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Abstract

Model transformations are touted to play a key role in model-driven development. While well-
established standards for meta-modeling such as the Meta-Object Facility exist, there is currently no
matured foundation for specifying transformations among models. In this paper, propose a frame-
work for the classification of several existing and proposed model transformation approaches. The
classification framework is given as a feature model that makes the different design choices for model
transformations explicit. Based on our analysis of the model transformation approaches, we propose
a few major categories in which most the approaches fit.

Introduction

Model-driven software development is centered on the use of models.”™ Models are system abstractions
allowing developers and other stakeholders to effectively address their concerns, such as answering a par-
ticular question about the system or effecting a particular change. Examples of model-driven approaches
are Model-Driven Architecture (MDA),%3% Model-Integrated Computing (MIC), and Software Facto-
ries. *3 Software Factories, with their focus on automating product development in a product-line context,
can also be viewed as an instance of generative software development.2®

Model transformations are touted to play a key role in model-driven development. Their intended
applications include

e generating lower-level models, and eventually code, from higher-level models;®*

e mapping and synchronizing among models at the same level or different levels of abstraction;*”

e creating query-based views on a system; 27!

e model evolution tasks such as model refactoring; 73°° and

e reverse engineering of higher-level models from lower-level ones. 38

A considerable amount of interest in model transformations has been generated by the Object Manage-
ments Group’s (OMG) standardization effort. In April 2002, the OMG has issued a Request for Proposal
(RFP) on Query / Views / Transformations (QVT),® which led to the release of the final adopted QVT
specification in November 2005.° Driven by practical needs and the OMG’s request, a large number of
approaches to model transformation have been proposed over the last three years. However, as of writing,
industrial-strength and matured model-to-model transformation systems are still not available, and the
area of model transformations continues to be a subject of intense research.

In this paper, we propose a feature model to compare different model transformation approaches and
offer a survey and categorization of a number of existing approaches

e published in the literature: VIATRA (VIsual Automated model TR Ansformations) framework, 34:%2
Kent Model Transformation Language,'%!? Tefkat,*%°” GReAT (Graph Rewriting and Transfor-
mation) language,'® ATL (Atlas Transformation Language),'”*° UMLX,8" AToM? (A Tool for



Multi-formalism and Meta-Modeling) system,®> BOTL (Bidirectional Object-oriented Transforma-
tion Language),2%%8 MOLA (MOdel transformation LAnguage),®* AGG (Attributed Graph Gram-
mar) system, > AMW (Atlas Model Weaver), *® triple-graph grammars, > MTL (Model Transforma-
tion Language),® YATL (Yet Another Transformation Language),% Kermeta,%' and MT (Model
Transformation) language; ™

e described in the final adopted QVT specification: the Core, Relations, and Operational languages;®
older QVT submissions are also mentioned whenever appropriate;

e implemented within open-source tools: AndroMDA,! openArchitectureWare, ' Fujaba (From UML
to Java And Back Again),* Jamda (JAva Model Driven Architecture),? JET (Java Emitter Tem-
plates),% FUUT-je,®° and MTF (Model Transformation Framework)* as a freely available proto-

type;

e implemented within commercial tools: XMF-Mosaic,® Optimall,?® MetaEdit+,”® ArcStyler, 6
and Codagen Architect.?’

The feature model makes the different possible design choices for a model transformation approach
explicit, which is the main contribution of this paper. We do not give the detailed classification data for
each individual approach mainly because the details of the individual approaches are a moving target.
Instead, we give examples of approaches for each of the discussed design choices. Furthermore, we propose
a clustering of the existing approaches into a few major categories that capture their different flavors and
main design choices. We conclude the paper with some remarks on the practical applicability of the
different categories.

What Is Model Transformation?

Before delving into a discussion of approaches to model transformation, let us first try to characterize
the concept of model transformation. Transformation is a fundamental theme in computer science and
software engineering. After all, computation can be viewed as data transformation. Computing with basic
data such as numeric values, and with data structures such lists and trees, is at the heart of programming.
Type systems in programming languages help to ensure that operations are applied compatibly to the
data. However, when the subject of a transformation approach is meta-data, i.e., data representing
software artifacts such as data schemas, programs, interfaces, and models, then we enter the realm of
metaprogramming. For example, one of the key challenges in metaprogramming is that metaprograms
have to respect the rich semantics of the meta-data they operate on. Similarly, model transformation is
also a form of metaprogramming and, thus, must face that same challenge too.

Model transformation is closely related to program transformation.%# In fact, their boundaries are not
clear-cut and both approaches overlap. Their differences occur in the mindsets and traditions of their
respective transformation communities, the subjects being transformed, and the sets of requirements
being considered. Program transformation is a more mature field with a strong programming language
tradition. On the other hand, model transformation is a relatively new field essentially rooted in software
engineering. Consequently, the transformation approaches found in both fields have quite different flavors.
While program transformation systems are typically based on mathematically-oriented concepts such as
term rewriting, attribute grammars, and functional programming, model transformation systems usually
adopt an object-oriented approach for representing and manipulating their subject models.

Since model transformations operate on models, we need to clarify what models are. A model is an
abstraction of a system and/or its environment. Czarnecki summarizes the role of models in engineering
as follows:2? “Models allow engineers to effectively address their concerns about the system such as
answering particular questions or devising required design changes. [...] A particular model may be
appropriate for answering a certain class of questions, where the answers to those questions will be the
same for the model as for the actual system. However, the same model may not be appropriate for
answering some other class of questions. Moreover, models are cheaper to build than a real system.
For example, civil engineers create static and dynamic structural models of bridges to check structural
safety since modeling is certainly cheaper and more effective than building real bridges to see under what
scenarios they will collapse.”
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Figure 1: Basic concepts of model transformation

In software engineering, the term “model” is often used to refer to abstractions above program code
such as requirements and design specifications. Some authors in model-driven software development
consider program code as models too. This view is consistent with the fact that program code is an
abstraction of the underlying machine code produced by the compiler. While being visual is not a defining
characteristic of models, requirements and design models are often more visual than programs. Models
are frequently expressed in focused languages specialized for a particular class of software applications
and/or particular aspect of an application. For example, the Matlab Simulink/Stateflow environment
offers notations specialized for modeling control software, while UML-style interaction diagrams are
focused for representing the interaction aspect of a wide range of systems. Highly specialized modeling
languages are increasingly referred to as domain-specific modeling languages.

In general, model transformations involve models (in the sense of abstractions above program code)
or models and programs. Since the concept of models is more general than the concept of program code,
model transformations tend to operate on a more diverse set of artifacts than program transformations.
Model transformation literature considers a broad range of software development artifacts as potential
transformation subjects. These include UML models, interface specifications, data schemas, component
descriptors, and program code. The varied nature of models further invites specialized transformation
approaches that are geared towards transforming particular kinds of models. For example, as explained
in Section Section “Discussion”, most of the model transformation approaches based on graph transfor-
mations are better suited for transforming UML models than program code. However, it is important
to note that there is no fundamental reason why program transformation systems could not be applied
to the same artifacts as model transformations. In fact, transformational software development, % which
involves the automated refinement of high-level specifications into implementations, is an old and familiar
theme in the area of program transformation.

