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ABSTRACT
Feature models describe the common and variable character-
istics of a product line. Their advantages are well recognized
in product line methods. Unfortunately, creating a feature
model for an existing project is time-consuming and requires
substantial effort from a modeler.

We present procedures for reverse engineering feature mod-
els based on a crucial heuristic for identifying parents—the
major challenge of this task. We also automatically recover
constructs such as feature groups, mandatory features, and
implies/excludes edges. We evaluate the technique on two
large-scale software product lines with existing reference fea-
ture models—the Linux and eCos kernels—and FreeBSD, a
project without a feature model. Our heuristic is effective
across all three projects by ranking the correct parent among
the top results for a vast majority of features. The proce-
dures effectively reduce the information a modeler has to
consider from thousands of choices to typically five or less.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.7 [Software Engineering]: Distribution, Main-
tenance, and Enhancement—Restructuring, reverse engineer-
ing, and reengineering

General Terms
Design, Languages

Keywords
Feature models, feature similarity, variability modeling

1. INTRODUCTION
Software product lines (SPL) enable effective development

of a range of related products with differing sets of features.
The SPL paradigm is centered around a number of prac-
tices leading to systematic code reuse [9]. Large-scale SPLs,
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Figure 1: Power management feature model

such as the Linux, eCos, and FreeBSD operating system ker-
nels, contain thousands of features and many dependencies
among them. These dependencies pose a challenge for both
developers and users. For developers, adding or removing
features or dependencies requires understanding the impact
of such changes. For users that instantiate a product from
the product line, intricate dependencies between features
lead to errors during the configuration process.

Some projects, such as Linux and eCos, address these diffi-
culties by providing feature models to describe their product
line [7]. A feature model describes features—the common or
variable characteristics of the products in a SPL—as a visual
hierarchy with additional constraints between features [13].
Feature models offer a range of benefits from enabling au-
tomated analysis for verifying and resolving product line
consistency to generating graphical configurators that guide
users through the configuration process [5].

Figure 1, inspired by the Linux kernel model, shows a
feature model of a power management sub-system. Features
are represented as rectangles and may be optional—denoted
by an empty circle—or mandatory—denoted by a filled circle.
An edge from one feature to another denotes a dependency:
a solid line denotes a child-parent edge of the feature tree,
where the child implies the parent; a dashed line with an
arrowhead represents a cross-tree implies edge; and a dotted
line with x’s is an excludes edge. Features may also belong
to a group. In our example, performance and powersave are
in an xor-group meaning that one and only one may be
selected. The feature tree, the group constraints, and the
cross-tree edges form a feature diagram. A feature model
consists of a feature diagram and, possibly, of a cross-tree
formula—an additional cross-tree constraint expressing more
complex dependencies.

Other projects, such as FreeBSD, do not have a feature
model. These projects describe features and dependencies in
an ad-hoc manner—features are scattered in documentation



and dependencies are hidden in code. Such projects would
benefit from having an explicit feature model instead. Unfor-
tunately, constructing a model is both time and cost-intensive.
Building the feature hierarchy in particular, requires substan-
tial effort from a modeler. This task requires the modeler to
review feature descriptions and dependencies to determine
which dependencies to model in the hierarchy. FreeBSD has
1203 features—constructing a feature model for this project
would require tremendous time and effort. Furthermore, the
difficulty is compounded when the modeler lacks a complete
set of dependencies. In this case, the dependencies might
need to be uncovered by comparing feature descriptions. This
may require the modeler to sift through hundreds of features
in order to determine a parent for a single feature. Even
if the modeler is given the complete set of dependencies,
selecting the right parent for a feature is still challenging—a
single feature may depend on over a hundred others as we
have observed for Linux and eCos.

We present a tool-supported approach for reverse engineer-
ing feature models. The key challenge in this task is the
construction of the feature diagram which reduces to the
selection of a parent for each feature. We present heuristics
for identifying the likely parent candidates for a given feature.
Our heuristics significantly decrease the number of features
that a user has to consider from potentially thousands to
only a handful—typically five or less, as shown by our exper-
iments. We also provide automated procedures for finding
feature groups, implies and excludes edges. The final feature
model is correct with respect to the input dependencies.

Our procedures require a list of feature names, descrip-
tions and a propositional formula specifying dependencies.
Feature names and descriptions can be extracted from doc-
umentation, preprocessor symbols or code comments. For
the FreeBSD kernel, we extracted input data for our proce-
dures by analyzing Makefiles, preprocessor declarations, and
documentation, using a combination of generic and custom
extraction tools.

Due to the complexity, size and nature of most software
projects, it is likely that the extracted feature dependencies
and descriptions are incomplete. Our heuristics accommodate
this incompleteness by leveraging two sources of data that
complement one another—when dependencies are incomplete,
the feature descriptions are used to identify parent candidates
and vice versa.

We evaluate the effectiveness of our procedures by com-
paring the results of our heuristics to the reference feature
models of the Linux, eCos and FreeBSD kernels. Linux
and eCos both have an existing reference feature model [7].
The input data for the procedures was extracted from the
reference models themselves. For FreeBSD, we manually
constructed a reference feature model for a subset of features
after domain analysis. The evaluations show that, for 76% of
features in Linux and 79% in eCos, the correct parent is in
the top five parent candidates returned by our heuristics. In
contrast to Linux and eCos, the input set of dependencies for
FreeBSD is incomplete, and thus, we consider two separate
results for FreeBSD: (1) for 84% of the features whose parent
dependency is in the set, the correct parent is in the top two
candidates; (2) for 75% of the remaining features, the correct
parent is in the top or 3% of all 1203 features. Finally, our
procedure automatically recovers all feature groups, as pre-
sented in the reference models for Linux and eCos, provided
that the modeler settled on the same hierarchies as these

(acpi → acpi system ∧ pm)

