
Comparison of Exact and Approximate Multi-Objective
Optimization for Software Product Lines

Rafael Olaechea, Derek Rayside, Jianmei Guo, Krzysztof Czarnecki
University of Waterloo

Waterloo, Ontario
{rolaechea, gjm,kczarnec}@gsd.uwaterloo.ca, {drayside}@uwaterloo.ca

ABSTRACT
Software product lines (SPLs) allow stakeholders to manage
product variants in a systematical way and derive variants
by selecting features. Finding a desirable variant is often dif-
ficult, due to the huge configuration space and usually con-
flicting objectives (e.g., lower cost and higher performance).
This scenario can be characterized as a multi-objective opti-
mization problem applied to SPLs. We address the problem
using an exact and an approximate algorithm and compare
their accuracy, time consumption, scalability, parameter set-
ting requirements on five case studies with increasing com-
plexity. Our empirical results show that (1) it is feasible to
use exact techniques for small SPL multi-objective optimiza-
tion problems, and (2) approximate methods can be used
for large problems but require substantial effort to find the
best parameter setting for acceptable approximation which
can be ameliorated with known good parameter ranges. Fi-
nally, we discuss the tradeoff between accuracy and time
consumption when using exact and approximate techniques
for SPL multi-objective optimization and guide stakeholders
to choose one or the other in practice.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

Keywords
Software Product Lines, Multi-Objective Optimization

1. INTRODUCTION
Variability is ubiquitous. Physical products, such as au-

tomobiles and mobile phones, are produced as a set of vari-
ants, and so does the software embedded in them. Software
Product Line (SPL) engineering is gaining momentum in
academia and industry to effectively manage product vari-
ants derived from a range of configurable software assets [5].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
SPLC ’14, September 15 - 19 2014, Florence, Italy
Copyright c©2014 ACM XXX-X-XXXX-XXXX-X/XX/XX...$15.00 .

Features, essentially increments of functionality such as pass-
word protection for a mobile phone platform, are used to
abstract software assets for effective configuration. Features
are typically incorporated into a feature model, which has
a tree-like structure and describes choices that stakeholders
can make when configuring an SPL [21, 4]. Stakeholders are
interested in a product’s quality attributes, such as weight,
cost, and performance. However, feature models do not di-
rectly model the quality attributes of a product. Hence a fea-
ture model can be extended into an attributed feature model
to describe the contribution of each feature to each quality
attribute [3].

Stakeholders select features to derive a desirable config-
uration (i.e., a selection of features) that meets specific
functional requirements as well as certain quality attributes.
However, finding such a desirable configuration efficiently is
a hard task. Since features are functional properties, only
after creating a full configuration of such features, the qual-
ity attributes of the configuration can be measured or re-
liably estimated. Moreover, the configuration space of an
SPL grows exponentially with the number of features. This
growth makes it challenging to explore the configuration
space. Furthermore, when deriving a desirable configura-
tion, we encounter conflicting objectives, e.g., lower cost
and higher performance. Hence, engineers have to make
tradeoffs between these conflicting objectives to search for
an optimal configuration.

The above scenarios can be reduced to a multi-objective
optimization problem with constraints, i.e., minimizing or
maximizing a set of quality attributes while providing cer-
tain functionality. We can address multi-objective optimiza-
tion either exactly or approximately to find a set of optimal
or sub-optimal solutions. Exact approaches have the ad-
vantage of accuracy, but often take too long for large-scale
problems, whereas approximate methods may solve large-
scale problems even in a couple of minutes but suffer from
sensitivity to parameter settings and lower accuracy with
missed optimal solutions. In order to decide whether to
use exact or approximate techniques for SPL multi-objective
optimization, it is important to understand the tradeoff be-
tween the resources and time required by exact approaches
versus the difficulty in searching for appropriate parameters
and the risk of missing relevant and optimal solutions when
using approximate techniques.

As a representative of approximate methods, Multi-Objective
Evolutionary Algorithms (MOEAs) have been recently used
to deal with SPL multi-objective optimization [31]. How-
ever, the impact of different parameter settings on the effec-

tiveness of this algorithm was not explored. Although Arcuri
et al. [2] showed the sensitivity of Evolutionary Algorithms
to parameter settings in the context of search based software
engineering, there is no systematic study on the inherent
sensitivity of MOEAs to their parameter settings for SPL
multi-objective optimization. Moreover, we are unaware of
any other work that applies and evaluates an exact algorithm
for SPL multi-objective optimization. Recent advances in
Satisfiability Modulo Theory (SMT) solvers present an out-
standing performance improvement [6, 27], which encour-
ages us to use an incremental and exact algorithm, called
Guided Improvement Algorithm (GIA) [26], to investigate
its feasibility for SPL multi-objective optimization.

In this paper, we implement GIA and a popular MOEA,
called Indicator-Based Evolutionary Algorithm (IBEA) [40],
for SPL multi-objective optimization. We systematically
compare GIA to IBEA on five case studies of SPL multi-
objective optimization, in terms of their accuracy, time con-
sumption, scalability, and parameter tuning requirements.

In summary, we make the following contributions:

• Our empirical results based on five case studies show
that GIA can produce all exact optimal solutions in
less than two hours for small SPLs with up to 44 fea-
tures, while IBEA can produce approximate solutions
with an average accuracy of at least 42% in less than 20
minutes even for larger SPLs with 290 features. Our
work is the first to implement exact multi-objective
optimization for SPL configuration without weighted
sum of objectives. We demonstrate the feasibility of
exact algorithms for small-scale SPL multi-objective
optimization problems and confirm the advantages of
approximate algorithms for larger problems.
• We conduct a parameter sweep to systematically ana-

lyze the sensitivity of IBEA to its parameter settings,
following the guidance from Hadka & Reed [14]. Our
empirical results show that IBEA, at least without SPL
specific constraint-handling techniques, requires sub-
stantial effort to find the best parameter setting for
acceptable approximation. For our largest case study
with 290 features, only 4% out of 1000 parameter set-
tings of IBEA can produce any valid solutions. We
also confirm that high accuracy can be obtained with
mutation rates lower than 0.05.
• Our empirical study helps stakeholders understand the

tradeoff between accuracy and time consumption when
using exact or approximate techniques for SPL multi-
objective optimization, and guides them to choose one
or the other in practice depending on the number of
features, number of objectives and computational re-
sources available.

2. RELATED WORK
We review some of the uses of single and multiple objective

optimization in the context of SPLs. All of this work, in-
cluding ours, can be considered under the umbrella of Search
Based Software Engineering [15]. Much of this work uses ge-
netic algorithms that have tunable parameters. We discuss
some work on parameter tuning and sensitivity.

2.1 Optimization for SPL Testing
Johansen et al. [19] adapted combinatorial testing for SPLs,

considering only combinations that respect the SPL config-

uration constraints. They further [20] improved the scala-
bility of their algorithm, and showed that it could generate
a covering array for pair-wise interaction testing for realis-
tic feature models with up to approximately 6000 features
(e.g. the Linux Kernel) and triple-wise testing for up to 1400
features.