In summation, perhaps the most important distinction between the current approaches to program
transformation and model transformation is that the latter has been targeted for a particular set of
requirements including the representation of models using an object-oriented paradigm, the traceability
among models at different levels of abstraction, the transformation mapping among multiple models
(i.e., so-called n-way transformations), and the multi-directionality of transformations. While these
requirements could also be the subject of program transformation approaches, they are typically not
considered by program transformation systems.

Examples of Model Transformations

In order to make our discussion more concrete, we present two examples of model transformations: one
mapping models to models, and another one mapping models to code.

Figure 1 gives an overview of the main concepts involved in model transformation. The figure shows
the simple scenario of a transformation with one input (source) model and one output (target) model.
Both models conform to their respective metamodels. A metamodel typically defines the abstract syntax
of a modeling notation. A transformation is defined with respect to the metamodels. The definition is
executed on concrete models by a transformation engine. In general, a transformation may have multiple
source and target models. Furthermore, the source and target metamodels may be the same in some
situations.



Before looking at sample definitions of model transformations, we need to present the metamodels for
our examples.

Sample Metamodels and Models

Figure 2 shows two sample metamodels expressed as UML class diagrams. Figure 2(a) gives a simplified
metamodel for class models. The metamodel includes the abstract concept of classifiers, which comprises
classes and primitive data types. Packages contain classes, and classes contain attributes. All model
elements have names, and classes can be marked as persistent. Figure 2(b) shows a simple metamodel
for defining relational database schemas. A schema contains tables, and tables contain columns. The
column type is represented as a string. Every table has one primary-key column, which is pointed to by
pkey. Additionally, the concept of foreign keys is modeled by FKey, which relates foreign-key columns to
tables.

PrimitiveDataType Classifier type
. St 4‘ > . Stri 0.1 1
name : String name : String 1 Schema . Table Column
pkey
name : String tbls name : String % | name : String
 Fofs cols| type : String
* * yfkeys * T cols
Package % Class * Attribute
FKey
name : String elems| isPersistent : Bool attrs | name : String
(a) Simple UML metamodel (b) Simple RDBMS metamodel

Figure 2: Metamodels for the UML-to-RDBMS example

Sample instances of the metamodels are shown in Figure 3 using the UML object diagram notation.
The instance in Figure 3(a) represents a class model with one package, App, containing two classes,
Customer and Address. Customer is persistent, and Address is not. Figure 3(b) shows an instance of
the schema metamodel. The instance represents a schema that can be used to persist Customer objects.

:Package :Class :Attribute

name = "App’ name = "Customer’ name = ‘name’ [
isPersistent = true

:Schema :Table
:Attribute :Class :Attribute
— name = ’App’ name = ’Customer’
name =’addln’ | qgp{ name =’Address’ name = "addr’
isPersistent = false | type
pkey ?
:Column

:PrimitiveDataType

—— name = "Customer_tid’
type | name =’'STRING’ | type type = 'NUMBER’
(a) Sample UML model (b) Sample RDBMS model

Figure 3: Sample models

UML-To-Schema Transformation Example

As a first example, we consider transforming class models into schema models described in the previous
section. Such a transformation needs to realize the following three mappings:

1. Package-to-schema. Every package in the class model should be mapped to a schema with the same
name as the package.

2. Class-to-table. Every persistent class should be mapped to a table with the same name as the class.
Furthermore, the table should have a primary-key column with the type NUMBER and the name
being the class name with _tid appended to it.



3. Attribute-to-column. The class attributes have to be appropriately mapped to columns, and some
columns may need to be related to other tables by foreign key definitions. For simplicity, the
attribute mapping is not further considered in this paper.

The above transformation would map the class model in Figure 3(a) to the schema model in Fig-
ure 3(b). The part of the result in Figure 3(b) shown in black is handled by the first two mappings. The
light-colored part corresponds to the result of the attribute-to-column mapping.

Figure 4 shows how this transformation can be expressed using the QVT Relations language, which is
a declarative language for model-to-model transformations. The transformation declaration specifies two
parameters, uml and rdbms, which will hold the models involved in the transformation. The parameters
are typed over the appropriate metamodels. The execution direction is not fixed at transformation
definition time, which means that both uml and rdbms could be source and target model and vice versa.
Only upon invoking the transformation, the user has to specify in which direction the transformation has
to be executed.

transformation umlRdbms (
uml : SimpleUML, rdbms : SimpleRDBMS) {

key Table (name, schema);
key Column (name, table);

top relation PackageToSchema {
domain uml p:Package {name = pn}
domain rdbms s:Schema {name = pn}

}

top relation ClassToTable {
domain uml c:Class {
package = p:Package {},
isPersistent = true,
name = cn
¥
domain rdbms t:Table {
schema = s:Schema {},
name = cn,
cols = cl:Column {
name=cn+’_tid’,
type=’NUMBER’},
pkey = cl

when {
PackageToSchema(p, s);
}
where {
AttributeToColumn(c, t);
}
}

relation AttributeToColumn {

j..

Figure 4: Transformation expressed in QVT Relations

Each mapping is represented as a relation. A relation has as many domain declarations as there are
models involved in the transformation. A domain is bound to a model (e.g., uml) and declares a pattern,
which will be bound with elements from the model to which the domain is bound. Such patterns consist
of a variable and a type declaration, which itself may specify some of the properties of that type. When
the transformation is executed, the relations are verified and, if necessary, enforced by manipulating the
target model. If the target model is empty, its content is freshly created, otherwise the existing content
is updated.

A relation may specify a condition under which it applies using a when clause. The where clause
specifies additional constraints among the involved elements. The key definitions are used by the trans-
formation engine to identify target objects that need to be updated during a transformation execution.
There is a lot more to say about the execution semantics of QVT Relations. The interested reader is
invited to explore the QVT specification document.
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Figure 5: Graphical notation of a QVT relation

The QVT Relations language also has a graphical notation. Figure 5 shows the ClassToTable relation

in that notation.

UML-To-Java Transformation Example

In the second example, we would like to generate Java code from class models conforming to the meta-
model in Figure 2(a). In particular, a Java class with the appropriate attribute definitions and getters
and setters should be generated for each class in the class model. Figure 6 shows the desired output for

the input model from Figure 3(a).

The code can conveniently be generated using a textual template approach, such as the openArchitec-
ture Ware template language demonstrated in Figure 7. A template can be thought of as the target text
with holes for variable parts. The holes contain metacode which is run at template instantiation time to
compute the variable parts. The metacode in Figure 7 is show in light color. The metacode has facilities
to iterate over the elements of the input model (FOREACH), access the properties of the elements, and call

public class Customer
private String name;
private Address addr;

}

public void setName( String name ) {

}

this.name = name;

public String getName() {

}

public void setAddr( String name ) {

}

return this.name;

this.addr = addr;

public String getAddr() {

}

return this.addr;

Figure 6: Java code to be generated

templates from other templates (EXPAND).