∧ (acpi system → acpi)

∧ (cpu freq → pm)

(1) ∧ (cpu freq → powersave ∨ performance)

(2) ∧ (cpu hotplug → powersave)

(3) ∧ (cpu hotplug → ¬performance)

∧ (cpu hotplug → acpi ∧ cpu freq)

∧ (powersave → ¬performance)

∧ (powersave → cpu freq)

∧ (performance → cpu freq)

∧ (powersave ∧ acpi → cpu hotplug)

(a) Dependencies

pm Power management, CPU and ACPI options

acpi Advanced Configuration and Power Interface support

acpi system Enable your system to shut down using ACPI

cpu freq CPU frequency scaling

cpu hotplug Allows turning CPU on and off

powersave This CPU governor uses the lowest frequency

performance This CPU governor uses the highest frequency

(b) Features and descriptions

Figure 2: Example input

models. With the incomplete dependencies of FreeBSD, we
were still able to retrieve one of the three feature groups.

The contribution of this work is twofold. On the prac-
tical side, we present heuristics and procedures for reverse
engineering feature models. Although reverse engineering
feature models from logic formulas [11] and descriptions [2,
14] were considered before in separation, the main novelty of
our approach is that it combines both sources of information
together. This combination is desirable since, as our evalu-
ation shows, the two sources are complementary. Also the
procedures of [11] and [2, 14] are not complete, in the sense
that the former cannot recover parents which are not direct
dependencies, while the latter suggests only a single hierar-
chy that is unlikely the desired one. Moreover, in contrast
to previous work, we evaluate reverse engineering of feature
models on large-scale real-world systems showing that our
approach and procedures scale. On the theoretical front,
we expand our understanding of feature models by showing
how both configuration semantics and ontological semantics
relate to feature hierarchy.

We proceed as follows. Section 2 gives an overview of the
procedure. Section 3 provides the background supporting
the definition of the procedure (Section 4) and the evaluation
(Section 5). We discuss threats to validity, relate to existing
works and conclude in sections 6, 7 and 8 accordingly.

2. OVERVIEW
In this section, we demonstrate how our procedures assist

the user in reverse engineering a feature model. Figure 2
shows a set of dependencies (given as a formula), feature
names, and descriptions that we use as input data.

Our procedure reduces the reverse-engineering process of
building the feature hierarchy, finding feature groups, and
inserting implies and excludes edges in a sound and complete
manner, to just the first step: building the feature hierarchy.
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Figure 3: Parent candidates

The remaining steps are automated. Crucially, we support
the user in building the hierarchy itself by providing tailored
suggestions of parents, avoiding the need to sift through a
multitude of candidates.

The key challenge of building the feature hierarchy is the
selection of a parent for each feature. It requires understand-
ing the meaning of the feature and its relationships to all
other features. As a result, the hierarchy building process is
inherently interactive and requires a domain expert modeler
to review alternative choices for a feature’s parent and to
select the most suitable one. Our procedures present two
lists of parent candidates to suggest the most appropriate
parents for every feature, thus significantly reducing the total
number of features to review at each step.

The first list is the ranked implied features (RIFs)—a
sorted list of features that a given feature implies. Implied
features are the primary criteria when deciding a parent—
the semantics of feature models state that a child implies
its parent. However, a feature may imply more than one
other feature. This is where a ranking heuristic is applied to
sort the implied features by their similarity to the selected
feature, placing the most likely candidates at the very top.

The second list is the ranked all-features (RAFs)—all fea-
tures sorted by their similarity to a given feature. The RAFs
is a complete ranking, but is typically less accurate than the
RIFs. It can be reviewed in the case the input dependen-
cies are incomplete and the user cannot find an appropriate
parent in the RIFs. In this case, the RAFs is useful for
identifying potential parents where an implication from the
selected feature may be missing due to incompleteness of
available dependency information. We describe the details
of the hierarchy building procedure in Section 4.

As an example, assume that the user is selecting a parent
for cpu hotplug. We would present its parent candidates as
in Figure 3. There are five features here that are implied
features of cpu hotplug with powersave at the top position,
and the actual parent cpu freq is at the fourth position. If
the dependencies are incomplete and the user cannot find
an appropriate parent in the left list, the right list can be
reviewed. Later, we show that the best candidates for parents
are typically highly ranked in both lists.

Furthermore, once the feature hierarchy is decided, feature
groups are detected. The user reviews the feature groups
and select the ones that should be retained in the feature
diagram. Any feature groups not retained in the diagram
are kept as part of the cross-tree formula. For example, if
the hierarchy in Figure 1 is chosen, our tooling will detect
two feature groups: a mutex-group between cpu hotplug
and performance and an xor-group between performance and

powersave. The user selects one of the groups to keep in the
diagram, relegating the other to the cross-tree formula.

Finally, mandatory features, implies and excludes edges
are automatically discovered and added to the feature di-
agram. For example, assume that the user decides on the
hierarchy in Figure 1 and implication (2) is omitted from the
dependencies in Figure 2. Our procedure can still detect an
implies edge from cpu hotplug → powersave since it can be
derived from implications (1) and (3). Now that the diagram
is finished, further constraints are added to the cross-tree
formula to make the resulting feature model sound—all legal
configurations of the feature model are legal configurations
with respect to the input dependencies. All these steps relies
on SAT-based reasoners and thus, are independent from the
syntactic structure of the dependency constraint.

Furthermore, if the user assumes the dependencies are
complete, then only the RIFs needs to be reviewed by the
user. The RAFs are no longer needed because all possible
alternatives for parents are contained in the RIFs.

Our procedures can be integrated into existing feature
model editors, in the style of [12], to equip them with reverse
engineering capabilities and to allow modelers to make parent
and group decisions in a graphical representation. However,
we do not advocate any specific user interface design at this
point. We leave this to future work.

