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ABSTRACT

Computer program input generally has some structure; in fact, every computer

program that does input can be thought of as defining an ‘‘input language’’ which it

accepts. An input language may be as complex as a programming language, or as sim-

ple as a sequence of numbers. Unfortunately, usual input facilities are limited, difficult

to use, and often are lax about checking their inputs for validity.

Yacc provides a general tool for describing the input to a computer program.

The Yacc user specifies the structures of his input, together with code to be invoked as

each such structure is recognized. Yacc turns such a specification into a subroutine

that handles the input process; frequently, it is convenient and appropriate to have most

of the flow of control in the user’s application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the

next basic input item. Thus, the user can specify his input in terms of individual input

characters, or in terms of higher level constructs such as names and numbers. The

user-supplied routine may also handle idiomatic features such as comment and con-

tinuation conventions, which typically defy easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a very gen-

eral one: LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been

used for less conventional languages, including a phototypesetter language, several

desk calculator languages, a document retrieval system, and a Fortran debugging sys-

tem.
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0: Introduction

Yacc provides a general tool for imposing structure on the input to a computer program. The

Yacc user prepares a specification of the input process; this includes rules describing the input structure,

code to be invoked when these rules are recognized, and a low-level routine to do the basic input. Yacc

then generates a function to control the input process. This function, called a parser , calls the user-

supplied low-level input routine (the lexical analyzer ) to pick up the basic items (called tokens ) from

the input stream. These tokens are organized according to the input structure rules, called grammar

rules ; when one of these rules has been recognized, then user code supplied for this rule, an action , is

invoked; actions have the ability to return values and make use of the values of other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C as well.

Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an

allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ´,´ year ;

Here, date , month_name , day , and year represent structures of interest in the input process; presum-

ably, month_name , day , and year are defined elsewhere. The comma ‘‘,’’ is enclosed in single quotes;

this implies that the comma is to appear literally in the input. The colon and semicolon merely serve as

punctuation in the rule, and have no significance in controlling the input. Thus, with proper definitions,

the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user routine

reads the input stream, recognizing the lower level structures, and communicates these tokens to the

parser. For historical reasons, a structure recognized by the lexical analyzer is called a terminal symbol ,

while the structure recognized by the parser is called a nonterminal symbol . To avoid confusion, termi-

nal symbols will usually be referred to as tokens .

There is considerable leeway in deciding whether to recognize structures using the lexical analyzer

or grammar rules. For example, the rules

month_name : ´J´ ´a´ ´n´ ;

month_name : ´F´ ´e´ ´b´ ;

. . .

month_name : ´D´ ´e´ ´c´ ;

might be used in the above example. The lexical analyzer would only need to recognize individual

letters, and month_name would be a nonterminal symbol. Such low-level rules tend to waste time and

space, and may complicate the specification beyond Yacc’s ability to deal with it. Usually, the lexical

analyzer would recognize the month names, and return an indication that a month_name was seen; in

this case, month_name would be a token.



- 2 -

Literal characters such as ‘‘,’’ must also be passed through the lexical analyzer, and are also con-

sidered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule

date : month ´/´ day ´/´ year ;

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be ‘‘slipped in’’ to a working system with minimal effort, and little

danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as

early as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading and

computing with bad input data substantially reduced, but the bad data can usually be quickly found.

Error handling, provided as part of the input specifications, permits the reentry of bad data, or the con-

tinuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For example, the

specifications may be self contradictory, or they may require a more powerful recognition mechanism

than that available to Yacc. The former cases represent design errors; the latter cases can often be

corrected by making the lexical analyzer more powerful, or by rewriting some of the grammar rules.

While Yacc cannot handle all possible specifications, its power compares favorably with similar systems;

moreover, the constructions which are difficult for Yacc to handle are also frequently difficult for human

beings to handle. Some users have reported that the discipline of formulating valid Yacc specifications

for their input revealed errors of conception or design early in the program development.

The theory underlying Yacc has been described elsewhere.234 Yacc has been extensively used in

numerous practical applications, including lint ,5 the Portable C Compiler,6 and a system for typesetting

mathematics.7

The next several sections describe the basic process of preparing a Yacc specification; Section 1

describes the preparation of grammar rules, Section 2 the preparation of the user supplied actions associ-

ated with these rules, and Section 3 the preparation of lexical analyzers. Section 4 describes the opera-

tion of the parser. Section 5 discusses various reasons why Yacc may be unable to produce a parser

from a specification, and what to do about it. Section 6 describes a simple mechanism for handling

operator precedences in arithmetic expressions. Section 7 discusses error detection and recovery. Sec-

tion 8 discusses the operating environment and special features of the parsers Yacc produces. Section 9

gives some suggestions which should improve the style and efficiency of the specifications. Section 10

discusses some advanced topics, and Section 11 gives acknowledgements. Appendix A has a brief

example, and Appendix B gives a summary of the Yacc input syntax. Appendix C gives an example

using some of the more advanced features of Yacc, and, finally, Appendix D describes mechanisms and

syntax no longer actively supported, but provided for historical continuity with older versions of Yacc.

1: Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared

as such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexical

analyzer as part of the specification file; it may be useful to include other programs as well. Thus, every

specification file consists of three sections: the declarations , (grammar) rules , and programs . The sec-

tions are separated by double percent ‘‘%%’’ marks. (The percent ‘‘%’’ is generally used in Yacc

specifications as an escape character.)

