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Abstract. We present a method and an associated system, called Math-
Check, that embeds the functionality of a computer algebra system
(CAS) within the inner loop of a conflict-driven clause-learning SAT
solver. SAT+CAS systems, a la MathCheck, can be used as an assis-
tant by mathematicians to either counterexample or finitely verify open
universal conjectures on any mathematical topic (e.g., graph and number
theory, algebra, geometry, etc.) supported by the underlying CAS system.
Such a SAT+CAS system combines the efficient search routines of mod-
ern SAT solvers, with the expressive power of CAS, thus complementing
both. The key insight behind the power of the SAT+CAS combination
is that the CAS system can help cut down the search-space of the SAT
solver, by providing learned clauses that encode theory-specific lemmas,
as it searches for a counterexample to the input conjecture (just like the
T in DPLL(T)). In addition, the combination enables a more efficient
encoding of problems than a pure Boolean representation.
In this paper, we leverage the graph-theoretic capabilities of an open-
source CAS, called SAGE. As case studies, we look at two long-standing
open mathematical conjectures from graph theory regarding properties
of hypercubes: the first conjecture states that any matching of any d-
dimensional hypercube can be extended to a Hamiltonian cycle; and
the second states that given an edge-antipodal coloring of a hypercube,
there always exists a monochromatic path between two antipodal ver-
tices. Previous results have shown the conjectures true up to certain
low-dimensional hypercubes, and attempts to extend them have failed
until now. Using our SAT+CAS system, MathCheck, we extend these
two conjectures to higher-dimensional hypercubes. We provide detailed
performance analysis and show an exponential reduction in search space
via the SAT+CAS combination relative to finite brute-force search.

1 Introduction

Boolean conflict-driven clause-learning (CDCL) SAT and SAT-Modulo Theories
(SMT) solvers have become some of the leading tools for solving complex prob-
lems expressed as logical constraints [3]. This is particularly true in software
engineering, broadly construed to include testing, verification, analysis, synthe-
sis, and security. Modern SMT solvers such as Z3 [6], CVC4 [2], STP [12], and
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VeriT [4] contain efficient decision procedures for a variety of first-order theories,
such as uninterpreted functions, quantified linear integer arithmetic, bitvectors,
and arrays. However, even with the expressiveness of SMT, many constraints,
particularly ones stemming from mathematical domains such as graph theory,
topology, algebra, or number theory are non-trivial to solve using today’s state-
of-the-art SAT and SMT solvers.

Computer algebra systems (e.g., Maple, Mathematica, and SAGE), on the
other hand, are powerful tools that have been used for decades by mathemati-
cians to perform symbolic computation over problems in graph theory, topology,
algebra, number theory, etc. However, computer algebra systems (CAS) lack the
search capabilities of SAT/SMT solvers.

In this paper, we present a method and a prototype tool, called MathCheck,
that combines the search capability of SAT solvers with powerful domain knowl-
edge of CAS systems (i.e. a toolbox of algorithms to solve a broad range of
mathematical problems). The tool MathCheck can solve problems that are
too difficult or inefficient to encode as SAT problems. MathCheck can be used
by mathematicians to finitely check or counterexample open conjectures. It can
also be used by engineers who want to readily leverage the joint capabilities
of both CAS systems and SAT solvers to model and solve problems that are
otherwise too difficult with either class of tools alone.

The key concept behind MathCheck is that it embeds the functionality
of a computer algebra system (CAS) within the inner loop of a CDCL SAT
solver. Computer algebra systems contain state-of-the-art algorithms from a
broad range of mathematical areas, many of which can be used as subroutines
to easily encode predicates relevant both in mathematics and engineering. The
users of MathCheck write predicates in the language of the CAS, which then
interacts with the SAT solver through a controlled SAT+CAS interface. By
imposing restrictions on the CAS predicates, we ensure correctness (i.e. sound-
ness) of this SAT+CAS combination. The user’s goal is to finitely check or find
counterexamples to a Boolean combination of predicates (somewhat akin to a
quantifier-free SMT formula). The SAT solver searches for counterexamples in
the domain over which the predicates are defined, and invokes the CAS to learn
clauses that help cutdown the search space (akin to the “T” in DPLL(T)).

In this work, we focus on constraints from the domain of graph theory, al-
though our approach is equally applicable to other areas of mathematics. Con-
straints such as connectivity, Hamiltonicity, acyclicity, etc. are non-trivial to
encode with standard solvers [25]. We believe that the method described in this
paper is a step in the right direction towards making SAT/SMT solvers useful
to a broader class of mathematicians and engineers than before.

