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Abstract. Product lines (PLs) is a well known framework for software
design, which has recently been gaining considerable attention in re-
search and industry. PLs are defined by so called feature models (FMs):
graphical structures showing products’ features and relationships be-
tween them. A common way for defining a formal semantics for FMs
is to treat them as propositional formulas with the ordinary Boolean
semantics. A major drawback of this setting is that intuitively very dif-
ferent FMs can have the same Boolean semantics, and thus important
information is lost when FMs are translated into propositional formulas.
In the paper we show how this problem can be fixed in the framework
of modal logic and its Kripke semantics. We introduce feature Kripke
structures as a semantic universe for PLs, and feature modal logic as
a syntactic universe for FMs, and reformulate basic notions of feature
modeling in this refined setting. Moreover, the framework provides richer
expressiveness for describing FMs: new useful properties of PLs can be
specified and verified.

1 Introduction

The Software Product Line approach is well-known in the software industry.
Products in a product line (PL) share some set of common features, and differ
by having some variable features that allow the user to configure the product
the user wants. Thus, instead of producing a multitude of separate products, a
single PL encompassing the variety of products is designed, which results in a
significant reduction in development time and cost [16].
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car PLs are defined by so called feature models (FMs) based
on feature diagrams (FDs): graphical structures showing prod-
ucts’ features and relationships between them. The inset figure
presents a simple example. The FD D1 says that each car has
two mandatory features (as indicated by black circles), eng and
brakes, and the latter has an optional feature (hollow circle) asb. This defines a
PL with two products, i.e., two legitimate sets of features: P1 = {car, eng, brakes}
and P2 = P1∪ {asb}. Industrial FDs may have thousands of features, and their
PLs can be quite complex [15]. To manage their design and analysis, PLs and



FDs should be represented as formal objects processable by tools. A common
approach is to consider features as propositional variables, and encode FDs by
formulas of Boolean propositional logic (BL), whose valid valuations are to be
valid products defined by the FD [2]. This approach gave rise to a series of
prominent applications to analysis of industrial size PLs [3, 10,18].
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However, the BL encoding has an inherited drawback. The
inset figure shows another FD specifying an entirely different
product line (in fact, pathological), but this FD has the same
set of products {P1, P2} as the earlier FD. Obviously, some
important aspects of a FD’s semantics are not captured by
their Boolean semantics and lost with their BL-translation (this lost semantics
was called ontological in [18]). This deficiency of BL is known, but as far as we
know, no logic has been proposed to replace BL to fix the problem.

In the paper we show that what is lost in the BL-encoding is the dynamic
nature of the notion of product. An FD defines not just a set of valid prod-
ucts but the very way these products are to be assembled step by step from
constituent features. Correspondingly, a PL appears as a transition system ini-
tialized at the root feature (say, car) and gradually progressing towards fuller
products (say, {car} → {car, eng} → {car, eng, brakes} or {car} → {car, brakes} →
{car, brakes, asb} → {car, brakes, asb, eng}. Moreover, we will show that relations
between products are richer than merely inclusions: while any transition is a set
inclusion, not any inclusion is a legal transition. In this way, FDs are provided
with a Kripke rather than Boolean semantics, and their logical counterparts are
modal rather than Boolean formulas. Product lines are Kripke structures is the
main motto of the present paper.

Our plan is as follows. In the next section we recall the basic definitions
of feature modeling, and formalize them in a convenient way for our purposes.
In Section 3 we discuss the dynamic aspects of a FD’s semantics, develop a
framework of basic concepts, and prove several initial results. In particular, we
motivate and formalize an important semantic requirement called instantiate-to-
completion (so called by analogy with the “run-to-completion” semantics known
in behavior modeling). In Section 4, we introduce feature Kripke structures and
feature Computation Tree logic (fCTL) — simple specializations of Kripke struc-
tures and the logic CTL known from behavior modeling and model checking, but
still having many non-trivial properties. We also present an example showing
how fCTL can be used for specifying non-trivial properties of PLs beyond BL.
Related work is discussed in Section 5, and Section 6 concludes.

2 Background: Feature Diagrams and Models

There are many feature modelling languages. Some of them, including the classi-
cal FODA [13], are tree-based, e.g., [5,9], others are DAG-based such as [14,17].
In this paper, we restrict our attention to feature trees, and do not consider
cardinality-based feature modeling [7], in which the same feature can occur in
the product multiple times.
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In a typical FM notation, non-root features are either solitary or grouped.
Solitary features are either mandatory (e.g., eng, trans, and brakes in Fig. 1)
or optional (like asb). Feature groups usually include OR-groups (inclusive OR,
e.g., eng can be either gas or elec, or both in Fig. 1), and XOR-gorups (exclusive
OR, trans is either mnl or atm but not both). Less common but useful is the
MEX-group (mutual exclusion), which admits at most one of mutually exclusive
features occurs into the product. FODA-like notations for these constructs are
summarized in Table 1 (ignore the third row for a while), and a formal definition
is given by Def. 1.

Definition 1 (Feature Diagrams). A feature diagram (FD) is a triple D =
(F,S,G) of the following components.

