
works previously used by the authors within the areas of FM [13]
and DM [60]. Sect. 4 discusses how variability modeling approaches
used in real-world projects such as Kconfig and CDL [13] have ap-
plied concepts from both FM and DM in practice and what can
be learned from these languages regarding potential synergies and
standardization efforts, such as the OMG Common Variability Lan-
guage (CVL) [1]. We summarize main findings and suggest future
work in Sect. 5.

2. BACKGROUND AND HISTORICAL PER-
SPECTIVE

Feature Modeling.
FM was originally proposed as part of the FODA method [42].

In FODA, a domain is defined as a set of current and future systems
sharing common capabilities. Domain analysis aims at discovering
and representing commonalities and variabilities among them. In
FODA, feature models capture features—the end-user’s (and cus-
tomer’s) understanding of the general capabilities of systems in the
domain—and the relationships among them. Fig. 1(a) depicts a
feature model for the mobile phone example as a feature tree with
mandatory and optional features and a cross-tree dependency (re-
quires).

Historically, FODA builds on, among others, Neighbors’s work
on Draco [50], and Batory’s domain analysis of DBMS and the
Genesis tool [10]. Feature-orientation can be traced back to the
ROSE tool [45, 14], which supported ‘feature-based selection’ of
components, and the KAPTUR system [49], which used ‘distinc-
tive features’ to distinguish systems within a domain.

FODA has spurred a multitude of works on extending the origi-
nal notation and on modeling and implementing systems using fea-
ture models. Notable extensions include group cardinalities [55],
feature cardinalities [25], and feature inheritance [5]. Existing sur-
veys cover some of these notations [61] and applications [39]. FM
is also an integral part of feature-oriented software development
(FOSD), a paradigm focused on treating features as modular, first-
class entities throughout the entire development cycle, including re-
quirements, design, implementation, and test [2]. Thus, the mean-
ing of the term feature has been broadened dramatically over time.

Decision Modeling.
The earliest documented approach to DM is found in the Synthe-

sis method [64]. The method, developed by the Software Produc-
tivity Consortium for industrial use, provided an early reuse process
model. Most—if not all—DM approaches can ultimately trace their
heritage back to Synthesis, which defines a decision model as a set
of decisions that are adequate to distinguish among the members of
an application engineering product family and to guide adaptation
of application engineering work products [64]. This early defini-
tion emphasizes product derivation—as opposed to describing the
domain, which is the main purpose of FM in FODA. Fig. 1(c) de-

picts a Synthesis decision model for the mobile phone example, in
a textual representation.

Most DM approaches were either inspired by industrial appli-
cations or developed in close collaboration with industry. Several
of them are discussed in a recent comparative analysis [60]. In
VManage [31, 46] and the approach by Weiss and Lai [69], a deci-
sion model is a document defining the decisions that must be made
to specify a member of a domain [46]. The tool-supported DO-
PLER approach [28] has been developed to guide the derivation
of customer-specific products. The work of Schmid and John [59]
provides a common modeling foundation that can be mapped to a
wide range of notations. Fig. 1(b) depicts a decision model for the
mobile phone example in a tabular representation that combines
elements from several previous works [46, 59, 28].

3. COMPARISON
We compare FM and DM along ten dimensions, extracted from

two earlier frameworks for discussing FM and DM approaches [13,
60]. These dimensions are the following applications, unit of vari-
ability (feature vs. decision), orthogonality, data types, hierarchy,
dependencies and constraints, mapping to artifacts, binding time
and mode, modularity, and tool aspects.

The first of the two frameworks underlying our dimensions [13]
was used to study Kconfig and Component Description Language
(CDL), which are two real-world variability languages, and com-
pare them with FM. Its dimensions included feature kinds, fea-
ture representation, hierarchy, constraints, code mappings, binding
modes, and modularization.

The second framework [60] was used to compare different deci-
sion modeling approaches. Its dimensions were decision data type,
constraints and dependencies, artifact types and relations, product
derivation support (including binding time), aggregation of deci-
sions and tool support.

We integrated and generalized the two frameworks to adequately
address the needs of both DM and FM, arriving at the ten dimen-
sions used in this paper. The integration was straightforward as the
frameworks overlap significantly, giving us eight of the ten dimen-
sions. We then extended this set with two additional dimensions:
applications and orthogonality. We added applications since one of
our goals was to clarify the applicability of FM and DM. We added
orthogonality of variability modeling since several authors men-
tioned this aspect when discussing FM and DM (e.g., [51, 33]).

The remainder of this section compares DM and FM according
to these ten dimensions. The three left-most columns of Table 1
summarize this comparison; the remaining columns will be dis-
cussed in Sect. 4).

3.1 Applications
We will first focus on the purposes to which the approaches are

most commonly used. The emphasis is slightly different for the two
approaches.

DM focuses on variability modeling and derivation support; FM
focuses on commonality and variability modeling, but it also pro-
vides derivation support. Fig. 1 shows that FM and DM both rep-
resent variabilities, but only FM also presents the commonalities:
GSM Protocol GSM 1800 and playback are part of the feature
model but are intentionally not represented in the decision models,
as no decision needs to be made for these common features.

The key applications of DM include planning and managing vari-
abilities in SPLs and derivation support, i.e., supporting applica-
tion engineers in configuring and creating products based on soft-
ware product lines [69, 46, 59, 28]. The application scope has also
broadened over time and includes efforts to integrate DM with goal

Table 1: Commonalities and differences between FM and DM in diverse dimensions. The rightmost columns, Kconfig, CDL and CVL
initial are discussed in Sect. 4.

dimension decision modeling feature modeling Kconfig CDL CVL initial

applications variability modeling; derivation
support

diverse applications: concept
modeling (e.g., domain
modeling), variability and
commonality modeling; derivation
support

modeling variability in
the kernel; derivation
support

modeling variability in
eCos; derivation support

variability modeling;
derivation support

unit of variability decisions to be made in
derivation

features are properties of
concepts, e.g., systems

drivers, subsystems,
kernel options, build
option

drivers, subsystems,
kernel options, build
option

VSpecs: essentially
decisions in derivation;
pre-made decisions
(mandatory features)

orthogonality orthogonal mostly used in orthogonal fashion orthogonal (added
configuration UI
concepts, e.g., menus)

orthogonal (added
architectural concepts,
e.g., packages,
components)

orthogonal (but
admitting
non-orthogonal uses is
discussed)

data types comprehensive set of basic types;
composite: sets, records, arrays

comprehensive set of basic types;
references;
composite: via hierarchy, group
and feature cardinalities

