
Mapping Features to Models: A Template

Approach Based on Superimposed Variants

Krzysztof Czarnecki and Micha l Antkiewicz

University of Waterloo, Canada

Abstract. Although a feature model can represent commonalities and
variabilities in a very concise taxonomic form, features in a feature model
are merely symbols. Mapping features to other models, such as behavioral
or data specifications, gives them semantics. In this paper, we propose a
general template-based approach for mapping feature models to concise
representations of variability in different kinds of other models. We show
how the approach can be applied to UML 2.0 activity and class models
and describe a prototype implementation.

1 Introduction

Feature modeling is an important method and notation to elicit and represent
common and variable features of the systems in a product line. It can be used at
any level of abstraction, including requirements, architecture and design, compo-
nents, and platforms; for any kind of artifacts, such as code, models, documen-
tation; and in all stages of product-line engineering. At an early stage, feature
modeling enables product-line scoping, i.e., deciding which features should be
supported by a product line and which should not. In design, the points and
ranges of variation captured in feature models need to be mapped to a common
product-line architecture. Furthermore, feature models allow us to scope and de-
rive domain-specific languages, which are used to specify product-line members
in generative software development [1–3]. Finally, feature models are also useful
in product development as a basis for estimating development cost and effort,
and automated or manual product derivation.

Although a feature model can represent commonalities and variabilities in a
very concise taxonomic form, features in a feature model are merely symbols.
Mapping features to other models, such as behavioral or data specifications,
gives them semantics. In this paper, we propose a general approach for map-
ping feature models to concise representations of variability in different kinds of
other models. In contrast to variability approaches in which separate model frag-
ments corresponding to different features are composed, our approach presents
the modeler with a model representing a superimposition of all variants whose
elements are related to the corresponding features through annotations. We ar-
gue that this approach is particularly desirable at the requirements level, as it
directly shows the impact of selecting a given feature on the resulting model.
The proposed approach is general; it works for any model whose metamodel is

expressed in the Meta-Object Facility (MOF) [4] or a comparable modeling for-
malism, and it can be easily incorporated into an existing model editor. We give
the details of our approach for mapping feature models to UML 2.0 activity dia-
grams and indicate how it can be applied to other kinds of models. We describe
a prototype implementation of our approach. The sample models presented in
this paper are taken from a large model of an e-commerce platform, which we
used to test our approach.

The remainder of the paper is organized as follows. Section 2 reviews back-
ground concepts and related work on feature modeling. Next we describe the
idea in sections 3 and 4. Section 5 presents the details of template instantiation
algorithm. We describe the implementation of the prototype in section 6. We
discuss related work in section 7 and conclude the paper in section 8.

2 Background: Feature Modeling

Feature modeling was originally proposed as part of the Feature-Oriented Do-
main Analysis (FODA) method [5], and since then, it has been applied in a
range of business and technical domains (see [6] for list of applications with refer-
ences). In this work, we use cardinality-based feature modeling [7], which extends
the original feature modeling from FODA with feature and group cardinalities,
feature attributes, feature diagram references, and user-defined annotations.

A feature is a system property that is relevant to some stakeholder and is
used to capture commonalities or discriminate among systems in a family [1].
Features are organized in feature diagrams. A feature diagram is a tree with the
root representing a concept (e.g., a software system) and its descendant nodes
being features. A feature model consists of one or more feature diagrams plus
additional information such as feature descriptions, global constraints, binding
times, priorities, stakeholders, etc.

Figure 1(a) presents a small excerpt from a feature model describing a fam-
ily of online business-to-consumer (B2C) solutions; the entire model has over
350 features. The model contains one feature diagram, with eCommerce as its
root feature. The root feature has two solitary subfeatures: Storefront and
BusinessManagement. The symbol indicates that Storefront has a feature
cardinality of [1..1]. Feature cardinality is an interval denoting how often a fea-
ture with its subfeatures can be cloned as a child of its parent when specifying
a concrete system. The cardinality of [1..1] indicates that a feature must ex-
ist at least and at most once. On the other hand, the symbol indicates that
WishLists is an optional feature with cardinality [0..1]. Available checkout types
Registered and Guest, are members of a feature group. The group symbol
indicates group cardinality 〈1– k〉, where k is the group size. Thus available
checkout types can be any non-empty subset of the two checkout types. Grouped

features are indicated by the symbol .
One can specify additional constraints such as requires or excludes. For exam-

ple, the feature PersistentBetweenSessions requires the system to implement
Registration because a wish list is stored in a customer’s account. Also, check-