While we believe that our method is probably the first such combination
of SAT+CAS systems, there has been previous work in attempting to extend
SAT solvers with graph reasoning [8,14,22]. These works can loosely be divided
into two categories: constraint-specific extensions, and general graph encodings.
As an example of the first case, efficient SAT-based solvers have been designed
to ensure that synthesized graphs contain no cycles [14]. In [22], Hamiltonicity
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checks are reduced to Native Boolean cardinality constraints and lazy connectiv-
ity constraints. While more efficient than standard encodings of acyclicity and
Hamiltonicity constraints, these approaches lack generality. On the other hand,
approaches such as in CP(Graph) [8], a constraint satisfaction problem (CSP)
solver extension, encode a core set of graph operations with which complicated
predicates (such as Hamiltonicity) can be expressed. Global constraints [8] can
be tailored to handle predicate-specific optimizations. Although it can be non-
trivial to efficiently encode global constraints, previous work has defined efficient
procedures which enforce graph constraints, such as connectivity, incrementally
during search [17]. Our approach is more general than the above approaches, be-
cause CAS systems are not restricted to graph theory. One might also consider a
general SMT theory-plugin for graph theory however given the diverse array of
predicates and functions within the domain, a monolithic theory-plugin (other
than a CAS system) seems impractical at this time.

Main Contributions: 1

Contribution I: Analysis of a SAT+CAS Combination Method and
the MathCheck tool. In Section 3, we present a method and tool that com-
bines a CAS with SAT, denoted as SAT+CAS, facilitating the creation of user-
defined CAS predicates. Such tools can be used by mathematicians to finitely
search or counterexample universal sentences in the language of the underly-
ing CAS. The current version of our tool, MathCheck, allows users to easily
specify and solve complex graph-theoretic questions using the simple interface
provided. Although our current focus is predicates based in graph theory, the
system is easily extended to other domains.

Contribution II: Results on Two Open Graph-Theoretic Conjec-
tures over Hypercubes. In Section 4, we use our system to extend results on
two long-standing open conjectures related to hypercubes. Conjecture 1 states
that any matching of any d-dimensional hypercube can extend to a Hamiltonian
cycle. Conjecture 2 states that given an edge-antipodal coloring of a hypercube,
there always exists a monochromatic path between two antipodal vertices. Pre-
vious results have shown Conjecture 1 (resp. Conjecture 2) true up to d = 4
[10](resp. d = 5 [9]); we extend these two conjectures to d = 5 (resp. d = 6).

Contribution III: Performance Analysis of MathCheck. In Section 5,
we provide detailed performance analysis of MathCheck in terms of how much
search space reduction is achieved relative to finite brute-force search, as well as
how much time is consumed by each component of the system.

2 Background

We assume standard definitions for propositional logic, basic mathematical logic
concepts such as satisfiability, and solvers. We denote a graph G = 〈V,E〉 as a
set of vertices V and edges E, where an edge eij connects the pair of vertices vi
and vj . We only consider undirected graphs in this work. The order of a graph is

1 All code+data is available at https://bitbucket.org/ezulkosk/sagesat.

https://bitbucket.org/ezulkosk/sagesat
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Fig. 1: High-level overview of the MathCheck architecture, which is similar to
DPLL(T)-style SMT solvers. MathCheck takes as input a formula over frag-
ments of mathematics supported by the underlying CAS system, and produces
either a counterexample or a proof that none exists.

the number of vertices it contains. For a given vertex v, we denote its neighbors
– vertices that share an edge with v – as N(v). The hypercube of dimension d,
denoted Qd, consists of 2d vertices and 2d−1 · d edges, and can be constructed in
the following way (see Figure 3a): label each vertex with a unique binary string
of length d, and connect two vertices with an edge if and only if the Hamming
distance of their labels is 1. A matching of a graph is a subset of its edges that
mutually share no vertices. A vertex is matched (by a matching) if it is incident
to an edge in the matching, else it is unmatched. A maximal matching M is
a matching such that adding any additional edge to M violates the matching
property. A perfect matching (resp. imperfect matching) M is a matching such
that all (resp. not all) vertices in the graph are incident with an edge in M . A
forbidden matching is a matching such that some unmatched vertex v exists and
every v′ ∈ N(v) is matched. Inituitively, no superset of the matching can match
v. Vertices in Qd are antipodal if their binary strings differ in all positions (i.e.
opposite “corners” of the cube). Edges eij and ekl are antipodal if {vi, vk} and
{vj , vl} are pairs of antipodal vertices. A 2-edge-coloring of a graph is a labeling
of the edges with either red or blue. A 2-edge-coloring is edge-antipodal if the
color of every edge differs from the color of the edge antipodal to it.