Boolean, tristate,
numbers and strings;
choices

none, bool, data
(dynamically typed
values incl. int, string,
real), booldata

choices; parameters with
comprehensive set of
basic types; classifiers

hierarchy secondary concept; diverse
approaches, e.g., visibility or
relevance hierarchy (no
decomposition)

essential concept; single
approach: tree hierarchy modeling,
parent-child configuration
constraints and decomposition

characteristics of
FM&DM: essential
organization means
(FM), visibility induced,
driven by UI concepts
(DM)

like in FM (essential
organization means;
decomposition
hierarchy)

essential concept; vspec
tree, like in FM

dependencies and
constraints

no standard constraint language
but similar range of approaches
(Boolean, numeric, sets)

no standard constraint language but
similar range of approaches
(Boolean, numeric, sets, quantifiers)

propositional
three-valued logics with
comparisons

propositional Boolean
logics with expressions
on data

propositional and
predicate logic with
expressions on data

mapping to artifacts essential concept; no standard
mechanism

optional concept; no standard
mechanism

mapping to C
preprocessor via a
custom build system (no
explicit mapping model)

explicit mapping in the
variability model;
variability symbols
available to C
preprocessor

essential concept;
mapping model,
base-model independent

binding time and
mode

not standardized, occasionally
supported

not standardized, occasionally
supported

static or dynamic binding
decided at compile time

static binding not included in CVL
(dependent on
application)

modularity no standard mechanism; decision
groups play partly this role

no standard mechanism; feature
hierarchy plays partly this role

model is split into files;
no modularization
beyond hierarchy in the
language

loadable packages,
reparenting

explicit support
(packages, configurable
units)

tool aspects representation of models as lists,
tables, trees, and graphs;
configuration UI: an (ordered)
list of questions

diverse solutions for configuration
workflows (essential)

representation of models as lists,
tables, trees, and graphs;
configuration UI: usually a tree
(unordered)

diverse solutions for supporting
configuration workflows
(secondary concept)

modeling in textual
syntax; configuration UI:
a tree with controlled
visibility

no support for
configuration workflows;
reconfiguration scripts

modeling in textual
syntax; configuration UI:
a tree with controlled
visibility

no support for
configuration workflows
beyond visibility
conditions

user interfaces are the
domain of vendors; basic
concrete syntax for
VSpecs close to FM

(a) Feature model in a tree notation—slightly adapted from FODA [42]

decision name description type Range cardinality/constraint visible/relevant if

GSM_Proto-
col_1900

Support GSM 1900 protocol? Boolean true | false

Audio_Formats Which audio formats shall be
supported?

Enum WAV | MP3 1:2

Camera Support for taking photos? Boolean true | false

Camera_Resolu-
tion

Required camera resolution? Enum 2.1MP | 3.1MP | 5MP 1:1 Camera == true

MP3_Recording Support for recording MP3 audio? Boolean true | false ifSelected Audio_For-
mats.MP3 = true

(b) Decision model in a tabular notation [59, 28]

GSM_Protocol_1900: one of (GSM_1900, NO_GSM_1900) {indicates whether support for making and receiving calls using
GSM 1900 is available}

Audio: list of (WAV, MP3) {indicates the types of supported audio formats}
Camera: composed of

Presence: one of (Camera, NO_Camera) {indicates whether camera support is available}
Resolution: one of (2.1MP, 3.1MP, 5MP) {resolution of the camera}

MP3_Recording: one of (MP3, NO_MP3) {indicates whether MP3 recording is available}

Constraints
Resolution is available only if Presence has the value Camera
MP3_Recording requires that also MP3 Audio is supported

(c) Decision model in the textual notation of Synthesis [64]

Figure 1: A feature model and two decision models for a fictitious mobile phone product line; same variability, while commonalities are only
shown in the feature model.

modeling in service-oriented systems [34], to use DM with model-
driven architectures [31], to use DM for code generation [70], and
to support personalization of ERP software by end-users [53].

FM has targeted a broader set of roles in the development life cy-
cle, starting with the original application in FODA—domain anal-
ysis and scoping, but also including design and representation of
product line architectures and evolution—helping to see what fea-
tures are available, which new features should be added and where,
and which existing features might need to be retired.

FM has also been used like DM—as a central variability model
and a basis for derivation (e.g., [38, 48, 47]). Interestingly, Gears
and Pure::Variants, which are industrial SPL tools supporting FM,
have been used predominantly for variability modeling and deriva-
tion support.1 However, FM is also used as a general concept mod-
eling technique, e.g., in comparative surveys [24]. Thus, in contrast
to DM, derivation support is not the essential application of FM.

3.2 Unit of variability
This dimension looks at the key concepts that are used to model

variability in both types of approaches.
The units of variability are decisions for DM and features for

FM. Decisions are differences among systems; they can be anything
that an application engineer needs to decide during derivation. For

1According to personal communication with the CEOs of the re-
spective tool vendors.

example, the engineer needs to decide whether a particular phone
will support the GSM 1900 protocol (cf. Fig. 1(b) and (c)).

The term “feature” is highly overloaded among different FM
approaches [19] and also in the wider context of software engi-
neering. FODA defines a feature as “a prominent or distinctive
user-visible aspect, quality or characteristic of a software system
or systems.” [42] Some authors define features as requirements-
level entities, e.g., “a cohesive set of individual requirements” [16]
or “a set of related requirements, domain properties, and specifi-
cations” [19]. FOSD considers a feature as “an increment in prod-
uct functionality” [11], and focuses on representing features explic-
itly throughout the development life cycle, including requirements,
design, implementation, and tests. Thus, FM has represented a
wide range of system and environment properties as features—
functional or non-functional, and pertaining to different life cycle
activities. This usage is consistent with the definition of a feature
as a “characteristic of a concept (e.g., system, component, etc.) that
is relevant to some stakeholder of the concept” [23].

