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Abstract. This paper is about a paradigm shift from the current practice of manually
searching for and adapting components and their manual assembly to Generative
Programming, which is the automatic selection and assembly of components on demand. First,
we argue that the current OO technology does not support reuse and configurability in an
effective way. Then we show how a system family approach can aid in defining reusable
components. Finally, we describe how to automate the assembly of components based on
configuration knowledge. We compare this paradigm shift to the introduction of
interchangeable parts and automated assembly lines in the automobile industry.

We also illustrate the steps necessary to develop a product line using a simple example of a
car product line. We present the feature model of the product line, develop a layered
architecture for it, and automate the assembly of the components using a generator. We also
discuss some design issues, applicability of the approach, and future development.

1 From Handcrafting to an Automated Assembly Line
This paper is about a paradigm shift from the current practice of manually searching
for and adapting components and their manual assembly to Generative
Programming, which is the automatic selection and assembly of components on
demand. This paradigm shift takes two steps. First, we need to move our focus from
engineering single systems to engineering families of systems— this will allow us to
come up with the “right” implementation components. Second, we can automate the
assembly of the implementation components using generators.

Let us explain this idea using a metaphor: Suppose that you are buying a car and
instead of getting a read-to-use car, you get all the parts necessary to assemble the
car yourself. Actually, not quite. Some of the parts are not a one-hundred-percent fit
and you have to do some cutting and filing to make them fit (i.e. adapt them). This is
the current practice in component-based software engineering. Brad Cox compares
this situation to the one at the brink of the industrial revolution, when it took 25
years of unsuccessful attempts, such as Ely Whitney’s pioneering effort, until John
Hall finally succeeded to manufacture muskets from interchangeable parts in 1822
(see [Cox90, Wil97]). Then it took several decades before this groundbreaking idea
of mass-manufacturing from interchangeable parts spread to other sectors.

Even if you use a library of designed-to-fit, elementary components (such as the C++
Standard Template Library [MS96]), you still have to assemble them manually and
there is a lot of detail to care about. In other words, even if you don’t have to do the



cutting and filing, you still have to assemble your car yourself (that’s the “lego
principle”).

Surely you rather want to be able to order your car by describing it in abstract terms,
saying only as much as you really care to, e.g. “get me a Mercedes-Benz S-Class
with all the extras” or “a C-Class customized for racing, with a high-performance
V8 engine, four-wheel vented disc brakes, and a roll cage”, and get the ready-to-
drive car. And that’s what Generative Programming means for the application
programmer: The programmer states what he wants in abstract terms and the
generator produces the desired system or component.

This magic works if you (1) design the implementation components to fit a common
product-line architecture, (2) model the configuration knowledge stating how to
translate abstract requirements into specific constellations of components, and (3)
implement the configuration knowledge using generators. This is similar to what
happened in car building: the principle of interchangeable parts was the prerequisite
for the introduction of the assembly line by Ransome Olds in 1901, which was
further refined and popularized by Henry Ford in 1913, and finally automated using
industrial robots in the early 1980s.1, 2

The rest of this paper is structured as follows. We first explain the necessary
transition from one-of-a-kind development to the system family approach (Sections
2-3). Then, we describe the idea of automating component assembly based on
configuration knowledge (Section 3). Next, we will demonstrate the previous two
steps using a simple example: We will first come up with the components for a
product line (Sections 5.1-5.4) and then develop the generator for their automatic
assembly (Sections 5.5-5.6). Finally, we’ll give you some real-world examples
(Section 6), describe the idea of active libraries (Section 7), and present the
conclusions (Section 8).

                                                       
1 The world’s first industrial robot was installed in 1961 at a General Motors factory in New
Jersey, USA, but it was the advance of the microchip in the 1970s that made possible the
enormous advances in robotics.
2 Some people think that the main purpose of an assembly line is to produce masses of the
same good, which in software corresponds to copying CDs. Nothing could be further from the
truth. For example, the Mercedes-Benz assembly line in Sindelfingen, Germany, produces
hundreds of thousands of variants of the C-, E-, and S-Class (there are about 8000 cockpit
variants and 10000 variants of seats alone for the E-Class). There are almost no two equal
cars rolling from the assembly line the same day. That means that the right kind of engine or
any other component has to be available at the right place and time at the assembly line.
Furthermore, the suppliers have to provide the right parts at the right time (to minimize
storage costs). And the whole process starts when different people order different cars at car
dealerships. The fulfillment of the customer orders requires an enormous logistic and
organizational effort involving a lot of configuration knowledge (in fact, they use product
configurators based on configuration rules). Thus, the analogy between the automobile
industry and building customized software solutions using a gallery of standard components
(e.g. SAP’s R3 modules) is not that far-fetched after all.