3. BACKGROUND

3.1 Feature Modeling
We first define the abstract syntax of a feature diagram.

Def. 1. A feature diagram is a tuple FD = (F , E, I,X,
G,C), where F is a finite set of features, E ⊆ F × F is a set
of directed child-parent edges; I ⊆ F × F is a set of implies
edges, X ⊆ F × F is a set of excludes edges, G ⊆ 2E are
non-overlapping sets of edges participating in feature groups.
The final component, C : G→ N0 × N0 is a mapping from a
group to a pair denoting the cardinality of the group. The
following well-formedness constraints hold in FD: (i) (F , E)
is a rooted tree, (ii) all edges in a group share the same
parent, so if g ∈ G and (f1, f2), (f3, f4) ∈ g then f2 = f4 and
(iii) ∀ (m,n) ∈ range(C), m ≤ n.

A mutex-group is defined as a group m with cardinality
C(m) = (0, 1) and an xor-group x is one where C(x) = (1, 1).
Furthermore, with Def. 1, mandatory features are syntactic
sugar—they are represented by an implies edge from parent
to child. Features not having such an edge are optional.

Def. 2. A feature model, FM = (FD, φ), where FD is the
feature diagram and φ is a propositional formula over F .

The primary meaning of a feature model, known as its
configuration semantics, is a set of legal configurations—sets
of selected features that respect the dependencies entailed by
the diagram and the cross-tree constraints. The configuration
semantics can be specified via translation to logic [4]. Take
the feature model in Figure 1 for example, the formula in
Figure 2a defines its legal configurations.

In general, the function p(·), defined below, translates a
feature diagram or a feature model to propositional logic,
interpreting features as variable names. For brevity, we use
a Boolean predicate choicem,n(· · · ) in its definition. Given
Boolean variables f1, . . . , fk and 0 ≤ m ≤ n ≤ k,
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Figure 4: Same configurations, different ontological
semantics

choicem,n(f1, . . . , fk) holds iff at least m and at most n of
f1, . . . , fk are true.

Def. 3. For a diagram FD = (F , E, I,X,G,C) define:

p(FD) =
∧

(c,p)∈E

(c→p) ∧
∧

(f,k)∈I

(f→k) ∧
∧

(f,k)∈X

(f→¬k)

∧
∧

g∈G, (m,n)∈C(g),
g={(f1,f),...,(fk,f)}

(
f→ choicem,n(f1, . . . , fk)

)
Given FM = (FD, φ), define p(FM) = p(FD) ∧ φ.

While the configuration semantics is most commonly asso-
ciated with feature modeling, there exist other meanings of
feature models. For example, Figure 4 depicts two feature
models with identical configuration semantics, yet different hi-
erarchies and meaning. The feature dst stands for distributed
storage, a driver that allows accessing remote storage as a
local device. The parent of dst affects its meaning. In (a), dst
is nested under net meaning the feature is a product-quality
device. In the diagram (b), dst is under staging, implying the
feature is experimental and not ready for mainstream use.
We call such semantics the model’s ontological semantics,
reflected in the meaning of the features and the hierarchy.

3.2 Linux, eCos and FreeBSD
We evaluate our procedures on Linux, eCos and FreeBSD

kernels. Linux is an open-source general purpose OS created
in the early 1990’s. It has a feature model specified in the
Kconfig language [20] for configuring features in its kernel.
eCos is a real-time operating systems designed for embedded
devices. It uses its own modeling language called the Compo-
nent Definition Language (CDL), to specify its model. While
Kconfig and CDL were developed independently from feature
modeling, both models so closely resemble feature models
that they can be interpreted as one [7, 16, 17]. FreeBSD is
also an open-source OS. Unlike Linux and eCos, FreeBSD
does not have a feature model, but only a flat list of features.
The Linux feature model has over 5000 features, while eCos
and FreeBSD have over 1200 features. We use the data from
Linux to train and empirically build our procedures, and eCos
and FreeBSD as tests subjects to evaluate our procedures.

4. THE PROCEDURES
The procedures assumes three kinds of inputs: a set of

feature names F , feature descriptions D, and feature depen-
dencies Φ. The ordering heuristics ignore the order of words
in the descriptions, so D is defined as a mapping assigning a
multiset of words to each feature in F . A multiset is a pair
(X, c), where X is a set and c : X → N1. Given a feature f
we write D1(f) to refer to the set of words in f ’s description
and for a word w ∈ D1(f), D2(f)(w) denotes the number of

pm

cpu_freq

powersave

performance

acpi

acpi_system

cpu_hotplug

Figure 5: Implication graph where the transitively
reduced subgraph is marked with thick edges

occurrences of w in f ’s description. Finally, dependencies
are specified as a propositional formula Φ over F .

The heuristics assume feature descriptions contain words
from both the feature name itself and from any associated
text. Often times, the feature names provides significant clues
to its relation with other features. For example, cpu hotplug
and cpu freq share the common word cpu. We apply a simple
tokenization where we split the feature name by the under-
score character and retain only alphanumeric words. We
further assume that the descriptions have been stemmed,
have stop words removed, and are case-insensitive. For exam-
ple, using the descriptions in Figure 2 with stop words marked
in gray, D(cpu freq) = {cpu, cpu, freq, frequency, scale}.

4.1 Building Feature Hierarchy

Implication Graph.
First, we define several pre-requisites for the procedures.

We assume that none of the input features are dead—features
that no valid configuration can include. Dead features are
automatically detected and removed.

Next, a feature implication graph is a pair (V,E), where
V is a set of features and E ⊆ V × V is a directed edges,
such that (s, t) ∈ E whenever Φ entails the implication
s→ t. Figure 5 is the graph constructed from dependencies
in Figure 2a. An implication graph is transitively closed due
to the transitivity of implications. If w → u and u→ v then
w → v.