Clearly, anything that FM captures as variable features can be
captured by DM as decisions and vice versa. Essentially, a decision
in DM reifies the need to decide some variable feature (property) of
a system, its environment or both. The essential difference between
FM and DM is that common features, e.g., GSM 1800 in Fig. 1(a),
are outside the scope of DM and thus missing in Fig. 1(b) and (c).

Finally, it should be emphasized that features in FM or decisions

in DM are typically abstractions over other artifacts, such as re-
quirements, designs, and implementations (rather than, say, directly
representing requirements [15]). Consequently, features and deci-
sions need to be mapped to artifacts, which we discuss later in
Section 3.7.

3.3 Orthogonality
Orthogonality of variability modeling is the degree to which vari-

ability is modeled as a separate concern. An orthogonal variabil-
ity model is devoted primarily to capturing variability—it offers, as
Pohl et al. put it, “a cross-sectional view of the variability across all
software-development artifacts” [51]. Orthogonality is lost when
variability is defined as an integral part of development artifacts;
for instance, by directly defining variability within code.

Gomaa [32] models variability directly within UML models of
requirements and design. He uses class diagrams syntax to rep-
resent feature models and gives them special semantics to cap-
ture variant derivation. He also realizes variability in requirements
and design models by exploiting existing syntactic mechanisms of
UML, such as conditions on transitions and stereotypes.

Orthogonal variability modeling has been the essence of DM
and is the predominant application of FM today. Decisions fo-
cus purely on variability—representing what needs to be decided
on. Feature models are used today typically as orthogonal repre-
sentations of commonality and variability or just variability. For
example, Groher and Völter use feature models, represented in
Pure::Variants, for orthogonal variability modeling [33].

The orthogonality of FM is sometimes questioned in the liter-
ature. For example, Pohl et al. state that “software development
models (e.g., feature models) are already complex, and they get
overloaded by adding variability information.” [51] This statement
relates to features as user-visible system capabilities—the original
meaning of features in FODA. Lists of such capabilities, which are
often packages of requirements, may be useful artifacts on their
own, even if no variability is involved. Thus, adding variability
to such artifacts could be classified as non-orthogonal variability
modeling; however, as argued above, feature models are used today
mainly as orthogonal representations of commonality and variabil-
ity (or just variability) over other artifacts.

3.4 Data types
A decision or feature model denotes a set of structures represent-

ing configurations and thus can be viewed as a collection of type
definitions. These types determine the available primitive values
and composite structures that can be selected or constructed during
configuration.

Both DM and FM cover a comparable range of data types. In-
dividual approaches cover different subsets of this range, however,
and Boolean and composite types are represented differently across
the two classes of approaches. In FM, the Boolean type is implicit
in optional features—e.g., GSM 1900 in Fig. 1(a); in DM, the type
is either explicit (cf. Fig. 1(b)) or encoded as an enumeration (cf.
Fig. 1(c)). Many FM and DM notations support additional primi-
tive types, including string, integers, and reals. Synthesis [64] in-
cludes even date and time, e.g., to model a license expiry date. All
DM notations offer enumerations as primitive data types and some
offer records or sets or both. FM supports these composite types
by relying on hierarchy, group constraints, and—if supported—
feature cardinalities. Enumerations are often represented as xor-
groups in FM (cf. resolution in Fig. 1(a)), but some languages,
e.g., TVL [18], have an explicit enumeration type. Finally, some
DM and FM approaches support multiple instantiation of a deci-
sion or feature. In cardinality-based FM, features having cardinal-

ity with an upper bound higher than one can be instantiated mul-
tiple times [25]. The DM approach V-Manage [31] provides this
functionality as well. Some FM notations, e.g., Clafer [7], support
reference types—their values are references to instances of other
features.

3.5 Hierarchy
All FM notations support a tree-like organization of features

as an essential concept. This organization allows decomposing
higher-level features into more detailed ones as shown in Fig. 1(a).
Hierarchy is explicit both in feature models and in configuration
views, e.g., as graphical trees or indented text. Semantically, fea-
ture hierarchy imposes configuration constraints, where selecting a
feature implies selecting its parent. Hierarchies in feature models
are typically not very deep on average, but some models can have
deeper parts. For example, the median hierarchy depth in the mod-
els collected in the SPLOT repository (http://www.splot-research.
org/) is 3; maximum hierarchy depth is 10.

In DM, hierarchy is a secondary concept, as DM models are
thought of primarily as flat lists or tables of decisions, with de-
pendencies. However, already Synthesis [64] supported groups of
decisions (cf. Fig. 1(c): ’Camera: composed of’), a concept that
directly corresponds to hierarchy in feature models. Hierarchies of
decisions are mainly used to guide the configuration process. In
contrast to FM, there is no standard hierarchy mechanism or hier-
archy semantics across DM approaches. Some notations, e.g., [6],
support nesting of records, which induces a hierarchy similar to
that of FM. In DOPLER [28], hierarchy is induced in the configu-
ration view by visibility conditions of decisions. The visibility of a
decision implies the visibility of its parents, which is not a configu-
ration constraint. Visibility thus helps to structure the configuration
process but has no impact on the definition of legal configurations.
In the approach by Schmid and John [59], a hierarchy is induced
by relevancy conditions—only values of relevant decisions become
part of a configuration description. Hierarchies in real-world deci-
sion models [28] are typically quite flat, i.e., the maximum depth in
the DOPLER models occurring in a multiple case study in the do-
mains of industrial automation systems and business software [28]
is 3.