<<DEFINE Root FOR Class>>
public class <<name>> {
<<FOREACH attrs AS a>>
private <<a.type.name>> <<a.name>>;
<<ENDFOREACH>>
<<EXPAND AccessorMethods FOREACH attribute>>
}
<<ENDDEFINE>>

<<DEFINE AccessorMethods FOR Attribute>>
public <<type.name>> get<<name.toFirstUpper>>() {
return this.<<name>>;
}
public void set<<name.toFirstUpper>>( <<type.name>> <<name>> ) {
this.<<name>> = <<name>>
}
<<ENDDEFINE>>

Figure 7: Model-to-code transformation with openArchitectureWare

Table 1: Symbols used in cardinality-based feature modeling

Symbol Explanation

Solitary feature with cardinality [1..1], i.e., mandatory feature

{3

Solitary feature with cardinality [0..1], i.e., optional feature

Solitary feature with cardinality [n..m], n > 0Am > n Am > 1, i.e., mandatory
clonable feature

[n..m]

Grouped feature with cardinality [0..1]

Feature model reference F'

Feature group with cardinality (1-1), i.e. zor-group

L BSHIESE

Feature group with cardinality (1- k), where k is the group size, i.e. or-group

Features of Model Transformation Approaches

This section presents the results of applying domain analysis to existing model transformation approaches.
Domain analysis is concerned with analyzing and modeling the variabilities and commonalities of systems
or concepts in a given domain.?” We document our results using feature diagrams.?3! Essentially, a
feature diagram is a hierarchy of common and variable features characterizing the set of instances of
a concept. In our case, the features provide a terminology and a representation of the design choices
for model transformation approaches. We should note that we do not aim for this terminology to be
normative. Unfortunately, the relatively new area of model transformation has many overloaded terms,
and many of the terms we use in our terminology are often used with different meanings in the original
descriptions of the different approaches. However, we provide the definitions of the terms as we use them.
Furthermore, we expect the terminology to evolve as our understanding of model transformation matures.
Our main goal is to show the vast range of available choices as represented by the current approaches.

Figure 8 shows the top-level feature diagram, where each subnode represents a major point of variation.
The fragment of the cardinality-based feature modeling notation 333 used in this paper is further explained
in Table 1. Note that our feature diagrams treat model-to-model and model-to-text approaches uniformly.
We will distinguish between these categories later in Section “Major Categories”. The description of the
top-level features in Figure 8 follows.

e Specification. Some transformation approaches provide a dedicated specification mechanism, such
as pre- and post conditions expressed in OCL.?2 A particular transformation specification may
represent a function between source and target models and be executable; however, in general,
specifications describe relations and are not executable. The QVT-Partners®? submission distin-
guished between relations as potentially non-executable specifications of transformations and their
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Figure 8: Top-level feature diagram

executable implementations. The QVT specification® still keeps this distinction, although the Re-
lations language in that submission is now meant to be used primarily for expressing executable
transformations.

e Transformation rules. In this paper, transformation rules are understood as a broad term describing
the smallest units of transformation. Rewrite rules with a left-hand side (LHS) and a right-hand
side (RHS) are obvious examples of transformation rules; however, we also consider a function
or a procedure implementing some transformation step as a transformation rule. In fact, the
boundary between rules and functions is not so clear-cut; for example, function definitions in
modern functional languages such as Haskell or ML resemble rules with patterns on the left and
expressions on the right. Templates can be considered as a degenerate form of rules, as it will be
discussed later in Section “Template-Based Approaches”.

e Rule application control. Rule application control has two aspects: scheduling and location deter-
manation. Scheduling determines the order in which transformation rules are executed. Location
determination is the strategy for determining the model locations to which transformation rules are
applied. Although control mechanisms usually address both aspects at the same, for presentation
purposes, we discuss them separately.

e Rule organization. Rule organization comprises general structuring issues such as modularization
and reuse mechanisms.

e Source-target relationship. Source-target relationship is concerned with issues such as whether
source and target are one and the same model or two different models.

e Incrementality. Incrementality refers to the ability to update existing target models based on
changes in the source models.

e Directionality. Directionality describes whether a transformation can be executed in only one
direction (unidirectional transformation) or multiple directions (multidirectional transformation).

e Tracing. Tracing is concerned with the mechanisms for recording different aspects of transfomation
execution such as creating and maintaining trace links between source and target model elements.

Each of the following subsections elaborates on one major area of variation represented as a reference
in Figure 8 by giving its feature diagram, describing the different choices in the text, and providing
examples of approaches supporting a given feature. The diagrams remain at a certain level of detail in
order to fit into the available space; however, each feature could be further analyzed uncovering additional
subfeatures. Also, the feature groups in the presented diagrams usually express typical rather than all
possible feature combinations. For example, different programming paradigms (see Figure 12) will be
organized into an xor-group rather than an or-group (Table 1). Hybrid approaches may always provide
any combinations of these features, which would correspond to an or-group..

Transformation Rules

The features of transformation rules are given in Figure 9. Their description follows.
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e Domains. A domain is the part of a rule that is responsible for accessing one of the models the
rule operates on. Rules usually have a source and a target domain, but they may also involve
more than two domains. Transformations involving n domains are sometimes referred to as n-way
transformations. Examples are model merging or model weaving,'® which are transformations with
more than one input domain. In general, a set of domains can also be seen as one large composite
domain; however, it is useful to distinguish among individual domains when writing transformations.

Domains can have different forms. In QVT Relations, a domain is a distinguished typed variable
with an associated pattern that can be matched in a model of a given model type (Figure 4).
In an rewrite rule, each side of the rule represents a domain. In an implementation of a rule
as an imperative procedure, a domain corresponds to a parameter and the code that navigates
and/or creates model elements using the parameter as an entry point. Furthermore, a rule may
combine domains of different forms. For example, the source domain of the templates in Figure 7
corresponds to the metacode travering the source model, whereas the target domain has the form
of string patterns.

The features of a domain are shown in Figure 10.

— Domain language. A domain has an associated language specification that describes the pos-
sible structures of the models for that domain. In the context of MDA, that specification has
the form of a metamodel expressed in the Meta-Object Facility (MOF).? Transformations with
source and target domains conforming to a single metamodel are referred to as endogenous or
rephrasings; whereas transformations with different source and target metamodels are referred
to as exogenous or translations. 84;59

— Static mode. Similar to the parameters of a procedure, domains have explicitly declared or
implicitly assumed static modes, such as in, out, or in/out. Classical unidirectional rewrite
rules with an LHS and RHS can be thought of as having an in-domain (source) and an out-
domain (target), or a single in/out-domain for in-place transformations. Multidirectional rules,
such as in MTF, assume all domains to be in/out.

— Dynamic mode restriction. Some approaches allow restricting the static modes at execution
time. For example, MTF allows marking any of the participating domains as read-only, i.e.,
restricting them to in for a particular execution of a transformation. Essentially, such restric-
tions define the execution direction.

— Variables. Variables may hold elements from the source and/or target models (or some inter-
mediate elements). They are sometimes referred to as metavariables to distinguish them from
variables that may be part of the models being transformed (e.g., Java variables in transformed
Java programs).