(a) Online B2C Feature Model (b) Feature configuration

Fig. 1. Sample online B2C feature model and its feature configuration

out type Registered requires feature Registration to be selected. In general,
additional constraints in cardinality-based feature models require tree-oriented
navigation and query facilities, and may involve logic, arithmetic, string, and
set operators on feature attributes and feature sets. Such constraints can be
adequately expressed using XPath 2.0 [8].

Semantically, a feature model describes a set of all possible valid configura-

tions [7]. Figure 1(b) presents a sample configuration of the online B2C feature
model. A configuration specifies a concrete system. In this example, checkout
for registered customers is the only available checkout type, the catalog is sub-
divided into categories, a product can be classified in multiple categories, the
catalog contains only electronic goods, etc.

3 Basic Idea: Superimposed Variants

An overview of our approach is shown in Figure 2. A model family is represented
by a feature model and a model template. The feature model defines a hierarchy
of features together with the constraints on their possible configurations. The
model template contains the union of the model elements in all valid template

instances. The set of the valid template instances corresponds to the extent of
the model family. The model template is itself a model expressed in the same
target notation as the template instances. For example if we want to represent
a family of UML activity models, both the model template and the template
instances will be expressed using the UML activity modeling notation. The ele-
ments of a model template may be annotated using presence conditions (PCs)
and meta-expressions (MEs). These annotations are defined in terms of features
and feature attributes from the feature model, and can be evaluated with respect
to a feature configuration. A PC attached to a model element indicates whether
the element should be present in or removed from a template instance. MEs are
used to compute attributes of model elements, such as the name of an element
or the return type of an operation.

Manual configuration process

Feature model

Feature configuration

Refers to features
through annotations

Automatic template instantiation

conditions and meta−expressions
− Evaluation of presence

− Element removal
− Post−processing

Template instance

Model template
expressed in target notation and annotated

with presence conditions and meta−expressions

Fig. 2. Overview of the approach

An instance of a model family can be specified by creating a feature configu-
ration based on the feature model. Based on the feature configuration, the model
template is instantiated automatically. The instantiation process is a model-to-

model transformation with both the input and output expressed in the target
notation. It involves evaluating the PCs and MEs with respect to the feature con-
figuration, removing model elements whose PCs evaluate to false and, possibly,
additional processing such as simplification (Section 5).

A particularly useful form of PCs are Boolean formulas over the set of vari-
ables, where each variable corresponds to a feature from the feature model. Given

a feature configuration, the value of a given Boolean variable is true if and only
if the corresponding feature is included in the feature configuration.

As an example, consider the UML activity diagram in Figure 3(a), which
models the top-level activity of a storefront. This diagram is a template since
elements relevant to features WishLists, SendWishList and Registration have
been annotated with their PCs. The annotations are rendered using a coloring
scheme in which each different PC is assigned a different color.1 In this simple
example, each PC consists of a single variable corresponding to a single feature.
Figure 3(b) shows a template instance created based on the feature configuration
from Figure 1(b). PCs corresponding to feature SendWishList, which is not
included in the configuration, evaluated to false and the annotated elements
were removed from the template.

RegisterWithTheStore

CreateWishList

choose activity

SendWishList

OrderProduct

Presence conditions:

...

SendWishList

Registration

true

WishLists

1

1

1

2

1

2

3

2

2

3

3

3

[create wish

list]
[register]

[send wish

list]

[order

product]

(a) Storefront template

RegisterWithTheStore

CreateWishList

choose activity

OrderProduct

...

[register]
[create wish

list]
[order

product]

(b) Storefront instance

Fig. 3. Sample template activity diagram and its instance

It is important to note that PCs are interpreted locally with respect to con-
tainment hierarchies defined in the metamodel of the target notation. In other
words, a PC on an element controls the presence of that element only with re-
spect to its container; if the container is removed, all contained elements are
also removed, regardless of their PCs. For that reason, we did not have to anno-
tate the guards on flows in Figure 3(a) because they are contained in the flows
according to the UML metamodel.