(i) F = (r, F, ↑) is a feature tree with feature r as the root, set F of non-root
features, and function ↑ : F → F∪{r} that maps each non-root feature f to its
parent f↑. The inverse function that assigns to each feature the set of its children
is denoted by ↓; this set is empty for leaf features. The set of grandparents and
grandchildren of a feature f are denoted by f↑↑ and f↓↓ resp.

(ii) S = (M ]O) ⊆ F is a set of solitary features partitioned into mandatory
(set M) and optional (set O) features.

(iii) For each predicate p∈{or, xor,mex}, a disjoint family Gp ⊆ 2(F\S) of p-
labeled sets (called groups) of non-solitary features is given, such that if G∈Gp,
then cardinality |G| > 1 and all features in G have the same parent, denoted by
G↑. The three families are themselves disjoint and together cover all non-solitary
features: any non-root feature f is either solitary, f∈S, or belongs to one and
only one group, f ∈ G ∈ G = Gxor ] Gor ] Gmex (and then we say f is a grouped
feature). ut
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Fig. 1: A sample feature
model.

Remark 1 (On notation). Below we will try to
follow the notational discipline used above. Sets
are typed in italic with upper case letters, like X,
their elements are lower case, like x∈X, and sets
of sets are calligraphic, like X∈X . Sets equipped
with additional structure are in “mathbold” e.g.,
a poset (X,�), or a set of sets ordered by inclu-
sion, (X ,⊆), would be denoted by X. We will allow
ourselves some deviations, e.g., F is not the entire
carrier set of tree F, if they simplify technicalities,
or make reading easier.

Any feature diagram D = (F,S,G) can be translated into a propositional
formula Φ(D) [2]. Features are considered as propositional variables, and basic
FD constructs are encoded as shown in Table 1. Each encoding is a formula or a
conjunction of formulas; the latter are than shown in different rows. The upper
row encodes the subfeature relationship present in every construct. The second
row is for an additional mandatoriness requirement specified by the construct
(there may be none such), and the third row encodes MEX-requirements (again
optional). Finally, we add formula > ⇔ r for the root feature.
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f ⇐ f ′ f ⇐ m f ⇐ o f ⇐ r1∨r2 f ⇐ x1∨x2 f ⇐ e1∨e2
f ⇒ m f ⇒ r1∨r2 f ⇒ x1∨x2

x1∧x2 ⇒ ⊥ e1∧e2 ⇒ ⊥

Table 1: Translating FDs to BL

A feature model is an FD with a set of additional cross-cutting constraints (we
will write CCCs) for features in different branches of the feature tree. Typically,
such constraints are either exclusive or inclusive. For example, the ×-ended arc
in Fig. 1 denotes an exclusive CCC that prohibits having both an electric engine
and a manual transmission in a product. The arrow denotes an inclusive CCC
that requires a car with automatic transmission to also have asb. In general, an
inclusive constraint has the format f1 ∧ . . . ∧ fn..... → f , and an exclusive one
is f1 ∧ . . . ∧ fn..... → ¬f with fi features in any positions in the feature tree.
Note that an exclusive constraint is equivalent to the following mex-constraint
f1 ∧ . . . ∧ fn ∧ f → ⊥, which means that, taken together, the (n + 1) features
are incompatible (but any proper subset of them may still be compatible!).

Definition 2 (Feature Models). A feature model (FM) is a pair M = (D, Φccc)
with D an FD and Φccc a conjunction of exclusive and inclusive constraints built
over F interpreted as a set of propositional variables. ut

We will often write an FM as a triple (D, Φin, Φex) with Φin being a conjunction
of inclusive, and Φex of exclusive, CCCs. Thus, an FM is basically a triple of
propositional formulas M = (ΦD, Φin, Φex) with ΦD denoting Φ(D) as specified
above.

Definition 3 (Full products). A full product over D = (F,S,G) is a set of
features P ⊆ F ∪ {r} such that the formula Φ(D) is satisfied in the Boolean
sense: if all variables f∈P are evaluated to true, then the term Φ(D) is evaluated
to true as well. We then write P |=BL D. The set of all full products is called
a full product line over D and denoted by FP(D) (while the entire powerset is
denoted by 2F ). Thus, FP(D) = {P ⊆ F : P |=BL D}.

A (full) product over M = (D, Φccc) is a product over D, which, in addition,
satisfies all constraints in Φccc. This gives rise to the product line FP(M) =
{P ⊆ F : P |=BL D and P |=BL Φccc}. ut

Remark 2. The definition above is standard, except that we use the term full
product rather than product. The reason is that later we will also introduce
partial products. We will often use abbreviations f-product and p-product for
full and partial products, resp.
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3 Partial Product Lines: Instantiation as a Process

Let D = (F,S,G) be an FD as defined in Section 2. Our main observation is
that for finding its proper semantics, we need to take into account not only full
products over D, but the very way these products are assembled (we will say
instantiated) starting from the root feature and then being gradually augmented
with new features until leaves in tree F are reached; full products assembled in
this way are specially marked. The instantiation process is regulated by the FD’s
extra structure S and G, which actually specifies a set of constraints for product
assembly. The goal of this section is to analyse this process in detail, highlight
its main points, and accurately formalize it.