— Patterns. Patterns are model fragments with zero or more variables. Sometimes, such as in the
case of templates, patterns can have not only variables embedded in their body, but also expres-



sions and statements of the meta-language. Depending on the internal representation of the
models being transformed, we can have string, term, or graph patterns (see Figure 11). String
patterns are used in textual templates, as discussed in Section “Template-Based Approaches”
on page 16. Model-to-model transformations usually apply term or graph patterns. Patterns
can be represented using abstract or concrete syntax of the corresponding source or target
model language, and the syntax can be textual and/or graphical.

— Logic. Logic expresses computations and constraints on model elements (see Figure 12).
Logic may follow different programming paradigms such as the object-oriented or functional
paradigm and be non-executable or executable. Non-executable logic is used to specify rela-
tionships among models. Executable logic can take a declarative or imperative form. Examples
of the declarative form include OCL queries to retrieve elements from the source model and
the implicit creation of target elements through constraints as in the QVT Relations and Core
languages. Imperative logic often has the form of program code calling repository APIs to
manipulate models directly. For instance, the Java Metadata Interface (JMI)4° provides a
Java API to access models in a MOF repository. Imperative code uses imperative assignment,
whereas declarative approaches may bind values to variables as in functional programming or
specify values through constraints.

— Typing. Variables, logic, and patterns can be untyped, syntactically typed, or semanti-
cally typed (see Figure 13). An example of untyped patterns are textual templates (Section
“Template-Based Approaches” on page 16). In the case of syntactic typing, a variable is
associated with a metamodel element whose instances it can hold. Semantic typing allows
stronger properties to be asserted, such as well-formedness rules (static semantics) and be-
havioral properties (dynamic semantics). A type system for a transformation language could
statically guarantee for a transformation that the models produced by the transformation will
satisfy a certain set of syntactic and semantic properties provided the input models satisfy
some syntactic and semantic properties.

Syntactic separation. Some approaches clearly separate the parts of a rule operating on one domain
from the parts operating on other domains. For example, classical rewrite rules have a LHS oper-
ating on the source domain and a RHS operating on the target domain. In other approaches, such
as a rule implemented as a Java program, there might not be any such syntactic distinction.

Multidirectionality. Multidirectionality refers to the ability to execute a rule in different directions.
Rules supporting multidirectionality are usually defined over in/out-domains. Multidirectional rules
are available in MTF and QVT Relations.

Application conditions. Transformation rules in some approaches may have an application condition
that must be true in order for the rule to be executed. An example is the when-clause in QVT
Relations (see Figure 4).

Intermediate structures. The execution of a rule may require the creation of some additional struc-
tures which are not part of the models being transformed. These structures are often temporary
and require their own metamodel. A particular example of intermediate structures are traceability
links. In contrast to other intermediate structures, traceability links are usually persisted. Even if
traceability links are not persisted, some approaches, such as AGG and VIATRA, rely on them in
order to prevent multiple firings of a rule for the same input element.

Parameterization. The simplest kind of parameterization are control parameters, which allow pass-
ing values as control flags (see Figure 14). Control parameters are useful to implement policies. For
example, a transformation from class models to relational schemas could have a control parameter
specifying which of the alternative patterns of object-relational mapping should be used in a given
execution. The importance of control parameters has been emphasized by Kleppe et al.®* Gener-
ics allow passing data types, including model element types, as parameters. Generics can help
making transformation rules more reusable. Generic transformations have been described by Varré
and Pataricza.®! Finally, higher-order rules take other rule as parameters. Higher-order rules may
provide even higher levels of reuse and abstraction. Stratego®? is an example of a term rewriting
language for program transformation supporting higher-order rules. We are currently not aware of
any model transformation approaches with a first class support for higher-order rules.

10
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e Reflection and aspects. Some authors advocate the support for reflection and aspects in transfor-
mation languages. Reflection is supported by ATL by allowing reflective access to transformation
rules during the execution of transformations. An aspect-oriented extension of MTL was proposed
by Silaghi et al.”® Reflection and aspects can be used to express concerns that crosscut several
rules, such as custom traceability management policies.

Location Determination

A rule needs to be applied to a specific location within its source scope. Since there may be more than one
match for a rule within a given source scope, we need a strategy for determining the application locations.
The strategy could be deterministic, non-deterministic, or interactive. For example, a deterministic strat-
egy could exploit some standard traversal strategy (such as depth-first) over the containment hierarchy in
the source. Stratego®® is an example of a term rewriting language with a rich mechanism for expressing
traversal in tree structures. Examples of non-deterministic strategies include one-point application, where
a rule is applied to one non-deterministically selected location, and concurrent application, where one
rule is applied concurrently to all matching locations in the source. Concurrent application is supported
in AToM?, AGG, and VIATRA. AGG offers so-called critical pair analysis to verify for a set of rules that
there will be no rules competing for the same source location. Some tools, e.g., AToM?, allow the user
to determine the location for rule application interactively.

The target location for a rule is usually deterministic. In an approach with separate source and target
models, traceability links can be used to determine the target: A rule may follow the traceability link to
some target element that was created by some other rule and use the element as its own target. In the
case of in-place update, the source location usually becomes the target location, although traceability
links can also be used.

vl
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Figure 13: Typing
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Rule Scheduling

Scheduling mechanisms determine the order in which individual rules are applied. Scheduling mechanisms
can vary in four main areas:

e Form. The scheduling aspect can be expressed implicitly or explicitly. Implicit scheduling implies
that the user has no explicit control over the scheduling algorithm defined by the tool as in, e.g.,
BOTL. The only way a user can influence the system-defined scheduling algorithm is by designing
the patterns and logic of the rules to guarantee certain execution orders. For example, a given rule
could check for some information that only some other rule would produce. Explicit scheduling has
dedicated constructs to explicitly control the execution order. Explicit scheduling can be internal
or external. In external scheduling, there is a clear separation between the rules and the scheduling
logic. For example, VIATRA offers rule scheduling by an external finite state machine. In contrast,
internal scheduling would be a mechanism allowing a transformation rule to directly invoke other
rules as in ATL.

e Rule selection. Rules can be selected by an explicit condition as in MOLA. Some approaches, such
as BOTL, offer non-deterministic choice. Alternatively, a conflict resolution mechanism based on
priorities can be provided. Interactive rule selection is also possible. Both priorities and interactive
selection are supported in AToM?3.

e Rule iteration. Rule iteration mechanisms include recursion, looping, and fixpoint iteration (i.e.,
repeated application until no changes detected). For example, ATL supports recursion; MOLA has
a looping construct; and VIATRA supports fixpoint iteration.

e Phasing. The transformation process may be organized into several phases, where each phase has
a specific purpose and only certain rules can be invoked in a given phase. For example, structure-
oriented approaches such as OptimalJ and the QVT submission by Interactive Objects and part-
ners*® have a separate phase to create the containment hierarchy of the target model and a separate
phase to set the attributes and references in the target (Section “Structure-Driven Approaches”).