Hernard et al. [16] used an ad-hoc evolutionary algorithm
to generate products to test an SPL, such that the test suite
maximizes pairwise coverage and minimizes the number of
products to test and the cost of testing. They showed that
their algorithm obtained better values for cost and number
of products than a random test suite with equivalent pair-
wise coverage (similarly for the number of products). Their
algorithm used a SAT solver to generate the initial popula-
tion of valid products.

Outside the SPL context, Yoo et al. [38, 37] generated
Pareto-optimal test suites considering code coverage, the
number of past faults detected, and execution time.

2.2 Exact Optimization for SPL Configuration
Exact, single-objective optimization has been applied to

SPL configurations by a number of authors. For example,
Benavides et al. [3] used Constraint Satisfaction Program-
ming (CSP) to optimize resource constraints. Karatas et al.
[22] further introduced a mapping from attributed feature
models to constraint logic programming over finite domains.

To the best of our knowledge, our work is the first that
evaluates an exact multi-objective optimization of SPLs. In
previous work [29], we implemented, but did not evaluate,
GIA for multi-objective SPL configuration using MiniSAT.
Here, we have reimplemented GIA with the Z3 SMT solver.

2.3 Approximate Optimization for SPLs
Approximations are often used for multi-objective opti-

mization of SPLs because it is an NP-hard problem [36].
White et al. [36] proposed Filtered Cartesian Flattening

to transform the SPL configuration problem into the multi-
dimensional, multi-choice knapsack problem, to which they
applied known approximation techniques.

Guo et al. [12] proposed and evaluated a genetic algo-
rithms for SPL configuration. They reduced multiple ob-
jectives to a single objective with weightings, and handled
constraint violations with a repair operation. Their evalua-
tion does not compare the results of the genetic algorithm
to the exact answers, whereas our evaluation does.

Sayyad et al. [31] experimented with five MOEAs for multi-
objective optimization of SPL configurations. They con-
cluded that IBEA scales best of the five when increasing the
number of objectives. However, they did not systematically
evaluate IBEA over different parameter settings. In con-
trast, we perform Sobol sampling to evaluate the sensitivity
of IBEA in a comprehensive way. Moreover, we compared
IBEA to an exact technique.

Sayyad et al. [30] subsequently used the Z3 SMT solver to
generate the initial population for IBEA and they also fixed
mandatory features. This hybrid approach produced better
approximations of the Pareto front and improved scalability.
They did not evaluate it against the exact Pareto front.

2.4 Parameter Sensitivity and Sobol Sampling
Most MOEAs have a number of adjustable parameters,

such as crossover rate, mutation rate, selection strategy,
population size, etc. In a broad study of multi-objective evo-

lutionary algorithms, Hadka & Reed [14] demonstrated that
most MOEAs, including IBEA, are sensitive to these param-
eter values: that is, the accuracy of the computed results
varies depending on the parameters.

In a more focused study of single-objective evolutionary
algorithms for test-case generation, Arcuri et al. [2] found
that parameter settings can strongly affect results, but that
the default values for parameters were quite good. They did
not consider mutation rate as a parameter.

Currently, the determination of which parameter settings
are likely to produce accurate results in a given domain is
determined empirically by performing a parameter sweep:
a systematic sampling of the parameter space. Parame-
ter tuning techniques aim to find good parameter values
for a specific problem instance. The most commonly-used
parameter sweep techniques include Latin Hypercube sam-
pling, Stratified sampling, and Sobol sampling [28]. Sobol
sampling explicitly minimizes the density differences across
samples. It is now the preferred parameter sweep technique
for sensitivity analysis [28], and it is what we use in this
study.

3. PRELIMINARIES

3.1 Attributed Feature Models
Figure 1 presents an attributed feature model of a mo-

bile phone platform. The model defines a set of features,
including mandatory (filled circle), optional (empty circle),
and alternative (arc) ones. For example, feature Connectivity
must be selected in each valid configuration; feature Pass-
wordProtection is optional to be selected; and only one of the
three features Bluetooth, USB, and WiFi can be selected.

A given feature can be assigned one or more quality at-
tributes with values to quantify the impact the feature has
on the respective qualities of a product variant, such as mem-
ory and cost. The impact each feature has on a quality at-
tribute can be obtained through systematic measurement of
different variants (e.g. [32, 13]). For example, in Figure 1,
the impact of feature PasswordProtection on memory con-
sumption is quantified as 20. In most of the sample models,
we compute the quality of a product variant by summing
up the contributions of each feature present in the variant.
Some of the models also involve more complex computations,
including multiplicative terms (e.g., for computing reliabil-
ity), and also terms that represent feature interactions [32].
The objective functions are then to either minimize or max-
imize the quality attribute of a product variant.

Connectivity

Bluetooth Wifi

Name: Memory
Value: 300

Name: Cost
Value: 50

Name: Memory
Value: 725

Name: Cost
Value: 85

Name: Memory
Value: 500

Name: Cost
Value: 35

USB

MobilePhone

PasswordProtection Name: Cost
Value: 10

Name: Memory
Value: 20

Figure 1: An attributed feature model of a mobile
phone platform (adapted from [3])

o

o

o
o

0 50 100 150

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Memory vs Cost of all products of the Mobile Phone Platform

Cost

M
e
m

o
ry

X

X

Cost

M
e
m

o
ry

P2

P1

o

X

Legend

Dominated(Sub−optimal) Solutions
Pareto Optimal Solutions

Figure 2: The objective space and Pareto front of
the mobile phone platform example in Figure 1

3.2 Multi-Objective Optimization (MOOP)
Multi-objective optimization arises when optimal solutions

involve trade-offs between two or more conflicting objectives.
For example, Figure 2 presents the objective space of the mo-
bile phone platform from Figure 1. This space is formed by
the two quality attributes: memory consumption and cost.

Stakeholders intend to minimize memory consumption and
cost to derive an optimal configuration. In general, there is
no single solution that simultaneously optimizes each objec-
tive, but a set of Pareto-optimal solutions, which are op-
timal in the sense of Pareto dominance [34]. A solution
dominates another solution when it is better in at least one
objective and not worse in all the other objectives. A Pareto-
optimal solution is not dominated by any other solution.
For example, Figure 2 illustrates six valid configurations of
the mobile phone platform example in Figure 1 and their
quality attributes in the objective space. Configuration P1
has the lowest memory consumption and configuration P2
has the lowest cost. They are not dominated by any other
solutions and thus they are Pareto-optimal solutions. All
Pareto-optimal solutions constitute the Pareto front (dot-
ted line in Figure 2) of optimal products.