More complex PCs can be expressed using XPath [9]. Such conditions can
access feature attributes, count the number of feature clones in a configuration,

1 The colors are assigned per diagram, and the number of colors needed is limited
since diagrams are usually split such that each diagram can fit on the computer
screen. Note that colors in this paper are indexed in order for the annotations to be
readable in black and white.

and use other XPath operations, as long as the XPath expression evaluates to
a Boolean value. If necessary, XPath can be easily extended with user-defined
functions.

MEs may be used to compute attributes of basic types, as well as references
to model elements. In this paper, we only consider computing references to al-
ready existing elements. MEs can be expressed using XPath. As an example,
consider the activity diagram fragment in Figure 4. The type of the input pin
of action DisplayProducts is set to b2cSoln::Category or b2cSoln::Catalog
depending on the presence of the Categories feature in the feature configura-
tion.

Customer

select category

...

go to catalog1

1

1

2

2

 2

DisplayProducts

if (//Categories)
then "b2cSoln::Category"
else "b2cSoln::Catalog

System
Presence conditions:

!Categories

Categories 1

2

Fig. 4. Example of a type meta-expression

Product

−String weight

−String name
−float price

−...

Category

Catalog

Asset

Categories & !MultipleClassification

MultipleClassification | !Categories

MultipleClassification

Presence conditions:

AssociatedAssets

PhysicalGoods

true

Categories

MultiLevel

1

1

1

3

2

2

7

6

5

3

3

4

6

5

7

4

−product

−associatedAssets

*

−categories−products 1..*

−superCategory

−subCategories*

*

−products

−products
*

−categories
*

Fig. 5. Example of annotated class diagram

Figure 5 shows an annotated class diagram. Class Category is present in a
template instance if the feature Categories is selected. Feature MultiLevel im-
plies a containment hierarchy for Category. MultipleClassification implies
that Products can be classified under multiple categories. AssociatedAssets

implies the class Asset, which can be used for storing documents such as techni-
cal specifications and manuals and other media. Finally, PhysicalGoods implies
the attribute weight in Product.

The realization of our approach for a given target notation involves the fol-
lowing steps:

1. decide on the form of PCs and MEs, for example Boolean formulas and/or
XPath expressions;

2. decide on implicit PCs. Model elements that are not explicitly annotated by
the user will have implicit PCs; implicit PCs will be explained shortly;

3. decide on the annotation mechanism and rendering options for the annota-
tions, e.g., if the target notation is UML, the annotations can be realized as
stereotypes; rendering options include labels, icons, and/or coloring;

4. decide on additional processing.

Steps 2–4 depend on the target notation. In the following sections, we will demon-
strate details for UML activity diagrams as a target notation. 2

4 Implicit Presence Conditions

When an element has not been explicitly assigned a PC by the user, an implicit
PC (IPC) is assumed. In general, assuming a PC of true is a simple choice
which is mostly adequate in practice; however, sometimes a more useful IPC for
an element of a given type can be provided based on the presence conditions
of other elements and the syntax and semantics of the target notation. For
example, according to UML syntax, a binary association requires a classifier
at each of its ends. Thus, a reasonable choice of IPC for a binary association
would be the conjunction of the PCs of both classifiers. This way, removing any
of the classifiers will also lead to the removal of the association. IPCs reduce
the necessary annotation effort of the user. For example, given the IPC for
associations as described, the association between Product and Asset in Figure
5 does not need to be annotated explicitly.

Table 1 shows our choice of IPCs for UML class and activity model elements.
An IPC for a given element is assumed based on its type. In order to determine
the IPC for a given model element, we look up the closest matching supertype
in Table 1 and take the corresponding IPC. For example, the IPC for instances
of Class and Action is true because their closest matching type in Table 1
is Element. Since ActivityFinalNode and FlowFinalNode are subclasses of
FinalNode according to the UML metamodel, the IPC for ActivityFinalNode
and FlowFinalNode is the same as for FinalNode in Table 1.

The choice of IPCs in Table 1 reflects the cardinality and other integrity
constraints specified in the UML metamodel. For class models, the IPC for all
elements except relationships is true. In the case of generalization, which is a

2 For simplicity, we limit ourselves to the intermediate level of activity diagrams as
defined in the UML Superstructure document [10].