In other words, a full specification file looks like
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declarations

%%

rules

%%

programs

The declaration section may be empty. Moreover, if the programs section is omitted, the second

%% mark may be omitted also; thus, the smallest legal Yacc specification is

%%

rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi-

character reserved symbols. Comments may appear wherever a name is legal; they are enclosed in /∗ . .

. ∗/, as in C and PL/I.

The rules section is made up of one or more grammar rules. A grammar rule has the form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and literals.

The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ‘‘.’’, underscore ‘‘_’’, and

non-initial digits. Upper and lower case letters are distinct. The names used in the body of a grammar

rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes ‘‘´’’. As in C, the backslash ‘‘\’’ is an

escape character within literals, and all the C escapes are recognized. Thus

´\n´ newline

´\r´ return

´\´´ single quote ‘‘´’’

´\\´ backslash ‘‘\’’

´\t´ tab

´\b´ backspace

´\f´ form feed

´\xxx´ ‘‘xxx’’ in octal

For a number of technical reasons, the NUL character (´\0´ or 0) should never be used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar ‘‘|’’ can be used to

avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be dropped before

a vertical bar. Thus the grammar rules

A : B C D ;

A : E F ;

A : G ;

can be given to Yacc as

A : B C D

| E F

| G

;

It is not necessary that all grammar rules with the same left side appear together in the grammar rules

section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

empty : ;
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Names representing tokens must be declared; this is most simply done by writing

%token name1 name2 . . .

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name not

defined in the declarations section is assumed to represent a nonterminal symbol. Every nonterminal

symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the start symbol , has particular importance. The

parser is designed to recognize the start symbol; thus, this symbol represents the largest, most general

structure described by the grammar rules. By default, the start symbol is taken to be the left hand side

of the first grammar rule in the rules section. It is possible, and in fact desirable, to declare the start

symbol explicitly in the declarations section using the %start keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker . If the

tokens up to, but not including, the endmarker form a structure which matches the start symbol, the

parser function returns to its caller after the endmarker is seen; it accepts the input. If the endmarker is

seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see

section 3, below. Usually the endmarker represents some reasonably obvious I/O status, such as ‘‘end-

of-file’’ or ‘‘end-of-record’’.

2: Actions

With each grammar rule, the user may associate actions to be performed each time the rule is

recognized in the input process. These actions may return values, and may obtain the values returned by

previous actions. Moreover, the lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms, and

alter external vectors and variables. An action is specified by one or more statements, enclosed in curly

braces ‘‘{’’ and ‘‘}’’. For example,

A : ´(´ B ´)´

{ hello( 1, "abc" ); }

and

XXX : YYY ZZZ

{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are

altered slightly. The symbol ‘‘dollar sign’’ ‘‘$’’ is used as a signal to Yacc in this context.

To return a value, the action normally sets the pseudo-variable ‘‘$$’’ to some value. For example,

an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may use the

pseudo-variables $1, $2, . . ., which refer to the values returned by the components of the right side of a

rule, reading from left to right. Thus, if the rule is

A : B C D ;

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule
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expr : ´(´ expr ´)´ ;

The value returned by this rule is usually the value of the expr in parentheses. This can be indicated by

expr : ´(´ expr ´)´ { $$ = $2 ; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules of

the form

A : B ;

frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable to

get control before a rule is fully parsed. Yacc permits an action to be written in the middle of a rule as

well as at the end. This rule is assumed to return a value, accessible through the usual mechanism by

the actions to the right of it. In turn, it may access the values returned by the symbols to its left. Thus,

in the rule

A : B

{ $$ = 1; }

C

{ x = $2; y = $3; }

;

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new nonter-

minal symbol name, and a new rule matching this name to the empty string. The interior action is the

action triggered off by recognizing this added rule. Yacc actually treats the above example as if it had

been written:

$ACT : /∗ empty ∗/

{ $$ = 1; }

;

A : B $ACT C

{ x = $2; y = $3; }

;

In many applications, output is not done directly by the actions; rather, a data structure, such as a

parse tree, is constructed in memory, and transformations are applied to it before output is generated.

Parse trees are particularly easy to construct, given routines to build and maintain the tree structure

desired. For example, suppose there is a C function node , written so that the call

node( L, n1, n2 )

creates a node with label L, and descendants n1 and n2, and returns the index of the newly created node.

Then parse tree can be built by supplying actions such as:

expr : expr ´+´ expr

{ $$ = node( ´+´, $1, $3 ); }

in the specification.

The user may define other variables to be used by the actions. Declarations and definitions can

appear in the declarations section, enclosed in the marks ‘‘%{’’ and ‘‘%}’’. These declarations and

definitions have global scope, so they are known to the action statements and the lexical analyzer. For

example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The Yacc
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parser uses only names beginning in ‘‘yy’’; the user should avoid such names.

In these examples, all the values are integers: a discussion of values of other types will be found

in Section 10.

3: Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens (with

values, if desired) to the parser. The lexical analyzer is an integer-valued function called yylex . The

function returns an integer, the token number , representing the kind of token read. If there is a value

associated with that token, it should be assigned to the external variable yylval .