2 “One-of-a-kind” Development
Most OOA/D methods focus on developing single systems rather than families of
systems. Therefore, they do not adequately support software reuse. More specifically,
they have the following deficiencies [CE99a]: 3

• No distinction between engineering for reuse and engineering with reuse:
Taking reuse into account requires splitting the OO software engineering
process into engineering for reuse and engineering with reuse. The scope of
engineering for reuse is not a single system but a system family. This enables the
production of reusable components. The process of engineering with reuse has
to be designed to take advantage of the reusable assets produced during
engineering for reuse. Current OOA/D processes lack any of these properties.

• No domain scoping phase: Since OOA/D methods focus on engineering single
systems, they lack a domain scoping phase, where the target class of systems is
selected. Also, OOA/D focuses on satisfying “the customer” of a single system
rather than analyzing and satisfying the stakeholders (including potential
customers) of a class of systems.

• No differentiation between modeling variability within one application and
between several applications: Current OO notations make no distinction
between intra-application variability, e.g. variability of objects over time and the
use of different variants of an object at different locations in an application, and
variability between applications, i.e. variability across different applications for
different users and usage contexts. Furthermore, OO implementation
mechanisms for implementing intra-application variability (e.g. dynamic
polymorphism) are also used for inter-application variability. This results in
“fat” components or frameworks ending up in “fat” applications.

• No implementation-independent means of variability modeling: Furthermore,
current OO notations do not support variability modeling in an implementation-
independent way, i.e. the moment you draw a UML class diagram, you have to
decide whether to use inheritance, aggregation, class parameterization, or some
other implementation mechanism to represent a given variation point.

Patterns and frameworks represent an extremely valuable contribution of the OO
technology to software reuse. However, they still need to be accompanied by a
systematic approach to engineering for and with reuse.

3 System Family Approach
In order to come up with reusable components, we have to move our focus from
single systems to system families.4 The first thing to do is to distinguish between the

                                                       
3 As of writing, OOram [Ree96] is the only OOA/D method known to the authors which truly
recognizes the need for a specialized engineering process for reuse.



development for reuse and with reuse. In the software reuse community,
development for reuse is referred to as Domain Engineering.5  Development with
reuse, on the other hand, is referred to as Application Engineering. Let us take a
closer look at the steps of Domain Engineering:

• Domain Analysis: Domain Analysis involves domain scoping and feature
modeling. Domain scoping determines which systems and features belong to the
domain and which not. This process is driven not only by technical but also
marketing and economic aspects (i.e. there is an economic analysis as in the
case of any investment) and involves all the stakeholders of the domain. For this
reason, the resulting domain is often referred to as a product line. Feature
modeling identifies the common and variable features of the domain concepts
and the dependencies between the variable features. Refining the semantic
contents of the features usually requires several other modeling techniques such
as modeling relationships and interactions between objects (e.g. using UML).

• Domain Design: The purpose of domain design is to develop a common
architecture for the system family.

• Domain Implementation: Finally, we need to implement the components,
generators, and the reuse infrastructure (dissemination, feedback loop from
application engineering, quality control, etc.).

There are many Domain Engineering methods available, e.g. FODA [KCH+90] and
ODM [SCK+96] (e.g. see surveys in [Cza98, Arr94]). However, most of the methods
incorporate the above-listed steps in some form. Examples of methods combining
Domain Engineering and OO concepts are RSEB [JGJ98 and GFA98], DEMRAL
[Cza98], and the work presented in [CN98].

4 Problem vs. Solution Space and Configuration Knowledge
Once we have the “right” components, the next step is to provide means of mapping
abstract requirements onto appropriate configurations of components, i.e. automate
the component assembly. The key to this automation is the configuration knowledge,
which maps between the problem space and the solution space (Fig. 1).