Table 1. Implicit presence conditions for UML class and activity model elements

Model

kind

Element type Implicit presence conditiona

General Element true

Class Generalization Conjunction of the PCs of the general and specific classifiers

Dependency true iff at least one client element’s PC evaluates to true and at
least one supplier element’s PC evaluates to true

Association true iff two or more memberEnd properties such that each has a
classifier with PCs evaluating to true as its type

Activity InitialNode Disjunction of the PCs of all outgoing flows

FinalNode Disjunction of the PCs of all incoming flows

DecisionNode and
ForkNode

true iff exactly one incoming flow’s PC evaluates to true and one
or more outgoing flows’ PCs evaluate to true

MergeNode and
JoinNode

true iff exactly one outgoing flow’s PC evaluates to true and one
or more incoming flows’ PCs evaluate to true

CentralBufferNode Disjunction of the PCs of all incoming and outgoing flows

CallOperationAction true iff accumulated PC of the called operation evaluates to true

CallBehaviorAction true iff accumulated PC of the called behavior evaluates to true

a PC stands for presence condition (both explicit or implicit). Names in typewriter font (except
true) refer to properties of the corresponding element.

binary relationship, the IPC reflects the fact that such a relationship can exist in
a template instance only if the classifiers at both ends of the relationship are also
present in the template instance. The IPCs for dependencies and associations
need to handle the more general case of n-ary relationships. For activity models,
the IPC for all elements except control nodes, central buffer node, and call actions
is true. Control nodes have to have at least one incoming flow and/or at least
one outgoing flow in an instance as specified in the metamodel. Central buffer
has to have at least one incoming flow or outgoing flow. Finally, the target of
call actions has to be present.

Control nodes are not intended to be annotated with PCs explicitly since
their IPCs will always be adequate. This is not true for relationships in class
models because we might want to remove a relationship in a template instance
even if the elements the relationship connects are not removed.

IPCs for call actions relfect the fact that removal of the target should also
force removal of all actions calling it. Accumulated PC of an element is true iff
PCs of all parents of that element evaluate to true.

5 Template Instantiation

A simple and general template instantiation process involves computing MEs
and removing elements whose PCs are false; however, the general process can
be specialized for a given notation with some additional processing steps, which
allow expressing templates in that notation more compactly. We have identified
two categories of such additional steps: patch application and simplification. A
patch is a transformation that automatically fixes a problem which may result

from removing elements. It is defined for situations in which there exists a unique
and intuitive solution to a problem created by element removal.

Simplification involves removing elements that have become redundant after
removing other elements. In the case of activity models, we found it useful to
provide automatic flow closure as a patch and removal of redundant control nodes

for simplification, which will be explained later.

ApplyShipping

Costs

ApplyShipping

Costs

HandleItem

Availability

HandleItem

Availability

Apply

Discounts

Apply

Discounts

!InventoryTracking & !PhysicalGoods

InventoryTracking & !PhysicalGoods

!InventoryTracking & PhysicalGoods

InventoryTracking & PhysicalGoods

Presence conditions:

InventoryTracking

PhysicalGoods

true

2

4

3

1

6

5

1

1

1

5

3

6

4

2

2

2

Fig. 6. Model templates with two optional actions without and with automatic flow
closure

The motivating example for automatic flow closure is presented in Figure 6.
The two actions HandleItemAvailability and ApplyShippingCosts are optional
and implement features InventoryTracking and PhysicalGoods, respectively.
The top part of the figure presents how the two optional actions would have to
be modeled without automatic flow closure. The bottom part contains the same
fragment expressed in a natural way thanks to the automatic flow closure. The
latter ensures that after removing an optional action the still remaining incoming
flow and outgoing flow will be closed. If desired, the closure can be prevented by
the user by annotating the flows such that they are removed together with the
action. It is easy to see that, without flow closure, the number of flows needed in
a chain of optional actions grows exponentially with the number of the actions.3

The complete template instantiation algorithm can be summarized as follows:

1. Evaluation of MEs and explicit PCs. The evaluation is done while travers-
ing the element containment hierarchy in the template in depth-first order.
Children of elements whose PCs evaluate to false are not visited because
they will be removed.