Rule Scheduling

Rule Selection Rule Iteration

%I

0
Fixpoint
Iteration

Non- Conflict
Determinism | | Resolution

0
Implicit

Explicit

‘ Interactive
Condition

Explicit Recursion | | Looping

<

7 1

Figure 16: Rule scheduling
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Rule Organization

Rule organization is concerned with composing and structuring multiple transformation rules. We con-
sider three areas of variation in this context:

e Modularity Mechanisms. Some approaches, e.g., QVT, ATL, MTL, and VIATRA, allow packaging
rules into modules. A module can import another module to access its content.

e Reuse Mechanisms. Reuse mechanisms offer a way to define a rule based on one or more other rules.
In general, scheduling mechanisms, such as calling one rule from another, can be used to define
composite transformation rules; however, some approaches offer dedicated reuse mechanisms such as
inheritance between rules (e.g. rule inheritance,!® derivation,*® extension,?? and specialization 52),
inheritance between modules (e.g., unit inheritance®), and logical composition. 52

e Organizational Structure. Rules may be organized according to the structure of the source language
(as in attribute grammars, where actions are attached to the elements of the source language) or
the target language, or they may have their own independent organization. An example of the
organization according to the structure of the target is the QVT submission by Interactive Objects
and partners.?® In this approach, there is one rule for each target element type and the rules are
nested according to the containment hierarchy in the target metamodel. For example, if the target
language has a package construct in which classes can be nested, the rule for creating packages will
contain the rule for creating classes (which will contain rules for creating attributes and methods).

Source-Target Relationship

Some approaches, such as ATL, mandate the creation of a new target model that has to be separate
from the source. However, in-place transformation can be simulated in ATL through an automatic
copy mechanism. In some other approaches, such as VIATRA and AGG, source and target are always
the same model, i.e., they only support in-place update. Yet other approaches, e.g., QVT Relations
and MTF, allow creating a new model or updating an existing one. QVT Relations also support in-
place update. Furthermore, an approach could allow a destructive update of the existing target or an
update by extension only, i.e., where existing model elements cannot be removed. Approaches using non-
deterministic selection and fixpoint iteration scheduling (Section “Rule Scheduling”) may restrict in-place
update to extension in order to ensure termination. Alternatively, transformation rules may be organized
into an expansion phase followed by a contraction phase, which is often done in graph transformation
systems such as AGG.
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Incrementality
Incrementality involves three different features (see Figure 19):

e Target-incrementality. The basic feature of all incremental transformations is target-incrementality,
i.e., the ability to update existing target models based on changes in the source models. This basic
feature is also referred to as change propagation in the QVT final adopted specification.® Obviously,
target-incrementality corresponds to the feature update in Figure 18, but it is now seen from the
change-propagation perspective. A target-incremental transformation will create the target models
if they are missing on the first execution. A subsequent execution with the same source models as in
the previous execution has to detect that the needed target elements already exist. This detection
can be achieved, for example, using traceability links. When any of the source models are modified
and the transformation is executed again, the necessary changes to the target are determined and
applied. At the same time, the target elements that can be preserved are preserved.

e Source-incrementality. Source-incrementality is about minimizing the amount of source that needs
to be re-examined by a transformation when the source is changed. Source-incrementality corre-
sponds to incremental compilation: a change impact analysis determines the total set of source
modules that need to be recompiled based on the list of source modules that were changed. Source-
incrementality is useful when working with large source models.

e Preservation of user edits in the target. Practical scenarios in the context of model synchronization
require the ability to re-run a transformation on an existing user-modified target in order to re-
synchronize the target with a changed source while preserving the user edits in the target. The
dimensions of model synchronization such as the degree of preservation of user-provided input in the
target models, the degree of automation, and the frequency of triggering, are discussed elsewhere. >3

Directionality

Transformations may be unidirectional or multidirectional (see Figure 20). Unidirectional transformations
can be executed in one direction only, in which case a target model is computed (or updated) based
on a source model. Multidirectional transformations can be executed in multiple directions, which is
particularly useful in the context of model synchronization. Multidirectional transformations can be
achieved using multidirectional rules or by defining several separate complementary unidirectional rules,
one for each direction.

Transformation rules are usually designed to have a functional character: given some input in the
source model, they produce a concrete result in the target model. A declarative rule (i.e., one that
only uses declarative logic and/or patterns) can often be applied in the inverse direction, too. However,
since different inputs may lead to the same output, the inverse of a rule may not be a function. In this
case, the inversion could enumerate a number of possible solutions (this could theoretically be infinite),
or just establish a part of the result in a concrete way (because the part is the same for all solutions)
and use variables, defaults, or values already present in the result for the rest of it. The invertability
of a transformation depends not only on the invertability of the transformation rules, but also on the
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invertability of the scheduling logic. Inverting a set of rules may fail to produce any result due to
non-termination.

Tracing

Tracing can be understood as the runtime footprint of transformation execution. A common form of
trace information in model transformation are traceability links connecting source and target elements,
which are essentially instances of the mapping between the source and target domains. Traceability links
can be established by recoding the transformation rule and the source elements that were involved in
creating a given target element.

Trace information can be useful in performing impact analysis (i.e., analyzing how changing one
model would affect other related models), determining the target of a transformation as in model syn-
chronization, model-based debugging (i.e., mapping the stepwise execution of an implementation back to
its high-level model), and in debugging model transformations themselves.

Some approaches, such as QVT, ATL, and Tefkat, provide dedicated support for tracing. Even without
any dedicated support for tracing, as in the case of AGG, VIATRA and GReAT, tracing information can
always be created just as any other target elements.

Some approaches with dedicated support for tracing, such as Tefkat, require developers to manually
encode the creation of traceability links in the transformation rules, while other, such as QVT and ATL,
create traceability links automatically. In the case of automated support, the approach may still provide
some control over what gets recorded. In general, we might want to control (1) the kind of information
recorded, e.g., the links between source and target elements, the rules that created them, and a time
stamp for the creation; (2) the abstraction level of the recorded information, e.g., links for top-level
transformations only; and (3) the scope for which the information is recorded, e.g., tracing for particular
rules or parts of the source only. Finally, there is the choice of location where the links are stored, e.g.,
in the source and/or target, or separately.

Major Categories

At the top level, we distinguish between model-to-text and model-to-model transformation approaches.
The distinction between the two categories is that, while a model-to-model transformation creates its
target as an instance of the target metamodel, the target of a model-to-text transformation is just strings.
Model-to-text transformation corresponds to the concept of pretty printing in program transformation.

Model-to-text approaches are useful for generating both code and non-code artifacts such as docu-
ments. In general, we can view transforming models to code as a special case of model-to-model trans-
formations; we only need to provide a metamodel for the target programming language. However, for
practical reasons of reusing existing compiler technology and simplicity, code is often generated simply
as text, which is then fed into a compiler. OMG has issued an RFP for a MOF 2.0 Model-to-Text Trans-
formation Language in April 2004, which will eventually lead to a standard for mapping MOF-based
models to text.
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In the model-to-text category, we distinguish between visitor-based and template-based approaches.
In the model-to-model category, we distinguish among direct-manipulation, structure-driven, operational,
template-based, relational, graph-transformation-based, and hybrid approaches.

For completeness, we should also mention the concept of text-to-model transformation. Essentially,
this category comprises traditional parsing technologies, which are beyond the scope of this paper.