The transitive reduction of an implication graph is the
subgraph not containing the aforementioned transitive im-
plications, except for cliques. The transitive reduction can
be computed using known algorithms [1, 11]. We denote the
transitive reduction of a graph G by GR and edges remaining
in GR as direct implications. Figure 5 shows the transitively
reduced subgraph in thick edges.

Next, E(G) denotes the set of edges in a graph G. For a
feature f write If (G) to denote features implied by f (so
heads of edges outgoing from f). Then If (GR) gives the
directly implied features of f in G.

Identifying Parents.
In essence, our parent ranking heuristics leverages two

complementing forms of data: dependencies and descriptions.
The dependencies describe the configuration semantics of our
feature model and the descriptions are used to approximate
its ontological semantics.

Given a parent candidate p and the selected feature s, we
define the similarity function δ(p, s) to return the sum of
the inverse document frequency (IDF) of the words shared
between the descriptions of p and s, weighted by the number
of occurrences of each shared word in p’s description (Equa-



tion 1). The parent candidates whose descriptions share
many words with feature s and with shared words often re-
peated are then ranked highly similar to the selected feature.
Furthermore, we use the IDF to give less weight to common
domain words such as ‘Linux’, ‘eCos’, ‘choose’, or ‘select’.
These words are not stop words according to standard natu-
ral language processing tools, but they do not contribute to
finding commonalities between two feature descriptions.

δ(p, s) =
∑

w∈D1(p)∩D1(s)

idf(w) ∗ D2(p)(w) (1)

where idf(w) = log
|F|

|{f : w ∈ D1(f)}|

We use the similarity function δ to induce a ranking order
on features. Given a selected feature s we define two strict
partial orders: >s and >p

s . In the first, >s, features are
ranked strictly by their description similarity to s:

a >s b iff δ(a, s) > δ(b, s) (2)

The second partial order >p
s prioritizes directly implied fea-

tures of s over all other implied features. This prioritization
is based on our observation that in Linux 88% of parents in
the model are directly implied features. The partial order is
defined as:

a >p
s b iff


a ∈ Is(GR) ∧ b /∈ Is(GR) or

a ∈ Is(GR) ∧ b ∈ Is(GR) ∧ a >s b or

a /∈ Is(GR) ∧ b /∈ Is(GR) ∧ a >s b

(3)

Finally, we can define the two lists that make the parent
candidates: The RIFs ranks only the implied features of f
using the prioritizing order while the RAFs ranks all features
using the non-prioritizing order.

Def. 4. Given a feature s and an implication graph G,
RIF(s) is the list created by sorting features in Is(G) in de-
creasing order with respect to >p

s (largest rank first). RAF(s)
is the list of features in F sorted in decreasing order with
respect to >s. The orders are made total (any ties broken)
by applying alphabetical ordering, to ease browsing.

As an example consider determining the RIFs of cpu hotplug.
Feature cpu hotplug has five implied features, three of which
are directly implied (Figure 5). Examining their descriptions
in Figure 2b, we see that cpu hotplug shares the word ‘cpu’
with cpu freq, performance, pm and powersave. The RIFs of
cpu hotplug are:

RIF(cpu hotplug) = 〈powersave, acpi, acpi system, cpu freq, pm〉

The RAFs of cpu hotplug uses the set of all features instead:

RAF(cpu hotplug) = 〈cpu freq, performance, pm, . . . 〉

The user chooses parents for every feature by examining
RIFs and RAFs, forming a set of directed child-parent edges
E ⊆ F ×F . These edges may not form a single tree when
there is no common top-level ancestor. In this scenario, we
insert an additional root feature to join together the forest
to form a single tree.

4.2 Groups and Cross-Tree Constraints
After the hierarchy is built, we detect the remaining com-

ponents of a feature diagram—namely, feature groups and
implies and excludes edges.

A mutex graph is used to detect feature groups and ex-
cludes edges. A mutex graph is an undirected graph consisting
of vertices being features and edges denoting a mutual exclu-
sion between two features u and v such that Φ entails u→ ¬v.
Unlike in the implication graphs, edges in the mutex graph
are not transitive. The mutex graph constructed from the
dependencies in Figure 2a consists of two edges: cpu hotplug
excludes performance and performance excludes powersave.

Feature Groups.
A mutex-group defines a [0 . . 1] cardinality among its mem-

bers. mutex-groups are recovered by finding all maximal
cliques in the mutex graph M among sets of children features.
Given a hierarchy E consisting of child-parent edges, Cp(E)
returns the children of p in E:

Cp(E) = {c | (c, p) ∈ E} (4)

We now define GM as the mutex-groups represented as
sets of child-parent edges given the hierarchy E:

GM =
⋃
p∈F

{
g×{p} | g ∈ max-cliques

(
subgraph(M,Cp(E))

)}
(5)

where subgraph(G,V ) returns the subgraph containing the
vertices V and any edges between elements of V in G, and
max-cliques(G) returns the set of maximal cliques in the
undirected graph G, ignoring trivial cliques of size one since
they do not contribute to feature groups.

In our example, we get two overlapping mutex-groups:
{(cpu hotplug, cpu freq), (performance, cpu freq)} and
{(performance, cpu freq), (powersave, cpu freq)}.

An xor-group defines a [1 . . 1] cardinality among its mem-
bers and thus, impose a stronger constraint than mutex-
groups. xor-groups can be recovered by checking an ad-
ditional condition on a mutex-group. Taking the set of
mutex-groups, we check each if given the presence of its par-
ent, at least one element in the group must also be present.
The xor-groups GX is defined:

GX =
{
{(f1, p), . . . , (fk, p)}∈ GM | Φ |= p→(f1∨· · ·∨fk)

}
(6)

Now let GM′ = GM − GX be groups that are strictly
mutex and not xor. Given a group g ∈ GM′ ∪ GX , the
cardinality mapping C is defined:

C(g) =

{
(0, 1) if g ∈ GM′

(1, 1) if g ∈ GX

(7)

GM′ and GX are maximal (no group subsumed by other)
and complete (none missing) with respect to the constructed
hierarchy and input dependencies. GM′ contains all maximal
mutex-groups since it uses the maximal cliques algorithm.
GX inherits the maximality of mutex-groups but further
constrains it by enforcing a lower bound. Thus, GX con-
tains all possible xor-groups—a feature cannot be added or
removed without violating the [1 . . 1] cardinality constraint.