2. Removal analysis. Removal analysis involves computing IPCs and informa-
tion required for patch application, if any. The IPCs in Table 1 can be com-
puted in a single additional pass after computing the explicit PCs; however,

3 It is interesting to note that removing an optional action from a sequence of actions in
an activity model corresponds to removing an optional statement from a statement
list in a textual language, e.g., when the C preprocessor removes a statement within
#ifdef and #endif in a C program. In the latter case, however, flow closure happens
naturally without the need for any additional processing.

a different choice of IPCs could require multiple iterations. Furthermore,
given the IPCs in Table 1, the necessary analysis for automatic flow closure
can be performed separately after the IPCs are computed. Again, depending
on the choice of IPCs and patches, such separation may not be possible.

3. Element removal and patch application. In this step, elements whose PCs
are false are removed and patches, if any, are applied. Application of a patch
depends on its type and can be performed before or after removal.

4. Simplification. Simplification is performed at last.

5.1 Template Instantiation for Activity Diagrams

The removal analysis for activity diagrams identifies situations where flows in-
terrupted by removed elements can be closed. The identification is performed
during removal analysis after all IPCs have been computed and proceeds as fol-
lows. Let F be the set of elements contained in an activity whose PCs (both
explicit and implicit) evaluated to false. We partition F into a set of regions R

such that elements in each region are connected, but no two elements from two
different regions are connected. Furthermore, let Ar be a set of flows adjacent

to the region r.
A region r is said to be closable iff

1. there is exactly one incoming and exactly one outgoing adjacent flow,4 i.e.,
Ar = {i, o} ∧ target(i) ∈ r ∧ source(o) ∈ r

2. there is a flow path connecting target(i) and source(o)
3. types of i and o are consistent i.e., both are control or object flows

All closeable regions are closed before elements with PCs being false are
removed. Closing a region r with Ar means that o is removed and the target of
i is set to the target of o. If a region is not closeable and Ar is not empty, there
is an annotation error because flows from Ar would become dangling after the
removal of region r. An annotation error can also occur if a flow is not within
the region itself, but its ends are.

Simplification for activity nodes involves removing redundant control nodes
such as (1) a DecisionNode or a ForkNode having one outgoing flow, and (2) a
MergeNode or a JoinNode having one incoming flow. More sophisticated control
flow simplification could also be applied at this point, such as merging parallel
flows without actions between a decision and merge nodes.

As an example of template instantiation for activity models with automatic
flow closure, consider the checkout items template in Figure 7 and its instance in
Figure 8(b). The instance implements the features selected in the feature config-
uration from Figure 1(b), where the only specified checkout method is for regis-
tered customers (feature Registered). Features Guest, QuickCheckoutProfile,
InventoryTracking and PhysicalGoods are not selected. Note that all control

4 We only allow one incoming and one outgoing flow. The reason is that in the case of
more than one incoming and/or outgoing flow, there is more than one way to close
the flows.

enter billing & shipping

address

select shipping

method

select

type

3

GetQuickCheckoutProfile

displayCheckoutTypes

ApplyShipping

Costs

displayForm

HandleItem

Availability

Apply

Discounts

 ...

cutomer type?

type?

1

1

2

3

3

3

3

3

3

4 5

SystemCustomer

QuickCheckoutProfile

Presence conditions:

InventoryTracking

PhysicalGoods

true

Guest

Registered

5

2

1

4

3

[regular]

[guest]
[registered]

[quick]

Fig. 7. Checkout Items diagram template

nodes in the template are gray, indicating that they are not annotated and
therefore IPCs are assumed.

The result of removal analysis and patch application is shown in Figure 8(a).
Based on our configuration, the instantiation algorithm removes four regions:
blue (3) for QuickCheckoutProfile, green (2) for Guest checkout, magenta (4)
for InventoryTracking, and pink (5) for PhysicalGoods. Note that they are
all closeable and will be closed before removal. In the case of the blue (3) region,
the adjacent flows are those in red (1). Also note that the decision node type?

has been included in the blue region because its implicit PC evaluated to false.
The final result after simplification, which removed one decision node customer

type? and two merge nodes, is shown in Figure 8(b).
Examples of useful patches for class models include generalization chain clo-

sure and containment chain closure. They are the counterpart of automatic flow
closure for generalization and containment relationships: given the classifiers A,
B, and C, if A is connected to B and B is connected to C, removing B while the PCs
of the incoming relationship and the outgoing relationship are true will connect
A to C.