3.6 Dependencies and constraints
Both FM and DM allow expressing dependencies that exist in the

domain or its implementation or both. Most important are configu-
ration constraints, which restrict the legal configurations of features
or decisions. FODA has a very simple constraint language, which
allows saying that a feature requires or excludes another feature (cf.
Fig. 1(a)). Even though FODA included examples of numeric fea-
tures, most formalizations of constraints has focused on supporting
arbitrary Boolean restrictions [9, 37]. Synthesis [64] anticipated
richer constraints, e.g., over numeric domains, but did not offer
a precisely defined constraint language (cf. Fig. 1(c)). Subsequent
DM methods, including KobrA [6], Schmid and John [59], and DO-
PLER [28], define their constraint languages much more precisely.
Each of these languages surpasses the previous in expressiveness.
For example, Schmid and John admit logic formulae with arith-
metic operations and set operations, and DOPLER allows escaping
to pure Java code to formulate specific conditions (cf. Fig. 1(b)).
Modern FM languages, e.g., TVL [18], Clafer [7], and those in
Gears and pure:variants, allow a range of constraints comparable
to that of modern DM languages. Constraint support for references
and multiple instantiation of features, which requires some form of
predicate logic or relational algebra, is rare, but present in some,
e.g., in Clafer.

http://www.splot-research.org/
http://www.splot-research.org/

Beyond configuration constraints, DM languages, such as DO-
PLER, allow formulating visibility conditions on decisions. These
conditions control which decision prompts are visible to the appli-
cation engineer during derivation (cf. Fig. 1(b)). Also, virtually all
DM and some FM languages support specifying default values as
either constants or computed defaults.

3.7 Mapping to artifacts
When modeling variability, features or decisions are just abstrac-

tions of the variabilities realized in other development artifacts. Un-
derstanding how features or decisions map to these artifacts is an
important aspect of both DM and FM. Since derivation support is
an essential application of decision modeling, mapping to artifacts
is an essential aspect of DM. Some uses of FM, such as domain
modeling, do not necessarily assume derivation; thus, artifact map-
ping is optional in FM.

In practice, a wide range of mapping techniques are used in both
DM and FM. They typically relate decisions or features (high-level
variability abstractions) to variation points (locations in artifacts
where variability occurs). Schmid and John [59] provide a set of
artifact-notation-independent primitives for expressing variability
in artifacts, such as optionality, alternative, set selection, and value
reference. Some approaches associate artifacts with inclusion con-
ditions (e.g., [36, 21, 28]), and some associate features or decisions
with the artifacts to be included (e.g., [6]). A more expressible
mechanism is fragment substitution [35], which allows relatively
rich artifact transformations. Some DM and FM approaches define
a separate artifact model, which exposes artifact abstractions to the
decision or feature model (e.g., DOPLER and pure::variants). Fi-
nally, FOSD [2] research has looked into different approaches of
representing variability in artifacts, including conditions as annota-
tions on model or program elements [21, 36, 44] and compositional
approaches (e.g., [8, 4]).

The mapping between features and varaibility realization can
also be implicit. For example, the PLUS method of Gomaa [32]
assumes a variant of the annotative approach, where the mapping
of features to variation points is achieved by using feature names
directly in UML models representing the system—such references
are resolved by derivation tools just as if they were annotations.
The approach uses the existing UML syntactic means to express
variability, such as state diagram transitions depending on feature
selection, rather than on model variables.

Finally, the variable artifacts can be organized to reflect and mod-
ularize their variability. For example, ADORA [65] organizes re-
quirements models into hierarchical aspect containers that reflect
the model variability—instead of using separate feature models with
explicit mappings. Features are modeled as aspects that package
and modularize variable model elements; they are composed by
weaving. The approach uses view generation to generate abstract
FM-like views and decision models for variability binding and con-
figuration.

3.8 Binding time and mode
Mapping variability to artifacts may not be enough to define how

products are built. In particular, variability models may need to in-
clude further realization information, such as described by a prod-
uct plan [43]. An example of such information is the binding time,
i.e., when a certain variability is bound, and the binding mode, i.e.,
whether the binding is static (fixed) or dynamic (modifiable) [23].
Examples of binding time are compile time, link time, deployment
time, etc. So far support for such information is rare in both FM
and DM, probably because it is highly application- and technology-

dependent. Early FM and DM approaches mention the possibility
to specify binding information [42, 59], but lack realization details.
Work on concrete realization exists, though. Examples include pa-
rameterized binding mode via templates and inheritance [23, p.
234], binding time variability via aspect-oriented techniques [58,
57], time-line variability with constraints on transitions between
configurations [30], and any-time variability in architectural de-
scription languages [67].

3.9 Modularity
Modularity mechanisms are needed as it would be inconvenient

to define and maintain variability in a single model due to the large
scale and complexity of many systems. Modularity is also funda-
mental in multi product lines, an emerging area addressing vari-
ability management for large-scale systems that comprise several
self-contained but still interdependent product lines. For instance,
Bühne et al. [15] describe several issues of feature modeling in
multi product lines using examples from the automotive industry.

Feature hierarchy and decision grouping provide basic structur-
ing; however, dedicated modularization mechanisms for FM and
DM also exist. For example, DOPLER allows dividing decision
models into a number of interrelated model fragments [29]. In FM
several authors have proposed approaches to define a set of inter-
related feature models, such as multi-level feature models [54, 26].
Schirmeier and Spinczyk [56] discuss top-down, bottom-up, and
hybrid forms of composing feature models in multi-layered prod-
uct lines. An upcoming survey gives a detailed account of modu-
larization techniques in FM [40].

3.10 Tool aspects
Important aspects of FM and DM tooling include editing, ex-

ploration, and analysis of models and configurations. A detailed
account of specific tools is out of scope; however, we make some
general observations.

As expected, UIs for model and configuration editing in FM usu-
ally emphasize hierarchy, but a similar range of representations,
including lists, tables, trees, and graphs, have been used in both
FM and DM tools. For example, decision models are often repre-
sented as a list of questions to be answered (cf. description attribute
in Fig. 1(b)), but may also show hierarchy [31]. Feature models are
typically shown as trees, but specific views may show feature lists
or tables, e.g., summarizing feature-to-artifact mappings, or graphs,
e.g., showing cross-tree dependencies.

Due to their derivation focus, DM tools pay special attention to
decision filtering and workflows during configuration. DOPLER [28]
supports filtering using visibility conditions; Schmid and John [59]
accomplish this task using relevancy conditions. DOPLER also
allows grouping decisions to configuration tasks, which can be as-
signed to users involved in product derivation [52]. FM approaches
have not addressed visibility conditions yet; however, extensive
work exists on staged and workflow-based feature configuration [26,
38, 48].

Many researchers have worked on reasoning support for model
and configuration analysis in FM. This body of work includes 1) fin-
ding and diagnosing inconsistencies in feature models and artifact
mappings (e.g., [41]), 2) verification of product line assets in pres-
ence of variability (e.g., [20, 3, 27]) and 3) automated guidance
during configuration. An extensive survey of 1) and 3) is avail-
able [12]. Many of these results likely carry over to DM. In fact,
DOPLER provides configuration guidance, such as decision prop-
agation.

