
Modelling the ‘Hurried’ Bug Report Reading Process to Summarize Bug Reports

Rafael Lotufo, Zeeshan Malik, Krzysztof Czarnecki
University of Waterloo

{rlotufo, zmalik, kczarnec}@gsd.uwaterloo.ca

Abstract—Although bug reports are frequently consulted
project assets, they are communication logs, by-products of bug
resolution, and not artifacts created with the intent of being
easy to follow. To facilitate bug report digestion, we propose a
new, unsupervised, bug report summarization approach that
estimates the attention a user would hypothetically give to
different sentences in a bug report, when pressed with time. We
pose three hypotheses on what makes a sentence relevant: dis-
cussing frequently discussed topics, being evaluated or assessed
by other sentences, and keeping focused on the bug report’s title
and description. Our results suggest that our hypotheses are
valid, since the summaries have as much as 12% improvement
in standard summarization evaluation metrics compared to
the previous approach. Our evaluation also asks developers to
assess the quality and usefulness of the summaries created for
bug reports they have worked on. Feedback from developers
not only show the summaries are useful, but also point out
important requirements for this, and any bug summarization
approach, and indicates directions for future work.

I. INTRODUCTION

Bug reports are valuable assets in software development
projects. Not only do they serve as a communication medium
for bug resolution—an activity that accounts for as much as
40% of software development efforts [1]—but they are also
often consulted, even after the bug has been resolved, by
many different parties. A random sample of 200 bug reports
we drew from Mozilla, for example, has 275 references
to other bugs, indicating the extent to which developers
need to refer to other bug reports. Upstream bugs—which
are caused by bugs found in software components from
different projects or branches—are another common reason
for developers to consult bug reports. Since Webkit is the
HTML rendering engine adopted by Chrome, many of the
bugs from the Chrome project, for example, refer to Webkit
bugs. The same is valid for software components that have
been repackaged and ported to Debian, Ubuntu, or other
operating systems. Duplicate bug report detection is another
reason for developers to consult extraneous bug reports, and
at least one in five bug reports from the Mozilla, Launchpad
and Chrome bug tracking systems are duplicates [2].

We argue, therefore, that it is important for bug reports
to be easily digestible: readers consulting bug reports should
easily be able to find the information they seek for. Bug
reports, however, are not created with such intent in mind.
Collaboration in bug reports occurs as a conversation, similar
to email threads: participants post messages—commonly

referred to as comments—as their contributions. A bug
report is, therefore, the result of the communication that took
place in order to address a bug. Unlike a wiki page, it is not
collaboratively constructed with the intention of being easy
to read and comprehend. Since comments have a context set
by their previous comments and useful information is spread
out throughout the thread, to comprehend a bug report, it
is often necessary to read almost the entire conversation.
This problem is compounded in open source projects, in
which bug reports receive input from many contributors. The
Debian community, for example, recognizes the problem and
allows users to set a summary of the bug. They claim: “This
is useful in cases where . . . the bug has many comments
which make it difficult to identify the actual problem”1.

Rastkar et al. [3] recognize the similarity between bug
report messages and email threads and use a pre-existing
summarization technique created to summarize email threads
and conversations [4]. The approach creates an extractive
summary, which is built by selecting a set of sentences
from the original bug report to compose an informative and
cohesive summary. The approach uses a logistic regression
classifier that is trained on a corpus of manually created
reference bug report summaries—golden summaries. The
results presented by Rastkar et al., however, show that the
quality of the generated summaries is sensitive to the training
corpus, suggesting that the approach is mostly applicable
when trained on a corpus of golden summaries from the
target bug tracking system and that the training corpus should
be adjusted to reflect the types and nature of bugs as a project
evolves. Since creating golden summaries requires significant
manual effort and should be done by experts, creating a
reasonably-sized training set of golden summaries could be
considered as an impediment for the use of such technique.

The objective of this work is, therefore, to develop
a deeper understanding of the information exchanged
in bug reports and to use this knowledge to create an
unsupervised summarization approach that should be
readily applicable to virtually any bug tracking system
without need for configuration nor of a corpus of manually
created golden summaries and generate summaries at least
as good as the previous approach—which, from now on, we
shall refer to as email summarizer.

The summarization approach we propose is based on a
hypothetical model of how someone would read a bug report

1http://www.debian.org/Bugs/server-control#summary

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

when pressed with time, assuming the reader will have to
overlook many sentences and focus on the ones he finds most
important. We use the findings of a qualitative grounded
theory investigation on bug reports, to pose three hypotheses
on what kinds of sentences a reader would find relevant:
sentences that discuss frequently discussed topics, sentences
that are evaluated or assessed by other sentences, and
sentences that focus on the topics in the bug report’s title and
description (Section II). We use this model to rank sentences
by its probability of being read and compose the summary
with the sentences with the highest probabilities (Section III).

We create 4 different summarizers, one to test each of our
three hypotheses, and one that combines all three summariza-
tion hypotheses. We test these summarizers (Section IV) by
generating summaries for the same 36 bug reports used by
Rastkar et al. [3] and comparing them with the summaries
generated by the email summarizer, which we have also
implemented. By comparing standard summary evaluation
measures, our results show that the summarizers for each of
the hypotheses create competitive or improved summaries,
while the combination of these hypotheses creates summaries
with as much as 12% higher evaluation measures.

We also generate summaries for a random selection of
bug reports from four different bug tracking systems and
conduct a survey asking the developers who worked on
these bug reports to assess the quality and usefulness of the
summaries (Section IV). Our study attracts the participation
of 58 open source developers, who not only validate the
quality and usefulness of the summaries, but also point out
the most important use cases for bug report summaries and the
improvements that our approach and bug report summarizers
in general should focus on.