6 Prototype Implementation

We have built a prototype to illustrate how our approach works in practice. The
prototype, fmp2rsm, is an Eclipse plug-in which integrates our Feature Modeling
Plug-In (fmp) [8] with Rational Software Modeler (RSM), a UML modeling tool
from IBM.5 The plug-in implements the template instantiation algorithm from

5 The fmp2rsm plug-in can be downloaded at http://gp.uwaterloo.ca/fmp2rsm.

enter billing & shipping

address

select shipping

method

displayForm

Apply

Discounts

 ...

cutomer type?

SystemCustomer

[registered]

(a) Checkout instance after region re-
moval

enter billing & shipping

address

select shipping

method

displayForm

Apply

Discounts

 ...

Customer1 System1

[registered]

(b) Checkout instance after simpli-
fication

Fig. 8. Checkout template instance

Section 5, and it also performs the automatic coloring of templates based on the
PC annotations. The implementation handles all of UML; however, at this point,
the convenience of additional processing is available only for activity models as
described in Section 5.1.

The plug-in works with four artifacts: (1) UML model template created using
RSM, (2) feature model created using fmp (Figure 1 contains screen shots of
fmp), and two variability profiles, (3) PC profile for PC annotations, and (4)
ME profile for ME annotations.

The PC profile offers two forms of PC annotations: Boolean formulas in
Disjunctive Normal Form (DNF) and the more general XPath expressions. Each
disjunct (i.e., a conjunction of literals) of a PC in DNF is represented as a stereo-
type, e.g., <<f1∧!f2∧f3>> for the Boolean formula f1f2f3, and can be created
on a selection of multiple features automatically through a menu operation in
fmp.6 Once created, the stereotype becomes available in RSM for annotating
template elements. Application of multiple such stereotypes is interpreted as a
disjunction. The more general annotations using XPath are created by apply-
ing the stereotype <<PC>>, which allows the user to enter the desired XPath
expression as the value of its expression:String property.

The ME profile contains several stereotypes structured similarly to <<PC>>,
but each applicable to elements of a specific type. For example, <<NameME>>

can be applied to any element of type NamedElement in order to compute
its name. Similarly, <<TypeME>> can be used to set the type property of any

6 Each stereotype extends Element and has read-only properties encoding the actual
Boolean formula. The encoding uses fully qualified feature names which are available
as literals of an enumeration type that is automatically generated by fmp2rsm given
a feature model. In other words, the stereotype’s name is just for documentation
and may use abbreviated feature names.

TypedElement. For <<TypeME>>, an expression has to return fully qualified name
of either a primitive type (e.g., UML2::String), a class (e.g., b2cSoln::Category
as in Figure 4), an interface, or an enumeration. The ME profile could be auto-
matically generated based on the metamodel of a given notation.

7 Related Work

Variability mechanisms most commonly used in models are those already avail-
able in the target notation, such as using a decision node in an activity model to
decide between alternative flows or representing class variants as subclasses of an
abstract class. Inheritance—a classical variability mechanism in class diagrams—
has also been adapted for activities [11] and statecharts [12, 13]. Limitations of
these approaches include the lack of static configuration, as in the case of dy-
namic choice such as a decision node, the potential of combinatorial explosion for
static inheritance hierarchies, and complexity increase and limited traceability
in the case of design patterns.

Another class of approaches is based on annotations expressing variability.
In the case of UML, such annotations are usually provided as a profile with
stereotypes, such as <<optional>> and <<variant>>, e.g., [14]. Although our
approach is also annotation-based, we provide a separate representation of vari-
ability in the form of a feature model. Without the latter, there is no clear notion
of features and the user has to find and select variable elements in the model
directly. Furthermore, patching and simplification, as proposed in our approach,
results in simpler templates. Finally, we provide full template support by means
of MEs.