The parser and the lexical analyzer must agree on these token numbers in order for communication

between them to take place. The numbers may be chosen by Yacc, or chosen by the user. In either

case, the ‘‘# define’’ mechanism of C is used to allow the lexical analyzer to return these numbers sym-

bolically. For example, suppose that the token name DIGIT has been defined in the declarations section

of the Yacc specification file. The relevant portion of the lexical analyzer might look like:

yylex(){

extern int yylval;

int c;

. . .

c = getchar();

. . .

switch( c ) {

. . .

case ´0´:

case ´1´:

. . .

case ´9´:

yylval = c– ´0´;

return( DIGIT );

. . .

}

. . .

The intent is to return a token number of DIGIT, and a value equal to the numerical value of the

digit. Provided that the lexical analyzer code is placed in the programs section of the specification file,

the identifier DIGIT will be defined as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to

avoid using any token names in the grammar that are reserved or significant in C or the parser; for

example, the use of token names if or while will almost certainly cause severe difficulties when the lex-

ical analyzer is compiled. The token name error is reserved for error handling, and should not be used

naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the default

situation, the numbers are chosen by Yacc. The default token number for a literal character is the

numerical value of the character in the local character set. Other names are assigned token numbers

starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name or

literal in the declarations section can be immediately followed by a nonnegative integer. This integer is

taken to be the token number of the name or literal. Names and literals not defined by this mechanism

retain their default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token number

cannot be redefined by the user; thus, all lexical analyzers should be prepared to return 0 or negative as

a token number upon reaching the end of their input.
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A very useful tool for constructing lexical analyzers is the Lex program developed by Mike Lesk.8

These lexical analyzers are designed to work in close harmony with Yacc parsers. The specifications for

these lexical analyzers use regular expressions instead of grammar rules. Lex can be easily used to pro-

duce quite complicated lexical analyzers, but there remain some languages (such as FORTRAN) which

do not fit any theoretical framework, and whose lexical analyzers must be crafted by hand.

4: How the Parser Works

Yacc turns the specification file into a C program, which parses the input according to the

specification given. The algorithm used to go from the specification to the parser is complex, and will

not be discussed here (see the references for more information). The parser itself, however, is relatively

simple, and understanding how it works, while not strictly necessary, will nevertheless make treatment

of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is also

capable of reading and remembering the next input token (called the lookahead token). The current

state is always the one on the top of the stack. The states of the finite state machine are given small

integer labels; initially, the machine is in state 0, the stack contains only state 0, and no lookahead token

has been read.

The machine has only four actions available to it, called shift , reduce , accept , and error . A

move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide what

action should be done; if it needs one, and does not have one, it calls yylex to obtain the next

token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next action,

and carries it out. This may result in states being pushed onto the stack, or popped off of the

stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is taken,

there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on the stack,

and state 34 becomes the current state (on the top of the stack). The lookahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropriate

when the parser has seen the right hand side of a grammar rule, and is prepared to announce that it has

seen an instance of the rule, replacing the right hand side by the left hand side. It may be necessary to

consult the lookahead token to decide whether to reduce, but usually it is not; in fact, the default action

(represented by a ‘‘.’’) is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also given small

integer numbers, leading to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A : x y z ;

The reduce action depends on the left hand symbol (A in this case), and the number of symbols on the

right hand side (three in this case). To reduce, first pop off the top three states from the stack (In gen-

eral, the number of states popped equals the number of symbols on the right side of the rule). In effect,

these states were the ones put on the stack while recognizing x , y , and z , and no longer serve any use-

ful purpose. After popping these states, a state is uncovered which was the state the parser was in
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before beginning to process the rule. Using this uncovered state, and the symbol on the left side of the

rule, perform what is in effect a shift of A. A new state is obtained, pushed onto the stack, and parsing

continues. There are significant differences between the processing of the left hand symbol and an ordi-

nary shift of a token, however, so this action is called a goto action. In particular, the lookahead token

is cleared by a shift, and is not affected by a goto. In any case, the uncovered state contains an entry

such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action ‘‘turns back the clock’’ in the parse, popping the states off the stack to

go back to the state where the right hand side of the rule was first seen. The parser then behaves as if it

had seen the left side at that time. If the right hand side of the rule is empty, no states are popped off

of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When a

rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In addition to

the stack holding the states, another stack, running in parallel with it, holds the values returned from the

lexical analyzer and the actions. When a shift takes place, the external variable yylval is copied onto

the value stack. After the return from the user code, the reduction is carried out. When the goto action

is done, the external variable yyval is copied onto the value stack. The pseudo-variables $1, $2, etc.,

refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates that the

entire input has been seen and that it matches the specification. This action appears only when the loo-

kahead token is the endmarker, and indicates that the parser has successfully done its job. The error

action, on the other hand, represents a place where the parser can no longer continue parsing according

to the specification. The input tokens it has seen, together with the lookahead token, cannot be followed

by anything that would result in a legal input. The parser reports an error, and attempts to recover the

situation and resume parsing: the error recovery (as opposed to the detection of error) will be covered in

Section 7.