4. EXACT MOOP: GIA
The Guided Improvement Algorithm (GIA) [26] is an al-

gorithm for exact multi-objective optimization with discrete
decision variables. Since features can be abstracted as dis-
crete decision variables, we use GIA for SPL multi-objective
optimization. GIA incrementally explores the objective space
and finds the Pareto Front using off-the-shelf solvers. We
implement GIA using the SMT solver Z3 [6], due to its
outstanding performance in the reasoning and checking of
model properties [27]. GIA works as follows: on each step a
candidate solution is replaced by another solution that dom-
inates it, if one exists; the candidate solution is excluded
from the search by adding a constraint. When no dominat-
ing solution can be found, the current candidate solutions
is added to the Pareto front and the process is restarted.
We have used exact solutions computed by our implementa-

tion of GIA to evaluate the accuracy of the IBEA heuristic
(introduced in the next section).

The feature model constraints are modelled by a transla-
tion into propositional logic. The objectives are modelled
using either integer or floating point variables and sums or
multiplications among the contributions of each feature.

5. APPROXIMATE MOOP
The most common way to compute approximate solutions

to a multi-objective optimization problem is to use an evo-
lutionary (genetic) algorithm. Multi-Objective Evolution-
ary Algorithms (MOEAs) use the ideas of natural selection
and evolution from nature to perform computation [9, p. 14-
35]. An evolutionary algorithm consists of: 1) an encoding
for individual candidate solutions 2) a crossover and mu-
tation mechanism 3) a survivor selection mechanism 4) a
parent selection mechanism 5) an initialization mechanism
and 6) termination conditions.

An evolutionary algorithm requires an encoding for each
individual in the population. We use a string of bits of
length equal to the number of features of the product line,
to represent each possible configuration of a feature model
[17, p. 70-72]. For example, for the mobile phone platform
from Figure 1, each configuration would be represented by
a string of six bits (as it has 6 features). This bit-string
encoding was also used by Sayyad et al. [31].

One of the main design decisions when using a MOEA
in the SPL domain is how to handle constraints. Eiben [9,
p. 205-219] describes three possible approaches: (1) using a
penalty function to de-prioritize solutions that violate con-
straints, e.g., adding a new metric of the number of con-
straints violated; (2) creating a repair operator to ensure
every candidate solution is repaired to satisfy constraints;
and (3) modifying the combination and mutation operators
so that only valid candidate solutions are generated. Sayyad
et al. [31] use the first approach (i.e. by adding as an ob-
jective to minimize the number of constraint violations) in
their study of MOEAs for SPLs, and we follow them. This
approach is easy to implement, but has the potential disad-
vantage of adding another dimension where the optimization
method might get stuck on a local minimum. At the end of
the MOEA run we filter out all invalid configurations (i.e.
hypervolume reached is computed only over the valid con-
figurations).

The computational budget (b) for a MOEA can be char-
acterized as the cost per generation (c) times the number of
generations (g). The number of generations, in turn, can be
characterized by the total number of individual fitness eval-
uations (e) divided by the population size (p). The cost per
generation is usually linear in the size of the population (i.e.,

c = p). Thus, b = c× g, which usually equals p×
(

e
p

)
= e.

5.1 Indicator-Based Evolutionary Algorithm
The Indicator-Based Evolutionary Algorithm (IBEA) [40]

was designed for multi-objective optimization by incorporat-
ing the hypervolume concept (§5.2) into its survivor selection
mechanism. Independent studies by Hadka & Reed [14] and
by Sayyad et al. [31] have confirmed that it is one of the
best evolutionary algorithms for multi-objective optimiza-
tion, including multi-objective optimization for SPLs.

IBEA differs from many MOEAs in that the cost per gen-
eration (c) is quadratic, rather than linear, in the size of

Approximate Pareto Front
Hypervolume

Legend

Objective A (minimize)

O
bjective B

 (m
inim

ize)

1

2

3

p3

p2

p1

 n Hypercube vn

Approximate Pareto
 Front

Exact Pareto
 Front

Auxiliary Reference
 Point

W

Exact Pareto Front
Hypervolume

Figure 3: The hypervolume for an approximate
Pareto front. We show the hypervolume for an
approximate Pareto front that consists of the non-
dominated solutions p1, p2 and p3. It is the union
of the 2-dimensional hypercubes (i.e., rectangles) v1,
v2, and v3, that are formed between pi and the ref-
erence point W. The reference point W represents
the worst possible value for each objective.

the population: i.e., c = p2, rather than the usual c = p.
This increase in computational cost per generation is due
to computing the hypervolume indicators. Therefore, the
computational budget of IBEA is characterized by:

b = c× g = p2 ×
(
e

p

)
= p× e

5.2 Accuracy Metrics
There are a variety of metrics available to measure Pareto

front approximations [39], [7, p. 306-324]. Each metric char-
acterizes the approximation’s accuracy differently. We use
the Hypervolume Ratio and Coverage metrics.

The two-sets Coverage metric is the number of exact Pareto
points included in the approximation [41, 23]. Given an ex-
act Pareto front P and an approximate Pareto front A, the
Coverage of A to P is defined as follows:

CoverageP (A) =
|P ∩A|
|P | (1)

The Hypervolume Ratio [35, 41] is the ratio of the hy-
pervolumes of the approximate Pareto front and the exact
Pareto front. An approximation that scored 0% on the cov-
erage metric but was actually quite close to the exact Pareto
front would score highly on the hypervolume ratio.

Figure 3 illustrates the hypervolume ratio in a two dimen-
sional space. The hypervolume of the true Pareto front is
shaded, whereas the hypervolume of the approximate Pareto
front is cross-hatched. The metric is the ratio of these.

The hypervolume of a set of solutions Q is calculated as
follows [7, p. 318]. For each solution qi ∈ Q, a hypercube vi
is constructed with the reference point W and the solution
qi as the diagonal corners of the hypercube. The reference
point W is the worst possible point that the objectives can
take. In Figure 3, we wish to minimize both objectives, so
W is in the upper right corner. The overall hypervolume V
is the volume of the union of all such hypercubes vi.

6. EVALUATION
We performed experiments on a collection of SPL attributed

feature models to evaluate GIA and IBEA, with a focus on
the following research questions:

RQ 1: How sensitive is IBEA to its parameter settings?
RQ 2: How fast is IBEA for acceptable accuracy?
RQ 3: What are good parameter ranges for IBEA?
RQ 4: How scalable is GIA?
RQ 5: When is it preferable to use GIA or IBEA?

6.1 Subject Models
We collected a set of attributed feature models from the

recent SPL literature (Table 1), plus one from another do-
main (Apollo). These models cover a range of sizes, from a
small one such as Berkeley DB, to large one with hundreds
of features such as Eshop, or many objectives, such as ERS.

#Features #CTC #Objectives

Berkeley DB [32] 12 0 4
Apollo [33] 15 3 2
ERS [10] 35 2 7
Web Portal [31, 25] 44 6 4
Eshop [31, 24] 290 19 4

Table 1: List of subject models. ‘CTC’—Cross-Tree
Constraints. Largest numbers emphasized. IBEA
used as an additional objective to minimize the num-
ber of constraint violations.