This work provides five main contributions: (i) a deeper
understanding of the information exchanged in bug reports;
(ii) techniques to identify the most important information
in bug reports; (iii) a novel, unsupervised, approach for
summarizing bug reports that should be readily applicable
for any bug tracking system; (iv) a survey with 58 open
source developers highlighting the use cases for which bug
report summaries are most useful for; and (v) three directions
for future work motivated by our findings: improving the
calculation of a sentence’s relevance, moving past extractive
summaries, and designing interfaces to facilitate bug report
navigation based on a summary.

II. MODELLING THE BUG REPORT READING PROCESS

As with most extractive summarization approaches, we
want to rank sentences by relevance and select the n
most relevant sentences to compose the summary. For our
summarization approach, we estimate the relevance of a
sentence based on the probability of a reader focusing his
attention on that sentence, if the reader were only allowed
to focus his attention on a limited number of sentences
while skimming through the bug report and still wanted to
maximize his knowledge about the bug.

We consider this should resemble, in fact, how users would
read a bug report when in a hurry: they would have to
skip less important portions of the bug report, moving back
and forth to portions that will complement their current
understanding, following a single topic or moving their
attention to different topics, until they are satisfied with
the knowledge they have acquired.

We can approximate this process by a Markov chain. The
approximation is given by the fact that, while intuitively the
probability of the next sentence does depend on all the previ-
ous sentences that were read, Markov chains are memoryless:
the probability of the next sentence to be selected will be
given only by the current sentence and will not consider
the other sentences that have been read. We can model a
Markov chain by a square matrixM where each element mi,j

represents the probability of transitioning from sentence si to
sentence sj . This model however, still lacks the probability
transitions from one sentence to another. Estimating such
probabilities requires us to first understand what sentences a
user finds important to read, based on the sentence he has just
read—the links a user follows from one sentence to another.

A. How Knowledge Evolves in Bug Reports

As most problem-solving tasks, bug resolution is a process
of reducing the uncertainty about a software issue, until the
knowledge that has been gathered is enough to resolve the
issue. Comments are used, therefore, to share information
that could be used to improve the understanding about a bug.
Thus, for readers to understand a bug report, it is important
that they are able to follow the threads of evolving knowledge.

To gain an insight into how a user might read a bug
report and follow the threads of evolving knowledge, we
perform a qualitative investigation of the comments in bug
reports using grounded theory, as proposed by Strauss and
Corbin [5]. The question we ask for this investigation is:
“How does knowledge evolve in bug reports?”. We start by
investigating a random sample of 40 bug reports, with at least
10 comments each, from the Chrome, Launchpad, Mozilla,
and Debian bug tracking systems. After going through this
random sample, we move to a theoretical sampling approach,
as recommended by Strauss and Corbin, and stop sampling
when new samples do not deepen the understanding of the
problem, but fit into our current theory. The final sample of
bugs we have used for this study was 15 from Chrome, 13
from Launchpad, 16 from Mozilla, and 11 from Debian.

We find that a bug report serves as a dump of data for
an ad hoc problem-resolution process. Such data varies
from well formatted and comprehensible text and discourse,
such as a detailed description of a scenario; to informal
conversations, opinions, and ramblings; to the very technical
dumps, stack traces or patches that are pasted into bug reports.
Furthermore, keeping track of the evolving knowledge about
a bug becomes more difficult with more users discussing a
bug report, since the conversation becomes more interwoven

and multi-threaded and demands readers to keep track of
additional contexts.

In general, we find that comments revolve around three
types of information about a bug: claims, hypotheses, and
proposals. A claim is a general affirmation made by a
participant, such as “I can reproduce this on 4.11”, or “The
function returns -1 for me”. Participants post hypotheses
about, for example, the cause of the bug or a possible solution:
“since I cannot reproduce this on Wheezy, the problem might
be caused by the render screen function” or “I think that
removing that call should fix the crash”. As for proposals,
they are generally used when discussing different approaches
to resolve an issue: “How about using json instead of xml?”.

The information introduced by claims, hypotheses, and
proposals evolve over time. Participants frequently post evalu-
ation comments that confirm or dispute previous claims, sup-
port or reject previous hypotheses, and evaluate previous pro-
posals. Readers, therefore, need to keep track of each of these
threads of context. It is only from understanding these threads
that a reader will be able to understand, for example, what the
outstanding issues preventing a bug’s resolution are, what the
different verified solutions or workarounds are, and for which
environments each of these solutions and workarounds are
suited for. Lotufo et al. [2], in previous quantitative analysis,
find that at least 27% of comments in bug reports result
from the evaluation of other comments (C3). This finding
is also supported by Breu et al. [6]. Gasser and Ripoche [7]
perform a related study on bug reports and also find that
the bug resolution process is much about the ‘stabilization’
of the knowledge about a bug, which can only be achieved
through the evaluation of claims, hypotheses, and proposals.

B. Hypotheses

The findings from our qualitative investigation suggest
that, in order to understand a bug report, it is important that
(i) users follow the threads of conversation containing the
topics they are interested in, from start to finish, to minimize
the probability of missing important information; and that
(ii) users give particular attention to sentences that have
been evaluated by other sentences, since they set the context
for much of the following comments. Furthermore, for users
with limited time, in order to focus on the most important
points of the bug, (iii) users should focus their attention
mostly on comments that discuss the problem that was
introduced in the bug’s title and description and should not
follow into parallel topics—a bug’s description is commonly
shown as the first comment in a bug report and is the bug
reporter’s characterization of the problem. The transition
probability from one sentence to another for the Markov
chain modelling the bug report reading process should,
therefore, be higher the more the two sentences talk about
the same topics. Similarly, the transition probability from
a sentence to one that it evaluates should also be higher
compared to the transition probabilities to other sentences.

From the Markov chain, the relevance of each sentence—
the probability of a reader reaching each sentence—will be
greater the higher the transition probabilities from other
sentences to that sentence weighed by the probabilities of
each one of those sentences. For example, a sentence si that
has only one topic in common with another sentence sj ,
that has a low probability of being read, will also have low
probability, since it can only be reached from sj .