3.1 Getting started

Figure 2 shows how basic FD constructs guide the process of product instanti-
ation. The first row presents six basic FD constructs, whereas the second row
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Fig. 2: From FDs to PPLs. The boxed states denote full products.

shows their meaning in terms of top-down product design as instantiation di-
agrams. Nodes of instantiation diagrams denote partial products (p-products),
i.e., legal products with, perhaps, some features missing, for example, product
{f, o} in diagram D4 is missing the feature m. Edges are inclusions between
p-products; in fact, each edge encodes adding a single feature to the product at
the source of the edge. p-products that are full products (f-products) are boxed.
Thus, in contrast to the ordinary Boolean semantics of feature diagrams, which
merely lists f-products, instantiation diagrams specify how f-products are grad-
ually instantiated step by step. This focus on the process rather than the result
is typical for Kripke semantics, and indeed, in Sect. 4 we will show that our
instantiation diagrams are nothing but a special case of Kripke structures. We
will also call instantiation diagrams partial product lines (PPLs).

Fig. 3 presents instantiation diagrams for the two FDs considered in the
Introduction (c, e, b, and a stand for car, eng, brakes, and asb). While both
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FDs have the same set of f-products (i.e., are Boolean semantics equivalent),
their PPLs (Kripke semantics) are essentially different and properly capture the
difference of the FDs.

car$

eng$ brakes$ abs$

car$

eng$ brakes$

abs$

c$

c,$e$ c,$b$

c,$b,$a$c,$e,$b$

c,$e,$b,$a$

e

e,$c$
e,$a$

e,$b$

e,$c,$b$ e,$a,$b$e,$a,$c$

e,$a,$b,$c$

Fig. 3: PPLs of FDs in the Introduction.

Now we consider how instantia-
tion diagrams are built in more de-
tail. We will begin in the next sec-
tion with an auxiliary but useful ap-
proximation (called free p-product) of
what a legal p-product should be.
Then, in Sect. 3.3, we discuss an im-
portant principle of product assem-
bly, instantiate-to-completion, which
we believe is pertinent to FM al-
though is implicit in FDs. We named
it so because the principle is analo-
gous to the well-known “run-to-completion” semantics in behavior modeling.

3.2 Free partial products
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Fig. 4: Free PPLs and I2C constraint

Figure 4(a) shows an FD, and Figure 4(b) describes its partial products
understood as free combinations of basic features: c, e, t stand for upper-level
features car, eng, trans, and two-letter abbreviations gs, el, mn, and at are for their
subfeatures. (Ignore for a while that the node {c, e, t} is typed in grey (red with
a color display), and arrows adjoint to it are grey and dashed.) The idea is that
any combination is possible unless it is prohibited by an exclusive constraint
declared either in a MEX- or XOR-group, or in Φex. For example, the node
combining the features gs and el does exist, whereas combinations {mn, at} and
{el, mn} are prohibited. Mandatoriness of solitary features, and mandatoriness
embodied into XOR- and OR-groups, do not affect free product generation (but
do determine what full products are). In fact, a free p-product over an FD D is a
full product over a relaxed FD D◦ with all mandatory requirements stripped. For
example, Figure 4(c) presents such a relaxation of FD Figure 4(a). The definition
below makes this construction precise.
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Definition 4 (Free Partial Products). A free p-product over an FD D =
(F,S,G) is a full product over the FD D◦ = (F◦,S◦,G◦), with F◦ = F, M◦ = ∅,
O◦ = O ∪M ∪ (

⋃
Gor), and Gmex

◦ = Gmex ∪ Gxor, Gor◦ = Gxor◦ = ∅.
A free p-product over an FM M = (D, Φin, Φex) is a free p-product over D,

which additionally satisfies the constraints in Φex. In other words, it is a full
product over M◦ = (D◦, Φ◦ex) .

We denote the set of all free p-products over D and M by PP free(D) and
PP free(M), respectively. ut

The definition of free products admit a useful equivalent reformulation.

Proposition 1. Let D = (F,S,G) be an FD. A set of features P ⊆ F ∪ {r}
is a free p-product iff it satisfies the following two conditions: (a) if f ∈ P
then f↑ ∈ P as well (we say that P is up-closed), (b) if a group of features
G ∈ Gmex ∪ Gxor, then |P ∩G| ≤ 1.

A set of features over an FM M = (D, Φin, Φex) is a free p-product iff it
satisfies conditions (a), (b) above, and condition (c) P |=BL Φex. ut

Proof. According to Definition 4, a free p-product of M is a f-product of M◦.
Consider a full product P ◦ of M◦. Since F◦ = F and a f-product of an FM is
up-closed, ∀f ∈ P ◦. f↑ ∈ P ◦. Since G◦mex = Gmex ∪ Gxor and Φ◦ex = Φex, the
conditions (b) and (c) follow obviously.

Now, consider a set of features P which satisfies the conditions (a), (b), and
(c). We want to prove that P is a f-product of M◦, i.e., P |=BS Φ

◦
D ∧ Φ◦ex ∧ Φ◦in.

To prove P |=BS Φ
◦
D, we need just to show that P satisfies G◦mex, (M◦ = G◦or =

G◦xor = ∅). Since G◦mex = Gmex ∪ Gxor, P |=BS G◦mex follows obviously by the
condition (b). Since Φ◦ex = Φex, (c) implies directly that P |=BS Φ◦ex. Finally,
P |=BS Φ

◦
in because Φ◦in = >. ut

Proposition 2. For a given FD, its set of free p-products is closed under inter-
section. The same holds for the set of free p-products for an FM. ut

Proof. Consider two free partial products P and P ′ of an FM M . Since, accord-
ing to Proposition 1, P and P ′ are up-closed, ∀f ∈ P ∩ P ′. f↑ ∈ P ∩ P ′ and so
P ∩ P ′ is up-closed (∗).