3 Contribution I: SAT+CAS Combination Architecture

This section describes the combination architecture of a CAS system with a
SAT solver, the method underpinning the MathCheck tool. Figure 1 provides
a schematic of MathCheck. The key idea behind such combinations is that the
CAS system is integrated in the inner loop of a conflict-driven clause-learning
SAT solver, akin to how a theory solver T is integrated into a DPLL(T) sys-
tem [19]. The grammar of the input language of MathCheck is sketched in
Figure 2. MathCheck allows the user to define predicates in the language of
CAS that express some mathematical conjecture. The input mathematical con-
jecture is expressed as a set of assertions and queries, such that a satisfying
assignment to the conjunction of the assertions and negated queries constitute
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a counterexample to the conjecture. We refer to this conjunction simply as the
input formula in the remainder of the paper. First, the formula is translated
into a Boolean constraint that describes the set of structures (e.g., graphs or
numbers) referred to in the conjecture. Second, the SAT solver enumerates these
structures in an attempt to counterexample the input conjecture. The solver
routinely queries the CAS system during its search (given that the CAS system
is integrated into its inner loop) to learn clauses (akin to callback plugins in pro-
grammatic SAT solvers [13] or theory plugins in DPLL(T) [19]). Clauses thus
learned can dramatically cutdown the search space of the SAT solver.

Combining the solver with CAS extends each of the individual tools in the
following ways. First, off-the-shelf SAT (or SMT) solvers contain efficient search
techniques and decision procedures, but lack the expressiveness to easily encode
many complex mathematical predicates. Even if a problem can be easily reduced
to SAT/SMT, the choice of encoding can be very important in terms of perfor-
mance, which is typically non-trivial to determine, especially for non-experts on
solvers. For example, Velev et al. [25] investigated 416 ways to encode Hamilto-
nian cycles to SAT as permutation problems to determine which encodings were
the most effective. Further, such a system can take advantage of many built-in
common structures in a CAS (e.g., graph families such as hypercubes), which
can greatly simplify specifying structures and complex predicates. On the other
side, CAS’s contain many efficient functions for a broad range of mathematical
properties, but often lack the robust search routines available in SAT.

Here we provide a very high-level overview, with more details in Section 3.2
below. Please refer to Figure 1, which depicts the SAT+CAS combination. Given
a formula over graph variables in the language of MathCheck (refer to Sec-
tion 3.1), we conjoin the assertions with the negated queries, and preprocess it as
described below. When the SAT solver finds a partial model, additional checks
are performed by the CAS using “CAS predicates.” The potential solution is ei-
ther deemed a valid counterexample to the conjecture and returned to the user,
or the SAT search is refined with learned clauses. Output is either SAT and
a counterexample to the conjecture, or UNSAT along with a proof certificate.
Although similar to DPLL(T) approach of SMT solvers in many aspects, we
note several important differences in terms extensibility, power, and flexibility:
1) rather than a monolithic theory plugin for graphs, we opt for a more extensible
approach by incorporating the CAS, allowing new predicates (say, over, num-
bers, geometry, algebra, etc.) to be easily defined via the CAS functionality; 2)
the CAS predicates are essentially defined using Python code interpreted by the
CAS. This gives considerable additional power to the SAT+CAS combination;
3) the user may flexibly decide that certain predicates may be encoded directly
to Boolean logic via bit-blasting, and thus take advantage of the efficiency of
CDCL solvers in certain cases.