However, the maximality and completeness of GM′ and
GX may cause groups to overlap (i.e. a feature may belong
to one or more feature groups), a property disallowed by
the well-formedness rules of a feature diagram. Similar to
the hierarchy building, we present users with all detected
groups so that they can decide which to maintain in the
feature diagram. Groups that are not overlapping are kept
in the diagram. Any groups that are not kept will remain as
excludes edges or cross-tree constraints.



Implies and Excludes Edges.
The final components of the feature diagram—implies and

excludes edges—describe the remaining implications and
exclusions that are not represented in the feature hierarchy
or as a feature group.

The implies edges can be thought of as the edges from
child to parent candidates that were not selected to be in
the hierarchy. Let G be the implication graph and E be the
constructed hierarchy, the implies edges I are I = E(G)− E.

Similarly, excludes edges are the edges that were not chosen
to be represented as a mutex or xor-group. We define
members(·) to return the members of a group. For example,
let g = {(f1, p), . . . , (fk, p)} then members(g) = {f1, . . . , fk}.
Given a mutex graph M , feature groups G, the excludes edges
X is defined: X = E(M)−

⋃
g∈G members(g)×members(g).

The Cross-Tree Formula.
Using the procedures described in this section yields a

feature model that is complete—all valid configurations in
the input dependencies are valid configurations of our feature
model. However it may still allow some configurations that
were disallowed by initial dependencies. To address this
we can add our input dependencies as a cross-tree formula
to make our feature model sound. In practice, to reduce
redundancy in the cross-tree formula, we add only the clauses
in Φ that are not already entailed by the diagram.

Incomplete Dependencies.
A mutex-group with members f1, . . . , fk is detected if

there exists a clique between f1, . . . , fk in the mutex graph.
A clique in the mutex graph requires each member to have an
exclusion to every other member. If any exclusions between
the members are missing in the case the dependencies are
incomplete, a mutex-group with k members will be detected
as one with less than k members.

xor-groups, on the other hand, contain two dependencies.
First requirement is that an underlying mutex-group exists
between the group members. Second, the xor-group requires
an implication from the group’s parent to its members (Equa-
tion 6). If either the first dependency is incomplete or if the
second dependency is missing, then the xor-group will be
detected simply as a mutex-group of equal or lesser size.

4.3 Implementation
A prototype implementation is available as an open-source

project1. Computation of the implication and mutex graphs,
which can be done offline, took about 3 and 7 hours for
Linux and eCos respectively on a 2.40GHz Intel Core2 Duo
machine. The computation of RIFs and RAFs (needed for
user interaction) is instantaneous. The graph algorithms use
SAT4J for checking implications and exclusions. We used the
Bron-Kerbosch algorithm [8] for finding all maximal cliques
in the mutex graph.

5. EVALUATION
We evaluate our procedures on input from Linux, eCos

and FreeBSD. For Linux and eCos, we extract our input data
from their existing reference feature models [7], which gives
us two samples with complete dependencies and extensive
descriptions. FreeBSD, on the other hand, does not have a
reference feature model. For this project, we evaluate our

1gsd.uwaterloo.ca/reverse-engineering-feature-models

procedures against data extracted from the FreeBSD code-
base, giving us a sample with incomplete dependencies and
partial descriptions. We believe that FreeBSD is represen-
tative of the projects that will require our procedures for
reverse engineering. Since FreeBSD lacks a reference model,
we created one manually for a subset of features.

Our evaluation criterion is to check if for every feature,
its parent in the reference feature model is one of the top
parent candidates in the RIFs and RAFs. We consider the
parent-child relations in the reference feature models to be
the best choices possible because these models were built
over ten years by their respective development communities.

We also measure the effect of incomplete dependencies
and descriptions by progressively removing dependencies
and descriptions from the Linux and eCos data. We see that
prioritizing direct implications has a significant impact on the
effectiveness of our procedures with incomplete descriptions.

Finally, we evaluated our procedure for recovering feature
groups in the presence of complete and incomplete data.

5.1 Experiment Input Data Characteristics
We construct our input data using the reference models

of the x86 Linux 2.6.28.6 and the i386pc feature model for
eCos 3.0. Dependencies were extracted by applying a trans-
lation of their formal semantics to propositional formulas [6,
15]. Feature names and descriptions were extracted directly
from the reference models themselves. We have placed the
translation tools online as open-source projects2,3.

Figure 6 characterizes the inputs for Linux, eCos, and
FreeBSD. Linux has 5321 features, while eCos has 1245, and
as shown in Figure 6, the distribution of number of words are
only slightly different. The majority of features in eCos have
10 to 40 words. Linux, on the other hand, has a large number
of features with no descriptions, while the rest have roughly
20 to 60 words. The distributions of direct and transitive
implications are significantly different. Almost all features
in Linux have from 60 to 80 transitive implications, while in
eCos the variation is much larger. For direct implications,
Linux’s features have from 0 to 10 implications, and again,
eCos has a larger variety. In Section 5.2, we will see if and
how the distributions affect the results of our procedures.

Unlike Linux and eCos that have a configuration tool, con-
figuring the FreeBSD’s kernel involves creating a large text
file that lists selected features—such as devices and CPU
options—and their values. Various boilerplate templates are
available to the user as default configurations. There is no
explicit description of legal combinations of features.