The solution space consists of the implementation components with all their possible
combinations. The implementation components are designed to maximize their
combinability (i.e. you should be able to combine them in as many ways as possible),

                                                                                                                                   
4 Parnas defined a system family as follows [Par76, p. 1]: “We consider a set of programs to
constitute a family, whenever it is worthwhile to study programs from the set by first studying
the common properties of the set and then determining the special properties of the individual
family members.”
5 In the software reuse community, a domain is defined as a well-scoped family of existing
and potential systems including the expertise required to build these systems. So, in our
context, we can use the terms “domain” and “system family” interchangeably.



minimize redundancy (i.e. minimize code duplication), and maximize reuse.6 The
problem space, on the other hand, consists of the application-oriented concepts and
features that application programmers would like to use to express their needs. The
configuration knowledge consists of illegal feature combinations (certain
combinations of features may be not allowed), default settings (if the application does
not specify certain features, some reasonable defaults are assumed), default
dependencies (some defaults may be computed based on some other features), and
construction rules (combinations of certain features translate into certain
combinations of implementation components).

This kind of separation between problem and solution space and the configuration
knowledge allow us to enjoy the same convenience in requesting concrete systems or
components as in ordering cars: You don’t have to enumerate all the concrete parts,
e.g.  suspension, carburetor, battery, and all the nuts and bolts, but rather specify the
class (e.g. C- or E-Class), the line (e.g. Classic-, Elegance- or SportLine), and the
options (e.g. side airbags, trailer coupling, air conditioning, etc.) and get a finished
car. Please note that the features in the problem space may be inherently abstract,
e.g. SportLine. In other words, there is no single component that makes a car to be a
sports car, but it is rather a particular combination of carefully selected parts that
achieve this quality (in computer science, think of the features “optimized for speed”
or “optimized for space”). This also makes Generative Programming different from
Generic Programming: While Generative Programming allows you to specify
abstract features, the parameters you supply in Generic Programming represent
concrete components.

It is important that you can order a car by specifying only as much as you want. For
example, there are people who have a lot of money and no time. They could say
“give me a Mercedes S-class with all the extras”. On the other hand, there could be a
customer interested in car racing, who needs to be very specific. He might want to
specify details about particular car parts, e.g. “an aluminum block with cast-in
Nikasil sleeves and twin-spark plug, three-valve cylinder heads”.

                                                       
6 These are also the properties usually required from generic components. Thus, the principles
of Generic Programming apply to the solution space. An even higher level of genericity of the
implementation components can be achieved using Aspect-Oriented Programming [KLM+97].
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Fig. 1.   Problem and solution space



The same spectrum of specificity should be supported by a library of reusable
components [KLL+97]. As an application programmer, when you request a
component, you should be able to specify only as much as necessary. You should not
be forced to specify too much detail: this would make you unnecessarily dependent
on the implementation of the library. However, if necessary, you should be able to
specify details, or even supply your own implementations for some aspects. Defaults,
default dependencies, and hard constraints (i.e. illegal feature combinations) make
this kind of flexibility possible.

Finally, the configuration knowledge is implemented using generators. Depending
on the complexity of the configuration space, the configuration process may be an
algorithmic one (for simple configuration spaces) or search-based (for more complex
configuration spaces).

5 Example: Designing a Product Line
Now we’ll illustrate the steps necessary to develop a product line and automate the
component assembly. We will use a pedagogical toy example: a simple C++ model of
a car. Real applications of these techniques are described in Section 6.

5.1 Domain Analysis

Domain analysis involves domain scoping and feature analysis of the concepts in the
domain. Feature analysis allows you to discover the commonalities and the
variabilities in a domain. Reusable models usually contain large amounts of
variability. For example, a bank account can have different types (savings, checking,
or investment), different kinds of ownership (personal or business), different
currencies, different bank statement periods, different interest rates, service fees,
overdraft policies, etc.

But let’s start with the domain analysis for our car product line. Suppose that based
on our market studies, we decided that the cars we are going to produce will provide
the following features: automatic or manual transmission, electric or gasoline or
hybrid engine, and an optional trailer coupling.