Wasowski describes automatic generation of variants of behavioral models
(in particular statecharts) by restrictions [15]. As in our approach, the modeler
creates a single model containing all variants. A variant is automatically created
using a form of partial evaluation and slicing based on specified restrictions. The
restriction approach differs from our template approach in several ways. First, it
involves more sophisticated analysis in which restrictions on inputs and outputs
are propagated throughout the model automatically. While this may result in a
significantly reduced annotation effort, the effect of automatic partial evaluation
and slicing may be hard to predict for the user. In a template approach, the
user has full control through explicit annotations. Another difference is that the
model to be restricted has to be semantically correct in the sense that it is
ready to be executed without any processing, whereas templates only need to be
syntactically well-formed. The restriction approach is adequate, particularly if
there is a variant that contains all of the initial model without any restrictions;
however, if this is not the case, it is likely that a template will be simpler than
an unrestricted model. For example, alternative flows can simply be attached
to an activity node, while the model restriction approach would require using a
decision node. Also, additional processing, such as automatic flow closure, further
reduces the complexity of a template, whereas in the model restriction approach,
each optional action would need an extra decision node. Finally, the template

can be easily adapted to any notation. This is different with the restriction
approach, which is semantics-based and needs to be individually developed for
each notation.

Another group of work are concern separation approaches, such as AHEAD
[16], and the hyperspace approach [17] and its UML realization HyperUML [18].
These approaches allow the composition of crosscutting model fragments. In par-
ticular, HyperUML uses feature models to represent the composition space of
UML model fragments. Mixin-based composition of statecharts [19,20] also falls
into this category, but with the particular focus on ensuring provably correct
composition. Concern separation approaches focus on separation. Templates, on
the other hand, work best if the user wants to see the model fragment correspond-
ing to a feature embedded in the context of the entire model. For example, sepa-
rating the blue (3) region corresponding to the feature QuickCheckoutProfile

in Figure 8 as a component does not seem to be interesting. This is because the
fragment is not reusable and can be best understood in the context where it is
applied. Separation approaches are of particular interest when features should
be realized as components that can be composed in many ways, which is the
case in mature and highly flexible architectures. They are also preferred for rep-
resenting crosscutting concerns that can be meaningfully stated in separation,
such as logging or security. For example, the fact that the checkout activity re-
quires authorization can be expressed as a security annotation (a kind of join
point), leaving the insertion of call actions to the approprite authorization and
authentication activities to an aspect weaver.

A few modeling tools on the market support model templates in some form,
but usually in an ad hoc manner. For example, templates in Rational XDE are
modeled as parameterized collaborations, even though the template can contain
meta-code creating arbitrary models, i.e., the template instance is not a collabo-
ration. Obviously, variability can also be realized by direct model manipulation,
such as using composition directives [21] or XMI manipulation [22].

Finally, feature models have been previously used together with textual tem-
plates as the structure definition of template input, e.g., [23]. However, the ap-
plication to model templates is, to our knowledge, new.

8 Concluding Remarks

The purpose of this work can be seen from different perspectives: (1) giving
semantics to features in feature models by mapping them to other models and
(2) using feature models to provide a concise representation of variability con-
tained in other models. Expressing PCs and MEs in terms of features provides
traceability between features and their realization in models.

Although we think our approach is particularly useful at the requirements
level, it can be applied for models at any level, e.g., architecture and implemen-
tation models.

From the usability perspective, the approach is intuitive. Model templates
are in the target notation, so there is no need to learn new specialized languages

(except for simple feature models) and existing tools can also be reused. Implicit
conditions, patching, and simplification minimize annotation effort and decrease
visual complexity, which makes model templates more concise. Coloring makes it
easy to see what will be contributed by selecting a given feature. Model templates
can be created incrementally and simultaneously with the feature model.

During our case study we have observed that the majority of PCs are single
features. However the ability to write more complex PCs allows us to avoid
polluting the feature model with features related to the implementation details
of the template. For example, a “glue” element usually requires a PC being a
conjunction of features. If a PC could only be simple features, an additional
feature corresponding to the “glue” element would need to be introduced.

A possible concern is that annotation is not always simple and may require
few iterations; however, further tool support can be offered, e.g., for filtering
model template parts relevant to certain features and subset of systems, and
automatic verification guaranteeing the well-formedness of all possible template
instances. Those additional capabilities, as well as support for element cloning
in model templates, will be covered in future work.

References

1. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston, MA (2000)

2. Czarnecki, K.: Overview of Generative Software Development. In: Proceedings of
the European Commission and US National Science Foundation Strategic Research
Workshop on Unconventional Programming Paradigms, September, 15–17, 2004,
Mont Saint-Michel, France. (2004) http://www.swen.uwaterloo.ca/~kczarnec/

gsdoverview.pdf.