4. VARIABILITY MODELING IN
PRACTICE

Over the last two decades variability modeling has been em-
braced in practice. Commercial tools like Pure::Variants and Gears
exist with their respective specification languages. Independently,
software engineers have designed their own modeling languages.
For instance, the Linux kernel project uses the home-grown vari-
ability specification language Kconfig [71, 62], which has been cre-
ated independently of FM and DM research. Similarly, the eCos
operating system uses its Component Description Language (CDL)
[68]. Linux and eCos are open source projects, but similar lan-
guages appear in commercial systems, for instance OSEK [22]. All
these languages can be placed into the category of FM and DM lan-
guages. Here we show how the main properties of DM and FM are
reflected in practice, by comparison with (primarily) Kconfig and
CDL. Simultaneously we relate to the current proposal of the Com-
mon Variability Language (CVL) standard [1]. The three rightmost
columns in Table 1 summarize these three languages with respect
to the same dimensions already discussed for DM and FM.

Applications and orthogonality. All mentioned languages (Kcon-
fig, CDL, pure::variants, Gears, and CVL) target orthogonal vari-
ability modeling. These are all quite technical, heavy-caliber, tools
that are meant to support end-to-end modeling and derivation, all
the way to compilation and deployment. As such they are not in-
dispensable at early design activities—other uses of FM, such as
domain modeling, may be adequately supported with lightweight
tools such as mind-map editors or spreadsheets.

Interestingly, CVL avoids the FM terminology, while retaining
FODA-like concrete syntax of FM. We shall see below that nomen-
clature for variability specifications (VSpecs) in CVL resembles
DM more than FM, while a VSpec tree looks like a feature model.
Thus CVL avoids the confusion caused by the ambiguous mean-
ing of the term feature. Whether a dedicated support for modeling
features as high level, user-visible capabilities should be part of
CVL is debated [1, p. 80]. Design alternatives for such support in-
clude dedicated native notation, applying variability orthogonally
to (such) feature models, or complete lack of (dedicated) support.

Units of variability and data types. In practice, often rather simple
and relatively small Boolean models are applied to requirements
artefacts.2 In contrast, models used at the implementation level can
become very large, and involve very complex constraints. For in-
stance, the Linux kernel Kconfig model and the eCos CDL model
comprise thousands of features or decisions about different imple-
mentation and architecture aspects, including complex constraints,
some relating 20 or more features or decisions [13]. They often
include other types of variability than Boolean. For example, in
the operating systems domain, integers are used to express sizes of
resource pools such as threads, open files, or memory. Low level
models occasionally also require the ability to instantiate features
in multiple copies (see for example [22] about OSEK).

Since CVL is domain independent, it supports a broad range of
types, including multiple instantiation, and a constraint language
for expressing dependencies over these types. CVL distinguishes
three types of variability specifications (VSpecs), essentially linked
to their types: choice (Boolean), variable (other primitive types)
and classifier (multiple instantiations). This terminology avoids the
term feature. In CVL VSpecs are organized in trees (VSpec trees),
which are shown using FODA-like concrete syntax [1].

Hierarchy. Hierarchy is uniformly present in all mentioned lan-
guages. Kconfig’s hierarchy, although visibility-induced like in
2Personal communication with BigLever Inc., the vendor of Gears.

DOPLER, is still used much in FM spirit [13]. CDL hierarchy is
used very much like in FM—it enforces parent-child implications
and serves to organize the model.

Following its use of FODA syntax, CVL adopts hierarchy in the
style of FM: it is used to decompose and organize the model and it
also enforces parent-child constraints.

Mapping variability to artifacts. Kconfig and CDL have been de-
signed as parts of build systems for their host projects. Thus they
both support mapping of variability to artifacts. They follow the
annotative approach, exposing names of features or decisions to
the C preprocessor controling presence code fragments. Besides
that, the mapping model is hidden in the build system (Kbuild) or
represented in the variability model itself (CDL).

Mapping to artifacts is a core objective of CVL, which aims at
external (orthogonal) definition of variability for any models de-
scribed in MOF-based languages. CVL has a three-tier architec-
ture: variability specifications (1) are mapped to artifacts (3) us-
ing a mapping model, called variability realization (2). Variability
realization allows a number of variation point types: presence of
objects, change of constant values in the models, object substitu-
tion and fragment substitution in style of [35]. Importantly, CVL
stores the mappings outside the artifacts. Thus the main artifacts,
the so called base models, remain unchanged by introduction of
variability, and can be processed by the native tools supporting the
languages in which the artifacts are expressed.

The binding time and mode are highly dependent on the application
domains and technology applied. CDL, which supports an operat-
ing system for small embedded devices, only has static, compile-
time binding. Interestingly, Kconfig provides native support for
binding mode, by means of so called tri-state features or decisions.
It allows to decide at compile time whether a given functionality
should be linked statically or whether it should stay dynamically
loadable. Thus, Kconfig implements support for binding mode
from the model and the configuration UI through to realization in
the build process (unlike other variability modeling languages that
treat binding as a simple parameter in the high level model).

Since CVL is domain independent, it follows both FM and DM
and does not standardize this aspect.

Modularity is essential to any models of realistic size. Kconfig al-
lows distributing a monolithic model over multiple files—a form
of primitive untyped modules. CDL provides packaging and im-
port constructs, with an interesting ability to inject new model frag-
ments into an existing hierarchy (reparenting). This enables model
extensions that plug into an existing model decomposition hierar-
chy.

The initial CVL proposal allows both for simple aggregation
(packaging) and encapsulation of configurable units (CU). CUs
wrap variability realization together with variability specification.
CVL also supports configuration interfaces (simply VSpec trees),
which specify variability allowed for an encapsulated CU. The in-
tended uses of CUs include supplying configurable reusable third-
party components, staged configuration and multi-level product
lines.