We can now pose the following hypotheses for how to
rank sentences by relevance for an extractive summary:

Hypothesis 1: the relevance of a sentence is higher the
more topics it shares with other sentences and the more
relevant are the sentences it shares topics with;

Hypothesis 2: the relevance of a sentence is higher the
more it is evaluated by other sentences and the more relevant
are the sentences that evaluate it;

Hypothesis 3: the relevance of a sentence is higher the
more topics it shares with the bug title and description.

III. SUMMARIZATION APPROACH

Brin and Page [8] develop PageRank to rank web pages
by relevance using a very similar model. They estimate the
relevance of a web page as the probability of a user reaching
that page for a user who surfs the web by randomly following
hyperlinks from one web page to another—a random surfer.
PageRank takes as input a graph G, where web pages are
nodes and hyperlinks from one page to another are directed
edges. PageRank then calculates the Markov chainM for the
random surfer model and outputs a probability distribution
R, where each ri is the probability of a user eventually
reaching web page i after a large number of clicks.

Given the similarity of the random surfer model and
the bug report reading model we have proposed, applying
PageRank to calculate the probabilities of sentences being
read requires only that we model the links—the transitions—
between sentences in a bug report. We can then derive the
Markov chain M and calculate the probability distribution
R, just as in PageRank. We explain this calculation in more
detail in Section III-A.

The links we have identified for sentences within a bug
report, however, are not as concrete as the hyperlinks in
web pages. For now, we will consider we can identify
sentences with shared topics and sentences that evaluate
other sentences—we describe how we identify these relations
in Section III-B and Section III-C. We can then define the
shared-topic link and evaluation link for Hypotheses 1 and
2 as `tp(si, sj) and `ev(si, sj) for two sentences in a bug
report:

`tp(si, sj) =

{
1 if topic-sim(si, sj) > τ ∧ i 6= j,

0 otherwise,

`ev(si, sj) =

{
`tp(si, sj) if si evaluates sj ,

0 otherwise.

where a sentence si is the i-th sentence within a bug report,
topic-sim measures how much two sentences talk about
similar topics and τ is a predefined threshold. Thus, the
topic link is a precondition to the evaluation link: if two
sentences do not talk about similar topics, one will never
evaluate the other. Similarly, sentences in comment i can
only be evaluated by sentences from comments posted after
comment i.

While `tp and `ev cover Hypotheses 1 and 2, Hypothesis 3
remains unaddressed. The `tp link will, however, already
create a link, and thus increase the probability, of any sentence
with similar topics to the description. To boost the relevance
of sentences beyond the relevance given by `tp to sentences
with similar topics to the bug description, we will add a link
from each sentence in the description to itself. There should
be two effects of adding self links to the description: first, the
relevance of sentences in the description will be increased;
second, as a result of sentences in the description being
increased, the relevance of sentences with similar topics to
the bug description will also increase.

We also want to boost the relevance of sentences with
similar topics to the bug report title, since previous works
has shown that the title can be a very good summary of
a bug report [9]. The bug report title is not, however, one
of the sentences we are trying to rank, so we cannot add a
link from the title to the sentences with similar topics. To
circumvent this issue, for every sentence si that shares topics
with the bug report title, we add a link from every other
sentence to si. As a result, for Hypothesis 3, we define `td
as in (1), where SD is the set of sentences within the bug
description, and `ti(t, s) = `tp(t, s).

`td(si, sj) =

{
1 if i = j ∧ si ∈ SD,

`ti(t, sj) otherwise,
(1)

A. Measuring Sentence Relevance using PageRank

As we have already briefly introduced, the input to
PageRank is a matrix Mn×n representing a Markov chain
where each element mi,j represents the probability of
transitioning from state i to state j. When using PageRank
to rank web pages, each state is a web page. Since the user
is navigating the web by selecting links from a web page at
random, the probability of transitioning from web page si
to web page sj is 1/L, where L is the number of links to
different web pages in si. The formula to calculate mi.j in
general is shown below, where each l(i, j) is the weight of
the link from state i to j:

mi,j =
`(i, j)∑
∀k `(i, k)

(2)

For web pages, l(i, j) returns 1 if there is a link from i to j
and 0 otherwise.

Given the Markov chainM, the probability distribution R
for the elements in M is its principal eigenvector, such that
R =MR. By the Perron-Frobenius theorem, if M is an

irreducible and aperiodic stochastic matrix, we can use the
iterative power method to compute R, since the Markov chain
is guaranteed to converge to a unique stationary distribution.

An irreducible Markov chain is one in which all states are
reachable from any other states, e.g., all states have at least
one transition to it with probability > 0. An aperiodic Markov
chain is one in which all states are aperiodic: the minimum
common divisor of the number of transitions required to
return to any state is 1.

We cannot guarantee, however, that the Markov chain for
the web is irreducible and aperiodic. In fact, it is known that
it is not: there are many web pages that are not linked to
from any other web pages. Similarly for sentences in a bug
report, we cannot guarantee there will not be any sentence
that does not share any topic with any other sentence.

To transform M into an irreducible and aperiodic Markov
chain M̂, Brin and Page consider that with probability δ a
user will not follow any hyperlink but will randomly go to any
web page in the Internet. Since any web page is now reachable
by any other web page in one transition with probability δ,
the chain is now irreducible and aperiodic. The formula for
PageRank, in matrix form, is shown below, where Un×n is
a square matrix of ones, and M is the Markov matrix.

R =

[
1− δ
n

U+ δM
]
R = M̂R (3)

Now that M̂ is aperiodic and irreducible and the con-
vergence of R is guaranteed, we use the iterative power
method to calculate the principal eigenvector of M̂. The
power method calculates R starting as a uniform distribution
R = 1

n1, and updates R at each step as R′ = M̂R. The
algorithm stops when |R −R′| < ε, which, for aperiodic
and irreducible stochastic matrices, is guaranteed to occur
for ε > 0.