3.1 Input Language of MathCheck

The input to MathCheck is a tuple 〈S, φ〉, where S is a set of graph variables
and φ is a formula over S as defined by the abbreviated grammar in Figure 2. A
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φ ::= (assert ψ | query ψ)+

ψ ::= ψ ∧ ψ | ψ ∨ ψ | ¬ψ | Atom
Atom ::= SAT-Predicate | CAS-Predicate
SAT-Predicate ::= id ‘(’ GraphVar+ ‘)’
CAS-Predicate ::= id ‘(’ GraphVar+ ‘)’
GraphVar ::= graph Id(‘‘Set(VertexVariables), Set(EdgeVariables)’’)

Fig. 2: Grammar LG of MathCheck’s Input Language.

graph variable G = 〈GV , GE〉 indicates the vertices and edges that can poten-
tially occur in its instantiation, denoted GI . A graph variable G is essentially a
set of |V | Boolean variables (one for each vertex), and |E| Boolean variables for
edges. Setting an edge eij (resp. vertex vi) to True means that eij (resp. vi) is a
part of the graph instantiation GI . Through a slight abuse of notation, we often
define a graph variable G = Qd, indicating that the sets of Booleans in GV and
GE correspond to the vertices and edges in the hypercube Qd, respectively.

LG is essentially defined as propositional logic, extended to allow predicates
over graph variables (as in Figure 2). Predicates can be defined by the user, and
are classified as either SAT predicates or CAS predicates. SAT predicates are
blasted to propositional logic, using the mapping from graph components (i.e.
vertices and edges) to Boolean variables.2 As an example, for any graph variable
G used in an input formula, we add an EdgeImpliesVertices(G) constraint,
indicating that an edge cannot exist without its corresponding vertices:

EdgeImpliesVertices(G):
∧
{eij ⇒ (vi ∧ vj) | eij ∈ GE}. (1)

CAS predicates, which are essentially Python code interpreted by the CAS,
check properties of instantiated (non-variable) graphs and are defined as pieces of
code in the language of the CAS. In our case, we use the SAGE CAS [23], which
for now can be thought of as a collection of Python modules for mathematics.

3.2 Architecture of MathCheck

The architecture of MathCheck is given in Figure 1. The Preprocessor pre-
pares φ for the inner CAS-DPLL loop using standard techniques. First, we create
necessary Boolean variables that correspond to graph components (vertices and
edges) as described above. We replace each SAT predicate via bit-blasting with
its propositional representation in situ (with respect to φ’s overall propositional
structure), such that any assignment found by the SAT solver can be encoded
into graphs adhering to the SAT predicates. Finally, Tseitin-encoding and a
Boolean abstraction of φ is performed such that CAS predicates are abstracted
away by new boolean variables; since these techniques are well-known, we do
not discuss them further. This phase produces three main outputs: the CNF

2 For notational convenience, we often use existential quantifiers when defining con-
straints; these are unrolled in the implementation. We only deal with finite graphs.
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Fig. 3: (a) The red edges denote a generated matching, where the blue vertex 000
is restricted to be unmatched, as discussed in Section 4. A Hamiltonian cycle
that includes the matching is indicated by the arrows. (b) An edge-antipodal
2-edge-coloring of the cube Q3. Not a counterexample to Conjecture 2 due to
the red (or blue) path from 000 to 111.

Boolean abstraction φB of the SAT predicates, a mapping from graph compo-
nents to Booleans G2B, and a mapping T2B from CAS predicate definitions to
Boolean variables. The CAS predicates themselves are fed into the CAS. The
SAT+CAS interface acts similar to the DPLL(T) interface between the DPLL
loop and theory-plugins, ensuring that partial assignments from the SAT solver
satisfy theory-specific CAS predicates. After an assignment is found, literals cor-
responding to abstracted CAS predicates are checked. The SAT+CAS interface
provides an API that allows CAS predicates to interact with the SAT solver,
which modifies the API from the programmatic SAT solver Lynx [13].

3.3 Implementation

We have prototyped our system adopting the lazy-SMT solver approach (as in
[21]), specifically combining the Glucose SAT solver [1] with the SAGE CAS
[23]. Minor modifications to Glucose were made to call out to SAGE whenever
an assignment was found (of the Boolean abstraction). The SAT+CAS interface
extends the existing SAT interface in SAGE. We further performed extensive
checks on our results, including verifying the SAT solver’s resolution proofs us-
ing DRUP-trim [16] as well as checking the learned clauses produced by CAS
predicates, however do not elaborate now due to space constraints.

4 Contribution II: Two Results regarding Open
Conjectures over Hypercubes

We use our system to prove two long-standing open conjectures up to a certain
parameter (dimension) related to hypercubes. Hypercubes have been studied for
theoretical interest, due to their nice properties such as regularity and symmetry,
but also for practical uses, such as in networks and parallel systems [5].
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4.1 Matchings Extend to Hamiltonian Cycles

The first conjecture we look at was posed by Ruskey and Savage on matchings of
hypercubes in 1993 [20]; although it has inspired multiple partial results [10,15]
and extensions [11], the general statement remains open:

Conjecture 1 (Ruskey and Savage, [20]). For every dimension d, any matching
of the hypercube Qd can be extended to a Hamiltonian cycle.