Tool aspects. CDL and Kconfig are both textual languages, with no
specific editor support, besides usual text editors. They both have
tools supporting product derivation, providing user guidance. In
particular, CDL’s configurator can propose fixes for constraint vio-
lations. Gears and pure::variants have tool support for model edit-
ing (for multiple representations) and configuration. Other tools,
such as analyzers, are rare in the industry, but quite widespread
in research [12]. This gap is probably caused by lack of proper

technology transfer. Recent successful attempts to introduce model
analysis tools to practitioners indicate that these tools are indeed
useful [66].

Three aspects of tool integration stand out in CVL’s design. First,
the language-independent approach to adding variabilit y allows
processing models produced by CVL using regular modeling tools
(although to exploit the variability information, plugins for model-
ing tools will be needed). Second, CVL will need tools support-
ing 1) configuration of the VSpec tree and 2) materialization (res-
olution of variation points in the base models based on configura-
tion). Finally, CUs will allow encapsulation of variability realized
by some other, non-CVL tools, and interfacing it to CVL infras-
tructure using variability interfaces.

5. CONCLUSIONS AND FUTURE WORK
We have provided a detailed structured comparison of feature

and decision modeling, including a discussion of our findings in
the light of other related practical variability modeling approaches
like Kconfig, CDL, and CVL.

Based on our analysis, the main difference between FM and DM
is that FM supports both commonality and variability modeling,
whereas DM focuses exclusively on variability modeling. In prac-
tice, this difference is limited by two factors: 1) FM is often used,
just like DM, to capture variabilities that need to be resolved during
product derivation; 2) commonality modeling has limited impact
on variability languages and tools—as the constructs used to model
variability can also be used to model commonality. The latter point
is reflected by the fact that mandatory features can be used to model
both common features, such as GSM 1800 in Fig. 1(a), and group-
ings of variable features, such as GSM Protocols; however, many
DM approaches also provide grouping nodes, like the mandatory
feature GSM Protocols. Thus, the main difference is largely one of
methodology: if FM is used to model both commonalities and vari-
abilities, common features such as GSM 1800 are also captured.

The remaining differences are either minor or largely historical.
The initial use of FM in FODA was to capture user-visible sys-
tem capabilities; DM did not have such a restriction. Today, FM
is mostly used, just like DM, as an orthogonal variability model-
ing technique, where features, like decisions, abstract over vari-
abilities pertaining to different types of properties (functional and
non-functional), levels of abstraction (environment, system, sub-
system) and lifecycle stages (requirements, design, implementa-
tion, and test). Other differences are minor: 1) hierarchy is essential
and has uniform semantics (child-presence-to-parent-presence im-
plications) in FM and is secondary and has varied semantics (child-
presence-to-parent-presence or child-visibility-to-parent-visibility
implications) in DM; 2) mapping to artifacts is essential in DM
and, depending on the use case, optional in FM. On the other hand,
both FM and DM have a similar range of data types, constructs for
expressing constraints, and modularization mechanisms and they
both lack standardized support for binding time and mode.

Thus, our analysis uncovers a significant convergence between
FM and DM. This conclusion is also supported by the fact that prac-
tical variability modeling approaches, such as Kconfig and CDL,
combine concepts from FM and DM. For example, both Kconfig
and CDL support hierarchy (FM), group constraints (FM), and vis-
ibility conditions (DM). Consequently, the specific capabilities of
a variability modeling approach, such as the data types offered, the
expressiveness of the constraint language, support for modularity,
and the available tool support, are much more important factors
when selecting an approach than its classification as DM or FM.

We hope that our study can fruitfully influence the CVL stan-
dardization process, by improving clarity of the design space and
terminology of variability modeling. Our analysis of the initial
CVL proposal reveals no glaring omissions or misguided decisions
in its design, while it does single out clear advantages that CVL
has, due to influence of research on its design (esp. constructs
for encapsulations and interfacing, or the non-invasive, language-
independent approach).

Possible extensions of this work include conducting an expert
survey on FM and DM with a wide set of respondents. Another
work would be to compare FM and DM by comparing the formal
semantics of the existing FM and DM languages. Since only se-
lected dimensions of our comparison can be effectively formalized,
such an approach would be restricted to these dimensions. It would
also be interesting to expand the analysis with a systematic arti-
fact study of models developed within FM and DM communities,
including a qualitative and statistical comparison.

6. ACKNOWLEDGEMENTS
This work has been partially supported by the Christian Doppler

Forschungsgesellschaft, Siemens VAI Metals Technologies, and
Siemens Corporate Technology. This work has been partially sup-
ported by the INDENICA project, funded by the European Com-
mission grant 257483, area Internet of Services, Software & Virtu-
alisation (ICT-2009.1.2) in the 7th framework programme.

Czarnecki and Wąsowski thank the other members of the CVL
design team for insightful discussions on variability modeling.

7. REFERENCES
[1] Common variability language (CVL). OMG Initial

Submission. Available on request., 2010.
[2] S. Apel and C. Kästner. An Overview of Feature-Oriented

Software Development. Journal of Object Technology,
8(5):49–84, 2009.

[3] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type
safety for feature-oriented product lines. Automated Software
Engineering, 17(3):251–300, 2010.

[4] S. Apel, C. Kästner, and C. Lengauer. FEATUREHOUSE:
Language-independent, automated software composition. In
Proc. of the 31st International Conference on Software
Engineering, pages 221–231. IEEE, 2009.

[5] T. Asikainen, T. Mannisto, and T. Soininen. A Unified
Conceptual Foundation for Feature Modelling. In Proc. of
the 10th International Software Product Line Conference,
pages 31–40. IEEE, 2006.

[6] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties,
O. Laitenberger, R. Laqua, D. Muthig, B. Paech, J. Wüst, and
J. Zettel. Component-Based Product Line Engineering with
UML. Addison-Wesley, 2002.

[7] K. Bąk, K. Czarnecki, and A. Wąsowski. Feature and
meta-models in Clafer: Mixed, specialized, and coupled. In
Proc. of the 3rd International Conference on Software
Language Engineering, pages 102–122. Springer, 2010.

[8] D. S. Batory. Feature-Oriented Programming and the
AHEAD Tool Suite. In Proc. of the 26th International
Conference on Software Engineering, pages 702–703. IEEE,
2004.

[9] D. S. Batory. Feature Models, Grammars, and Propositional
Formulas. In Proc. of the 9th International Software Product
Line Conference, pages 7–20. Springer, 2005.