The only change our original model suffers when using
PageRank is that it now must consider that, with probability
δ, a user might jump to any sentence in a bug report
without following our links. We can use (2) directly to
calculate the Markov chain, which is applicable even if
`(si, sj) returns values different from 0 and 1 and instead
returns any value ≥ 0 as the weight of links. This will
be the case when we rank sentences considering both
Hypotheses 1 and 2, for example, by combining `tp and
`ev as `(si, sj) = `tp(si, sj) + `ev(si, sj) and when `tp and
`ev measure the strength of these links.

Illustrative Example: Figure 1 presents an example
of a bug report which we will use to explain our approach.
Figure 1 shows the bug report title and then the sequence
of sentences si,j in the bug report, where i is the index
of the sentence in the bug report and j is the index of the
comment a sentence belongs to—with the bug description
being comment 0.

Figure 2 presents the graph for our running example for
`tp and `ev, where darker nodes represent sentences that
evaluate other sentences; thin grey edges represent `tp links;

title Crash when opening preview window in Squeeze
s0,0 I’m running XX on Debian Squeeze, and its been running fine since last

update.
s1,0 The crash occurs when I open up the preview window.
s2,1 I could not reproduce this, I’m running on Debian Wheezy, and I do not

face this crash when opening the preview window.
s3,2 Hi, thanks for submitting this bug.
s4,2 I also updated my system today to version 2.28.6.
s5,2 Now, when I open up the preview window on 2.28.6 my system crashes,

so I did manage to reproduce this problem.

Figure 1: Bug report for running example.

s0,0 s1,0

s2,1

s3,2 s4,2 s5,2

`ev
`tp

Figure 2: Graph showing `tp and `ev links.

and thick black edges represent `ev links. The figure shows,
for example, that sentences s0,0 and s4,2 have similar topics,
since they talk about updating versions, and that sentence s5,2
evaluates sentences s1,0 and s2,1. As can be noted from the
definition of `tp and Figure 2, the `tp link is symmetric. Link
`ev, on the other hand, is unidirectional: from the evaluator
sentence to the evaluated sentence from a previous comment.
Thus, although s4,2 and s5,2 share a same topic and s5,2 is
an evaluation sentence, `ev(s4,2, s5,2) = 0 since they are in
the same comment.

Figure 2 also shows that we can compose `tp and `ev to
rank sentences by combining Hypotheses 1 and 2. If we use
a linear combination to combine these two links with the
linear coefficients being 1, the weight of the edge from s2,1
to s1,0 would be `tp(s2,1, s1,0) + `ev(s2,1, s1,0) = 2. The
resulting adjacency matrix for our graph would be G, as
shown below, where the order of nodes in the matrix are
given by the index of the sentence in the bug report:

G =


0 0 0 0 1 0
0 0 1 0 0 1
0 2 0 0 0 1
0 0 0 0 0 0
1 0 0 0 0 1
0 2 2 0 1 0


After transforming G into the stochastic matrix M by

dividing each row by the sum of the row, as shown in
(2), making it irreducible and aperiodic by multiplying δ
and then adding 1−δ

n U, as shown in (3), and solving
for R using the iterative power method, we get the fol-
lowing probabilities for the sentences in our example:
[0.09, 0.24, 0.22, 0.03, 0.15, 0.26], effectively ranking sen-
tences as [s5,2, s1,0, s2,1, s4,2, s0,0, s3,2].

Such a model can only be useful, however, if we are able to
measure how much two sentences talk about the same topics,
and identify sentences that evaluate other sentences. We now
present our approach to measure the links `tp, `ev, and `td.

B. Measuring `tp
There exists much work on measuring how much two

documents discuss the same topics. Most of these, first
identify the topics contained within documents and then
measure topic similarity by considering how much topic
overlap there exists between the documents. Sun [10], for

example, measures the changes in mutual information from
one chunk of a document to another to detect topics. Latent
Dirichlet Allocation (LDA) and Probabilistic Latent Semantic
Analysis (PLSA), on the other hand, identify topics using
word co-occurrence knowledge extracted from documents.

While arguably these approaches are state-of-the-art at
identifying topics, they are not lightweight and generally
require the tuning of several different parameters, most
importantly, the number of topics to be identified. Since we
aim for a solution that does not need such parametrization,
we choose a more direct and lightweight approach to measure
topic similarity: we will consider that sentences that talk about
similar topics should have many common words. We will
approximate, therefore, topic similarity by lexical similarity.

While there are many textual similarity metrics, such as
Levenstein edit distance and Euclidean distance, the cosine
similarity function is one that has shown consistent results in
measuring the similarity of content, and is used, for example,
to classify and cluster documents by author, topics, and writ-
ing style [11]. The cosine similarity is defined as below, where
x and y are the vectors of term frequency for a sentence.

cosine-sim(x, y) =
x · y
|x|.|y|

As is commonly done when measuring textual similarity,
we scale the term frequency (tf) by the inverse document
frequency (idf) of the term, diminishing the importance of
terms that occur in most documents, since they do not help
in differentiating two documents. The term frequencies in
the vector for each sentence, scaled by the inverse document
frequency is calculated as shown below, where nt,s is the
number of times term t occurs in s, N is the total number
of sentences, and nt is the number of sentences that contain
term t.

tf-idf(t, s) = nt,s log
N

nt

Before building the vectors for the sentences using tf-idf ,
we must first tokenize the text into its terms. Based on our
previous experience with tokenizing text from bug reports, we
tokenize the sentences using the following regular expression:
‘[\w-]+(\.[\w-]+)*’ which should correctly identify
words, but should preserve most function and variable names,
urls, and software version numbers. After tokenization, we

move all characters to lowercase and stem the tokens using
the standard Porter stemmer. We can now redefine `tp as:

`tp(si, sj) =

{
cosine-sim(si, sj) if i 6= j,

0 otherwise.