3. Batory, D.: Feature Models, Grammars, and Propositional Formulas. Technical
Report TR-05-14, University of Texas at Austin, Texas (2005)

4. Object Management Group: Meta-Object Facility. (2002) http://www.omg.org/

technology/documents/formal/mof.htm.

5. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-
tion and multi-level configuration of feature models. Software Process Improvement
and Practice 10 (2005) 143–169 http://swen.uwaterloo.ca/~kczarnec/spip05b.

pdf.

7. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process Improvement and Practice 10

(2005) 7–29

8. Antkiewicz, M., Czarnecki, K.: FeaturePlugin: Feature modeling plug-in for
Eclipse. In: OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop.
(2004) Paper available from http://www.swen.uwaterloo.ca/~kczarnec/etx04.

pdf. Software available from gp.uwaterloo.ca/fmp.

9. World Wide Web Consortium: XML Path Language (XPath) 2.0. (2005) http:

//www.w3.org/TR/xpath20/.

10. Object Management Group: Unified Modeling Language 2.0. (2004) http://www.

omg.org/cgi-bin/apps/doc?ptc/04-10-02.zip.
11. Schnieders, A., Puhlmann, F.: Activity diagram inheritance. In Abramowicz,

W., ed.: BIS 2005 - Business Information Systems. 8th International Conference,
Poznan, Poland, 2005, Proceedings. (2005)

12. Lee, J., Xue, N.L., Kuei, T.L.: A note on state modeling through inheritance.
SIGSOFT Softw. Eng. Notes 23 (1998) 104–110

13. A J H Simons, M P Stannett, K.E.B., Holcombe, W.M.L.: Plug and play safely:
Rules for behavioural compatibility. In: Proc. 6th IASTED Int. Conf. Software
Engineering and Applications. (2002) 263–268

14. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a uml profile for software product
lines. In: PFE. (2003) 129–139

15. Wasowski, A.: Automatic generation of program families by model restrictions. In
Nord, R.L., ed.: Software Product Lines: Third International Conference, SPLC
2004, Boston, MA, USA, August 30-September 2, 2004. Proceedings. Volume 3154
of Lecture Notes in Computer Science., Heidelberg, Germany, Springer-Verlag
(2004) 73–89

16. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In:
Proceedings of the 25th International Conference on Software Engineering (ICSE),
Portland, Oregon, Los Alamitos, CA, IEEE Computer Society (2003) 187–197

17. Tarr, P., Ossher, H., Harrison, W., Stanley M. Sutton, J.: N degrees of separation:
multi-dimensional separation of concerns. In: ICSE ’99: Proceedings of the 21st
international conference on Software engineering, Los Alamitos, CA, USA, IEEE
Computer Society Press (1999) 107–119

18. Philippow, I., Riebisch, M., Boellert, K.: The hyper/UML approach for feature
based software design. In Akkawi, F., Aldawud, O., Booch, G., Clarke, S., Gray,
J., Harrison, B., Kandé, M., Stein, D., Tarr, P., Zakaria, A., eds.: The 4th AOSD
Modeling With UML Workshop. (2003)

19. McNeile, A.T., Simons, N.: State machines as mixins. Journal of Object Technology
2 (2003) 85–101

20. Prehofer, C.: Plug-and-play composition of features and feature interactions with
statechart diagrams. In: FIW. (2003) 43–58

21. Straw, G., Georg, G., Song, E., Ghosh, S., France, R., Bieman, J.M.: Model com-
position directives. In Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J., eds.:
UML 2004 - The Unified Modeling Language. Model Languages and Applications.
7th International Conference, Lisbon, Portugal, October 11-15, 2004, Proceedings.
Volume 3273 of LNCS., Springer (2004) 84–97

22. Jarzabek, S., Zhang, H.: Xml-based method and tool for handling variant require-
ments in domain models. In: RE. (2001) 166–173

23. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.W.: Generative programming
for embedded software: An industrial experience report. In Batory, D., Consel,
C., Taha, W., eds.: Proceedings of the ACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component Engineering (GPCE’02), Pittsburgh,
October 6-8, 2002. Volume 2487 of Lecture Notes in Computer Science., Heidelberg,
Germany, Springer-Verlag (2002) 156–172