It is time for an example! Consider the specification

%token DING DONG DELL

%%

rhyme : sound place

;

sound : DING DONG

;

place : DELL

;

When Yacc is invoked with the – v option, a file called y.output is produced, with a human-

readable description of the parser. The y.output file corresponding to the above grammar (with some

statistics stripped off the end) is:
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state 0

$accept : _rhyme $end

DING shift 3

. error

rhyme goto 1

sound goto 2

state 1

$accept : rhyme_$end

$end accept

. error

state 2

rhyme : sound_place

DELL shift 5

. error

place goto 4

state 3

sound : DING_DONG

DONG shift 6

. error

state 4

rhyme : sound place_ (1)

. reduce 1

state 5

place : DELL_ (3)

. reduce 3

state 6

sound : DING DONG_ (2)

. reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules being pro-

cessed in each state. The _ character is used to indicate what has been seen, and what is yet to come, in

each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to decide

between the actions available in state 0, so the first token, DING , is read, becoming the lookahead

token. The action in state 0 on DING is is ‘‘shift 3’’, so state 3 is pushed onto the stack, and the looka-

head token is cleared. State 3 becomes the current state. The next token, DONG , is read, becoming the
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lookahead token. The action in state 3 on the token DONG is ‘‘shift 6’’, so state 6 is pushed onto the

stack, and the lookahead is cleared. The stack now contains 0, 3, and 6. In state 6, without even con-

sulting the lookahead, the parser reduces by rule 2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the stack,

uncovering state 0. Consulting the description of state 0, looking for a goto on sound ,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL , must be read. The action is ‘‘shift 5’’, so state 5 is pushed onto

the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5, the only

action is to reduce by rule 3. This has one symbol on the right hand side, so one state, 5, is popped off,

and state 2 is uncovered. The goto in state 2 on place , the left side of rule 3, is state 4. Now, the stack

contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1. There are two symbols on the

right, so the top two states are popped off, uncovering state 0 again. In state 0, there is a goto on

rhyme causing the parser to enter state 1. In state 1, the input is read; the endmarker is obtained, indi-

cated by ‘‘$end’’ in the y.output file. The action in state 1 when the endmarker is seen is to accept,

successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect strings

as DING DONG DONG , DING DONG , DING DONG DELL DELL , etc. A few minutes spend with

this and other simple examples will probably be repaid when problems arise in more complicated con-

texts.

5: Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in two or

more different ways. For example, the grammar rule

expr : expr ´– ´ expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put two

other expressions together with a minus sign between them. Unfortunately, this grammar rule does not

completely specify the way that all complex inputs should be structured. For example, if the input is

expr – expr – expr

the rule allows this input to be structured as either

( expr – expr ) – expr

or as

expr – ( expr – expr )

(The first is called left association , the second right association ).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to con-

sider the problem that confronts the parser when it is given an input such as

expr – expr – expr

When the parser has read the second expr, the input that it has seen:

expr – expr

matches the right side of the grammar rule above. The parser could reduce the input by applying this

rule; after applying the rule; the input is reduced to expr (the left side of the rule). The parser would

then read the final part of the input:

– expr



- 11 -

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr – expr

it could defer the immediate application of the rule, and continue reading the input until it had seen

expr – expr – expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr – expr

Now the rule can be reduced once more; the effect is to take the right associative interpretation. Thus,

having read

expr – expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between them.

This is called a shift / reduce conflict . It may also happen that the parser has a choice of two legal

reductions; this is called a reduce / reduce conflict . Note that there are never any ‘‘Shift/shift’’

conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does this

by selecting one of the valid steps wherever it has a choice. A rule describing which choice to make in

a given situation is called a disambiguating rule .

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the input

sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2

gives the user rather crude control over the behavior of the parser in this situation, but reduce/reduce

conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while

consistent, require a more complex parser than Yacc can construct. The use of actions within rules can

also cause conflicts, if the action must be done before the parser can be sure which rule is being recog-

nized. In these cases, the application of disambiguating rules is inappropriate, and leads to an incorrect

parser. For this reason, Yacc always reports the number of shift/reduce and reduce/reduce conflicts

resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it is

also possible to rewrite the grammar rules so that the same inputs are read but there are no conflicts.

For this reason, most previous parser generators have considered conflicts to be fatal errors. Our experi-

ence has suggested that this rewriting is somewhat unnatural, and produces slower parsers; thus, Yacc

will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a programming

language involving an ‘‘if-then-else’’ construction:

stat : IF ´(´ cond ´)´ stat

| IF ´(´ cond ´)´ stat ELSE stat

;

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional (logical)

expressions, and stat is a nonterminal symbol describing statements. The first rule will be called the

simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

IF ( C1 ) IF ( C2 ) S1 ELSE S2
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can be structured according to these rules in two ways:

IF ( C1 ) {

IF ( C2 ) S1

}

ELSE S2

or

IF ( C1 ) {

IF ( C2 ) S1

ELSE S2

}

The second interpretation is the one given in most programming languages having this construct. Each

ELSE is associated with the last preceding ‘‘un-ELSE’d’’ IF . In this example, consider the situation

where the parser has seen

IF ( C1 ) IF ( C2 ) S1

and is looking at the ELSE . It can immediately reduce by the simple-if rule to get

IF ( C1 ) stat

and then read the remaining input,

ELSE S2

and reduce

IF ( C1 ) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF ( C1 ) IF ( C2 ) S1 ELSE S2

can be reduced by the if-else rule to get

IF ( C1 ) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of the

input, which is usually desired.

Once again the parser can do two valid things – there is a shift/reduce conflict. The application

of disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol, ELSE , and

particular inputs already seen, such as

IF ( C1 ) IF ( C2 ) S1

In general, there may be many conflicts, and each one will be associated with an input symbol and a set

of previously read inputs. The previously read inputs are characterized by the state of the parser.