Berkeley DB [32] describes the price, reliability, security
and footprint of a database system. The attribute footprint
was measured; the values for reliability and security were
inferred (e.g., feature diagnostic would increase reliability);
and the values for price were invented.

Apollo [33] is a model from the engineering design litera-
ture that describes the design decisions in the Apollo lunar
mission. The quality attributes are cost and mass. This
model is technically interesting because the functions used to
compute the quality attributes are relatively complex (in the
other models the functions are simple summations). This
Apollo model is used with GIA only.

ERS [10] is an Emergency Response System presented
with seven quality attributes and objectives: battery usage,
response time, reliability, ramp-up time, cost, deployment
time and development time. The model was built based
on expert judgment and used to explore uncertainty in the
early architectural design, it included lower, upper bounds
and middle values for the contribution of each feature to the
quality attributes. We used only the middle values.

Web Portal [25] and Eshop [24] are feature models describ-
ing a product line for web portals and for e-commerce web
sites, respectively. Sayyad et al. [31] augmented these mod-
els with three synthetic attributes: cost, priorUsageCount,
and defects. Sayyad et al. also added an objective to maxi-
mize the number of features used. We replicated Sayyad et
al.’s version of these models.

6.2 Experimental Setup
Both IBEA and GIA have some element of randomness

in them, and so multiple runs must be used to get good
measurements. This is obvious for IBEA, since randomness
is one of the distinguishing features of genetic algorithms.
For GIA it is less obvious: each step of the GIA relies on
a SAT/SMT solver, which by convention are started with a

random seed. Consequently, we ran each algorithm on each
subject model multiple times.

We ran the GIA on each of the three smallest models
1000 times (Apollo, Berkeley DB, and ERS). Web Portal was
significantly larger, so we ran it only 16 times, which took
26 hours of computation. Eshop was too large to complete
a single run, even after several weeks of computation. As
a reference set for Eshop, we merged the results from all
25,000 runs of IBEA on it, plus also 25 runs of IBEA with
the best parameter settings with 2.5M evaluations.

For IBEA, we generated 1000 different parameters set-
tings using Sobol sampling of four parameters: crossover
rate from 0 to 1, mutation rate from 0 to 1, maximum num-
ber of evaluations considered from 10,000 to 250,000, and
population size from 10 to 1000. For each parameter setting,
we ran IBEA 25 times with different random seeds on each
run. Although low mutation are recommended we decided
to sample the whole parameter space as done by Hadka &
Reed [14] to be able to more fully analyze the effect of the
mutation rate.

As discussed above (§5.1), a good rough measure of the
running time budget of IBEA is the population size times
the maximum number of individual fitness evaluations.

We ran the GIA on a server with a six-core AMD Opteron
2.8 GHz processor and 32 GB of RAM, for which we had
exclusive access. As we had to run the IBEA algorithm for
a total of 25,000 different runs, we ran it on a shared cluster
(http://sharcnet.ca) of 96 machines each with a quad-core
AMD Opteron 2.4 GHz processor and 32 GB of RAM. We
did not have exclusive access to this cluster, but for each
run IBEA was assigned 1 core and 4 GB of RAM.

The implementation of the IBEA algorithm we used was
from the JMetal framework [8] (the same implementation
used by Sayyad et al. [31]).

6.3 Results
Here we present the results of our experiments in reference

to the five research questions described above.

6.3.1 How sensitive is IBEA to its parameters?
Figures 4(a) and 4(b) show box-plots of the average hyper-

volume and average coverage across 1000 different parameter
settings for each subject model. For both ERS and Eshop,
more than 75% of all parameter settings obtain an hypervol-
ume and coverage of zero, and more than 75% of parameter
settings for Web Portal produce a coverage of zero.

Furthermore, we performed the percentile ranking of the
1000 parameter settings of IBEA from the worst case to the
best in terms of their obtained average hypervolume and
average coverage, which is shown in Figure 5. Except the
smallest case Berkeley DB, for all the other three subject
models (Web Portal, ERS and Eshop), IBEA produces ac-
ceptable approximations of the Pareto front only if it hap-
pens to choose a parameter setting in a small portion (20%,
5%, and 2%,respectively) in terms of hypervolume, and a
smaller portion (less than 15%, 1%, and 1%, respectively)
in terms of coverage.

From Figures 4 and 5, we can observe that the accuracy
of IBEA is highly sensitive to its parameter settings, which
is consistent with the findings from Arcuri et al. [2].

6.3.2 How fast is IBEA for acceptable accuracy?
With the best parameter settings, IBEA can produce ac-

Berkeley DB ERS Eshop Web Portal

0
20

40
60

80
10

0

Product Line

A
ve

ra
ge

 H
yp

er
vo

lu
m

e
ra

tio
(%

)

Berkeley DB ERS Eshop Web Portal

0
20

40
60

80
10

0

Product Line

A
ve

ra
ge

 C
ov

er
ag

e(
%

)

Figure 4: Average hypervolume ratio and coverage
across 1000 different parameter settings. Whiskers
denote the best and worst parameters.

ceptable approximations of the Pareto front (>80% hyper-
volume) for models with 4 or fewer objectives (Figure 4,
top). These solutions might even include a number of points
from the exact Pareto front (Figure 4, bottom). But with
poor parameter settings IBEA can also produce worthless
solutions (Figure 4). How long does it take to find and
execute good parameters for IBEA? This depends on the
parameter tuning technique.

The worst case is to do parameter tuning by Sobol sam-
pling (which is intended for sensitivity analysis). How many
Sobol samples do we need to take before we can expect to
find parameters that produce an accurate result? Figure 7
shows the best hypervolume obtained for a given size of
Sobol sample, from 0 to 1000. We see that for Berkeley
DB, the smallest and simplest model, 100% hypervolume is
obtained after only 10 Sobol samples. The next most compli-
cated model, Web Portal, gets close to its best hypervolume
in 50 Sobol samples. The more challenging models, ERS and
Eshop, get close to their best in 500 Sobol samples, but keep
improving all the way up to 1000 Sobol samples. The time
taken for this approach varies from 10 hours for Berkeley
DB to 1000 hours for the more complex models (ERS and
Eshop). Sobol sampling is an expensive tuning strategy.