We extracted the input for our procedure from the FreeBSD
8.0.0 codebase. We included the codebase for all nine sup-
ported hardware architectures (unlike for Linux and eCos,
where we used architecture specific models). The 1203
features were mined by hand-crafted parsers from LINT
templates—maximal configurations that contain all options
supported by the kernel. Since these templates often contain
feature descriptions in a semi-structured way, we also created
heuristics-based fuzzy parsers to extract them.

Dependencies were extracted from various sources. We
manually derived around 100 dependencies that were present
in feature descriptions, but the majority of dependencies were
extracted from source code. We examined the codebase to

2code.google.com/p/linux-variability-analysis-tools
3code.google.com/p/variability/wiki/CDLTools
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Figure 6: Characterization of descriptions, transi-
tive implications (dark grey) and direct implications
(white) for eCos, FreeBSD, the FreeBSD reference
model, and Linux

find statements relevant for extracting feature dependencies.
For example, dependencies between device drivers were spec-
ified by FreeBSD-specific preprocessor macros, making such
dependencies easy to extract. However, most constraints had
to be extracted by using a more comprehensive static analy-
sis infrastructure. This infrastructure is one of our ongoing
projects, but we use its early results for this work. The anal-
ysis infrastructure derives constraints by analyzing C source
files and exploiting three types of information: #error prepro-
cessor macros (build error analysis), the location of feature
references (feature liveness analysis) and the definition and
use of identifiers (def/use analysis).

From our experience with extracting dependencies from
FreeBSD, we learned that although part of the process can
be implemented as an automatic tool that works across
different projects, there was a significant amount of manual
work required to capture project-specific patterns from the
build system. However, the project-specific component once
constructed, can be beneficial for other applications such as
iteratively checking the dependencies of a project against its
feature model as the project evolves. We estimate it took
one person, one month of effort to build our project-specific
component for FreeBSD.

FreeBSD Reference Model.
In order to be able to assess the quality of the model synthe-

sized by our tools, we created a reference feature model of 90
features by manually analyzing the FreeBSD kernel artifacts.
We started by performing domain analysis on documentation
and architecture to produce an ontology4. The ontology
comprises of 192 features with several domain-specific rela-
tionships. The reference feature model was derived by taking
the parts of the ontology that we felt were most developed
and correct. The feature hierarchy was built by traversing
generalization and composition relationships (cf. [10]). The
resulting feature model mainly covers technical aspects of
the kernel, such as tracing, monitoring and debugging. Struc-
turally, 21% of its features are mandatory; 24% participate

4code.google.com/p/variability/wiki/FreeBSDOntology

in cross-tree constraints; and three xor-groups that bundle
12% of the features. Creating the ontology and deriving the
feature model took about two person weeks.

Figure 6 shows that the number of implications per fea-
ture in the FreeBSD reference model is very representative
of the number of implications of all features in FreeBSD.
However, the reference model has a larger proportion of long
descriptions (over 10 words) to short descriptions (less than
10 words) than all features in FreeBSD; in this aspect, it is
more similar to Linux and eCos.

5.2 Effectiveness of Parent Heuristics
We evaluate our parent heuristics on complete input with

Linux and eCos and on incomplete input with Linux, eCos
and FreeBSD.

Our evaluation criterion for the RIFs is whether the ref-
erence parent as defined in the reference model, appears in
the top five positions of our RIFs list. We feel the top five
results are a reasonable number for a user to review and to
select the correct choice.

To evaluate the RAFs, we calculate the percentage of all
features users will need to examine to have a 75% chance
of finding the feature’s parent. This measure the effective-
ness of only the ranking heuristic, in the absence of any
dependencies.

Complete input.
For each feature, we record the position of the reference

parent in the RIFs list. We find that 76% of features in Linux
and 79% of features in eCos have their reference parent within
the top 5 results.

We consider these results show that the heuristics are typ-
ically successful at identifying the correct parent. However,
in our evaluation subjects, a significant number of features
have root as their parent. Since root is not in the RIFs list,
it can never be found within the top five results, skewing
the statistics to our disadvantage. Still we have decided not
to include the root in the RIFs. Nesting under root (or on
top-level) is qualitatively a different decision than nesting
features anywhere else. Our tools do not guide the reader
in any way to nest under root, but we consider this decision
to be much easier to make then detailed nesting of small
granularity features deep in the hierarchy. If we only consider
features that are not children of root, we observe that as
many as 90% of them in Linux and 81% in eCos have their
reference parent within the top five results. For this reason,
the following diagrams (Figures 7, 8) omit top-level features.

Incomplete input.
When reverse engineering feature models in real-world

situations, we cannot assume completeness of the input de-
pendencies and descriptions. The RAFs list, which ranks
all-features, can be used to identify potential parents when
the RIFs are incomplete. Common to both the RIFs and
RAFs is our ranking heuristic that depends on the descrip-
tions of features—as descriptions shrink in size, so does the
effectiveness of our heuristic.

We evaluate the effects of incomplete data and the robust-
ness of our RIFs by randomly selecting subsets of implications
and words from descriptions for Linux and eCos. For RAFs,
we randomly select just words from the descriptions since
implications are not used.

Figure 7 shows how the RIFs performs as we reduce the
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Figure 7: Robustness of RIFs for the prioritiz-
ing (black) and non-prioritizing (gray) orders under
complete and incomplete data

number of implications and words of descriptions for the
Linux and eCos data. We created sets of samples where
we progressively removed random implications and words,
forming sets with 25%, 50%, 75% and 100% of implications
and words from descriptions. We repeated the experiment 10
times for each combination to assure robustness of results.