The conflict messages of Yacc are best understood by examining the verbose (– v) option output

file. For example, the output corresponding to the above conflict state might be:



- 13 -

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat : IF ( cond ) stat_ (18)

stat : IF ( cond ) stat_ELSE stat

ELSE shift 45

. reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state description

follows, giving the grammar rules active in the state, and the parser actions. Recall that the underline

marks the portion of the grammar rules which has been seen. Thus in the example, in state 23 the

parser has seen input corresponding to

IF ( cond ) stat

and the two grammar rules shown are active at this time. The parser can do two possible things. If the

input symbol is ELSE , it is possible to shift into state 45. State 45 will have, as part of its description,

the line

stat : IF ( cond ) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action, described by

‘‘.’’, is to be done if the input symbol is not mentioned explicitly in the above actions; thus, in this case,

if the input symbol is not ELSE , the parser reduces by grammar rule 18:

stat : IF ´(´ cond ´)´ stat

Once again, notice that the numbers following ‘‘shift’’ commands refer to other states, while the

numbers following ‘‘reduce’’ commands refer to grammar rule numbers. In the y.output file, the rule

numbers are printed after those rules which can be reduced. In most one states, there will be at most

reduce action possible in the state, and this will be the default command. The user who encounters

unexpected shift/reduce conflicts will probably want to look at the verbose output to decide whether the

default actions are appropriate. In really tough cases, the user might need to know more about the

behavior and construction of the parser than can be covered here. In this case, one of the theoretical

references234 might be consulted; the services of a local guru might also be appropriate.

6: Precedence

There is one common situation where the rules given above for resolving conflicts are not

sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used constructions for

arithmetic expressions can be naturally described by the notion of precedence levels for operators,

together with information about left or right associativity. It turns out that ambiguous grammars with

appropriate disambiguating rules can be used to create parsers that are faster and easier to write than

parsers constructed from unambiguous grammars. The basic notion is to write grammar rules of the

form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many parsing

conflicts. As disambiguating rules, the user specifies the precedence, or binding strength, of all the

operators, and the associativity of the binary operators. This information is sufficient to allow Yacc to

resolve the parsing conflicts in accordance with these rules, and construct a parser that realizes the

desired precedences and associativities.
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The precedences and associativities are attached to tokens in the declarations section. This is done

by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc, followed by a list of

tokens. All of the tokens on the same line are assumed to have the same precedence level and associa-

tivity; the lines are listed in order of increasing precedence or binding strength. Thus,

%left ´+´ ´– ´

%left ´∗´ ´/´

describes the precedence and associativity of the four arithmetic operators. Plus and minus are left asso-

ciative, and have lower precedence than star and slash, which are also left associative. The keyword

%right is used to describe right associative operators, and the keyword %nonassoc is used to describe

operators, like the operator .LT. in Fortran, that may not associate with themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in Yacc. As

an example of the behavior of these declarations, the description

%right ´=´

%left ´+´ ´– ´

%left ´∗´ ´/´

%%

expr : expr ´=´ expr

| expr ´+´ expr

| expr ´– ´ expr

| expr ´∗´ expr

| expr ´/´ expr

| NAME

;

might be used to structure the input

a = b = c∗d – e – f∗g

as follows:

a = ( b = ( ((c∗d)– e) – (f∗g) ) )

When this mechanism is used, unary operators must, in general, be given a precedence. Sometimes a

unary operator and a binary operator have the same symbolic representation, but different precedences.

An example is unary and binary ´– ´; unary minus may be given the same strength as multiplication, or

even higher, while binary minus has a lower strength than multiplication. The keyword, %prec, changes

the precedence level associated with a particular grammar rule. %prec appears immediately after the

body of the grammar rule, before the action or closing semicolon, and is followed by a token name or

literal. It causes the precedence of the grammar rule to become that of the following token name or

literal. For example, to make unary minus have the same precedence as multiplication the rules might

resemble:
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%left ´+´ ´– ´

%left ´∗´ ´/´

%%

expr : expr ´+´ expr

| expr ´– ´ expr

| expr ´∗´ expr

| expr ´/´ expr

| ´– ´ expr %prec ´∗´

| NAME

;

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by %token

as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise to

disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence and

associativity of the last token or literal in the body of the rule. If the %prec construction is used,

it overrides this default. Some grammar rules may have no precedence and associativity associ-

ated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the input sym-

bol or the grammar rule has no precedence and associativity, then the two disambiguating rules

given at the beginning of the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have pre-

cedence and associativity associated with them, then the conflict is resolved in favor of the action

(shift or reduce) associated with the higher precedence. If the precedences are the same, then the

associativity is used; left associative implies reduce, right associative implies shift, and nonassoci-

ating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and reduce/reduce

conflicts reported by Yacc. This means that mistakes in the specification of precedences may disguise

errors in the input grammar; it is a good idea to be sparing with precedences, and use them in an essen-

tially ‘‘cookbook’’ fashion, until some experience has been gained. The y.output file is very useful in

deciding whether the parser is actually doing what was intended.