Consider Figure 3a. The red edges correspond to a matching and the arrows
depict a Hamiltonian cycle extending the matching. Intuitively, the conjecture
states that for any d-dimensional hypercube Qd, no matter which matching M
we choose, we can find a Hamiltonian cycle of Qd that goes through M . Our
encoding searches for matchings, and checks a sufficient subset of the full set of
matchings of Qd to ensure that the conjecture hold for a given dimension (by
returning UNSAT and a proof). As we will show, constraints such as ensuring
that a potential model is a matching are easily encoded with SAT predicates,
while constraints such as “extending to a Hamiltonian cycle” are expressed easily
as CAS predicates.

Previous results have shown this conjecture true for d ≤ 4,3 however the com-
binatorial explosion of matchings on higher dimensional hypercubes makes anal-
ysis increasingly challenging, and a general proof has been evasive. We demon-
strate using our approach the first result that Conjecture 1 holds for Q5 – the
5-dimensional hypercube. We use a conjunction of SAT predicates to generate a
sufficient set of matchings of the hypercube, which are further verified by a CAS
predicate to check if the matching can not be extended to a Hamiltonian cycle
(such that a satisfying model would counterexample the conjecture).

Note that the simple approach of generating all matching of Qd does not
scale (see Table 1 below), and the approach would take too long, even for d = 5.
We prove several lemmas to reduce the number of matchings analyzed. In the
following, we use the graph variable G = Qd, such that its vertex and edge
variables correspond to the vertices and edges in Qd.

It is straightforward to encode matching constraints as a SAT predicate. For
every pair of incident edges e1, e2, we ensure that only one can be in the matching
(i.e. at most one of the two Booleans may be True), which can be encoded as:

Matching(G):
∧
{(¬e1 ∨ ¬e2) | e1, e2 ∈ GE ∧ isIncident?(e1, e2)}. (2)

The number of clauses generated by the above translation is 2d ·
(
d
2

)
, which

can be understood as: for each of the 2d vertices in Qd, ensure that each of the
d incident edges to that vertex are pairwise not both in the matching.

A previous result from Fink [10] demonstrated that any perfect matching of
the hypercube for d ≥ 2 can be extended to a Hamiltonian cycle. Our search
for a counterexample to Conjecture 1 should therefore only consider imperfect
matchings, and even further, only maximal forbidden matchings as shown below.

3 We were unable to find the original source of the results for d ≤ 4, however the result
is asserted in [10]. We also verified these results using our system.
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To encode this, we ensure that at least one vertex is not matched by any gener-
ated matching. Since all vertices are symmetric in a hypercube, we can, without
loss of generality, choose a single vertex v0 that we ensure is not matched. We
encode that all edges incident to v0 cannot be in the matching:

Forbidden(G):
∧
{¬e | e ∈ GE ∧ isIncident?(v0, e)}. (3)

A further key observation to reduce the matchings search space is that, if a
matching M extends to a Hamiltonian cycle, then any matching M ′ such that
M ′ ⊆M can also be extended to a Hamiltonian cycle.

Observation 1. All matchings can be extended to a Hamiltonian cycle if and
only if all maximal forbidden matchings can be extended to a Hamiltonian cycle.

Proof. The forward direction is straightforward. For the reverse, suppose all
maximal forbidden matchings can be extended to a Hamiltonian cycle. For any
non-maximal matching M , we can always greedily add edges to M to make it
maximal. Call the maximized matching M ′. If M ′ is perfect, Fink’s result on
perfect matchings can be applied. If not, then it is a maximal forbidden matching,
and by assumption it can be extended to a Hamiltonian cycle. In either case, the
resulting Hamiltonian cycle must pass through the original matching M .

We encode this by adding the following constraints to MathCheck:

EdgeOn(G):
∧
{v ⇒ ∃e∈X e|v ∈ GV },

s.t. X = {e|e ∈ GE ∧ isIncident?(v, e)}
(4)

Maximal(G):
∧
{(vi ∨ vj) | eij ∈ GE}. (5)

Equation 4 states that if a vertex is on, then one of its incident edges must be
in the matching. Equation 5 ensures that we only generate maximal matchings.