Now, consider a group of features G ∈ Gmex ∪ Gxor. Since, according to
Proposition 1, |P∩G| ≤ 1 and |P ′∩G| ≤ 1, it follows obviously that |P∩P ′∩G| ≤
1 (∗∗).

According to Proposition 1, P |=BS Φex and P |=BS Φex, which mean for any
conjunctive clause cex : f1 ∧ · · · ∧ fn ⇒ ¬f ′ in Φex (for features f ′, f1, · · · , fn),
the satisfactions

∧
f∈P f |=BS cex (1) and

∧
f∈P ′ f |=BS cex (2) hold. Assume

that
∧

f∈P∩P ′ f |= f1∧· · ·∧fn, which means {f1, · · · , fn} ⊆ P ∩P ′ (3). (1), (2),
and (3) imply P ∩ P ′ |=BS ¬f ′. This leads us to P |=BS Φex (∗ ∗ ∗).

From (∗), (∗∗), and (∗ ∗ ∗), according to Proposition 1, the set of free partial
products are closed under intersection. ut

Thus, free p-products respect subfeature relationships and exclusive constraints,
and do not care about anything else. In the next section, we will see that a
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majority of free p-products ignore an important instantiate-to-completion re-
quirement, and hence should be discarded as (although algebraically possible,
but practically) not interesting.

3.3 Instantiate-to-Completion: Motivation

Instantiation diagrams present a branching-time view of the product assembly.
The instantiate-to-completion principle (abbreviated by I2C) dictates that we
begin processing a new branch only after processing of the previous one is com-
pleted. For example, a transition from product {c, e} to product P = {c, e, t}
violates I2C because the feature t is added before the feature e was fully assem-
bled/configured: indeed, we still need to decide whether the e (engine) is to be el
(electric) or gs (gasoline). The other transition to the same product, {c, t} −→ P ,
also violates I2C: now feature e is added before the choice between mn (man-
ual) and at (automatic) transmission is made. Hence, these transitions should
be excluded from the instantiation diagram (we make them dashed/red). Now
product P becomes unreachable and must be also excluded, together with two
outgoing transitions. Note that transition {c, e, el} −→ {c, e, el, t}, which begins
transmission instantiation in the engine branch, complies with I2C as its source
is a fully instantiated e(ngine). In contrast, transition {c, t,mn} −→ {c, t,mn, e}
violates I2C as assembling t is not finished yet due to the presence of mandatory
feature oil. The node {c, e, t, mn} becomes unreachable and must be removed
from the PPL. Thus, for a given D, its PPL of free products satisfying I2C,
PPI2C(D), can be much smaller than the free PPL, PP free(D).

From now on, by a p-product we will understand a free p-product satisfying
I2C, and the subindex I2C will be skipped, that is, given D, the set of free
p-products satisfying I2C is denoted by PP(D). Below in Sect. 3.4, we will give
an accurate formalization of this construction. The main idea is that we consider
a feature f to be fully instantiated at a p-product P , if P is a final product for
the FD rooted at f and consisting of all f ’s grandchildren.

car$

eng$ trans$

oil$

car$

car,$eng$ car,$trans$

car,$trans,$oil$

car,$trans,$oil,$eng$

car,$eng,$trans$

Fig. 5: An FD and its PPL

There are situations in which the
I2C constraint keeps all products in
PP free(D), but removes some of the tran-
sitions. Consider FD in Fig. 5 (on the left)
and its PPL (right). “Diagonal” transi-
tion {car, trans} −→ {car, trans, eng} vio-
lates I2C and must be removed. However,
its target product is still reachable from
{car, eng} as the latter is a fully instan-
tiated product. Hence, the only element
excluded by I2C is the diagonal dashed
transition. An important consequence of
this observation is that the PPL of an FD D is actually a transition system
P = (PP(D),−→) with the transition relation being an independent component
rather than merely being set inclusion (although it is always a subrelation of the
subset relation).

8



3.4 Instantiate-to-completion: Formalization

To formalize the notion of p-product satisfying I2C, we will first need the fol-
lowing notion.

Definition 5 (Induced Subdiagram). Consider a FD D = (F,S,G) and a
feature f . The subdiagram induced by f is the following FD Df = (Ff ,Sf ,Gf )
where:

(i) Ff is the tree under f , i.e., the tree (f, f↓↓,
↑)

(ii) Sf is inherited from S, i.e., Of = O ∩ f↓↓ and Mf = M ∩ f↓↓
(iii) Gf is also inherited from G, i.e., for all predicates p∈{or, xor,mex},

Gfp = {G ⊆ f↓↓ : G ∈ Gp}. 2

Now we can define (I2C-compatible) p-products:

Definition 6 (Partial Products). Let D = (F,S,G) be an FD.
A set P ⊆ F is called a (valid) p-product if and only if it is (a) a free partial

product over D, and (b) the following condition is satisfied:

for any two distinct features with the same parent, f↑1 = f↑2 , if both f1∈P
and f2∈P , then there exists a set P ! ⊆ P such that it is a full product of the
sub diagram induced by f1 or f2, i.e., P ! ∈ FP(Df1) ∪ FP(Df2).