7: Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones. When

an error is found, for example, it may be necessary to reclaim parse tree storage, delete or alter symbol

table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to continue

scanning the input to find further syntax errors. This leads to the problem of getting the parser ‘‘res-

tarted’’ after an error. A general class of algorithms to do this involves discarding a number of tokens

from the input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably general,

feature. The token name ‘‘error’’ is reserved for error handling. This name can be used in grammar

rules; in effect, it suggests places where errors are expected, and recovery might take place. The parser

pops its stack until it enters a state where the token ‘‘error’’ is legal. It then behaves as if the token

‘‘error’’ were the current lookahead token, and performs the action encountered. The lookahead token is

then reset to the token that caused the error. If no special error rules have been specified, the processing

halts when an error is detected.
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In order to prevent a cascade of error messages, the parser, after detecting an error, remains in

error state until three tokens have been successfully read and shifted. If an error is detected when the

parser is already in error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement in

which the error was seen. More precisely, the parser will scan ahead, looking for three tokens that

might legally follow a statement, and start processing at the first of these; if the beginnings of statements

are not sufficiently distinctive, it may make a false start in the middle of a statement, and end up report-

ing a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize

tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier are rules

such as

stat : error ´;´

Here, when there is an error, the parser attempts to skip over the statement, but will do so by skipping

to the next ´;´. All tokens after the error and before the next ´;´ cannot be shifted, and are discarded.

When the ´;´ is seen, this rule will be reduced, and any ‘‘cleanup’’ action associated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to permit a

line to be reentered after an error. A possible error rule might be

input : error ´\n´ { printf( "Reenter last line: " ); } input

{ $$ = $4; }

There is one potential difficulty with this approach; the parser must correctly process three input tokens

before it admits that it has correctly resynchronized after the error. If the reentered line contains an

error in the first two tokens, the parser deletes the offending tokens, and gives no message; this is

clearly unacceptable. For this reason, there is a mechanism that can be used to force the parser to

believe that an error has been fully recovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better written

input : error ´\n´

{ yyerrok;

printf( "Reenter last line: " ); }

input

{ $$ = $4; }

;

As mentioned above, the token seen immediately after the ‘‘error’’ symbol is the input token at

which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery action

might take upon itself the job of finding the correct place to resume input. In this case, the previous

lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some sophisti-

cated resynchronization routine, supplied by the user, that attempted to advance the input to the begin-

ning of the next valid statement. After this routine was called, the next token returned by yylex would

presumably be the first token in a legal statement; the old, illegal token must be discarded, and the error

state reset. This could be done by a rule like
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stat : error

{ resynch();

yyerrok ;

yyclearin ; }

;

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of the

parser from many errors; moreover, the user can get control to deal with the error actions required by

other portions of the program.

8: The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called y.tab.c on

most systems (due to local file system conventions, the names may differ from installation to installa-

tion). The function produced by Yacc is called yyparse ; it is an integer valued function. When it is

called, it in turn repeatedly calls yylex , the lexical analyzer supplied by the user (see Section 3) to obtain

input tokens. Eventually, either an error is detected, in which case (if no error recovery is possible)

yyparse returns the value 1, or the lexical analyzer returns the endmarker token and the parser accepts.

In this case, yyparse returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain a work-

ing program. For example, as with every C program, a program called main must be defined, that even-

tually calls yyparse . In addition, a routine called yyerror prints a message when a syntax error is

detected.

These two routines must be supplied in one form or another by the user. To ease the initial effort

of using Yacc, a library has been provided with default versions of main and yyerror . The name of this

library is system dependent; on many systems the library is accessed by a – ly argument to the loader.

To show the triviality of these default programs, the source is given below:

main(){

return( yyparse() );

}

and

# include <stdio.h>

yyerror(s) char ∗s; {

fprintf( stderr, "%s\n", s );

}

The argument to yyerror is a string containing an error message, usually the string ‘‘syntax error’’. The

average application will want to do better than this. Ordinarily, the program should keep track of the

input line number, and print it along with the message when a syntax error is detected. The external

integer variable yychar contains the lookahead token number at the time the error was detected; this

may be of some interest in giving better diagnostics. Since the main program is probably supplied by

the user (to read arguments, etc.) the Yacc library is useful only in small projects, or in the earliest

stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value, the

parser will output a verbose description of its actions, including a discussion of which input symbols

have been read, and what the parser actions are. Depending on the operating environment, it may be

possible to set this variable by using a debugging system.
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9: Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear

specifications. The individual subsections are more or less independent.

Input Style

It is difficult to provide rules with substantial actions and still have a readable specification file.

The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This rule

comes under the heading of ‘‘knowing who to blame when things go wrong.’’

b. Put grammar rules and actions on separate lines. This allows either to be changed without an

automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once, and let all

following rules begin with a vertical bar.

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon on a

separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text of this

paper (where space permits). The user must make up his own mind about these stylistic questions; the

central problem, however, is to make the rules visible through the morass of action code.

Left Recursion

The algorithm used by the Yacc parser encourages so called ‘‘left recursive’’ grammar rules: rules

of the form

name : name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and lists:

list : item

| list ´,´ item

;

and

seq : item

| seq item

;

In each of these cases, the first rule will be reduced for the first item only, and the second rule will be

reduced for the second and all succeeding items.

With right recursive rules, such as

seq : item

| item seq

;

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left. More

seriously, an internal stack in the parser would be in danger of overflowing if a very long sequence were

read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so, con-

sider writing the sequence specification with an empty rule:

seq : /∗ empty ∗/

| seq item

;
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Once again, the first rule would always be reduced exactly once, before the first item was read, and then

the second rule would be reduced once for each item read. Permitting empty sequences often leads to

increased generality. However, conflicts might arise if Yacc is asked to decide which empty sequence it

has seen, when it hasn’t seen enough to know!

Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want to delete

blanks normally, but not within quoted strings. Or names might be entered into a symbol table in

declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical

analyzer, and set by actions. For example, suppose a program consists of 0 or more declarations, fol-

lowed by 0 or more statements. Consider:

%{

int dflag;

%}

... other declarations ...