Figure 7 shows that results linearly degrade as we re-
move dependencies. We also observe that larger descriptions
significantly improve results, particularly from 0 to 50% de-
scriptions where the gain is most significant. The figure
also shows the effect of our order where direct implications
are prioritized (in black) over the non-prioritizing variant
(grey). We see that the prioritizing order is more effective
than the non-prioritizing variant overall. Furthermore, the
prioritizing order is particularly effective on Linux where
the prioritized results are still relatively high even as the
descriptions approach zero.

On FreeBSD, we find that 35% of features are missing an
implication to their reference parent in its dependencies. As
a result, these features do not have their reference parent in
their RIFs. For the remaining 65%, the reference parent is
contained in the top 5 results of the RIFs for all features.
84% of features have their reference parent in the first or
second positions of the RIFs.

Regarding RAFs, Figure 8 shows the top fraction of all
features users will need to examine to have a 75% likelihood
of finding the reference parent on Linux and eCos. For this
experiment, we formed datasets containing no descriptions,
25%, 50%, 75% and 100% of randomly selected words from
descriptions. We measure the robustness of our ranking
heuristic with respect to the size of descriptions.

If we look at the 50% mark, the user needs to examine
approximately 10% of all features in Linux and eCos. As
descriptions increase in size, we see that the user needs to
examine fewer and fewer features, reaching only 3% of all
features in Linux and 6% in eCos when we have complete
descriptions (100%). FreeBSD has results similar to Linux,
with the user needing to examine 3% of all features to attain
a 75% likelihood of finding the reference parent.

5.3 Feature Groups
The reference Linux feature model had 5 mutex-groups, a

total of 24 xor-groups and 1 or-group with a total of 526
features participating in groups. We identified all 5 mutex-
groups and found 23 of the xor-groups. One xor-group
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Figure 8: The top RAFs needed for a user to have
a 75% chance of finding the reference parent under
complete and incomplete descriptions

% of exclude edges

N
u
m

b
e
r 

o
f 
g
ro

u
p
s

0

5

10

15

20

0

2

4

6

8

10

0 20 40 60 80 100

lin
u
x

e
c
o
s

Figure 9: Reference groups detected as xor- (black)
or mutex -groups (grey) under complete and incom-
plete exclusions

was not found due to the presence of a dead feature in its
members. We were unable to find the or-group since our
procedure lacks support for finding such groups.

The reference feature model of eCos had only a single
mutex-group, 11 xor-groups and no or-groups, with 44
features participating in groups. The mutex-group and 10
of the xor-groups were discovered by our procedure. The
xor-group that was not detected was in fact, dead. The
group required a package that was not present in the eCos
i386 model that we analyzed.

The reference FreeBSD feature model had three xor-
groups. We correctly identified one group in its entirety.
Parts of a second group were detected as mutex-groups
and a third group was not detected at all due to the incom-
pleteness of our dependency data. The FreeBSD data was
incomplete as we saw in the evaluation for the hierarchy
building—roughly a third of features did not imply their
parents of the reference model.

Incomplete Input.
Feature groups rely on the presence of exclusions in the

mutex graph to determine its size and members. As we have
seen in our FreeBSD evaluation, incomplete dependencies
affects the detection of feature groups. Here, we evaluate
the effect of incomplete exclusions on the Linux and eCos
data. Figure 9 shows the number of feature groups from
the respective reference models that are detected as an xor-
group, or as a mutex-group of equal or smaller size depending
on the completeness of exclusions. We randomly selected
exclusions ranging from 0 to 100%, with 100% being all
present. Each point is an individual sample and the lines
indicate the fitted curve across all the sample points.



As the number of exclusions increases, the number of
mutex and xor-groups detected increases, with the former
growing at a much faster rate. In the presence of incomplete
dependencies, an xor-group may be detected as a mutex-
group of equal or smaller size. Only in the case that all
exclusions among members of an xor-group are present is it
actually detected as one. We observe this effect at roughly
70% of exclusions in Linux and 50% in eCos—the number of
mutex-groups starts a downward trend and the xor-groups
begin to grow at an increasing rate. This means that the
input for our procedure should contain at least about 50%
of exclusion dependencies to warrant that group synthesis
reasonably precisely distinguishes the two kinds of groups.

We also observe different curves between the two systems
due to their characteristics—Linux has 30 groups over 526
features while eCos has 12 groups over 44 features. With the
larger number of features participating in groups in Linux,
we see it takes more exclusions in Linux before xor-groups
are detected when compared to eCos.

6. THREATS TO VALIDITY

External threats.
Our procedures assume that feature names, descriptions,

and dependencies can be extracted from a project. Our
evaluation on FreeBSD shows that it is possible to extract
such input from existing software projects. Crafting the
project-specific component for FreeBSD required significant
work. However, the effort required for this component may
vary significantly depending on the project.

As we apply our procedures to Linux, eCos and FreeBSD,
one might perceive that our procedures are tailored for the
OS domain. However, our procedures are general and can
be applied to systems in other domains. Notably, all three
systems are of considerable complexity and size and differ
significantly in their input characteristics.

As stated before, feature names in Linux and eCos often
reflect the hierarchy of the reference models. Thus, one could
conjecture that we obtain good results for these systems
because the reference hierarchy is re-discovered by our simi-
larity metric from the feature names. However, our similarity
measure performs similarly well on FreeBSD, even though
the system does not come with a feature model and their
feature names follow a different convention.

Internal threats.
We evaluate results for FreeBSD on a reference feature

model that the third author created. This creates a threat
of potential bias, since the author knew the procedures that
were to be evaluated against this model. Also, it is possible
that the reference model is different from what a domain
expert would create. To address these problems, we used an
entirely different approach to build the feature model [10],
which required building an ontology first. The ontology
represents the domain in more detail than a feature model
would represent, effectively forcing the modeler to become
an expert in the modeled fragment of the domain. Another
threat is that the subset of features in the reference model
may not be representative of the entire system. We compared
both in Figure 6, observing that the subset of features had
a similar distribution in its number of implications to the
distribution for all features. However, the features in the

subset tend to have longer descriptions than the rest of
FreeBSD’s features; still, the distribution is similar to that of
Linux and eCos. Thus, while applying our procedures on all
features of FreeBSD would likely produce worse results than
for the subset, the results for the subset—in particular, the
need to review 3% of RAFs to have a 75% chance of finding
the right parent—are consistent with those for Linux.