Proposition 1. The conjunction of Constraints 1 – 5 encode exactly the set of
maximal forbidden matchings of the hypercube in which a designated vertex v0
is prevented from being matched.

Proof. It is clear from above that any model generated will be a forbidden match-
ing by Constraints 2 and 3 – we prove that Equations 4 and 5 ensure maximality.
Suppose M is a non-maximal matching. Then there exists an edge e such that
the matching does not match either of its endpoints. By Constraints 1 and 4,
no edge is incident with either endpoint. But then edge e could be added with-
out violating the matching constraints, and Constraint 5 is violated. Thus, any
matching generated must be maximal. It remains to show that all forbidden
maximal matchings that exclude v0 can be generated. Let M be an forbidden
maximal matching such that v0 is unmatched. We construct a satisfying variable
assignment over Constraints 1 – 5 which encodes M as follows:

{e | e ∈M} ∪ {¬e | e ∈ GE\M}∪
{v | ∃e∈M isIncident?(v, e)} ∪ {¬v |6 ∃e∈M isIncident?(v, e)}.

(6)
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1: ExtendsToHamiltonian()
2: g ← s.getGraph(G)
3: q ← CubeGraph(5)
4: for e in q.edges() do
5: if e in g
6: q.setEdgeLabel(e, 1)
7: else
8: q.setEdgeLabel(e, 2)

9: 〈cycle, weight〉 ← TSP (q)
10: if weight == 2 · q.order()− |g|
11: return True
12: else
13: return False

1: AntipodalMonochromatic()
2: g ← s.getGraph(G)
3: q ← CubeGraph(6)
4: pairs← getAntipodalPairs(q)
5: for 〈v1, v2〉 in pairs do
6: if shortestPath(g, v1, v2) 6= ∅
7: return True . a path exists

8: return False

Fig. 4: CAS-defined predicates from each case study. In ExtendsToHamiltonian,
g corresponds to the matching found by the SAT solver. In
AntipodalMonochromatic, g refers to the graph induced by a single color
in the 2-edge-coloring.

Constraint 2 holds since M is a matching, and therefore no two incident edges
can both be in M . Constraint 3 holds since it is assumed that v0 is not matched,
and therefore no edge incident to v0 can be in M . Constraints 1 and 4 hold simply
because they encode the definition of a matched vertex, and the second line of
Equation 6 ensures that only matched vertices are in the satisfying assignment.
Constraint 5 holds since M is maximal.

To check if each matching extends to a Hamiltonian cycle, we create the CAS
predicate ExtendsToHamiltonian (see Figure 4), which reduces the formula to
an instance of the traveling salesman problem (TSP). Let M be a matching of
Qd. We create a TSP instance 〈Qd,W 〉, where Qd is our hypercube, and W are
the edge weights, such that edges in the matching (red edges in Figure 3a) have
weight 1, and otherwise weight 2 (black edges).

Proposition 2. A Hamiltonian cycle exists through M in Qd if and only if
TSP (〈Qd,W 〉) = 2 ∗ |V | − |M |, where |V | is the number of vertices in Qd.

Proof. Since Qd has |V | vertices, any Hamiltonian cycle must contain |V | edges.
(⇐) From our encoding, it is clear that 2 ∗ |V | − |M | is the minimum weight
that could possibly be outputted by TSP, and this can only be achieved by
including all edges in the matching and |V | − |M | edges not in the matching.
(⇒) The Hamiltonian cycle through M has |M | edges contributing a weight of
1, and |V | − |M | edges contributing a weight of 2. The total weight is therefore
|M | + (2 ∗ (|V | − |M |)) = 2 ∗ |V | − |M |. From above, this is also the minimum
weight cycle that TSP could produce.

Finally, after each check of ExtendsToHamiltonian that evaluates to True,
we add a learned clause, based on computations performed in the predicate, to
prune the search space. Since a TSP instance is solved we obtain a Hamiltonian
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cycle C of the cube. Clearly, any future matchings that are subsets of C can be
extended to a Hamiltonian cycle; our learned constraint prevents these subsets
(below h refers to the Boolean variable abstracting the CAS predicate):∨

{e | e ∈ QdE\C} ∪ {h}, where C is the learned Hamiltonian cycle. (7)

Our full formula for Conjecture 1 is therefore:

assert EdgeImpliesV ertices(G) ∧Matching(G)∧
Forbidden(G) ∧ EdgeOn(G) ∧Maximal(G)

query ExtendsToHamiltonian(G)

(8)

4.2 Connected Antipodal Vertices in Edge-antipodal Colorings

The second conjecture deals with edge-antipodal colorings of the hypercube:

Conjecture 2 ([7]). For every dimension d, in every edge-antipodal 2-edge-coloring
of Qd, there exists a monochromatic path between two antipodal vertices.