%%

prog : decls stats

;

decls : /∗ empty ∗/

{ dflag = 1; }

| decls declaration

;

stats : /∗ empty ∗/

{ dflag = 0; }

| stats statement

;

... other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for the first

token in the first statement. This token must be seen by the parser before it can tell that the declaration

section has ended and the statements have begun. In many cases, this single token exception does not

affect the lexical scan.

This kind of ‘‘backdoor’’ approach can be elaborated to a noxious degree. Nevertheless, it

represents a way of doing some things that are difficult, if not impossible, to do otherwise.

Reserved Words

Some programming languages permit the user to use words like ‘‘if’’, which are normally

reserved, as label or variable names, provided that such use does not conflict with the legal use of these

names in the programming language. This is extremely hard to do in the framework of Yacc; it is

difficult to pass information to the lexical analyzer telling it ‘‘this instance of ‘if’ is a keyword, and that

instance is a variable’’. The user can make a stab at it, using the mechanism described in the last sub-

section, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the

keywords be reserved ; that is, be forbidden for use as variable names. There are powerful stylistic rea-

sons for preferring this, anyway.
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10: Advanced Topics

This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros YYAC-

CEPT and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR causes the

parser to behave as if the current input symbol had been a syntax error; yyerror is called, and error

recovery takes place. These mechanisms can be used to simulate parsers with multiple endmarkers or

context-sensitive syntax checking.

Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The mechanism

is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this case the digit

may be 0 or negative. Consider

sent : adj noun verb adj noun

{ look at the sentence . . . }

;

adj : THE { $$ = THE; }

| YOUNG { $$ = YOUNG; }

. . .

;

noun : DOG

{ $$ = DOG; }

| CRONE

{ if( $0 == YOUNG ){

printf( "what?\n" );

}

$$ = CRONE;

}

;

. . .

In the action following the word CRONE, a check is made that the preceding token shifted was not

YOUNG. Obviously, this is only possible when a great deal is known about what might precede the

symbol noun in the input. There is also a distinctly unstructured flavor about this. Nevertheless, at

times this mechanism will save a great deal of trouble, especially when a few combinations are to be

excluded from an otherwise regular structure.

Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can also

support values of other types, including structures. In addition, Yacc keeps track of the types, and

inserts appropriate union member names so that the resulting parser will be strictly type checked. The

Yacc value stack (see Section 4) is declared to be a union of the various types of values desired. The

user declares the union, and associates union member names to each token and nonterminal symbol hav-

ing a value. When the value is referenced through a $$ or $n construction, Yacc will automatically

insert the appropriate union name, so that no unwanted conversions will take place. In addition, type

checking commands such as Lint 5 will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining the

union; this must be done by the user since other programs, notably the lexical analyzer, must know

about the union member names. Second, there is a way of associating a union member name with

tokens and nonterminals. Finally, there is a mechanism for describing the type of those few values
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where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {

body of union ...

}

This declares the Yacc value stack, and the external variables yylval and yyval , to have type equal to

this union. If Yacc was invoked with the – d option, the union declaration is copied onto the y.tab.h

file. Alternatively, the union may be declared in a header file, and a typedef used to define the variable

YYSTYPE to represent this union. Thus, the header file might also have said:

typedef union {

body of union ...

} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be associated with the various terminal

and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords %token, %left, %right,

and %nonassoc, the union member name is associated with the tokens listed. Thus, saying

%left <optype> ´+´ ´– ´

will cause any reference to values returned by these two tokens to be tagged with the union member

name optype . Another keyword, %type, is used similarly to associate union member names with nonter-

minals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action

within a rule, the value returned by this action has no a priori type. Similarly, reference to left context

values (such as $0 – see the previous subsection ) leaves Yacc with no easy way of knowing the type.

In this case, a type can be imposed on the reference by inserting a union member name, between < and

>, immediately after the first $. An example of this usage is

rule : aaa { $<intval>$ = 3; } bbb

{ fun( $<intval>2, $<other>0 ); }

;

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not triggered

until they are used: in particular, the use of %type will turn on these mechanisms. When they are used,

there is a fairly strict level of checking. For example, use of $n or $$ to refer to something with no

defined type is diagnosed. If these facilities are not triggered, the Yacc value stack is used to hold int’ s,

as was true historically.
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Appendix A: A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk calculator

has 26 registers, labeled ‘‘a’’ through ‘‘z’’, and accepts arithmetic expressions made up of the operators

+, – , ∗, /, % (mod operator), & (bitwise and), | (bitwise or), and assignment. If an expression at the top

level is an assignment, the value is not printed; otherwise it is. As in C, an integer that begins with 0

(zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing how

precedences and ambiguities are used, and demonstrating simple error recovery. The major

oversimplifications are that the lexical analysis phase is much simpler than for most applications, and the

output is produced immediately, line by line. Note the way that decimal and octal integers are read in

by the grammar rules; This job is probably better done by the lexical analyzer.