[10] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith,
K. Tsukuda, B. C. Twichell, and T. E. Wise. GENESIS: An
Extensible Database Management System. IEEE TSE,
14(11):1711–1730, 1988.

[11] D. S. Batory, D. Benavides, and A. R. Cortés. Automated
analysis of feature models: challenges ahead.
Communications of the ACM, 49(12):45–47, 2006.

[12] D. Benavides, S. Segura, and A. R. Cortés. Automated
analysis of feature models 20 years later: A literature review.
Information Systems, 35(6):615–636, 2010.

[13] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. Variability Modeling in the Real: A
Perspective from the Operating Systems Domain. In Proc. of
the 25th IEEE/ACM Conference on Automated Software
Engineering, pages 73–82. ACM, 2010.

[14] T. J. Biggerstaff. Design Recovery for Maintenance and
Reuse. IEEE Computer, 22(7):36–49, 1989.

[15] S. Bühne, K. Lauenroth, and K. Pohl. Why is it not Sufficient
to Model Requirements Variability with Feature Models? In
Proc. of the Workshop on Automotive Requirements
Engineering (AURE04). Nanzan University, Nagoya, Japan,
pages 5–12, 2004.

[16] K. Chen, W. Zhang, H. Zhao, and H. Mei. An Approach to
Constructing Feature Models Based on Requirements
Clustering. In Proc. of the 13th IEEE International
Conference on Requirements Engineering, pages 31–40.
IEEE, 2005.

[17] L. Chen and M. Babar. A systematic review of evaluation of
variability management approaches in software product lines.
Information and Software Technology, 53:344–362, 2011.

[18] A. Classen, Q. Boucher, and P. Heymans. A Text-based
Approach to Feature Modelling: Syntax and Semantics of
TVL. Science of Computer Programming,
76(12):1130–1143, 2010.

[19] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a
Feature: A Requirements Engineering Perspective. In Proc.
of the 11th International Conference on Fundamental
Approaches to Software Engineering, LNCS 4961/200,
pages 16–30. Springer, 2008.

[20] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin. Model checking lots of systems: efficient
verification of temporal properties in software product lines.
In Proc. of the 32nd ACM/IEEE International Conference on
Software Engineering, pages 335–344. ACM, 2010.

[21] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on Superimposed
Variants. In Proc. of the 4th International Conference on
Generative Programming and Component Engineering,
pages 422–437. ACM, 2005.

[22] K. Czarnecki, T. Bednasch, P. Unger, and U. W. Eisenecker.
Generative Programming for Embedded Software: An
Industrial Experience Report. In Proc. of the ACM
SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering, pages 156–172.
ACM, 2002.

[23] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Techniques, and Applications.
Addison-Wesley, 2000.

[24] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal,
45(3):621–646, 2006.

[25] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing
cardinality-based feature models and their specialization.
Software Process: Improvement and Practice, 10:7–29,
2005.

[26] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration through specialization and multilevel
configuration of feature models. Software Process:
Improvement and Practice, 10:143–169, 2005.

[27] K. Czarnecki and K. Pietroszek. Verifying feature-based
model templates against well-formedness OCL constraints.
In Proc. of the 5th International Conference on Generative
Programming and Component Engineering, pages 211–220.
ACM, 2006.

[28] D. Dhungana, P. Grünbacher, and R. Rabiser. The DOPLER
Meta-Tool for Decision-Oriented Variability Modeling: A
Multiple Case Study. Automated Software Engineering,
18(1):77–114, 2011.

[29] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer.
Structuring the Modeling Space and Supporting Evolution in
Software Product Line Engineering. Journal of Systems and
Software, 83(7):1108–1122, 2010.

[30] E. Dolstra, G. Florijn, M. de Jonge, and E. Visser. Capturing
timeline variability with transparent configuration
environments. In International Workshop on Software
Variability Management. ICSE Workshop, 2003.

[31] European Software Institute Spain and IKV++ Technologies
AG Germany. MASTER: Model-driven Architecture
inSTrumentation, Enhancement and Refinement, 2002.

[32] H. Gomaa. Designing Software Product Lines with UML.
Addison-Wesley, 2005.

[33] I. Groher and M. Völter. Aspect-Oriented Model-Driven
Software Product Line Engineering. Transactions on
Aspect-Oriented Software Development, 6:111–152, 2009.

[34] P. Grünbacher, D. Dhungana, N. Seyff, M. Quintus,
R. Clotet, X. Franch, L. Lopez, and J. Marco. Goal and
Variability Modeling for Service-oriented System:
Integrating i* with Decision Models. In Proc. of the
Workshop on Software and Services Variability Management,
pages 99–104. Helsinki Unversity of Technology, 2007.

[35] O. Haugen, B. Moller-Pedersen, J. Oldevik, G. Olsen, and
A. Svendsen. Adding Standardized Variability to Domain
Specific Languages. In Proc. of the 12th International
Software Product Line Conference, pages 139–148,
Limerick, Ireland, 2008. IEEE.

[36] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper:
mapping features to models. In Proc. of the 30th
International Conference on Software Engineering, ICSE
Companion, pages 943–944. ACM, 2008.

[37] P. Heymans, P.-Y. Schobbens, J.-C. Trigaux, Y. Bontemps,
R. Matulevicius, and A. Classen. Evaluating formal
properties of feature diagram languages. IET Software,
2(3):281–302, 2008.

[38] A. Hubaux, A. Classen, and P. Heymans. Formal modelling
of feature configuration workflows. In Proc. of the 13th
International Software Product Line Conference, pages
221–230. ACM, 2009.

[39] A. Hubaux, A. Classen, M. Mendonça, and P. Heymans. A
Preliminary Review on the Application of Feature Diagrams
in Practice. In Proc. of the 4th International Workshop on
Variability Modelling of Software-Intensive Systems, pages
53–59. University Duisburg-Essen, 2010.

[40] A. Hubaux, T. T. Tun, and P. Heymans. Separation of

concerns in feature diagram languages: A systematic survey.
2011. Under review.

[41] M. Janota and G. Botterweck. Formal Approach to
Integrating Feature and Architecture Models. In Proc. of the
11th International Conference on Fundamental Approaches
to Software Engineering, pages 31–45. Springer, 2008.