Model-To-Text Approaches
Visitor-Based Approaches

A very basic code generation approach consists in providing some visitor mechanism to traverse the
internal representation of a model and write text to a text stream. An example of this approach is
Jamda, which is an object-oriented framework providing a set of classes to represent UML models, an
API for manipulating models, and a visitor mechanism (so-called CodeWriters) to generate code. Jamda
does not support the MOF standard to define new metamodels; however, new model element types can
be introduced by subclassing the existing Java classes that represent the predefined model element types.

Template-Based Approaches

The majority of currently available MDA tools support template-based model-to-text generation, e.g.,
openArchitectureWare, JET, FUUT-je, Codagen Architect, AndroMDA, ArcStyler, MetaEdit+, and
OptimalJ. AndroMDA reuses existing open-source template-based generation technology: Velocity "
and XDoclet.” We have already shown an example of the template-based approach in Figure 7.

A template usually consists of the target text containing splices of metacode to access information from
the source and to perform code selection and iterative expansion (see Cleaveland?* for an introduction
to template-based code generation). According to our terminology, the LHS uses executable logic to
access source, and the RHS combines untyped, string patterns with executable logic for code selection
and iterative expansion. Furthermore, there is no clear syntactic separation between the LHS and RHS.
Template approaches usually offer user-defined scheduling in the internal form of calling a template from
within another one.

The LHS logic accessing the source model may have different forms. The logic could be simply Java
code accessing the API provided by the internal representation of the source model such as JMI, or it
could be declarative queries, e.g., in OCL or XPath®8. The openArchitectureWare Generator Framework
propagates the idea of separating more complex source access logic, which might need to navigate and
gather information from different places of the source model, from templates by moving the logic into
user-defined operations of the source-model elements.

Compared to a visitor-based transformation, the structure of a template resembles more closely the
code to be generated. Templates lend themselves to iterative development as they can be easily derived
from examples. Since the template approaches discussed in this section operate on text, the patterns
they contain are untyped and can represent syntactically or semantically incorrect code fragments. On
the other hand, textual templates are independent of the target language and simplify the generation of
any textual artifacts, including documentation.

A related technology is frame processing, which extends templates with more sophisticated adaptation
and structuring mechanisms (Bassett’s frames, !> XVCL,*® XFramer,3” ANGIE?%). To our knowledge,
XFramer and ANGIE have been applied to generate code from models.

Model-To-Model Approaches
Direct-Manipulation Approaches

These approaches offer an internal model representation plus some API to manipulate it, such as JMI.
They are usually implemented as an object-oriented framework, which may also provide some minimal
infrastructure to organize the transformations (e.g., abstract class for transformations). However, users
have to usually implement transformation rules, scheduling, tracing, and other facilities, mostly from
scratch in a programming language such as Java.
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Structure-Driven Approaches

Approaches in this category have two distinct phases: the first phase is concerned with creating the
hierarchical structure of the target model, whereas the second phase sets the attributes and references
in the target. The overall framework determines the scheduling and application strategy; users are only
concerned with providing the transformation rules.

An example of the structure-driven approach is the model-to-model transformation framework pro-
vided by OptimalJ. The framework is implemented in Java and provides so-called incremental copiers
that users have to subclass to define their own transformation rules. The basic metaphor is the idea of
copying model elements from the source to the target, which then can be adapted to achieve the desired
transformation effect. The framework uses reflection to provide a declarative interface. A transformation
rule is implemented as a method with an input parameter whose type determines the source type of the
rule, and the method returns a Java object representing the class of the target model element. Rules are
not allowed to have side effects and scheduling is completely determined by the framework.

Another structure-driven approach is the QVT submission by Interactive Objects and Project Tech-
nology*®. A special property of this approach is the target-oriented rule organization, where there is one
rule per target element type and the nesting of the rules corresponds to the containment hierarchy in the
target metamodel. The execution of this model can be viewed as a top-down configuration of the target
model.

Operational Approaches

This category groups approaches that are similar to direct manipulation but offer more dedicated support
for model transformation. A typical solution in this category is to extend the utilized metamodeling
formalism with facilities for expressing computations. An example would be to extend a query language
such as OCL with imperative constructs. The combination of MOF with such extended executable OCL
becomes a fully-fledged object-oriented programming system. Examples of systems in this category are
QVT Operational mappings, XMF-Mosaic’s executable MOF, MTL, and Kermeta. Specialized facilities
such as tracing may be offered through dedicated libraries.

Figure 22 shows our sample transformation from class models to schemas expressed in the QVT
Operational language. In contrast to the QVT Relations solution from Figure 4, the transformation
declaration specifies the parameter modes, i.e., the transformation is executed only in one direction from
uml to rdbms. The entry point for the execution is the function main(), which invokes the mapping
packageToSchema on all packages and then the mapping attributeToColumn on all attributes contained
in the input model uml. The mappings are defined using an imperative extension of OCL. A mapping is
defined as an operation on a model element. For example, packageToSchema is an operation of Package
with Schema as its return type. The body of the mapping populates the properties of the return object,
while self refers to the object on which the mapping was invoked. QVT Operations is a quite feature-rich
language. The interested reader is invited to explore the QVT specification document.

Template-Based Approaches

Model templates are models with embedded metacode computing the variable parts of the resulting
template instances. Model templates are usually expressed in the concrete syntax of the target language,
which helps the developer to predict the result of template instantiation.

The metacode can have the form of annotations on model elements. Typical annotations are condi-
tions, iterations, and expressions, all being part of the metalanguage. An obvious choice for an expression
language to be used in the metalanguage is OCL.

A concrete model-template approach is given by Czarnecki and Antkiewicz.3" In that approach, a
template of a UML model, such as class or activity diagram, is created by annotating model elements with
conditions and/or expressions represented as stereotypes. A very simple example is shown in Figure 23,
which reuses the class model from Figure 3(a). This time, however, the model is rendered using its UML
concrete syntax. The class Address and the addr attribute of Customer are annotated with the presence
condition addrFeature. When the template is instantiated with addrFeature being true, the resulting
model is the same as the template. If the condition is false, the annotated elements, which are lightly
colored, are removed.
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transformation umlRdbms (
in uml : SimpleUML,
out rdbms : SimpleRDBMS
);

main() {
uml.objects0fType (Package)->map packageToSchema() ;
uml.objectsO0fType (Attribute)->map attributeToColumn() ;
}

mapping Package: :packageToSchema () : Schema {
-- population section for the schema
name := self.name;
tbls := self.elems->map classToTable();

¥

mapping Class::classToTable () : Table
when { self.isPersistent=true; } {

name := self.name;

key := object Column {
name := self.name + ’_tid’;
type := ’NUMBER’;

cols := key;

¥
mapping Attributes::attributeToColumn () : Column {

}

Figure 22: Transformation expressed in QVT operational language

App

<<addrFeature>>
Address
{isPersistent=false}

Customer
{isPersistent=true}

name: String
addln: String
<<addrFeature>>addr: Address

Figure 23: Example of a model template

Relational Approaches

This category groups declarative approaches where the main concept is mathematical relations. In gen-
eral, relational approaches can be seen as a form of constraint solving. Examples of relational approaches
are QVT Relations, MTF, Kent Model Transfomation Language, Tefkat, AMW, and mappings in XMF-
Mosaic.