C. Measuring `ev
The relations of evaluation we are interested in are those

where a sentence evaluates or verifies the validity of the
content of another sentence. From our example, s2,1 fits this
relation, as it suggests that the content of s1,0 is not valid,
since its author could not reproduce the crash. Similarly, s5,2
evaluates both s1,0 and s2,1, since it says that the bug is
reproducible, confirming the content of s1,0 and disconfirms
the content of s2,1.

Although we are not aware of prior work that tries to
identify evaluation relations between sentences in a bug
report, polarity detection through sentiment analysis might
be a good approximation of this relation. Polarity detection
has previously been used to detect the polarity of reviews
of movies [12], of products, politicians, and almost any-
thing [13]. We consider polarity detection might be a reason-
able approximation, since, in general, it first filters evaluation
sentences, and then tries to detect if the evaluation is positive
or negative. For our purposes, we consider a sentence is an
evaluation sentence if its polarity is different from neutral.

The best results for polarity detection have been achieved
using classifiers such as support vector machines that are
trained on a corpus of texts that have had its polarity
previously annotated. Since we are looking for an approach
that is completely unsupervised, however, having to manually
classify the polarity of sentences of a bug report would not
suit here. We use, therefore, the same approach as Bo and
Bhayani [14] of using a training set composed of 800, 000
Twitter messages with positive polarity and 800, 000 with
negative polarity, polarity which has been automatically
annotated as negative or positive polarity using the emoticons
present in the comments. This classifier uses a linear support
vector machine in which the feature vector for a sentence
represents the presence or absence of a word in the comment.
We leave the reader to consult Bo and Bhayni’s [14] report
for further details on this approach.

Simply identifying evaluation sentences is not enough,
however, since we want to identify an evaluation link from
one sentence to another. Our definition of the evaluation link
from Section III, however, hints to a solution to identify such
relation: the evaluation link requires first that two sentences
have similar topics. As such, just as how cosine-sim measures
not if, but how much, two sentences share a topic, here we
also propose to quantify the strength of the evaluation link
between two sentences.

We measure the strength of the evaluation link from si to
sj as the strength of the `tp link between the two sentences
if si is an evaluative sentence or is a sentence within a
comment that contains an evaluative sentence. We can now

redefine `ev as:

`ev(si, sj) =

 `tp(si,sj)
(
pS(si)+pC(si)

)
2 if c(si) > c(sj),

0 otherwise,

where pS(s) returns 1 if s has polarity and 0 otherwise,
pC(s) returns 1 if s is contained in a comment that contains
a sentence that has polarity and zero otherwise, and c(s)
returns the index of the comment that contains sentence s.

D. Putting it all Together

Each of our links target different characteristics of sen-
tences in bug reports. If these heuristics are valid, we
hypothesize, therefore, that the combination of these links
should at least produce similar results to the best heuristic
and hopefully improve the results of the best heuristic.

Since our main interest is to verify if a combination of the
links does indeed improve the results of the individual links,
we combine them in the most straight-forward way: a self
vote of value 1.0 for sentences in the bug report description
and a linear combination of the `tp, `ev, and `ti for other
pairs of sentences:

`all(si, sj) =


1 if i = j ∧ si ∈ D,

[α `tp(si, sj)

+β `ev(si, sj)

+γ `ti(si, sj)]
1
3 otherwise.

Since we want to verify if each of these heuristics are
valid and if their combination is also valid, we use the most
straightforward parameters for each of the coefficients: 1. We
leave the work of optimizing the weights of these parameters
for the future. We note that, since our previous definition of
`td only depends on the `tp function which we have already
defined, there is no need to redefine it.

E. Chunking Comments into Sentences

Our extractive summarization approach works with sen-
tences as the minimal chunks of text to be extracted into
a summary. Bug reports, however, are not segmented into
sentences. In fact, segmenting comments into sentences is a
challenging problem itself, since text in bug reports is very
informal and often contains source code, stack traces, logs,
and enumerations. Using a traditional sentence chunker that
uses a ‘.’ character to identify sentence boundaries does not
produce good results. While Bettunburg et al. [15] parses
bug report comments to collect structured information, such
as stack traces and patches, they do not work on sentence
chunking, but acknowledge that it is a non-trivial problem.

Based on our previous experience, we chunk comments
into sentences using the following heuristics: (i) each item
from an enumeration is a sentence; (ii) each line in a stack
trace or source code snippet is a sentence; (iii) we use ‘.’,
‘;’, ‘?’, ‘!’ as sentence delimiters, except when ‘.’ is used
in version strings, urls, code snippets, and abbreviations;

(iv) if a line of text has a line break before 80 characters
we consider the line break ends a sentence.

IV. EVALUATION

A. Methodology

Our evaluation has two parts. For the first part, we
implement three different summarizers, one for each link
function `tp, `ev, and `td, to evaluate each one of our
hypotheses. We will consider our hypotheses to be valid if
our summarizers produce summaries that have competitive
or improved evaluation measures compared to the summaries
created by the email summarizer [3], which we have
implemented to the best of our knowledge. We also test a
summarizer using `all to assess if the combination of the
links yields improved summaries.

The corpus we use for this evaluation is the corpus created
by Rastkar et al. [3], which consists of 36 bug reports, each
with three reference golden summaries created by humans.
We use these reference summaries to compare the generated
summaries against. For this evaluation, and as was done by
Rastkar et al., we generate summaries by selecting sentences
until the summary reaches a length of 25% of the original
bug report, in number of words, since this is the average
length of the golden summaries.