The results of feature analysis can be documented using feature diagrams
[KCH+90], which reveal the kinds of variability contained in the design space. The
feature diagram for our car is shown in Fig. 2. The root of the diagram represents the
concept car. The remaining nodes are features. The diagram contains four kinds of
features:7

• Mandatory features: Mandatory features are pointed to by simple edges ending
with a filled circle. The features car body, transmission, and engine are
mandatory and thus part of any car.

                                                       
7 Or-features are not part of the notation in [KCH+90]. They were introduced in [Cza98]. See
[Cza98] for a full description of the feature diagram notation used here.



• Optional features: Optional features are pointed to by simple edges ending with
an empty circle, e.g. trailer coupling. A car may have a trailer coupling or not.

• Alternative features: Alternative features are pointed to by edges connected by
an arc, e.g. automatic and manual. Thus, a car may have an automatic or
manual transmission.

• Or-features: Or-features are pointed to by edges connected by a filled arc, e.g.
electric and gasoline. Thus, a car may have an electric engine, a gasoline
engine, or both.

The diagram in Fig. 2 describes twelve different car variants (two different
transmissions, three kinds of engine, and an optional trailer coupling, i.e. 2⋅3⋅2=12).
Constraints that cannot be expressed in a feature diagram have to be recorded
separately. For example, let’s assume that an electric or hybrid engine requires an
automatic transmission. With this constraint, we have just eight valid feature
combinations left. The feature diagram, the constraints, and other information (e.g.
binding times, descriptions, etc.) constitute a feature model. Modeling the semantic
contents of the features usually requires other kinds of diagrams (e.g. object
diagrams or interaction diagrams).

The important property of a feature diagram is that it allows us to model variability
without having to commit to a particular implementation mechanism such as
inheritance, aggregation, templates, or #ifdef -directives.

5.2 Domain Design

Now we need to come up with the architecture for the product line. This involves
answering questions such as what kinds of components are needed, how they will be
connected, what kind of middleware or component model will be used, what
interfaces the component categories will have, how they will accommodate the
requirements, etc. Designing the architecture is an iterative process and it usually
requires prototyping. Studying existing architecture styles and patterns greatly helps
in this process (e.g. see [BMR+96]).

automatic manual

trailer
coupling

car body

electric gasoline

car

transmission engine

Fig. 2.  A sample feature diagram of a car



For our car example, we’ll use a particular kind of a layered architecture, called a
GenVoca architecture (see [BO92, SB98] and also [ML98]). This kind of
architecture proved to be useful for a wide variety of systems (see Section 6). In our
experience, designing a GenVoca architecture requires the following steps:

Identify the main functionalities in the feature diagrams from the Domain
Analysis. The main functionalities for our sample car are car body, transmission,
engine, and trailer coupling.

Enumerate component categories and components per category. The component
categories correspond to the four main functionalities listed above. The component
categories and the components per category for our sample car are shown in Fig. 3.

Identify “uses” dependencies between component categories. For our example,
let’s assume that CarBody  uses Engine  (1) and Transmission  (2),
Transmission  uses Engine  (3) and TrailerCoupling  uses CarBody  (4) (see
Fig. 4 a).

Sort the categories into a layered architecture. The component categories can be
arranged into a hierarchy of layers, where each layer represents a category and the
categories that most other categories depend on are moved towards the bottom of the
hierarchy (see Fig. 4 b). Finally, we add two more layers: Car  on the top and

CarBody:

CarBody

Transmission:

AutomaticTransmission

ManualTransmission

Engine:

GasolineEngine

ElectricEngine

HybridEngine

TrailerCoupling:

TrailerCoupling

Fig. 3.   Component categories for the car product line

TransmissionCarBody Engine TrailerCoupling

1
2

3
4

a)

TrailerCoupling

CarBody

Transmission

Engine

b)

CarBody

Car

TrailerCoupling

Automatic | Manual

Gasoline | Electric | Hybrid

c)
ConfigurationRepository

Fig. 4.   Derivation of a layered architecture



ConfigurationRepository  at the bottom (see Fig. 4 c). Car  is the top layer
identifying all cars. ConfigurationRepository  is used to communicate
configuration information to all layers. This is possible since a layer may retrieve
information from any layer below it. You’ll see how this works in Section 5.3. The
dashed box around TrailerCoupling  indicates that this layer is optional. The
Transmission  and the Engine  layer display the alternative components separated
by vertical bars.