A slightly better tuning strategy is to perform Sobol sam-

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentile rank of parameter settings

A
ve

ra
ge

 h
yp

er
vo

lu
m

e
ra

tio
(%

)

●

●
●

●●

●●

●●
●
●●●

●
●●●●
●
●●●
●●●●●
●●●●●
●●
●●●●
●●
●
●
●●●●
●●●
●●
●●●
●●●●
●●●●●
●●●●●●
●●●●
●●●●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●

●●
●●●●●
●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

Product Line

Berkeley Db

ERS

Web Portal

Eshop

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentile rank of parameter settings

A
ve

ra
ge

 c
ov

er
ag

e(
%

)

●●
●●
●●
●●●
●●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●
●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●●●●
●●●●●●
●●
●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●●
●●●
●●●●●●●●
●●●●●●●●
●●
●●●●●●
●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●
●●
●
●●●
●●
●●●
●●

●

Product Line

Berkeley Db

ERS

Web Portal

Eshop

Figure 5: Average hypervolume and coverage ob-
tained by IBEA based on percentile ranking of 1000
parameter settings

0 20 40 60 80 100

0
20

40
60

80
10

0

Percentile rank of parameter settings

A
ve

ra
ge

 H
yp

er
vo

lu
m

e(
%

)

● ●
● ● ● ●

● ●

●

●

●

●

●

●

●

●

Product Line

Berkeley Db ERS Web Portal Eshop

Figure 6: Average hypervolume obtained by IBEA
based on percentile ranking of parameter settings
with mutation rate lower than 0.05

pling only in parameter ranges that are known to be good for
the given problem domain. Our experiments (§6.3.4) show
that mutation rates above 0.2 are rarely good. This cuts

down the parameter space by a factor of five, which would
reduce the times down to around 2 hours for Berkeley DB
and 200 hours for the more complex models.

At the other extreme, we can assume a tuning oracle that
gives us the best parameter settings. Are there runs with
similar accuracy to the best parameter settings and signifi-
cantly lower run times? The answer is yes. Figure 8 groups
the runs according to their budget (p × e) quartile. We see
that both Berkeley DB and Web Portal can get very close to
their maximum accuracy at their lowest budget ranges (less
than 3 minutes). Moreover from the raw data we observe
that Web Portal we obtain 88% accuracy in terms of hyper-
volume in under 15 seconds, and for Berkeley DB over 90%
accuracy in under 5 seconds. The more complex models,
ERS and Eshop, require their highest budget ranges to get
their best accuracy.

In summary, IBEA can achieve good accuracy for the
smallest models in a few seconds or minutes. However as
either the number of features or objectives increase, larger
time budgets on the order of tens of minutes to a few hours
are required. The time required appears to be more a func-
tion of the number of objectives than the number of features.

6.3.3 What are good parameter ranges for IBEA?
As described above, we considered four parameters for

IBEA: mutation rate, crossover rate, population size (p),
and the total number of individual fitness evaluations (e).
The strongest conclusion that can be drawn from analyz-
ing our data is that mutation rates over 0.2 almost always
lead to poor results — which is consistent with general guid-
ance on MOEAs (the graph upon which we base this con-
clusion is not shown here due to space considerations). We
also analyzed the accuracy of IBEA when fixing the muta-
tion rate to be lower than 0.05, and ranked the accuracy
obtained from worst to best parameter in that case (55 pa-
rameter settings) in Figure 6. Figure 6 shows that by fixing
the mutation rate we can ensure IBEA obtains consistently
good accuracy across the parameter space for Web Portal
and Berkeley DB. Moreover within this restricted param-
eter space a larger proportion of parameter configurations
produce non-zero accuracy for Eshop and ERS and values
close to their peak accuracy are found within this restricted
parameter space. Other studies of MOEAs in Software Engi-
neering used mutation rates as high as 0.3 [11], while others
as low as 0.05 [31] or even 0.001 [30].

We found accurate results at all crossover rates, with no
clear trend about what values are better or worse: the entire
range of crossover rates (0–1) should be sampled.

For the smaller models we found that larger budgets (p× e,
§5.1) produced better results (Figure 8). This monotonic re-
lationship did not hold for the largest and most constrained
model: Eshop. At all budget levels, our implementation of
IBEA produced mostly illegal configurations. This result
calls into question the decision to handle constraint viola-
tions with a penalty function. Given this design decision,
which was also used by Sayyad et al. [31], then our results
show that a variety of budget levels (i.e., values of p and e)
should be sampled.

6.3.4 How scalable is GIA?
Table 2 shows the results of running GIA on the five sub-

ject models. The second column records the size of the
Pareto Front, i.e., the number of Pareto-optimal solutions.

0 500 1000 1500

0
20

40
60

80
10

0

Time (hours) in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

) ●

●

●

●
●
●●
●●●●●●●●●●●● ● ● ● ● ● ● ● ● ●

0
20

40
60

80
10

0
Time (hours) in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

) ●

●

●

●
●

● ●●●● ● ● ● ● ● ●●●● ● ● ● ● ● ●●●●

0.5 1 5 10 50 100 500

0 200 400 600 800 1000

0
20

40
60

80
10

0

Size of sobol sample in linear scale

Hy
pe

rv
ol

um
e

ra
tio

(%
) ●

●

●

●
●
●●
●●●●●●●●●●●● ● ● ● ● ● ● ● ● ●

1 5 10 50 100 500

0
20

40
60

80
10

0

Size of sobol sample in logarithmic scale

Hy
pe

rv
ol

um
e

ra
tio

(%
) ●

●

●

●
●

● ● ●●● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ●●●

Figure 7: Maximum hypervolume ratio (%) and
time required by IBEA using different size of Sobol
sample of parameter settings. Berkeley DB:

0 500 1000 1500

0
20

40
60

80
10

0

Time (hours) in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
!!
!!!!
!!!!!!!!! ! ! ! ! ! ! ! ! !

0
20

40
60

80
10

0

Time (hours) in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
! !!!!! ! ! ! ! !!!!! ! ! ! ! !!!!!

0.5 1 5 10 50 100 500

0 200 400 600 800 1000

0
20

40
60

80
10

0

Number of sobol samples in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
!!
!!!!
!!!!!!!!! ! ! ! ! ! ! ! ! !

1 5 10 50 100 500 1000

0
20

40
60

80
10

0

Number of sobol samples in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
! ! !!!! ! ! ! ! ! !!!! ! ! ! ! ! !!!!

1 5 10 50 100 500 1000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Number of sobol samples in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

! ! ! ! ! ! !!!! ! ! ! ! ! !!!! ! ! ! ! ! !!!!

!

Product Line
Berkeley DB ERS Web Portal Eshop

Figure 9: Maximum hypervolume ratio (%) and time consumption produced by IBEA using different number
of Sobol samples of parameter settings.

to the Pareto front.

6.3.4 What are good parameter ranges for IBEA?
As described above, we considered four parameters for

IBEA: mutation rate, crossover rate, population size (p),
and the total number of individual fitness evaluations (e).
The strongest conclusion that can be drawn from analyzing
our data is that mutation rates over 0.2 almost always lead

to poor results — which is consistent with general guidance
on MOEAs (the graph upon which we base this conclusion
is not shown here due to space considerations).

We found accurate results at all crossover rates, with no
clear trend about what values are better or worse: the entire
range of crossover rates (0–1) should be sampled.