If M = (D, Φin, Φex) is an FM, then any partial product P over D is also a
partial product over M if, in addition, P satisfies all exclusive constraints, i.e.,
for all conjunctive clauses φ in Φex, P |=BS φ.

We denote the set of all partial products for a given FM M by PP(M). 2

Definition 7 (Extension). Let P , P ′ are two partial products. We say that
P ′ extends P , and write P −→ P ′, if P ′ = P ∪ {f ′} for some feature f ′ /∈ P ,
and there exists f ∈ P such that

(i) f = f ′↑ or
(ii) f↑ = f ′↑ and there exists P ′′ ⊆ P such that P ′′ ∈ FP(Df ). 2

Definition 8 (Partial Product Line). Let M = (D, Φccc) be an FM.
The set of its partial products equipped with the extension relation, the initial

product consisting of the root feature P0 = {r}, and the set of its full products, is
called partial product line, and denoted by P(M) = (PP(M),−→M, P0,FP(M)).

ut

Importantly for applications, we have developed an algorithm that returns P(M)
for a given feature model M. The algorithm is described as follows:

The main algorithm is fm PPL: which returns the PPL assigned to the
given FM. The function Final States F inder outputs the set of final product
which can be done by SAT-based tools [2].
The global variables are :

– A given FM M = (D, Cex, Cin) which is considered as the input of fm PPL.
– The output is P(M) = (PP(M),−→M, P0,FP(M)).
– A subset of features Q ⊆ F which is an axillary variable.
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fm PPL:

1. Initialization
2. While Q 6= ∅ do

(a) Extract an element q ∈ Q
(b) Do All Paths of Subfeatures(q)
(c) Q := Q− {q}

3. Do Employ Exclusion Constraints
4. Do Final States F inder

Initialization:

1. PP(M) := {r}
2. P0 := {r}
3. Q := {r}

All Paths of Subfeatures(q: F):

1. Take the set St = {w ∈ PP(M) | q ∈ w∧∀w′ ∈ PP(M). (w′ −→M w)⇒ q /∈
w′}

2. Take the set Subf = {f ∈ F | q = f↑}
3. For all s ∈ St do

(a) For all s′ ∈ PP(M) with s −→M s′ do:
i. For all permutation seq ∈ Permutations(Subf) do: Add the path
π = Create Path(seq, s, s′)

4. Q := Q− {q}

Create Path(seq: Sequence of features, s, s’: PP(M)):

1. Q := Q ∪ {f ∈ seq}
2. Define the set of states {si}1≤i≤|seq|
3. s1 = s ∪ {seq1}
4. For all 1 ≤ i < |seq| do: si+1 = si ∪ {seqi+1}
5. PP(M) := PP(M) ∪ {si | 1 ≤ i ≤ |seq|}
6. −→M:=−→M ∪{(s, s1)}∪{(si, si+1) | 1 ≤ i < |seq|}∪ {(s|seq|, s′)}−{(s, s′)}
7. −→M:=−→M ∪{(si, si) | 1 ≤ i ≤ |seq|}

Employ Exclusion Constraints:

1. Take the set EX = {A ⊆ F | A ⊆ XOR ∨A ⊆MEX ∨A ⊆ Cex}
2. For all A ∈ EX do:

(a) For all s ∈ PP(M) do:
i. If |A ∩ s| > 1 Then Eliminate State(s)

Eliminate State(s: PP(M)):

1. PP(M) := PP(M)− {s′ | s −→+ s′} − {s}
2. −→M:=−→M ∩(PP(M)× PP(M))

10



4 Feature Kripke Structures and Their Modal Logic

In this section, we adopt the language of CTL (Computation Tree Logic) for
feature modeling (we call it Feature CTL, fCTL), and build a semantics for it
in terms of Feature Kripke Structures. The latter can be seen as an immediate
abstraction of PPLs. In Sect. 4.3 we show how the additional expressiveness of
fCTL can be used for specifying PPL-properties that cannot be captured in the
Boolean logic.

4.1 Feature Kripke Structures and feature CTL

A Kripke structure (KS) is a loose term denoting a family of mathematical
structures of the following format. We first fix a set A of atomic propositions,
and then consider a tuple W = (W,−→, L) with W a set of (possible) worlds,
−→ a binary transition relation over W , and L a labeling function W → 2A,
which maps a world to the set of propositions true in this world. Product lines
motivate a specialization of the notion, in which worlds (called products) are
identified with sets of atomic propositions (features), and hence labeling is not
needed.

Definition 9 (Feature Kripke Structure (FKS)). Let F be a finite set (of
features). An FKS over F is a tuple P = (PP, P0,−→,FP) with PP ⊂ 2F a set
of (partial) products, P0 ∈ PP the initial singleton product (its only member
is called the root feature of the FKS), and −→⊆ PP×PP a transition relation,
and FP ⊆ PP a subset of full products.