Write down the GenVoca grammar. The main idea of the layered architecture in
Fig. 4 c is that a component from a given layer takes another component from the
layer just below it as a parameter, e.g. CarBody  may take AutomaticTrans-
mission  or ManualTransmission  as a parameter, i.e. we may have CarBody[
AutomaticTransmission[...]]  or CarBody[ ManualTransmission[
...]] . Using this idea, we can represent this layered architecture as a set of
grammar rules (see Fig. 5). Please note that vertical bars separate alternatives and we
have abbreviated ConfigurationRepository  to Config .

At this point the architecture for our car product line is finished. Of course, the steps
require an iterative process and prototyping to come up with the final set of
components. The latter is also needed to find a stable interface for each of the
component categories (each component in a category is required to implement the
category interface).

5.3 Implementation Components

Once we have the architecture, we can implement the components. As stated, a
component from a given layer takes a component from the layer below it as a
parameter, i.e. we need to implement the components as parameterized components.
In C++, we can use class templates for this purpose. For example,
GasolineEngine  can be implemented as follows:
template<class Config_>
struct GasolineEngine
{ typedef Config_ Config; //publish Config as a member type
  GasolineEngine() { cout << " GasolineEngine "; }
};
GasolineEngine  takes Config_  as its parameter and publishes it under the new
name Config . Any other component that takes GasolineEngine  as its parameter
can retrieve Config  from it using the C++ scope operator ::, i.e.
GasolineEngine::Config . ElectricEngine  and HybridEngine  are
implemented in a similar way and are not shown here.

Car:                    Car[ CarBodyWithOptTC]
CarBodyWithOptTC:       CarBodyWithTC[ CompleteCarBody] | CompleteCarBody
CompleteCarBody:        CarBody[ TransmissionWithEngine]
TransmissionWithEngine: ManualTransmission[Engine] |
                        AutomaticTransmission[Engine]
Engine:                 GasolineEngine[ Config] | ElectricEngine[ Config |
                        HybridEngine[ Config]
Config:                 speeds, Engine, Transmission, CarBody, Car

Fig. 5.   GenVoca grammar for the car product line



The next component is ManualTransmission . According to the grammar in Fig.
5, it takes an Engine  as its parameter:
template <class Engine>
struct ManualTransmission
{ typedef typename Engine::Config Config;
  enum { speeds = Config::speeds };
  Engine e;
  ManualTransmission(){ cout << speeds << "- SpeedManualTransmission "; }
};
ManualTransmission  retrieves Config  from its parameter Engine  and
publishes it under the alias Config . This is how Config , which is the bottom layer
in the hierarchy, is propagated all the way up to the top layer. The line below the
typedef -declaration shows you how Config  is used. In this example,
ManualTransmission  retrieves the number of speeds from the Config  (e.g. 4 or
5). The remaining components AutomaticTransmission , CarBody , and
CarBodyWithTC  (TC stands for trailer coupling) are implemented in a similar way.
Let us just take a look at the last component, namely Car :
template <class CarBody_>
struct Car
{ typedef typename CarBody_::Config Config; // Config is part of any car!
  CarBody_ cb;
  Car() { cout << "Car " << endl << endl; }
};

5.4 Manual Assembly

Now that we have the implementation components, we can build different cars by
writing down different configuration repositories, in which the appropriate
components are assembled together. For example, the following configuration
repository defines a car with a gasoline engine, five-speed manual transmission, and
without a trailer coupling:
struct Config1
{ enum { speeds = 5 };
  typedef GasolineEngine<Config1> Engine;
  typedef ManualTransmission<Engine> Transmission;
  typedef CarBody<Transmission> CarBody;
  typedef Car<CarBody> Car;
};
And a car with an electric engine, four-speed automatic transmission, and without a
trailer coupling looks as follows:
struct Config2
{ enum { speeds = 4 };
  typedef ElectricEngine<Config2> Engine;
  typedef AutomaticTransmission<Engine> Transmission;
  typedef CarBody<Transmission> CarBody;
  typedef Car<CarBody> Car;
};
You can declare an instance of the latter car as follows:
Config2::Car c2;
Writing configuration repositories is a tedious exercise. The person writing them
needs to know what implementation components are available, what are the valid
configurations (e.g. an electric or hybrid engine requires an automatic transmission),