The basic idea is to specify the relations among source and target element types using constraints. In
its pure form, such a specification is non-executable (e.g., relations, %!! and mapping rules!?). However,
declarative constraints can be given executable semantics, such as in logic programming. In fact, logic
programming with its unification-based matching, search, and backtracking seems a natural choice to
implement the relational approach, where predicates can be used to describe the relations. Gerber
et al.*? explore the application of logic programming, in particular Mercury, a typed dialect of Prolog,
and F-logic, an object-oriented logic paradigm, to implement transformations. We have already shown
an example of the relational approach in Figure 4.

All of the relational approaches are side-effect-free and, in contrast to the imperative direct ma-
nipulation approaches, create target elements implicitly. Relational approaches can naturally support
multidirectional rules. They sometimes also provide backtracking. Most relational approaches require
strict separation between source and target models, i.e., they do not allow in-place update.
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Graph-Transformation-Based Approaches

This category of model transformation approaches draws on the theoretical work on graph transforma-
tions. In particular, these approaches operate on typed, attributed, labeled graphs,'* which can be
thought of as a formal representation of simplified class models. Examples of model transformation
approaches based on graph transformations include AGG, AToM?, VIATRA, GReAT, UMLX, BOTL,
MOLA, and Fujaba.

Graph transformation rules have a LHS graph pattern and a RHS graph pattern. The LHS pattern
is matched in the model being transformed and replaced by the RHS pattern in place. The LHS often
contains conditions in addition to the LHS pattern, e.g., negative conditions. Some additional logic, e.g.,
in string and numeric domains, is needed in order to compute target attribute values such as element
names. GReAT offers an extended form of patterns with multiplicities on edges and nodes.

The graph patterns can be rendered in the concrete syntax of their respective source or target language
(e.g., in VIATRA) or in the MOF abstract syntax (e.g., in BOTL and AGG). The advantage of the
concrete syntax is that it is more familiar to developers working with a given modeling language than
the abstract syntax. Also, for complex languages like UML, patterns in a concrete syntax tend to be
much more concise than patterns in the corresponding abstract syntax (see the work by Marschall and
Braun®® for examples). On the other hand, it is easy to provide a default rendering for abstract syntax
that will work for any metamodel, which is useful when no specialized concrete syntax is available.

AGG and AToM? are systems directly implementing the theoretical approach to attributed graphs
and transformations on such graphs. They have built-in fixpoint scheduling with non-deterministic rule
selection and concurrent application to all matching locations, and they rely on implicit scheduling by
the user. The transformation rules are unidirectional and in-place.

Figure 24 illustrates how the transformation from class models to schemas can be expressed in AGG.
Ounly two rules are shown. The rule in Figure 24(a) maps packages to schemas. The mapping from
classes to tables is given in Figure 24(b). The mapping of attributes to columns is not shown. The
RHS of an AGG rule contains a mixture of elements from the LHS, as indicated by the indices prefixing
their names, and new elements. When the LHS is matched, the new elements are created. The implicit
scheduling is achieved through correspondence objects connecting source and target elements (which are
an example of intermediate structures) and negative conditions. For example, the package-to-schema
rule matches packages and creates the corresponding schemas plus the correspondence objects of P2S.
Each rule has a negative application condition, which is implicitly assumed to be its RHS. Thanks to the
negative application condition, no additional schema objects will be created for a package that is already
connected to a schema by a P2S object.

1:Package 1:Package

Src

tar

(a) Package-to-schema rule

Column

name = cn+’_tid’

type ="NUMBER’
cols pkey
1:Class 1:Class Table
name = cn E— name = cn e Cc2T a name = cn
isPersistent = true isPersistent = true

2:Package <src 3:P2S tar> 4:Schema 2:Package <src 3-P2S tar> 4:Schema

(b) Class-to-table rule

Figure 24: Graph transformation in AGG
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Figure 25: Graph transformation in MOLA

Systems such as VIATRA, GReAT, MOLA, and Fujaba extend the basic flavor of AGG and AToM3
by adding explicit scheduling. For example, VIATRA users can build state machines to schedule trans-
formation rules. The explicit representation of scheduling in GReAT is a data-flow graph. MOLA and
Fujaba use control-flow graphs for that purpose.

The class-model-to-schema transformation expressed in MOLA is shown in Figure 25. Each enclosing
rectangular box represent a looping construct. Boxes with rounded corners represent looping conditions.
The elements to be matched are drawn using solid line; dashed line is used for the elements to be created.
The top condition matches package objects. When a package object is matched, the corresponding schema
is created and the body of the loop, which is another loop, is executed. The latter loop iterates over
all classes in the package that was matched in the current iteration of the outer loop and creates the
corresponding classes and primary-key columns. The final step is a call to ProcessClassAtributes,
which is a subprogram mapping attributes to columns.

Relational-style, multidirectional approaches based on graph transformations are also possible. For
example, Kénigs®® discusses using a transformation approach based on triple-graph grammars to simulate
QVT Relations.

Hybrid Approaches

Hybrid approaches combine different techniques from the previous categories. The different approaches
can be combined as separate components or, in a more fine-grained fashion, at the level of individual
rules. QVT is an example of a hybrid approach with three separate components, namely Relations,
Operational mappings, and Core. Examples of the fine-grained combination are ATL and YATL.

A transformation rule in ATL may be fully declarative, hybrid, or fully imperative. The LHS of a
fully declarative rule (so-called source pattern) consists of a set of syntactically typed variables with an
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optional OCL constraint as a filter or navigation logic. The RHS of a fully declarative rule (so-called
target pattern) contains a set of variables and some declarative logic to bind the values of the attributes
in the target elements. In a hybrid rule, the source and/or target pattern are complemented with a
block of imperative logic, which is run after the application of the target pattern. A fully imperative rule
(so-called procedure) has a name, a set of formal parameters, and an imperative block, but no patterns.
Rules are unidirectional and support rule inheritance.

Other Approaches

At least two more approaches should be mentioned for completeness: transformation implemented using
XSLT® and the application of metaprogramming to model transformation.

Since models can be serialized as XML using the XML Metadata Interchange (XMI),® implement-
ing model transformations using XSLT, which is a standard technology for transforming XML, seems
very attractive. Such an approach can be classified as term rewriting using a functional language. Un-
fortunately, using XMI and XSLT has severe scalability limitations. Manual implementation of model
transformations in XSLT quickly leads to non-maintainable implementations because of the verbosity and
poor readability of XMI and XSLT. A solution to overcome this problem is to generate the XSLT rules
from some more declarative rule descriptions, as demonstrated in the work by Peltier et al.%”,% How-
ever, even this approach suffers from poor efficiency because of the copying required by the pass-by-value
semantics of XSLT and the poor compactness of XMI.

A more promising direction in applying traditional metaprogramming techniques to model transforma-
tions has been proposed by Tratt.”™ His solution is a domain-specific language for model transformations
embedded in a metaprogramming language.