We have not run user experiments to evaluate the effort
saved by our procedures. Such experiments involve usability
while we focus on the reverse engineering algorithms in this
paper. These evaluations and incorporating our procedures
into modeling tools is future work.

7. RELATED WORK
The procedures presented in this paper build on our pre-

vious work on synthesizing feature diagrams from logical
formulas [11] that produces a non-standard feature diagram
with a DAG structure instead of a tree. We reuse implication
graphs and their transitive reductions for hierarchy building
and also the basic concept for group detection from that work.
However, the present approach addresses several significant
shortcomings. First, given a feature, [11] effectively proposes
all directly implied features as parent candidates, without
any ranking. This approach has two problems. First, 683
features in Linux have more than 40 directly implied features,
meaning that the user has to review 30 features to have 75%
chance of finding the parent. We address this problem by
using similarity to rank the candidates, reducing 30 to five
(6-fold improvement). Further, features may imply their par-
ents indirectly, as is the case for cpu hotplug in Figure 1. We
found 677 features in Linux imply their parents indirectly,
which makes the approach of [11] inherently incomplete. We
address the problem by including all implied features in
RIFs. Interestingly, 82% of features in Linux with indirectly
implied parents have three or less directly implied features,
thus allowing our approach to include them in the top five
results. Second, the approach relies on dependencies alone
and performs poorly if the dependencies are incomplete.

Unlike [11], our procedures do not detect or-groups. Un-
fortunately, the algorithms of [11] do not scale to models
as large as in our evaluation. Furthermore, or-groups were
rare in our systems, with only Linux having just one. We
continue to work on more efficient techniques for identifying
or-groups [3], and will report progress on these in future.

Janota et al. [12] propose an interactive editing envi-
ronment that takes the DAG structure from the synthesis
work [11] and allows the user to decide interactively among
parent and group candidates. The key difference is that our
approach also incorporates textual descriptions in order to
rank the potential choices presented to the user, addressing
the shortcomings stemming from relying only on dependen-
cies. Furthermore, our procedures are significantly more
scalable, handling upwards of 5000 features, while the previ-
ous approach is reported to handle at most 200–300 features.

Snelting applied formal concept analysis to extract concept
lattices from C code representing the logical dependencies
among code blocks enclosed in #ifdef statements [18]. These
lattices were then used to guide refactoring of source code. A
concept lattice is equivalent to a reduced implication graph in
our setting. Our approach has several significant differences.
First, we aim to select a single tree from the implication
graph rather than visualizing entire lattice (which was the
case in our previous work [11]). Second, we also detect the



other components of a feature model—namely, feature groups,
implies and exclude edges. Third, Snelting’s approach relies
on the logical dependencies only.

Alves et al. [2] and Niu et al. [14] apply information re-
trieval techniques to abstract requirements from existing
specifications of a given domain into a feature model. As
such, these works are related to our use of a text similarity
to rank parent candidates. In particular, Alves et al. use
text similarity, specifically Latent Semantic Analysis (LSA)
and Vector Space Model (VSM) with cosine function as the
similarity metric. Our approach resembles the VSM, but
uses a special similarity metric that can handle very short
descriptions where already one shared word is significant.
Niu et al. define similarity over attributes of abstract func-
tional requirements called functional requirements profiles
(FRPs). The FRPs and their attributes needs to be extracted
manually from the requirements, incurring significant effort.

One key difference from our work is that both related
works use clustering techniques—over the similarity metrics
they define—to generate a single feature hierarchy. We have
experimented with clustering to produce a single hierarchy,
coming to the conclusion that there is simply not enough
information in the input descriptions and dependencies to
decide a single, desirable hierarchy—such as the one from a
reference model—without additional expert input.

Another key difference is that our approach incorporates
precise logical dependencies from other sources of informa-
tion such as a build system or source code. This increases
the quality of the final outcome and allows for higher level
of automation, such as the automatic detection of feature
groups and cross-tree dependencies. Interestingly, Alves’
approach has been further extended by Weston et al. [19]
with identification of grammatical patterns, like alternative
enumerations or conjunctive enumerations, to distinguish op-
tional and mandatory dependencies. However, the modeler
has to incorporate the new variability information manually
into the resulting feature model.

Finally, both related approaches have been used to create
feature models with dozens rather than thousands of features.

8. CONCLUSIONS
Software product line developers and users benefit from

having feature models that describe the variability of software
systems. However, building such a model from an existing
system requires considerable effort where the key challenge is
the selection of a parent for every feature. We have presented
a ranking heuristic for identifying parent candidates and also
automated procedures for identifying mandatory features,
feature groups and implies/excludes edges.

We show that the procedures work well for Linux and eCos
where the input data is complete, and also for FreeBSD, a
system with incomplete descriptions and dependencies. By
leveraging both dependencies and descriptions, the RIFs list
contains the correct parent for 76% of features in Linux and
79% in eCos in its first five positions. If we omit dependencies
and rely strictly on our ranking heuristic (RAFs), the user
only needs to examine 3% to 6% of all features to find the
parent in most cases. We also recovered all mutex and xor-
groups for Linux and eCos assuming the reference hierarchy
was selected by the user.

This work contribute towards the reverse-engineering of
feature models from large-scale projects. However, in order
for these procedures to be incorporated into practical tools,

there are many open problems in the areas of feature location
and dependency mining that remain to be solved.
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