and which configurations are more optimal or satisfy some other requirement. Thus,
requiring the application programmer to write a configuration repository places quite
a burden on her. Even worse, it makes client code too strongly coupled with the
architecture and the implementation components since changes to the architecture
(e.g. adding a new layer) may require modifying all configuration repositories.

An alternative would be to include all possible configuration repositories in the
library. However, this is usually not practicable since there is normally a large
number of configurations (e.g. the matrix computation library described in Section 6
would require 1840 configuration repositories) and each of them is usually longer
than in the car example. The solution is to generate the configuration repositories out
of more abstract descriptions. But before taking a look at how this works, we need to
figure out what an “abstract description” means in our context, i.e. how to
conveniently order cars.

5.5 Ordering Cars

When you order a car, you don’t have to describe to the car dealer from which parts
to assemble it. Instead, you specify the class, the line, and the options, which are
usually listed in a product information brochure. An example of such a brochure for
our car product line is shown in Fig. 6. The brochure specifies features available as
standard equipment or as options for each line. Please note that according to the
brochure, it is not possible to order an electric or hybrid engine together with a
manual transmission.

We can easily implement this brochure in C++. Since a client specifies a car by
stating the desired line and options, we need to provide the vocabulary representing
the lines (BaseLine, CityLine, and EcoLine) and options (transmission and trailer
coupling). The enumeration type Transmission  will be used to specify the
transmission and Options  will be used to state whether a trailer coupling is
available or not:
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Transmission
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Fig. 6.   Product information brochure for our car product line



enum Transmission { fiveSpeed, fourSpeedAutomatic };
enum Options      { none, trailerCoupling };
Now we need the vocabulary representing the three lines. We will model this
vocabulary using types rather than enumeration constants since they will contain a
member indicating the required transmission:
template < int transmission_ = fiveSpeed>
struct BaseLine
{ enum { transmission = transmission_,
         line         = baseline
       };
};
BaseLine is available with either manual transmission (standard) or automatic
transmission (option). Therefore, we have the template parameter transmission
with five-speed manual transmission as default. The second member is just a line
identifier, so that we can verify at compile time whether a line type is BaseLine  or
not based on the value of BaseLine::line . Here is the declaration for baseline
and the two remaining line identifiers:
enum Line { baseline, cityline, ecoline }; //for internal use only
Finally, we have the two remaining lines CityLine and EcoLine:
struct CityLine
{ enum { transmission = fourSpeedAutomatic,
         line         = cityline
       };
};

struct EcoLine
{ enum { transmission = fourSpeedAutomatic,
         line         = ecoline
       };
};
Please note that whenever you select a CityLine or an EcoLine, you automatically
select a four-speed automatic transmission. Thus, the vocabulary for ordering cars is
designed to exclude the possibility of specifying an illegal feature combination (e.g.
electric engine and manual transmission). In general, when you design a domain-
specific language for “ordering” different systems or components, you may either
prevent illegal feature combinations by structuring the language as in the car
example or by having an extra “buildability checking” step in the generator. The first
option is preferred if the configuration space is highly irregular, i.e. there are many
illegal combinations compared to the total number of combinations (i.e. the
probability of a mistake is high). The second option is better if there are only few
illegal combinations. In this case, the language is simpler and the few possible
mistakes are caught by the generator. For example, if the constraint was that a hybrid
engine requires an automatic transmission, we could specify a car using three
enumeration types Engine , Transmission , and Options . The generator would
be responsible for detecting the illegal combination of a hybrid engine and a manual
transmission.

Another issue in the design of a domain-specific language is the level of specificity it
supports. Ideally, it should support a spectrum from being unspecific (e.g. “give me a
car”) to being able to specify details about the implementation components, or even



providing user-defined components in the specification. The trade-offs here include
the required level of detail, the stability of the architecture, and the complexity of the
configuration space. In any case, supporting different levels of specificity requires
defining default settings and default computation rules.