The following DAG, Singletonity, and Finality conditions are to hold.
(DAG) (PP, P0,−→) is a rooted DAG with the root P0

(Sing) if P −→ P ′ then P ⊂f P
′, which means P ′ = P ∪ {f} and f /∈ P

(Fin) for any P∈PP there is P ′∈FP such that P −→∗ P ′
where −→∗ denotes the reflexive transitive closure of −→. The class of all FKS
built over F is denoted by FKS(F ).

Proposition 3. For any feature model M = (D, Φccc), its PPL
P(M) = (PP(M),−→M, {r},FP(M)) is an FKS. ut

Proof. According to Definition 8, this follows obviously.

Definition 10 (Feature CTL Language, fCTL). fCTL formulas are de-
fined using a finite set of propositional letters F , an ordinary signature of propo-
sitional connectives: zero-arity > (truth), unary ¬ (negation) and binary ∨ (dis-
junction), plus a modal signature consisting of the zero-arity modality ! (final),
three unary CTL-operators AX, AF, AG with their usual meaning, and a unary
modality � (feature-necessity).

The well-formed fCTL-formulas φ are given by the grammar:

φ ::= f | > | ¬φ | φ ∨ φ | AXφ | AFφ | AGφ | �φ | ! | wheref ∈ F.

Other propositional connectives are defined via negation as usual in CTL:
⊥ is ¬>, etc., EXφ is ¬ AX¬φ, etc., and ♦φ is ¬ �¬φ.

The set of all fCTL-fromulas built over F is denoted by fCTL(F ). 2
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P � f iff f ∈ P (for f ∈ F )
P � > always holds
P � ¬φ iff P � φ does not hold
P � φ ∨ ψ iff P � φ or P � φ
P � AXφ iff P ′ � φ for all P ′ ←− P
P � AFφ iff for any path p from P ,

P ′ � φ for some P ′ ∈ p
P � AGφ iff P ′ � φ for all P ′ ∗←− P
P � ! iff P ∈ FP
P � �φ iff P ′ � φ for all P ′ !←− P

Table 2: Rules of satisfiability

The semantics of fCTL-formulas
is given by the class of FKSs built
over the same set of features F .
Let P ∈ FKS(F ) be an FKS
(PP,−→, P0,FP). We first de-
fine a satisfaction relation � be-
tween a product P ∈ PP and a
formula φ ∈ fCTL(F ) by induc-
tion on φ’s structure. This is done
in Table 2, where we write P −→!

P ′ or P ′ !←− P iff P −→∗ P ′ and
P ′∈FP

Then we set P � φ iff P � φ for all P∈PP. We say a formula φ is an fCTL-
axiom iff P � φ for all P ∈ FKS(F ), i.e., any FKS over F has the property
specified by φ. Several interesting axioms and inference rules of fCTL are listed
below.

(Persistency) φ⇒ AGφ
(Mand1) �φ⇒ (!⇒ φ)
(Mand2) (!⇒ φ) ∧ (φ⇒ �ψ)⇒ (!⇒ ψ)
(Trans1) ��φ⇔ �φ
(Trans2) (φ⇒ �ψ) ∧ (ψ ⇒ �γ)⇒ (φ⇒ �γ)

We also have distributivity of AX,AG,� over ∧ and ∨, and of AF over ∨.

If Γ ⊂ fCTL(F ) is a set of formulas, we write Γ |= φ iff for any P∈FKS(F ),
P |= Γ implies P |= φ. In this case we call the pair (Γ, φ) an fCTL-inference
case. For example, fCTL features two schemas for generating inference cases:
modus ponens, {φφφ ⇒ ψψψ,φφφ} |= ψψψ, and necessity, {φφφ} |= �φφφ, where bold letters
denote metavariables to be substituted by formulas. Inference schemas gives rise
to inference rules as usual.

The set fCTL(F ) of formulas together with the class of all (fCTL-axioms
and) fCTL-inference rules is called (semantically defined) feature CTL, fCTL.
A constructive syntactical definition of fCTL is an open problem.

4.2 fCTL-translation of feature models

subfeature
optional
feature o

mandatory
feature m

OR group XOR group MEX group

f' 

f f"

x1" x2"

f"

r1" r2"o"

f" f"

e1" e2"
✕" ✕"

FD"Nota.ons"Intro."

m"

f"

f'"

f" f"

x1" x2"

f"

r1" r2"o"

f" f"

e1" e2"
✕" ✕"

FD"Nota.ons"Intro."

m"

f"

f'"

f" f"

x1" x2"

f"

r1" r2"o"

f" f"

e1" e2"
✕" ✕"

FD"Nota.ons"Intro."

m"

f"

f'"

f" f"

x1" x2"

f"

r1" r2"o"

f" f"

e1" e2"
✕" ✕"

FD"Nota.ons"Intro."

m"

f"

f'"

f" f"

x1" x2"

f"

r1" r2"o"

f" f"

e1" e2"
✕" ✕"

FD"Nota.ons"Intro."