For the second part of our evaluation, we use the `all
summarizer to generate summaries for a random set of bug
reports from the Debian, Launchpad, Mozilla, and Chrome
bug tracking systems, and ask developers who contributed
to these bug reports to assess the quality and usefulness of
the summaries. From the 250 invitations we sent out, we
received a response from 58 developers, each one evaluating
a different bug report: 22 from Debian, 14 from Mozilla, 13
from Ubuntu, and 9 from Chrome. We present the developers
with each summary in two formats: condensed and interlaced.
The condensed format shows only the extracted sentences.
The interlaced format presents the complete bug report
content, with the extracted sentences shown highlighted
out from the other sentences. We ask the developers to:
(i) assess the quality of the summary by indicating the
mistakes made by the summarizer: sentences that should
have been extracted but weren’t and the sentences that were
extracted but are not so relevant; (ii) explain if they preferred
the condensed or interlaced format for reading a bug report
summary; (iii) explain what are the most important types
of information a summary should contain; and (iv) indicate,
using a Likert scale, what are the most important use cases
for such summaries.

B. Evaluation Metrics

To assess our hypotheses, we use the following established
metrics for evaluating summaries:

Precision and Recall: We measure precision and recall
for the summaries, considering a master golden summary G∗

composed of the sentences that are present in at least half
of the golden summaries. For the corpus created by Rastkar,

the master golden summary is composed of the sentences
that are present in at least two golden summaries.

precision(S) =
|{S ∩G∗}|
|S|

recall(S) =
|{S ∩G∗}|
|G∗|

(4)

Precision then measures the percentage of sentences in a
summary that is also present in G∗, while recall measures the
percentage of sentences in G∗ that are present in the summary
being evaluated. Precision and recall, however, measure the
quality of a summary against a master golden summary which
is artificially composed by the sentences present in at least
half of the golden summaries. Thus, it does not mean that
such a master golden summary is necessarily a good one,
since different golden summaries can provide all the relevant
information with different extracted sentences [16].

Pyramid Score: To circumvent the issues of recall
and precision, Nenkova et al. [16] proposes the pyramid
score, an evaluation metric that should better measure the
quality of an extractive summary based on a set of golden
summaries created by several annotators. When evaluating
a summary composed of n sentences, pyramid score is the
sum of the number of golden summaries that contain each
of the n sentences from the evaluated summary, divided by
the sum of the number of golden summaries that contain
the n sentences that are most frequently present in golden
summaries. Pyramid score is, therefore, a recall-related
evaluation metric for a summary, that measures the quality
of a summary against the best summary of the same length.

The formula for the calculation of pyramid score is shown
below, where S is a summary, s ∈ S are the sentences in
summary S, G is the set of all golden summaries G, and G top

|S|
is the set of size |S| of sentences that are most frequently
present in golden summaries:

pyramid(S) =

∑
s∈S

∣∣{G ∈ G : s ∈ G}
∣∣∑

s∈Gtop
|S|

∣∣{G ∈ G : s ∈ G}
∣∣

Nenkova also defines pyramid precision and pyramid recall.
Pyramid precision calculates the percentage of sentences
in a summary that are present in at least one golden
summary. Pyramid recall, as the name suggests, calculates
the percentage of sentences present in any one of the golden
summaries that are present in the summary being evaluated.
In effect, these are the precision and recall as defined in (4),
with G∗ being composed of sentences that are present in any
of the golden summaries.

C. Hypotheses Tests
Figure 3 presents for each evaluation metric, the averages—

weighted by number of sentences in a bug report—for each
of the 5 summarizers we evaluate: `tp summarizer, `ev
summarizer, `td summarizer, `all summarizer, and email
summarizer. The maximum value in each of the evaluation
metrics’ axes is the maximum for that metric, for all of
the summarizers and each tick in the axis corresponds to
a difference of 0.05. The chart shows, for example, that the

0.71

0.71

0.3

0.41

0.9

0.23

Pyramid Score

Precision

Recall

F−Score

Pyramid Precision

Pyramid Recall
●

●

●

●

●

●

●

lall
Email
ltp
lev
ldf

Figure 3: Comparison of evaluation measures for `tp, `ev, `td, `all,
and email summarizers for summaries of length 25%.

pyramid score for `all is 0.71, while for email summarizer
it is around 0.63, and for `tp it is 0.66.

The results show that `tp summarizer has slightly more
precision and pyramid precision than the email summarizer,
but has less recall and pyramid recall—the non-parametric
Mann-Whitney U test supports that these distributions are
indeed different, with p-value < 0.05 for precision and recall
and p-value < 0.01 for pyramid precision and recall. The
chart also shows that the `ev summarizer has almost identical
evaluation results compared to the email summarizer. For
`td, the chart shows that it has slightly better values for all
evaluation metrics compared to the email summarizer, except
for pyramid recall. The Mann-Whitney U test, however,
supports that, for `td, only the pyramid precision measure is
better than email summarizer, with p-value < 0.01.

We can also use Figure 3 to compare each of our three indi-
vidual summarizers—`tp, `ev, and `td—amongst themselves.
This comparison shows that that `tp has significantly less
recall than the other summarizers, while `ev has significantly
less precision than the others. We find that `tp has such low
recall because `tp prefers longer sentences than the other
summarizers. Thus, since we take sentences until we reach
25% of the number of words in the original bug report, it
extracts less sentences than the other summarizers.

The results we have presented show that all of our
individual summarizers are at least competitive with the email
summarizer. Furthermore, their combination as `all, has an
improvement of 12% in precision, 8% in pyramid precision,
and 8% in pyramid score, confirmed by the Mann-Whitney U
test with p-value < 0.01. These results indicate that Hypothe-
ses 1, 2, and 3 have a high likelihood to be valid: relevant
sentences for a bug report summary are those that discuss
topics that are frequently discussed; those that are evaluated
by other sentences; and those that do not deviate from the
problems as described in the bug report title and description.