5.6 The Generator

The generator takes a specification of a system or component and returns the
finished system or component.

In general, a configuration generator [CE99a] performs the following steps (see Fig.
7): it checks if the specified system can be built, completes the specification (by
computing defaults), and assembles the implementation components. In our car
example, however, there is no buildability checking (since the domain-specific
language doesn’t give an opportunity to specify illegal feature combinations) and
there are no computed defaults (as you’ll see in a moment, the few direct default
settings are specified in the parameter list of the generator).

Of course, we could implement the generator as a pre-processor generating
configuration repositories in C++ source code. A better alternative, however, is to
use the built-in metaprogramming capabilities of C++, i.e. template
metaprogramming. Without explaining all the detail, let us just state that C++
templates constitute a compile-time, Turing-complete sublanguage of C++. In other
words, you can use the template instantiation process to perform arbitrary
computations at compile time (this was first observed by Erwin Unruh [Unr94]).
Meanwhile, there is a whole set of programming idioms and principles based on this
idea, which are collectively referred to as “template metaprogramming” [Vel95,
CE99b]. For the purpose of this article, you only need to understand that the
generator is implemented as a template taking the description of a car as its
parameter and returning the finished car type in a specially designated member,
which is by convention called RET  (which stands for RETURN ). To make this
discussion more concrete, let’s take a look at how you would create an instance of a
BaseLine car with a four-speed automatic transmission and a trailer coupling:
CAR_GENERATOR<BaseLine<fourSpeedAutomatic>,trailerCoupling>::RET car1;
or an EcoLine car with a four-speed automatic transmission and without a trailer
coupling:
CAR_GENERATOR<EcoLine>::RET car2;

(incomplete)
requirement
specification

generator

completing the
specification,
optimization

buildability
checking

component
assembly

concrete
system or
component

Fig. 7.   Stages of a configuration generator



The implementation of CAR_GENERATOR  is given in Fig. 8. It uses the templates IF
and SWITCH , which correspond to the familiar selection statements if and switch
(their implementation is described in [CE99b, CE98]).

The advantage of the implementation using template metaprogramming is that the
generator can be used simply as any other template and we don’t need any extra pre-
processors. The interesting aspect of this kind of metaprogramming is that the
metacode performing the configuration at compile time is part of the library of

                                                       
8 Since we pass Generator to each engine instead of Config , the engine implementation
components GasolineEngine , ElectricEngine , and HybridEngine  need to be
slightly modified to retrieve the Config  from their Generator  parameter.
9 Please note that Config becomes part of any generated car type and can be later accessed by
other generators, e.g. generators for algorithms displaying cars.

template <class Line = BaseLine<>, int options_ = none>
struct CAR_GENERATOR
{ typedef CAR_GENERATOR<Line,options_> Generator;

  //parse the car spec
  enum { line_ = Line::line,
         transmission_ = Line::transmission
       };

  // assembly components
  enum { speeds_ = (transmission_ == fiveSpeed) ? 5 : 4 };

  typedef SWITCH<line_,
            CASE<baseline,GasolineEngine<Generator>, //see footnote 8

            CASE<cityline,ElectricEngine<Generator>,
            CASE<ecoline,HybridEngine<Generator>
          > > > >::RET Engine_;
  typedef IF<(transmission_ == fiveSpeed),
            ManualTransmission< Engine_>,
            AutomaticTransmission< Engine_>
          >::RET Transmission_;
  typedef IF<(options_ == trailerCoupling),
            CarBodyWithTC< CarBody< Transmission_> >,
            CarBody< Transmission_>
          >::RET CarBody_;

  typedef  Car<CarBody_> RET; //return the finished car!

  //provide the Config 9

  struct Config
  { typedef Engine_ Engine;
    typedef CarBody_ CarBody;
    enum { speeds       = speeds_,
           line         = line_,
           transmission = transmission_,
           options      = options_,
         };
    typedef RET Car;
  };
};

Fig. 8.   C++ implementation of the car generator



domain-specific concepts as any other code implementing the concepts (e.g. the
implementation components).