Consider the 2-edge-coloring of the cube in Figure 3b. Although the coloring
is edge-antipodal, it is not a counterexample, since there is a monochromatic
(red) path from 000 to 111, namely 〈000, 100, 110, 111〉. In this case, constraints
such as edge-antipodal-ness are expressed with SAT predicates. We ensure that
no monochromatic path exists between two antipodal vertices with a CAS pred-
icate. Previous work has shown that the conjecture holds up to dimension 5 [9]
– we show that the conjecture holds up to dimension 6.

We begin with a graph variable G = Q6, and constrain it such that its in-
stantiation corresponds to a 2-edge-coloring of the hypercube. More specifically,
since there are only two colors, we associate edges in G’s instantiation GI (i.e.
edges evaluated to True) with the color red, and the edges in Qd\GI with blue.
An important known result is that for a given coloring, the graph induced by
edges of one color is isomorphic to the other. It is therefore sufficient to check
only one of the color-induced graphs for a monochromatic antipodal path.

We first ensure that any coloring generated is edge-antipodal.

EdgeAntipodal(G):
∧
{(¬e1 ∧ e2) ∨ (e1 ∧ ¬e2)

| e1, e2 ∈ GE ∧ isAntipodal?(e1, e2)}.
(9)

Note that for every edge there is exactly one unique antipodal edge to it.
Since there are 2d−1 · d edges in Qd, and therefore 2d−2 · d pairs of antipodal

edges, there are 22
d−2·d possible 2-edge-colorings that are antipodal. We can

reduce the search space by using a recent result from Feder and Suber [9]:

Theorem 1 ([9]). Call a labeling of Qd simple if there is no square 〈x, y, z, t〉
such that exy and ezt are one color, and eyz and etx are the other. Every simple
coloring has a pair of antipodal vertices joined by a monochromatic path.



12

Dimensions Matchings Forbidden Matchings Maximal Forbidden Matchings

2 7 3 0
3 108 42 2
4 41,025 14,721 240
5 13,803,794,944 4,619,529,024 6,911,604

Table 1: The number of matchings of the hypercube were computed using our
tool in conjunction with sharpSAT [24]: a tool for the #SAT problem. Note
that the numbers for forbidden matchings are only lower bounds, since we only
ensure that the origin vertex is unmatched. However, any unfound matchings
are isomorphic to found ones.

We therefore prevent simple colorings by ensuring that such a square exists:

Nonsimple(G):
∨
{(¬exy ∧ eyz ∧ ¬ezt ∧ etx) ∨ (exy ∧ ¬eyz ∧ ezt ∧ ¬etx)

| exy, eyz, ezt, etx ∈ GE ∧ isSquare?(exy, eyz, ezt, etx)}.
(10)

It remains to check whether an antipodal monochromatic path exists, which
is checked by the CAS predicate AntipodalMonochromatic in Figure 4. Given
a graph g, which contains only the red colored edges, we first compute the pairs
of antipodal vertices in Qd. Using the built-in shortest path algorithm of the
CAS, we check whether or not any of the pairs are connected, indicating that an
antipodal monochromatic path exists. In the case when predicate returns True,
we learn the constraint that all future colorings should not include the found
antipodal path P (m abstracts the CAS predicate):∨

{¬e | e ∈ P} ∪ {m}, where P is the learned path. (11)

The full formula for Conjecture 2 is then:

assert EdgeImpliesV ertices(G) ∧ EdgeAntipodal(G) ∧NonSimple(G)

query AntipodalMonochromatic(G)
(12)

5 Contribution III: Performance Analysis of MathCheck

We ran Formula 8 with d = 5 and Formula 12 with d = 6 until completion. Since
both runs returned UNSAT, we conclude that both conjectures hold for these
dimensions, which improves upon known results for both conjectures.