Interestingly, all of the summarizers we evaluate here have
reasonable precision but quite low recall. Pyramid precision
rates of 90% show that the summarizers extract sentences
that are present in at least one golden summary with very
high precision. The low recall, however, suggests that the
summarizers extract sentences that are redundant: sentences
that are present in different golden summaries, but that
convey similar information. To improve on these results and
avoid extracting redundant sentences, one could incorporate
one of the many techniques from summarization, such as
removing sentences subsumed by other sentences [17].

D. Evaluation with Developers

The evaluation with the developers from the Debian,
Launchpad, Mozilla, and Chrome bug tracking systems was
very insightful. From the passion of the responses we received
from developers, they seemed genuinely interested in bug
report summaries. This feeling is corroborated by the results
of our survey, in which more than 80% of developers stated
that bug report summaries would be at least very useful—out
of a scale of not useful, somewhat useful, useful, very useful,
and extremely useful—when (i) looking for a solution or
workaround for a bug; (ii) searching for similar or duplicate
bugs; (iii) trying to understand the status of the bug and its
open issues; and (iv) when consulting bugs for prioritization,
triaging, or closing out old bugs.

When asked about the most important kind of information
that needs to be present in a bug report summary, developers
repeatedly affirmed that summaries should focus on showing
information (i) about the current status and the reason for
such state; (ii) about solutions or workarounds to the bug
and the environments each remedy is applicable to; and
(iii) about the consensus on diagnostic information, such as
the agreed steps and environment settings to reproduce the
bug. Developers also stressed the importance of being able
to recognize the different types of structured information
in bug reports: stack traces, code snippets, commands and
their results, and enumerations such as steps to reproduce.
A qualitative analysis of the mistakes made by summarizer,
pointed out by the developers, indicates that sentences, as
chunked by the procedure explained in Section III-E, might
not be the most appropriate way to chunk content in bug
reports, since the resulting summaries often contain, for
example, only some of the items of an enumeration and the
result of a command but not the command itself.

To evaluate the quality of the summaries, as judged by the
developers, we use the mistakes indicated by the developers—
sentences that they marked that should have or shouldn’t have
been present in the summaries—to create golden summaries
and calculate precision and recall. Since these bug reports
only have one reference golden summary, pyramid score
is not applicable and the precision and recall and pyramid
precision and recall will have the same values. The results for
the 58 bug reports assessed by developers, shown in Table I,
indicate that, in average, the summaries include half of the

relevant information, but that around 40% of the sentences
in the summaries are not so relevant—the mean and median
number of sentences for each of the 58 bug reports are 65.77
and 56. We note that the precision and recall rates are higher
for the Chrome and Mozilla projects. We hypothesize this
difference might come from the fact that Chrome and Mozilla,
from our experience, contain fewer patches and stack traces
pasted into bug reports than Debian and Launchpad.

Table I: Precision and recall for developer evaluation.

Debian Mozilla Launchpad Chrome All

Precision 0.49 0.77 0.56 0.69 0.59
Recall 0.45 0.60 0.47 0.61 0.51

Responses about the condensed and interlaced summary
formats were mixed: 56% preferred condensed, while 46%
preferred interlaced, a non-significant difference. We did,
however, find a consensus on the advantages of each one,
which can be summarized by the two following responses:

“I would never trust an automated summary, and would
always need to refer to the original. By highlighting the
important sentences, it allows me to ‘speed read’ a long
report with many comments and status updates.”
“Interlaced works when there aren’t pages of irrelevant
data. For a bug with *lots* of comments, a condensed
view would help. Personally, I use a greasemonkey script
that highlights comments from people that are likely to
be providing useful information.”

V. FUTURE DIRECTIONS

The results of our work indicate three important future
directions, which we discuss in the following sections.

A. Improving Sentence Relevance Estimates
Improving the estimates on sentence relevance should sig-

nificantly improve summary quality, and involves improving
the techniques to estimate `tp and `ev. To improve `tp, one
could study the use of LDA, PLSA, or other natural language
processing technique in which similarity is measured using
topics. Quan et al. [18], for example, shows a promising
approach to use topic models to estimate the similarity of
very short texts. Additionally, once topics are identified, it
might be relevant to give topics different weights: the topic
of solutions to a bug, as stated by developers, could be
considered more relevant than the topic of who is fixing the
bug, for example. To improve `ev, the use of a corpus trained
on sentences from bug reports should be promising, and
could use the characteristics of communication in bug reports,
beyond emoticons, to automatically annotate sentence polarity.
Another line of investigation should look for other character-
istics in bug report comments that increase the relevance of a
sentence. Contributors who are well-known to post important
information, for example, could be one such characteristic.
Feedback from developers also indicate the need to improve
the recognition and handling of structured information, such
as code snippets, diagnostic information, and enumerations.

B. Moving Past Extractive Summaries

Once one has a better understanding of the topics being
discussed in bug reports, one can not only give different
weights to these topics, as explained in the previous section,
but also move past summaries that are composed solely of
extractive sentences. Such a summary could also restructure
the information in different ways, as indicated by our
developer evaluation, moving all the information on solutions
to a particular section and provide information such as the
number of users for which the solution was applicable for,
to indicate if there is consensus.

C. Creating Interfaces to Support Bug Report Navigation

Designing optimal interfaces to facilitate bug report navi-
gation based on summaries and the links we have identified
is another important direction of work. Results from our
developer evaluation indicate that condensed and interlaced
views have their own advantages and are suitable for different
scenarios and user preferences. This suggests, for example,
that users should be able to switch between the two formats.
Additionally, a dynamic version of the interlaced format
could highlight the links from the current sentence to the
sentences it has stronger links with, as the user navigates
through the bug report and focuses on different sentences.

VI. RELATED WORK

PageRank has been used for text summarization before.
TextRank [19] and Lexrank [20] also calculate sentence
probability using textual similarity. Lexrank adds a post-
processing after sentence ranking to avoid redundancy by
excluding sentences that subsume other sentences. We are the
first, however, to propose the use of PageRank for bug report
summarization and to adapt it to the bug report domain,
considering the importance of evaluation links and title and
description similarity.