For the smaller models we found that larger budgets pro-
duced better results (Figure 10). This monotonic relation-

ERS:

0 500 1000 1500

0
20

40
60

80
10

0

Time (hours) in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
!!
!!!!
!!!!!!!!! ! ! ! ! ! ! ! ! !

0
20

40
60

80
10

0

Time (hours) in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
! !!!!! ! ! ! ! !!!!! ! ! ! ! !!!!!

0.5 1 5 10 50 100 500

0 200 400 600 800 1000

0
20

40
60

80
10

0

Number of sobol samples in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
!!
!!!!
!!!!!!!!! ! ! ! ! ! ! ! ! !

1 5 10 50 100 500 1000

0
20

40
60

80
10

0

Number of sobol samples in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
! ! !!!! ! ! ! ! ! !!!! ! ! ! ! ! !!!!

1 5 10 50 100 500 1000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Number of sobol samples in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

! ! ! ! ! ! !!!! ! ! ! ! ! !!!! ! ! ! ! ! !!!!

!

Product Line
Berkeley DB ERS Web Portal Eshop

Figure 9: Maximum hypervolume ratio (%) and time consumption produced by IBEA using different number
of Sobol samples of parameter settings.

to the Pareto front.

6.3.4 What are good parameter ranges for IBEA?
As described above, we considered four parameters for

IBEA: mutation rate, crossover rate, population size (p),
and the total number of individual fitness evaluations (e).
The strongest conclusion that can be drawn from analyzing
our data is that mutation rates over 0.2 almost always lead

to poor results — which is consistent with general guidance
on MOEAs (the graph upon which we base this conclusion
is not shown here due to space considerations).

We found accurate results at all crossover rates, with no
clear trend about what values are better or worse: the entire
range of crossover rates (0–1) should be sampled.

For the smaller models we found that larger budgets pro-
duced better results (Figure 10). This monotonic relation-

Web Portal:

0 500 1000 1500

0
20

40
60

80
10

0

Time (hours) in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
!!
!!!!
!!!!!!!!! ! ! ! ! ! ! ! ! !

0
20

40
60

80
10

0

Time (hours) in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
! !!!!! ! ! ! ! !!!!! ! ! ! ! !!!!!

0.5 1 5 10 50 100 500

0 200 400 600 800 1000

0
20

40
60

80
10

0

Number of sobol samples in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
!!
!!!!
!!!!!!!!! ! ! ! ! ! ! ! ! !

1 5 10 50 100 500 1000

0
20

40
60

80
10

0

Number of sobol samples in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
! ! !!!! ! ! ! ! ! !!!! ! ! ! ! ! !!!!

1 5 10 50 100 500 1000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Number of sobol samples in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

! ! ! ! ! ! !!!! ! ! ! ! ! !!!! ! ! ! ! ! !!!!

!

Product Line
Berkeley DB ERS Web Portal Eshop

Figure 9: Maximum hypervolume ratio (%) and time consumption produced by IBEA using different number
of Sobol samples of parameter settings.

to the Pareto front.

6.3.4 What are good parameter ranges for IBEA?
As described above, we considered four parameters for

IBEA: mutation rate, crossover rate, population size (p),
and the total number of individual fitness evaluations (e).
The strongest conclusion that can be drawn from analyzing
our data is that mutation rates over 0.2 almost always lead

to poor results — which is consistent with general guidance
on MOEAs (the graph upon which we base this conclusion
is not shown here due to space considerations).

We found accurate results at all crossover rates, with no
clear trend about what values are better or worse: the entire
range of crossover rates (0–1) should be sampled.

For the smaller models we found that larger budgets pro-
duced better results (Figure 10). This monotonic relation-

Eshop:

0 500 1000 1500

0
20

40
60

80
10

0

Time (hours) in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
!!
!!!!
!!!!!!!!! ! ! ! ! ! ! ! ! !

0
20

40
60

80
10

0

Time (hours) in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
! !!!!! ! ! ! ! !!!!! ! ! ! ! !!!!!

0.5 1 5 10 50 100 500

0 200 400 600 800 1000

0
20

40
60

80
10

0

Number of sobol samples in linear scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
!!
!!!!
!!!!!!!!! ! ! ! ! ! ! ! ! !

1 5 10 50 100 500 1000

0
20

40
60

80
10

0

Number of sobol samples in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

!

!

!

!
! ! !!!! ! ! ! ! ! !!!! ! ! ! ! ! !!!!

1 5 10 50 100 500 1000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Number of sobol samples in logarithmic scale

H
yp

er
vo

lu
m

e
ra

tio
(%

)

! ! ! ! ! ! !!!! ! ! ! ! ! !!!! ! ! ! ! ! !!!!

!

Product Line
Berkeley DB ERS Web Portal Eshop

Figure 9: Maximum hypervolume ratio (%) and time consumption produced by IBEA using different number
of Sobol samples of parameter settings.

to the Pareto front.

6.3.4 What are good parameter ranges for IBEA?
As described above, we considered four parameters for

IBEA: mutation rate, crossover rate, population size (p),
and the total number of individual fitness evaluations (e).
The strongest conclusion that can be drawn from analyzing
our data is that mutation rates over 0.2 almost always lead

to poor results — which is consistent with general guidance
on MOEAs (the graph upon which we base this conclusion
is not shown here due to space considerations).

We found accurate results at all crossover rates, with no
clear trend about what values are better or worse: the entire
range of crossover rates (0–1) should be sampled.

For the smaller models we found that larger budgets pro-
duced better results (Figure 10). This monotonic relation-

1st (0−3) 2nd (1−9) 3rd (2−18) 4th (9−49)

0
20

40
60

80
10

0

Berkeley DB

Budget by quartile (Average time range (minutes))

Av
er

ag
e

hy
pe

rv
ol

um
e

ra
tio

(%
)

1st (0−7) 2nd (2−16) 3rd (12−31) 4th (17−84)

0
20

40
60

80
10

0

ERS

Budget by quartile (Average time range (minutes))

Av
er

ag
e

hy
pe

rv
ol

um
e

ra
tio

(%
)

1st (0−3) 2nd (2−7) 3rd (3−14) 4th (14−38)

0
20

40
60

80
10

0

Web Portal

Budget by quartile (Average time range (minutes))

Av
er

ag
e

hy
pe

rv
ol

um
e

ra
tio

(%
)

1st (0−7) 2nd (4−9) 3rd (8−17) 4th (15−45)

0
20

40
60

80
10

0

Eshop

Budget by quartile (Average time range (minutes))

Av
er

ag
e

hy
pe

rv
ol

um
e

ra
tio

(%
)

Figure 8: Average Hypervolume Ratio of IBEA in
different ranges of time budget. Whiskers denote
the best and the worst cases.

Pareto Front Time
Size (Mean ± Std. Dev.)

Berkeley DB 12 0.04s ± 6.5%
Apollo 7 1.60s ± 11.7%
ERS 356 32.24s ± 5.2%
Web Portal 890 1.65h ± 6.7%
Eshop >1 > 15d

Table 2: Time consumption of GIA

The third column collects the mean and standard deviation
of the time consumption of running GIA 1000 repetitions for
each subject model.