Discussion

In this section, we offer some comments on the practical applicability of the different flavors of model
transformation. These comments are based on our intuition and the application examples published
together with the approaches. Because of the lack of controlled experiments and extensive practical
experience, these comments are not fully validated, but we hope that they will stimulate discussion and
further evaluation.

e Direct manipulation is obviously the most low-level approach. In its basic form, it offers the user
little or no support or guidance in implementing transformations. Esentially, all work has to be
done by the user. The appoach can be improved by adding specialized libraries and frameworks
implementing facilities such as pattern matching and tracing. Operational approaches are similar
to direct ones except that they offer an executable metamodeling formalism through a dedicated
language. Providing specialized facilites through libraries and frameworks seems to be an attractive
way to improve the support for model transformations in an evolutionary way.

e The structure-driven category groups pragmatic approaches that were developed in the context of
(and seem particularly well applicable to) certain kinds of applications such as generating EJB im-
plementations and database schemas from UML models. These applications require strong support
for transforming models with a 1-to-1 and 1-to-n (and sometimes n-to-1) correspondence between
source and target elements. Also, in this application context, there is typically no need for iteration
(and in particular fixpointing) in scheduling, which can be system-defined. It is unclear how well
these approaches can support other kinds of applications.

e Template-based approaches make it easy for the developer to predict the resulting code or models
just by looking at the templates. They also support iterative development in which the developer can
start with a sample model or code and turn it into a template. Current template-based approaches
do not have bult-in support for tracing, although trace information can be easily encoded in the
templates. Templates are particularly useful in code generation and model compilation scenarios.

e Relational approaches seem to strike a good balance between flexibility and declarative expression.
They can provide multidirectionality and different forms of incrementallity, including the update of
a manually modified target. On the other hand, their power is contingent on the sophistication of
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the underlying constraint solving facilities. As a result, performance strongly depends on the kind
of constraints that need to be solved, which may limit their applicability. In any case, relational
approaches seem to be most applicable to model synchronization scenarios.

e Graph-transformation-based approaches are inspired by theoretical work in graph transformations.
In their pure form, graph transformations are declarative and also seem intuitive; however, the
usual fixpoint scheduling with concurrent application makes them rather difficult to use due to the
possible lack of confluence and termination. Existing theories for detecting such problems are not
general enough to cover the wide range of transformations found in practice. As a result, tools such
as GReAT, VIATRA and MOLA provide mechanisms for explicit scheduling. It is often argued that
graph transformations are a natural choice for model transformations because models are graphs. As
Batory points out, !¢ there are plenty examples of graph structures in practice, including the objects
in a Java program, whose processing is usually not understood as graph transformations. In our
opinion, a particular weakness of existing graph transformation theories and tools is that they do not
consider ordered graphs, i.e., graphs with ordered edges. As a consequence, they are applicable to
models that contain predominantly unordered collections, such as class diagrams with classes having
unordered collections of attributes and methods. However, they are not well applicable to method
bodies, where ordering is important, such as in a list of statements. Ordering can be represented
by additional edges, but this approach leades to more complex transformations. It is interesting to
note that ordering is well handled by classical program transformation, which uses term rewriting
on abstract syntax trees (ASTs). Terms and ASTs are ordered trees and the order of child nodes
is used to encode lists of program elements such statements. Nevertheless, graph trasformation
theory might turn out to be useful for ensuring correctness in some application scenarios. Fujaba
is probably the largest and most significant example of applying graph transformations to models
to date. It remains to be seen what impact these approaches will have on systems used in practice.

e Hybrid approaches allow the user to mix and match different concepts and paradigms depending
on the application. Given the wide range of practical scenarios, a comprehensive approach is likely
to be hybrid. A point in case is the QVT specification, which also offers a hybrid solution.

Related Work

The feature model and categorization presented in this paper is based on our earlier paper.3? The previous
feature model has been widely discussed in workshops and in personal communications. It has also been
used by other authors. For example, Jouault and Kurtev®? give a classification of ATL and AMW using
the earlier version of the model.

The current feature model and categories take into account the feedback that we have received based
on the original paper. They were also revised to cover approaches that were proposed after 2003, most
prominently the final adopted QVT specification. Introducing domains into transformation rules was
one of the most important changes to the feature model based on that specification. Only five out of
the fourteen presented feature diagrams remained unchanged compared to the original model, namely
those in Figures 11, 13, 15, 16, and 17. We also added two new categories of model-to-model approaches,
namely operational and template-based approaches.

In their review of the different QVT submissions, Gardner et a propose a unified terminology to
enable a comparison of the different proposals. Since their scope of comparison is considerably different
from ours, there is not much overlap in terminology. While Gardner et al. focus on the 8 initial QVT
submissions, we discuss a wider range of approaches: in addition to the revised QVT submissions, we
also discuss other approaches published in the literature and available in tools. Another difference is that
Gardner et al. discuss model queries, views, and transformations, whereas we focus on transformations
in more detail. The terms defined by Gardner et al. that are also relevant for our classification are model
transformation, unidirectional, bidirectional, declarative, imperative, and rules.

In addition to providing the basic unifying terminology, Gardner et al. discuss practical requirements
on model transformations such as requirements scalability, simplicity, and ease of adoption. Among oth-
ers, they discuss the need to handle transformation scenarios of different complexities, such as transfor-
mations with different origin relationships between source and target model elements, e.g., 1-to-1, 1-to-n,
n-to-1, and n-to-m. Finally, they make some recommendations for the final QVT standard. In particular,
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they recommend a hybrid approach, supporting declarative specification of simpler transformations, but
also allowing for an imperative implementation of more complex ones.

Another account of requirements for model transformation approaches is given by Sendall and Koza-
czynski. 6

Mens and Van Gorp®? have also proposed a classification of model transformations, which they apply
to graph transformation systems.% That work has been significantly influenced by our earlier classifi-
cation. The main difference is that their classification is broader as it also covers different aspects of
model transformation tools such as usability, extensibility, interoperability, and standards. In contrast,
our feature model offers a more detailed treatment of model transformation approaches. Another differ-
ence is that Mens and Van Gorp present a flat list of dimensions, whereas our dimensions are organized
hierarchically.

An extensive comparison of graph transformation approaches using a common example is given by
Taentzer et al.”®

Conclusions

Model transformation is a relatively young area. Although it is related to and builds upon the more estab-
lished fields of program transformation and metaprogramming, the use of graphical modeling languages
and the application of object-oriented metamodeling to language definitions set a new context.

In this paper, we presented a feature model offering a terminology for describing model transformation
approaches and making the different design choices for such approaches explicit. We also surveyed and
classified existing approaches into visitor-based and template-based model-to-text categories and direct-
manipulation, structure-driven, operational, template-based, relational, graph-transformation-based, and
hybrid model-to-model categories.

While there are satisfactory solutions for transforming models to text (such as template-based ap-
proaches), this is not the case for transforming models to models. Many new approaches to model-to-
model transformation have been proposed over the last two years, but little experience is available to
assess their effectiveness in practical applications. In this respect, we are still at the stage of exploring
possibilities and eliciting requirements. Modeling tools available on the market are just starting to offer
some model-to-model transformation capabilities, but these are still very limited and often ad hoc, i.e.,
without proper theoretical foundation.

Evaluation of the different design options for a model transformation approach will require more
experiments and practical experience.
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