[42] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical report, CMU/SEI-90TR-21, 1990.

[43] K. Kang, J. Lee, and P. Donohoe. Feature-Oriented Product
Line Engineering. IEEE Software, 19(4):58–65, 2002.

[44] C. Kästner. CIDE: Decomposing Legacy Applications into
Features. In Proc. of the 11th International Software Product
Line Conference, vol 2., pages 149–150. IEEE, 2007.

[45] M. D. Lubars. Wide-Spectrum Support for Software
Reusability. In Proc. of the Workshop on Software
Reusability and Maintainability. National Institute of
Software Quality and Productivity, 1987.

[46] J. Mansell and D. Sellier. Decision Model and Flexible
Component Definition Based on XML Technology. In Proc.
of the 5th International Workshop on Software Product
Family Engineering, pages 466–472. Springer, 2003.

[47] S. Maoz, J. O. Ringert, and B. Rumpe. Semantically
Configurable Consistency Analysis for Class and Object
Diagrams. In Proc. of the 14th International Conference on
Model Driven Engineering Languages and Systems, pages
153–167. Springer, 2011.

[48] M. Mendonca and D. Cowan. Decision-making coordination
and efficient reasoning techniques for feature-based
configuration. Science of Computer Programming,
75(5):311–332, 2009.

[49] J. M. Moore and S. C. Bailin. The KAPTUR Environment:
An Operations Concept. Technical report, CTA Incorporated,
1989.

[50] J. M. Neighbors. The Draco approach to constructing
software from reusable components. IEEE TSE,
10(5):564–574, 1984.

[51] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques.
Springer, 2005.

[52] R. Rabiser, P. Grünbacher, and D. Dhungana. Supporting
Product Derivation by Adapting and Augmenting Variability
Models. In Proc. of the 11th International Software Product
Line Conference, pages 141–150. IEEE, 2007.

[53] R. Rabiser, R. Wolfinger, and P. Grünbacher. Three-level
Customization of Software Products Using a Product Line
Approach. In Proc. of the 42nd Annual Hawaii International
Conference on System Sciences, pages 1–10. IEEE, 2009.

[54] M.-O. Reiser and M. Weber. Managing Highly Complex
Product Families with Multi-Level Feature Trees. In Proc. of
the 14th IEEE International Conference on Requirements
Engineering, pages 149–158, Minneapolis, USA, 2006.
IEEE.

[55] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow.
Extending Feature Diagrams with UML Multiplicities. In
Proc. of the 6th World Conference on Integrated Design &
Process Technology, 2002.

[56] H. Schirmeier and O. Spinczyk. Challenges in Software
Product Line Composition. In Proc. of the 42nd Annual

Hawaii International Conference on System Sciences,
page 7. IEEE, 2009.

[57] K. Schmid and H. Eichelberger. From Static to Dynamic
Software Product Lines. In Proc. of the Workshop on
Dynamic Software Product Lines (DSPL) at SPLC 2008,
volume 2, pages 33–38. Lero Tech Report, 2008.

[58] K. Schmid and H. Eichelberger. Model-Based
Implementation of Meta-Variability Constructs: A Case
Study using Aspects. In Proc. of the Second International
Workshop on Variability Modelling of Software-Intensive
Systems, number 22 in ICB-Research Report, pages 63–71.
University Duisburg-Essen, 2008.

[59] K. Schmid and I. John. A Customizable Approach to
Full-Life Cycle Variability Management. Science of
Computer Programming, 53(3):259–284, 2004.

[60] K. Schmid, R. Rabiser, and P. Grünbacher. A Comparison of
Decision Modeling Approaches in Product Lines. In Proc. of
the Fifth International Workshop on Variability Modelling of
Software-Intensive Systems, pages 119–126. ACM, 2011.

[61] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps. Feature Diagrams: A Survey and a Formal
Semantics. In Proc. of the 14th IEEE International
Conference on Requirements Engineering, pages 139–148,
Minneapolis, USA, 2006. IEEE.

[62] J. Sincero and W. Schröder-Preikschat. The Linux Kernel
Configurator as a Feature Modeling Tool. In Proc. of the 1st
Workshop on Analyses of Software Product Lines (ASPL’08)
at SPLC 2008, pages 257–260, Limerick, Ireland, 2008.
Lero.

[63] M. Sinnema and S. Deelstra. Classifying variability
modeling techniques. Information and Software Technology,
49(7):717–739, 2006.

[64] Software Productivity Consortium Services Corporation,
Technical Report SPC-92019-CMC. Reuse-Driven Software
Processes Guidebook, Version 02.00.03, 1993.

[65] R. Stoiber and M. Glinz. Supporting Stepwise, Incremental
Product Derivation in Product Line Requirements
Engineering. In Proc. of the 4th International Workshop on
Variability Modelling of Software-Intensive Systems,
ICB-Research Report, pages 77–84. University
Duisburg-Essen, 2010.

[66] R. Tartler, D. Lohmann, J. Sincero, and
W. Schröder-Preikschat. Feature consistency in
compile-time-configurable system
software: facing the Linux 10000 feature problem. In
EuroSys’11, pages 47–60. ACM, 2011.

[67] A. van der Hoek. Design-Time Product Line Architectures
for Any-Time Variability. Science of Computer
Programming, 53(30):285–304, 2004.

[68] B. Veer and J. Dallaway. The eCos Component Writer’s
Guide. Seen Mar. 2010 at ecos.sourceware.org/ecos/
docs-latest/cdl-guide/cdl-guide.html.

[69] D. Weiss and C. Lai. Software Product-Line Eng.: A
Family-Based Software Development Process.
Addison-Wesley, 1999.

[70] D. Weiss, J. Li, H. Slye, and H. Sun. Decision-Model-Based
Code Generation for SPLE. In Proc. of the 12th International
Software Product Line Conference, pages 129–138. IEEE,
2008.

[71] R. Zippel and contributors. kconfig-language.txt. seen in the
kernel tree at kernel.org, 2011-05/01.

ecos.sourceware.org/ecos/docs-latest/cdl-guide/cdl-guide.html
ecos.sourceware.org/ecos/docs-latest/cdl-guide/cdl-guide.html
kernel.org