Rastkar et al. [3] summarizes bug reports using a sum-
marization approach for email threads. The bug reports they
test on are manually selected to resemble email messages,
since they exclude bug reports with stack traces, logs, and
patches. Although we also use this corpus for tests, we also
sample bug reports from the wild: our only restriction is
that a bug report has at least 10 comments. To evaluate
their summaries, Rastkar et al. asks graduate students to
evaluate the summaries they create. We ask the developers
who actually worked on the bugs to evaluate the summaries.

Other work aimed at facilitating bug report digestion comes
from Ankolekar et al. [21], who identifies and automatically
links bug reports to important information about bugs. Such
links, they claim, should answer questions of ‘what’, ‘why’,
and ‘who’, such as who created a function and what the
function is for.

Bettenburg et al. [22] perform a survey with developers
from Apache, Mozilla, and Eclipse, asking them what
information is important in a bug report description, and what
information is frequently absent from bug reports. Developers

agree that steps to reproduce and stack traces are the most
important information.

VII. THREATS TO VALIDITY

The grounded theory investigation in Section II-A does not
triangulate with developer interviews or other sources of data
besides bug reports. We do, however, look into four distinct
bug tracking systems and, since we use this investigation to
pose hypotheses that were later tested in two distinct ways, we
consider the methodology for the investigation appropriate.

We use a comparison of the evaluation metrics with the
summaries created by the email summarizer to test our
hypotheses. We consider this is a reasonable first test, since
Rastkar et al. claim the email summarizer produces good-
quality summaries. To mitigate this threat, we also ask expert
developers to assess our summaries and find that they consider
our summaries useful. Another threat comes from our evalu-
ation with developers. Since only 25% of invited developers
agreed to participate, this might be a subset of developers that
is already biased about the utility of bug report summaries.

We claim our summarizer should be widely applicable to
any bug tracking system. We consider this is a reasonable
claim, since we pose our hypotheses from an analysis of
a set of bug tracking systems, but test our hypotheses on
a different set of bug tracking systems, the ones from the
corpus created by Rastkar et al. Furthermore, the risk of our
summarization approach being over-fitted is small, since we
do not use machine learning, but heuristics that should be
valid in most bug tracking systems.

VIII. CONCLUSION

We have created an automatic, unsupervised, bug report
summarization approach that should be widely applicable to
different bug tracking systems. The summarization approach
we propose models how a user, with limited time, would
read a bug report. We hypothesize that such a reader would
navigate through a bug report following sentences that
talk about the same topics, that have been evaluated by
other sentences, and that are close to the bug report title
and description. Our evaluation, performed by comparing
evaluation metrics against a previous summarization approach
and by a quality assessment made by developers, shows not
only that this summarization approach produces good quality
summaries, but also validates the importance of solving
such a problem for developers and suggests future directions
of work: improving the estimation on sentence relevance,
moving past extractive summaries, and creating interfaces to
support navigation based on summaries.

REFERENCES

[1] B. Boehm and V. R. Basili, “Software defect reduction top
10 list,” IEEE Computer, vol. 34, 2001.

[2] R. Lotufo, L. Passos, and K. Czarnecki, “Towards improving
bug tracking systems with game mechanisms,” MSR, 2012.

[3] S. Rastkar and G. Murphy, “Summarizing software artifacts:
a case study of bug reports,” ICSE, 2010.

[4] G. Murray, “Summarizing spoken and written conversations,”
EMNLP, 2008.

[5] A. Strauss and J. Corbin, Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory.
Sage Publications, 2008.

[6] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Infor-
mation needs in bug reports: improving cooperation between
developers and users,” Computer Supported Cooperative Work,
2010.

[7] L. Gasser and G. Ripoche, “Distributed collective practices and
free/open-source software problem management: perspectives
and methods,” CITE, 2003.

[8] S. Brin and L. Page, “The anatomy of a large-scale hypertex-
tual web search engine,” WWW, 1998.

[9] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How
long will it take to fix this bug?” MSR, 2007.

[10] B. Sun, P. Mitra, C. Giles, and J. Yen, “Topic segmentation
with shared topic detection and alignment of multiple docu-
ments,” SIGIR, 2007.

[11] S. Büttcher, C. Clarke, and G. Cormack, Information Retrieval:
Implementing and Evaluating Search Engines. MIT Press,
2010.

[12] P. Beineke, T. Hastie, and C. Manning, “Exploring sentiment
summarization,” AAAI, 2004.

[13] H. Tang, S. Tan, and X. Cheng, “A survey on sentiment
detection of reviews,” Expert Systems with Applications, 2009.

[14] A. Go and R. Bhayani, “Twitter sentiment classification using
distant supervision,” CS224N Project Report, Stanford, 2009.

[15] N. Bettenburg, R. Premraj, and T. Zimmermann, “Extracting
structural information from bug reports,” MSR, 2008.

[16] A. Nenkova and R. Passonneau, “The pyramid method: Incor-
porating human content selection variation in summarization
evaluation,” ACM Transactions on Computational Logic, 2007.

[17] E. Lloret and M. Palomar, “Text summarisation in progress:
a literature review,” Artificial Intelligence Review, 2011.

[18] X. Quan, G. Liu, Z. Lu, X. Ni, and L. Wenyin, “Short
text similarity based on probabilistic topics,” Knowledge and
Information Systems, 2009.

[19] R. Mihalcea and P. Tarau, “Textrank: Bringing order into texts,”
EMNLP, 2004.

[20] D. R. Radev, “Lexrank : Graph-based lexical centrality as
salience in text summarization,” Artificial Intelligence, 2004.

[21] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty,
“Supporting online problem-solving communities with the
semantic web,” WWW, 2006.

[22] N. Bettenburg, S. Just, A. Schrter, C. Weiss, and R, “What
makes a good bug report?” SIGSOFT, 2008.