6 Applications
We’ve selected the car example for this paper for pedagogical reasons. You’ll find
some more computer-oriented examples in [CE99a] (a list container) and in [EC99]
(a bank account). We have used the techniques presented here in real-scale systems:

Generative Matrix Computation Library (GMCL) [GMCL, Cza98, Neu98] is a
generative C++ library for matrix computations. It contains a configuration
generator for generating different kinds of matrix types (different element types,
density, storage formats, memory allocation, and error checking) and another kind of
generator for generating optimized implementations of matrix expressions, e.g.
(A+B)*(C+D) . GMCL comprises 7500 lines of C++ code and is capable of
generating 1840 different, highly-efficient matrix types.

Generative Matrix Factorization Library [Kna98] contains a configuration
generator synthesizing different instances of the LU factorization algorithm family
(e.g. Gauss, Cholesky, LDLT) with different pivoting strategies (e.g. partial, full,
symmetric, diagonal) and for different matrix shapes.

Generative Library for Statistics in Postal Automation [OSVA99] contains
configuration generators for different kinds of counters, timers, and statistic
algorithms. It is being used by Siemens Electrocom, a world leader in postal
automation.

7 Active Libraries
As you saw, the implementation of the generator required metaprogramming. We
have used template metaprogramming for this purpose. This was OK, but not perfect
due to debugging problems (there is no debugger for the C++ compilation process!)
and long compilation times (C++ compilers are not optimized for that kind of
strange template programming!). Nevertheless, we were able to demonstrate the idea
of putting metacode into domain-specific libraries. In a sense, you can think of the
metacode performing compile-time configuration and optimization as extending the
C++ compiler. In general, you would also like to have other kinds of metacode
extending just about any aspect of a programming environment. This brings us to the
idea of active libraries [CEG+98], which “are not passive collections of routines or
objects, as are traditional libraries, but take an active role in generating code. Active
libraries provide abstractions and can optimize those abstractions themselves. They
may generate components, specialize algorithms, optimize code, automatically
configure and tune themselves for a target machine, and check source code for
correctness. They may also describe themselves to tools such as profilers and
debuggers in an intelligible way.” An example of a system supporting this idea is
Intentional Programming (IP), which is being developed at Microsoft Research
[Sim96]. IP is an extendible programming environment which lets you contribute



metacode to extend any aspect of the system including the debugger, the compilation
system, and the source editing and display system. It is important to note that the
program source IP operates on is not text but an active object structure. This way, all
kinds of domain-specific notations are possible (both textual and graphical) and the
programmer can actually interact with his program code while coding. The wide
availability of such extendible programming environments will bring a wholly new
dimension to Generative Programming.

8 Conclusions
A component is always a part of a well-defined production process. For example, a
brick is a component in the process of building houses not cars. Often cited criteria
such as binary format, interoperability, language independence, etc., are always
relative to the production process. For example, if you need containers in C++, STL
components are just fine. If you need to build GUI windows, you need visual
components (e.g. a JavaBean). If you need language-independent, distributed
components, you may use CORBA.

Just as it took several decades for the idea of interchangeable parts to be widely used
in manufacturing, the transition to interchangeable software components will not
happen instantly. In particular, there is a cultural change required on the part of
customers, consultants, and vendors to accept solutions based on standard
componentry rather than “artistic” individual solutions. The introduction of
interchangeable software components requires product-line architectures to be in
place. Only that way it is possible to easily and quickly say whether a component
offers what a given system expects or not. Thus, we’ll need more architectural
standardization in different industries before the idea of software components truly
takes off.

If you can assemble your components manually, you can also automate the assembly
process using a generator. Automation is a logical step once you have a plug-and-
play architecture in place. However, just as there is an additional cost to developing
reusable software rather than just single systems, there is an additional cost to
automation. The availability of standard architectures and components and
industrial-quality metaprogramming environments based on the idea of active
libraries will help reaching the break-even point more quickly.

One final note: Generation can be performed both statically and dynamically, so your
metaprogramming environment should allow you to execute metacode at different
times!
Note: The complete source code for the car example is available at http://nero.prakinf.tu-
ilmenau.de/~czarn/esec99
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