From Table 1 and Table 2, we can see that GIA can find
the Pareto front of an attributed feature model with up to
44 features and up to 7 objectives in a reasonable amount of
time (at most 1.65 hours), but it fails for large models with
hundreds of features like Eshop.

For Berkeley DB, GIA runs instantly. For other subject
models, GIA may run faster or slower than IBEA, depending
on the parameter settings of IBEA.

6.3.5 When is it preferable to use GIA or IBEA?
For small models, such as Berkeley DB, both GIA and

IBEA run quickly and produce good results (although GIA’s
results are better). For large models, such as Eshop, GIA
will time out, and so IBEA is the only option.

In the middle it is hard to predict which algorithm will
work better for a given problem. The WebPortal case study
presents a result that might be expected: IBEA computes
a good solution quickly (>80% of the hypervolume in a few
seconds), whereas GIA computes the exact answer slowly
(1.65 hours, see Table 2). The ERS case study, however,
is surprising: GIA computes the exact answer in 32s (Ta-
ble 2), whereas even with the best parameters we found,
IBEA would spend 50 minutes to compute only 60% of the
hypervolume. The high number of dimensions in ERS (7)
might contribute to IBEA’s slow runtime. IBEA requires
computing the hypervolume, which gets more expensive as
the number of objectives increases.

7. THREATS TO VALIDITY
Arcuri & Briand [1] recommend running each configura-

tion 1000 times in order to get a good sample of the distri-
bution of the results. We performed these 1000 runs for the
GIA on the smaller models. On the larger WebPortal model
we ran the GIA only 16 times, because this already took 26
hours. Similarly, for IBEA we ran each configuration only
25 times due to cost concerns. It is possible that more runs
would have produced a more accurate characterization of
the accuracy and computing time of the algorithms. The
standard deviation of the running times we did measure is
relatively low; thus, we believe that the results would be
similar. The accuracy of IBEA was also fairly consistent in
our runs, with the possible exception of ERS, where we ob-
served a high standard deviation. In the hypothetical case
that more runs of IBEA for each configuration of ERS would
have produced a more accurate result, this would not sub-
stantially change the answers to our research questions: We
would still conclude that IBEA is very sensitive to its param-
eters (§6.3.2), and that GIA is a better choice for ERS than
IBEA is (§6.3.5). If more runs for IBEA on ERS produced

more accurate results, then we might increase the amount
of time that we estimate is required for IBEA to produce an
accurate result (§6.3.3).

We could have produced more detailed answers for re-
search question 1 (§6.3.1) and 3 (§6.3.3) if we had used the
variance decomposition method [28] to assess both the first
and second-order effects of each parameter on IBEA. This
greater level of detail would not have changed our conclu-
sions greatly: IBEA is sensitive to its parameters, and some
form of tuning must be done. Hadka & Reed [14] used the
variance decomposition method in their study.

Sayyad et al. [31] used generated values for the synthetic
attributes in the Eshop and WebPortal product line models.
We followed the same technique they describe to generate
attribute values, but could not use the exact same attribute
values as they were not available. There is some small possi-
bility that the values we generated are somehow importantly
different from the values that Sayyad et al. [31] generated,
in which case it might be difficult to compare some of the
measurements in this paper with their paper.

Our estimates of how long it takes IBEA to produce accu-
rate results (§6.3.2) were done without using a clever tuning
strategy. The tuning strategy we used was Sobol sampling
of known good parameter ranges (§6.3.3). Perhaps a more
clever tuning strategy could produce similar results in less
time, such as the one proposed by Hutter et al. [18]. A better
tuning strategy would not, however, change our conclusion
about when to use GIA and when to use IBEA (§6.3.5).

Finally, the generality of our results is potentially limited
by the generality of our subject models. Our study has twice
as many subject models as Sayyad et al.’s study [31], and in-
cludes all of the models from that study. An important lim-
itation of our subject models is that they employ relatively
simple arithmetic to evaluate the metric functions, and these
metric functions can be incorporated into the search proce-
dure (which is what the GIA does). This property seems to
be true of all of the multi-objective SPL models that we are
aware of, but it does not hold in other disciplines. For ex-
ample, in Civil Engineering (e.g., [14]), models often involve
metric functions with large differential equations that take
hours to solve and cannot be incorporated into the search
procedure. Our results do not generalize to those other do-
mains. We included the Apollo [33] model from the Engi-
neering Design literature in our study because it employs
more sophisticated metric functions than our SPL models,
but less sophisticated than many Civil Engineering models.

Our main conclusion about IBEA, that it must be used
with a tuning strategy, does not appear to be threatened
by the limited generality of our subject models, and is also
strongly supported by Hadka & Reed [14].

A broader selection of subject models, in combination
with the variance decomposition method [28], might give
more precise parameter settings for using IBEA in SPL. Our
study is currently the most precise study of IBEA parameter
settings on SPL models that we are aware of.

8. CONCLUSION AND FUTURE WORK
We have demonstrated that it is feasible to compute exact

solutions for multi-objective SPL models with up to 44 fea-
tures. Previously exact techniques have been applied only
to single-objective SPL models (e.g., [3, 22]), and it was as-
sumed that approximate techniques were required for multi-
objective models (e.g., Sayyad et al. [31]).

Having exact solutions allowed us to perform the most
accurate evaluation of an MOEA (IBEA) in the context of
SPLs to date. Previous evaluations of MOEAs in the context
of software engineering have had to approximate the true
solutions (as we had to do for the largest SPL model Eshop).

With each of our four case studies we found a different
result in terms of the runtime and accuracy of the exact
(GIA) and approximate (IBEA) algorithms. Berkeley DB is
a simple problem and both algorithms solve it quickly and
well. At the other extreme, Eshop is still too large for our
exact technique. The medium-sized WebPortal and ERS
models are more interesting.

WebPortal, with 44 features and 4 objectives, solves quickly
and well with IBEA: >80% of the hypervolume can be found
in a few seconds simply by holding the mutation rate below
0.05. GIA computes the exact answer in over 1.5 hours.

ERS, on the other hand, takes GIA just over thirty sec-
onds to compute the exact solution. Assuming the best pa-
rameter values that we found, it still takes IBEA almost
an hour (50 minutes) to find only 60% of the hypervolume.
IBEA is never able to go much beyond 60% hypervolume on
this SPL model. ERS has 35 features and 7 objectives.

Our recommendation is that both IBEA and GIA should
be run. In some cases both will return good solutions quickly.
In other cases, GIA will timeout. In other cases, IBEA will
never compute a good solution. At this time we cannot pre-
dict a priori which algorithm will give the best runtime/ac-
curacy tradeoff for a given SPL model.