m"

f"

f'"

f"

f ⇐ f ′ f ⇐ o f ⇐ m f ⇐ r1∨r2 f ⇐ x1∨x2 f ⇐ e1∨e2
f ⇒ EXf ′ f ⇒ EXo f ⇒ EXm f ⇒ EXri(i=1,2) f ⇒ EXxi(i=1,2) f ⇒ EXei(i=1,2)

f ⇒ �m f ⇒ �(r1∨r2) f ⇒ �(x1∨x2)
x1 ∧ x2 ⇒ ⊥ e1 ∧ e2 ⇒ ⊥

Table 3: fCTL translation of FD constructs
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Table 3 shows how basic constructs of FDs are encoded by fCTL-formulas.
The table is built analogously to Table 1. Formulas in the two upper rows encode
subfeature relationships, the next row is for the mandatoriness requirement (if
such exists) embodied into the construct, the bottom row encodes mutual ex-
clusion if needed. In addition, the root feature adds formula > ⇒ r. Thus any
FD D is encoded by an fCTL-formula Φ(D), and a model M = (D, Φin, Φex) is
encoded by fCTL-formula Φ(M) = Φ(D) ∧ �Φin ∧ Φex. In the next section, we
will consider an example of such an encoding.

Proposition 4. For any feature model M, P(M) |= Φ(M) ut

Proof. Let an FM M = (D, Φin, Φex). To prove this theorem, we need to show
P(M) = (PP(M),−→M, {r},FP(M)) satisfies of each conjunctive clause in ΦML(M).

Consider a mandatory feature m in M , PPP(M), and P ′ ∈ FP(M) s.t.
m↑ ∈ P and P −→∗M P ′. According to persistency condition, m↑ ∈ P ′. Since
P ′ |=BS M and m is mandatory, m ∈ P ′. This leads us to P(M) |= m↑ ⇒ �m.

Consider an optional feature o in M and P ∈ PP(M) s.t. o↑ ∈ P . Since
P ′ = P ∪{o} does not violates the conditions of Definition 6, P ′ ∈ PP(M). It is
clear that, due to Definition 7, P −→M P ′. Since P(M) is an FKS (Proposition 3),
there exists P ′′ ∈ FP(M) with P ′ −→∗M P ′′. According to persistency condition,
o↑, o ∈ P ′′. This implies P(M) |= o↑ ⇒ ♦o.

Consider an OR-group features G = {r1, · · · , rn} in M , P ∈ PP(M), and
P ′ ∈ FP(M) s.t. G↑ ∈ P and P −→∗M P ′. According to Definition 3, there exists
1 ≤ i ≤ n s.t. ri ∈ P ′. This implies that P(M) |= G↑ ⇒ �(r1 ∨ · · · ∨ rn).

Consider a XOR-group features G = {x1, · · · , xn} in M , P ∈ PP(M), and
P ′ ∈ FP(M) s.t. G↑ ∈ P and P −→∗M P ′. According to Definition 3, there
exists one and only one feature from the set {x1, · · · , xn} in P ′. This implies
that P |= G↑ ⇒ �(x1 ⊗ · · · ⊗ xn) (⊗ denotes logical xor).

Since for any P ∈ FP(M), P |=BS Φin, it follows obviously that P(M) |=
�Φin.

Since, according to Definition 6, any P ∈ PP(M) satisfies Φex, P(M) |= Φex.
Since any MEX-group can be seen as optional features and exclusive con-

straints on the features, it is already proved. ut

Note that P(M) is not the only FKS satisfying Φ(M). For example, consider
the FD in Fig. 5. According to Table 3, its fCTL-theory is the conjunction of the
following formulas: car, car ⇒ �eng, car ⇒ �trans, trans ⇒ �oil, (eng ⇒ car) ∧
(car⇒ EXeng), (trans⇒ car) ∧ (car⇒ EXtrans), (oil⇒ trans) ∧ (trans⇒ EXoil).
Its P is the FKS in the figure, without considering the dashed transition: the
latter is excluded as it violates I2C. However, the FKS with the dashed transition
included also satisfies the above formula. Distinguishing between PPLs and other
FKSs is a non-trivial open problem.

4.3 fCTL as a CCC specification language

In this section, we show how the additional expressiveness of FML can be used
for specifying PPL-properties that cannot be captured in Boolean logic.
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Fig. 6: Feature diagram D (a), and its PPL, P (b)

Consider the following configuration scenario. A manager wants to organize
a group featuring a woman and/or a man. A man can be either m1 or m2. A
woman can be either w1 or w2.

φD1 group⇐ man ∨ woman
φD2 group⇒ EXman ∧ EXwoman
φD3 group⇒ �(man ∨ woman)
φD4 man⇐ m1 ∨m2

φD5 man⇒ EXm1 ∧ EXm2

φD6 man⇒ �(m1 ∨m2)
φD7 m1 ∧m2 ⇒ ⊥
φD8 woman⇐ w1 ∨ w2

φD9 woman⇒ EXw1 ∧ EXw2

φD10 woman⇒ �(w1 ∨ w2)
φD11 w1 ∧ w2 ⇒ ⊥
φC1 w1 ∧man⇒ ¬EXm1

φC2 m2 ∧ woman⇒ ¬EXw1

Table 4: fCTL encoding of FD in
Fig. 6(a)

Figure 6 (a) shows the correspond-
ing FD, D, and Fig. 6(b) specifies its
PPL P (ignore the two × symbols for
a while), in which we abbreviate fea-
tures man and woman by m and w,
resp. The PPL consists of fifteen par-
tial products, amongst which eight are
full products. In particular, the four
bottom final products present all pos-
sible pairs (mi,wj) with i, j = 1, 2.
The FD is encoded by fCTL-formula
Φ(D) = φD1 ∧ · · · ∧ φD11 whose compo-
nents are shown in Table 4. It is easy to
check that P |= Φ(D).