All experiments were performed on a 2.4 GHz 4-core Lenovo Thinkpad lap-
top with 8GB of RAM, running 64-bit Linux Mint 17. We used SAGE ver-
sion 6.3 and Glucose version 3.0. Formula 8 required 348,150 checks of the
ExtendsToHamiltonian predicate, thus learning an equal number of Hamilto-
nian cycles in the process, and took just under 8 hours. Formula 12 required
86,612 checks of the AntipodalMonochromatic predicate (learning the same
number of monochromatic paths), requiring 1 hour 35 minutes of runtime. We
note that for lower dimensional cubes solving time was far less (< 20 seconds
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Fig. 5: Cumulative times spent in the SAT solver and CAS predicates during the
two case studies. SAT solver performance degrades during solving (as indicated
by the increasing slope of the line), due to the extra learned clauses and more
constrained search space.

for either case study). We find it unlikely that this approach can be used for
higher-dimensions, without further lemmas to reduce the search space.

The approach we have described significantly dominates näıve brute-force
approaches for both conjectures; learned clauses greatly reduce the search space
and cut the number of necessary CAS predicate checks. Given the data in Table
1 and the number of calls to ExtendsToHamiltonian for Q5, a brute-force check
of all matchings (resp. forbidden matchings) of Q5 would require 39,649 (resp.
20) times more checks of the predicate (i.e. that many more TSP calls) than our
approach. Similar comparisons can be made for the second case study.

Figure 5 depicts how much time is consumed by the SAT solver and CAS
predicates in both case studies. The lines denote the cumulative time, such that
the right most point of each line is the total time consumed by the respective
system component. The near-linear lines for the CAS predicate calls indicate that
each check consumed roughly the same amount of time. SAT solving ultimately
dominates the runtime in both case studies, particularly due to later calls to the
solver when many learned clauses have been added by CAS predicates, and the
search space is highly constrained. This suggests several optimizations as future
work. For example, if SAT solver calls are rapidly requiring more time (e.g.,
around iteration 75,000 in the second plot of Figure 5), more sophisticated CAS
routines can be used to produce more learned clauses per call (such as by learning
constraints corresponding to all cycles isomorphic to the found one in case study
1), in order to reduce the number of necessary SAT calls. Alternatively, one can
attempt to condense the learned clauses, which are generated independently of
each other, into a more compact Boolean representation.

One of our motivations for this work was to allow complicated predicates
to be easily expressed, so it is worth commenting on the size of the actual
predicates. Since predicates were written using SAGE (which is built on top
of Python), the pseudocode written in Figure 4 matches almost exactly with the
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actual code, with small exceptions such as computing the antipodal pairs in the
second one. All other function calls correspond to built-in functions of the CAS.
Learn-functions were also short, requiring less than 10 lines of code each.

6 Related Work

As already noted, our approach of combining a CAS system within the inner-
loop of a SAT solver most closely resembles and is inspired by the DPLL(T) [19].
There are also similarities with the idea of programmatic SAT solver Lynx [13],
which is an instance-specific version of DPLL(T). Also, our tool MathCheck
is inspired by the recent SAT-based results on the Erdős discrepency conjecture
[18]. Other works [8,14,22] have extended solvers to handle graph constraints,
as discussed in Section 1, by either creating solvers for specific graph predicates
[14,22], or by defining a core set of constraints with which to build complex
predicates [8]. Our approach contains positive aspects from both: state-of-the-
art algorithms from the CAS can be used to define new predicates easily, and
the methodology is general, in that new predicates can be defined using the
CAS. Several tools have combined a CAS with SMT solvers for various pur-
poses, mainly focusing on the non-linear arithmetic algorithms provided by many
CAS’s. For example, the VeriT SMT solver [4] also uses functionality of the RE-
DUCE CAS4 for non-linear arithmetic support. Our work is more in the spirit
of DPLL(T), rather than modifying the decision procedure for a single theory.

7 Conclusions and Future Work

In this paper, we present MathCheck, a combination of a CAS in the inner-
loop of a conflict-driven clause-learning SAT solver, and we show that this
combination allows for highly expressive predicates that are otherwise non-
trivial/infeasible to encode as purely Boolean formulas. Our approach combines
the well-known domain-specific abilities of CAS with the search capabilities of
SAT solvers thus enabling us to verify long-standing open mathematical con-
jectures over hypercubes (up to to particular dimension), not feasible by either
kind of tool alone. We further discussed how our system greatly dominates näıve
brute-force search techniques for the case studies. We stress that the approach is
not limited to this domain, and we intend to extend our work to other branches
of mathematics supported by CAS’s, such as number theory. Another direction
we plan to investigate is integration with a proof-producing SMT solver, such as
VeriT. In addition to taking advantage of the extra power of an SMT solver, the
integration with VeriT will allow us to more easily produce proof certificates.
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