We found that for simple SPL models, holding the muta-
tion rate to ≤ 0.05 was a good starting point for IBEA. For
SPL models with a higher number of objectives or a higher
number of features, IBEA requires more tuning. We found
that mutation rates up to 0.2 sometimes worked well, that
the complete range of crossover rates should be explored,
and that a wide range of populations sizes and computing
budgets should be sampled.

Future work could explore a number of directions, includ-
ing: improving constraint handling for IBEA (perhaps a
repair operator, or a better mutator/generator); improving
parameter tuning for IBEA; improving scalability for GIA;
and hybrid GIA+IBEA algorithms.

References
[1] A. Arcuri and L. Briand. A hitchhiker’s guide to statis-

tical tests for assessing randomized algorithms in soft-
ware engineering. Software Testing, Verification & Re-
liability, 2012.

[2] A. Arcuri and G. Fraser. On parameter tuning in search
based software engineering. In Proc. SSBSE, 2011.

[3] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Auto-
mated reasoning on feature models. In Proc. CAiSE.
Springer, 2005.

[4] T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker,
K. Czarnecki, and A. W ↪asowski. A survey of variability
modeling in industrial practice. In Proc. VaMoS, 2013.

[5] P. C. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley, 2001.

[6] L. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In Proc. TACAS. Springer, 2008.

[7] K. Deb. Multi-Objective Optimization Using Evolution-
ary Algorithms. Wiley, 2001.

[8] J. J. Durillo and A. J. Nebro. jMetal: A Java framework
for multi-objective optimization. Advances in Engineer-
ing Software, 42:760–771, 2011.

[9] A. E. Eiben and J. E. Smith. Introduction to Evolu-
tionary Computing. SpringerVerlag, 2003.

[10] N. Esfahani, S. Malek, and K. Razavi. Guidearch: guid-
ing the exploration of architectural solution space under
uncertainty. In Proc. ICSE, 2013.

[11] F. Ferrucci, M. Harman, J. Ren, and F. Sarro. Not go-
ing to take this anymore: multi-objective overtime plan-
ning for software engineering projects. In Proc. ICSE,
2013.

[12] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A
genetic algorithm for optimized feature selection with
resource constraints in software product lines. Journal
of Systems and Software, 84(12):2208–2221, 2011.

[13] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and
A. Wasowski. Variability-aware performance predic-
tion: A statistical learning approach. In ASE, 2013.

[14] D. Hadka and P. Reed. Diagnostic assessment of search
controls and failure modes in many-objective evolution-
ary optimization. Evol. Comput., 20(3):423–452, 2012.

[15] M. Harman. The current state and future of search
based software engineering. In Proc. FoSE, 2007.

[16] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and
Y. L. Traon. Multi-objective test generation for soft-
ware product lines. In Proc. SPLC. ACM, 2013.

[17] J. H. Hollande. Adaptation in Natural and Artificial
Systems. Univ. of Michigan Press, 1975.

[18] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stut-
zle. Paramils an automatic algorithm configuration
framework. JAIR, 36:267–306, October 2009.

[19] M. F. Johansen, O. Haugen, and F. Fleurey. Properties
of realistic feature models make combinatorial testing
of product lines feasible. In Proc. MODELS, 2011.

[20] M. F. Johansen, O. Haugen, and F. Fleurey. An algo-
rithm for generating t-wise covering arrays from large
feature models. In Proc. SPLC. ACM, 2012.

[21] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain Analysis
(FODA) feasibility study. Technical report, Software
Engineering Institute - CMU, 1990.

[22] A. S. Karatas, H. Oguztuzun, and A. H. Dogru. Map-
ping extended feature models to constraint logic pro-
gramming over finite domains. In Proc. SPLC, 2010.

[23] J. Knowles. Local-search and Hybrid Evolutionary Algo-
rithms for Pareto Optimization. PhD thesis, University
of Reading, Reading, U.K., 2002.

[24] S. Q. Lau. Domain analysis of e-commerce systems
using feature-based model templates. Master’s thesis,
University of Waterloo, 2006.

[25] M. Mendonça, T. T. Bartolomei, and D. Cowan.
Decision-making coordination in collaborative product
configuration. In Proc. SAC. ACM, 2008.

[26] D. Rayside, H.-Christian. Estler, and D. Jackson.
A Guided Improvement Algorithm for Exact, Gen-
eral Purpose, Many-Objective Combinatorial Opti-
mization. Technical Report MIT-CSAIL-TR-2009-033,
MIT CSAIL, 2009.

[27] P. Saadatpanah, M. Famelis, J. Gorzny, N. Robinson,
M. Chechik, and R. Salay. Comparing the effectiveness
of reasoning formalisms for partial models. In Proc.
MoDeVVa. ACM, 2012.

[28] A. Saltelli, M. Ratto, T. Andres, F. Campolongo,
J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola.
Global Sensitivity Analysis: The Primer. Wiley, 2008.

[29] S. Olaechea, S. Stewart, K. Czarnecki, and D. Rayside.
Modelling and Optimization of Quality Attributes in
Variability-Rich Software. In NFPinDSML Workshop
at MODELS Conference, Oct. 2012.

[30] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar.
Scalable product line configuration: A straw to break
the camel’s back. In ASE, 2013.

[31] A. S. Sayyad, T. Menzies, and H. Ammar. On the value
of user preferences in search-based software engineering:
A case study in software product lines. In ICSE, 2013.

[32] N. Siegmund, M. Rosenmuller, M. Kuhlemann,
C. Kastner, S. Apel, and G. Saake. Spl conqueror: To-
ward optimization of non-functional properties in soft-
ware product lines. Software Quality, 1(3):1–31, 2011.

[33] W. Simmons. A Framework for Decision Support in
Systems Architecting. PhD thesis, Aeronautics & Astro-
nautics, Massachusetts Institute of Technology, 2008.

[34] R. Steuer. Multiple Criteria Optimization: Theory,
Computations, and Application. Wiley, 1986.

[35] D. A. Van Veldhuizen. Multiobjective evolutionary algo-
rithms: classifications, analyses, and new innovations.
PhD thesis, Air Force Institute of Technology, 1999.

[36] J. White, B. Dougherty, and D. C. Schmidt. Selecting
highly optimal architectural feature sets with filtered
cartesian flattening. Journal of Systems and Software,
82(8):1268–1284, 2009.

[37] S. Yoo and M. Harman. Pareto efficient multi-objective
test case selection. In Proc. ISSTA. ACM, 2007.

[38] S. Yoo and M. Harman. Using hybrid algorithm for
pareto efficient multi-objective test suite minimisation.
J. Syst. Softw., 83(4):689–701, Apr. 2010.

[39] E. Zitzler. Evolutionary Algorithms for Multiobjective
Optimization: Methods and Applications. PhD thesis,
ETH Zurich, 1999.

[40] E. Zitzler and S. Künzli. Indicator-based selection in
multiobjective search. In Proc. PPSN. Springer, 2004.

[41] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: A comparative case study and the strength
pareto evolutionary algorithm. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