Now suppose that the manager
wants to respect preferences of group
members for the selection of their
coworkers. Suppose that man m1 and woman w2 do not have any concerns,
but man m2 wants to work with woman w2, and woman w1 prefers to work with
man m2. To address these concerns, the following two (cross-cutting) constraints
are to be added to D:

(C1) If woman w1 is selected, and a man is needed, then it must be m2.

(C2) If man m2 is selected, and a woman is needed, then it must be w2.

These constraints are encoded by the two lower fCTL-formulas in Table 4.
FKS P does not satisfy them: the product, at which the curved dashed ×-
labeled transitions begins, violates the formula φC1, and the product at which the
straight dashed ×-transition begins violates φC2 (these products are red with a
color display). However, the actual violators are transitions rather than products,
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and in order to adapt P to satisfy the constraints, it is sufficient to remove both
×-transitions. Let P× denotes the resulting FKS, then P× |= Φ(D) ∧ φC1 ∧ φC2.

Since PPLs P× and P have the same partial and full products, their difference
cannot be captured by the Boolean logic. However, fCTL-constraints can affect
the set of full products, if the way the latter are designed is taken into account.
For example, the manager can decide first to select a woman for the group, and
then proceed with the man selection. Then the constraint (C1) would make the
full product including {m1,w1} unreachable. Thus, fCTL allows us to express
useful configuration constraints not expressible in the Boolean logic.

5 Related and Future Work

Kripke structures and concurrency modeling. There is an enormous body
of work about Kripke Structures (KS) and their associated logics. The underly-
ing frames are typically cyclic graphs, and there are possible different states with
the same set of true propositions. Our FKS are much simpler: the frames are
DAGs, labeling is injective and actually redundant, and the Singletonity condi-
tion makes transitions very simple. Similar structures under the name Event KS
were studied in [11]. However, the transition relation in event KS coincides with
set inclusion.

More general than EKS are Configuration Structures (CS) [19], in which
transitions are set inclusions but not the converse (like in our FKS). This makes
event structures (a syntax for CS) somewhat similar to FD (a syntax for FKS),
but with instantiation constraints formulated in a different language. Also, the
I2C-requirement was not specifically considered, at least, explicitly. Investiga-
tion of relations between CS and FKS in more detail is part of our future work.

An important feature of FKS distinguishing them amongst general KS is the
presence of a special subset of final states. On the other hand, the notion of
accepting states is well known in automata and formal language theory. And
indeed, in a forthcoming paper we will elaborate an automata-based view of
FKS.

Use of FM in behavior modeling. In a well-known paper [4], Classen et al.
study model checking of a family of transition systems. Such a family is mod-
eled by what they call Feature Transition System, which describes the combined
behavior of the entire system. Thus, they consider a PL of behavior models (fea-
tures are transition systems), whereas we study the behavior pertinent to any PL
irrespective of what features are. Applying their technique to our FKS semantics
for FD would result in some sort of meta-Kripke structures, which seems to be
an interesting object of research.

Staged configuration. Czarnecki et al. [6] introduce the concept of staged con-
figuration in which the process of specifying a product is performed in stages,
such that in each stage some configuration choices are eliminated. In other words,
in each step a specialization of the given FD is generated. This process is con-
tinued until a fully specialized feature diagram denoting only one configuration
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is obtained. Our setting is somewhat dual: rather than eliminating a feature in
syntactical processing of FDs, we augment partial products with features until a
full product (a final configuration) is reached. We plan to investigate this duality
in future work.

Algebraic modeling of feature modeling. Höfner et al. developed a semiring
model for product families [12]. An FD is encoded as a term in the semiring
signature, and semantics is provided by the semiring of product families (whose
carrier is the set of all PLs over a feature set). To find a precise relation to
semirings, we need to algebraicize our approach along the usual lines of algebraic
logic — we must leave this for future work. But one important distinction can
be stated immediately: for Höfner et al., a product is a set of prime features—
leaves in the feature tree, while non-leaf features are derived terms; in contrast,
we follow a common FM-practice and consider all features in the tree to be basic.
Also, we believe that using KS and modal logic is simpler and easier for a PL
engineer than dealing with abstract semiring algebra.

A series of algebraic models for FD and PL has been developed in the context
of FOSD [1,8]. Their setting is much more concrete than ours: features are blocks
of code, or other components, whose composition makes a product. This work
focus on operation of feature/delta composition and delta management.

6 Conclusion

We have presented a behavioral view of feature modeling, in which a product
configuration, or instantiation, is seen as a process progressing from partial to full
products. Three basic constraints regulating this process are (a) closedness under
superfeatures, (b) instantiate-to-completion, and (c) respecting feature mutual
exclusion declared in the model. We have shown that product lines encompassing
partial products satisfying the constraints are Kripke structures of a special kind
that we called FKS. We have also demonstrated that properties of FKSs, and
hence partial product lines, can be described by a suitable version of modal
logic, namely, fCTL. These results establish close connections between feature
modeling and behavior modeling, which we believe can be fruitful for both fields.
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