%{

# include <stdio.h>

# include <ctype.h>

int regs[26];

int base;

%}

%start list

%token DIGIT LETTER

%left ´|´

%left ´&´

%left ´+´ ´– ´

%left ´∗´ ´/´ ´%´

%left UMINUS /∗ supplies precedence for unary minus ∗/

%% /∗ beginning of rules section ∗/

list : /∗ empty ∗/

| list stat ´\n´

| list error ´\n´

{ yyerrok; }

;

stat : expr

{ printf( "%d\n", $1 ); }

| LETTER ´=´ expr

{ regs[$1] = $3; }

;

expr : ´(´ expr ´)´

{ $$ = $2; }

| expr ´+´ expr

{ $$ = $1 + $3; }

| expr ´– ´ expr

{ $$ = $1 – $3; }

| expr ´∗´ expr

{ $$ = $1 ∗ $3; }
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| expr ´/´ expr

{ $$ = $1 / $3; }

| expr ´%´ expr

{ $$ = $1 % $3; }

| expr ´&´ expr

{ $$ = $1 & $3; }

| expr ´|´ expr

{ $$ = $1 | $3; }

| ´– ´ expr %prec UMINUS

{ $$ = – $2; }

| LETTER

{ $$ = regs[$1]; }

| number

;

number : DIGIT

{ $$ = $1; base = ($1==0) ? 8 : 10; }

| number DIGIT

{ $$ = base ∗ $1 + $2; }

;

%% /∗ start of programs ∗/

yylex() { /∗ lexical analysis routine ∗/

/∗ returns LETTER for a lower case letter, yylval = 0 through 25 ∗/

/∗ return DIGIT for a digit, yylval = 0 through 9 ∗/

/∗ all other characters are returned immediately ∗/

int c;

while( (c=getchar()) == ´ ´ ) { /∗ skip blanks ∗/ }

/∗ c is now nonblank ∗/

if( islower( c ) ) {

yylval = c –  ´a´;

return ( LETTER );

}

if( isdigit( c ) ) {

yylval = c –  ´0´;

return( DIGIT );

}

return( c );

}
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Appendix B: Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context

dependencies, etc., are not considered. Ironically, the Yacc input specification language is most natur-

ally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a rule, immedi-

ately following an action. If this identifier is followed by a colon, it is the start of the next rule; other-

wise it is a continuation of the current rule, which just happens to have an action embedded in it. As

implemented, the lexical analyzer looks ahead after seeing an identifier, and decide whether the next

token (skipping blanks, newlines, comments, etc.) is a colon. If so, it returns the token

C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are also returned as

IDENTIFIERS, but never as part of C_IDENTIFIERs.

/∗ grammar for the input to Yacc ∗/

/∗ basic entities ∗/

%token IDENTIFIER /∗ includes identifiers and literals ∗/

%token C_IDENTIFIER /∗ identifier (but not literal) followed by colon ∗/

%token NUMBER /∗ [0-9]+ ∗/

/∗ reserved words: %type => TYPE, %left => LEFT, etc. ∗/

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK /∗ the %% mark ∗/

%token LCURL /∗ the %{ mark ∗/

%token RCURL /∗ the %} mark ∗/

/∗ ascii character literals stand for themselves ∗/

%start spec

%%

spec : defs MARK rules tail

;

tail : MARK { In this action, eat up the rest of the file }

| /∗ empty: the second MARK is optional ∗/

;

defs : /∗ empty ∗/

| defs def

;

def : START IDENTIFIER

| UNION { Copy union definition to output }

| LCURL { Copy C code to output file } RCURL

| ndefs rword tag nlist

;

rword : TOKEN

| LEFT

| RIGHT

| NONASSOC
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| TYPE

;

tag : /∗ empty: union tag is optional ∗/

| ´<´ IDENTIFIER ´>´

;

nlist : nmno

| nlist nmno

| nlist ´,´ nmno

;

nmno : IDENTIFIER /∗ NOTE: literal illegal with %type ∗/

| IDENTIFIER NUMBER /∗ NOTE: illegal with %type ∗/

;

/∗ rules section ∗/

rules : C_IDENTIFIER rbody prec

| rules rule

;

rule : C_IDENTIFIER rbody prec

| ’|’ rbody prec

;

rbody : /∗ empty ∗/

| rbody IDENTIFIER

| rbody act

;

act : ´{´ { Copy action, translate $$, etc. } ´}´

;

prec : /∗ empty ∗/

| PREC IDENTIFIER

| PREC IDENTIFIER act

| prec ´;´

;
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Appendix C: An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features discussed in

Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator that

does floating point interval arithmetic. The calculator understands floating point constants, the arithmetic

operations +, – , ∗, /, unary – , and = (assignment), and has 26 floating point variables, ‘‘a’’ through

‘‘z’’. Moreover, it also understands intervals , written

( x , y )

where x is less than or equal to y . There are 26 interval valued variables ‘‘A’’ through ‘‘Z’’ that may

also be used. The usage is similar to that in Appendix A; assignments return no value, and print noth-

ing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are represented

by a structure, consisting of the left and right endpoint values, stored as double ’s. This structure is

given a type name, INTERVAL, by using typedef . The Yacc value stack can also contain floating point

scalars, and integers (used to index into the arrays holding the variable values). Notice that this entire

strategy depends strongly on being able to assign structures and unions in C. In fact, many of the

actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an interval

containing 0, and an interval presented in the wrong order. In effect, the error recovery mechanism of

Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an interest-

ing use of syntax to keep track of the type (e.g. scalar or interval) of intermediate expressions. Note

that a scalar can be automatically promoted to an interval if the context demands an interval value. This

causes a large number of conflicts when the grammar is run through Yacc: 18 Shift/Reduce and 26

Reduce/Reduce. The problem can be seen by looking at the two input lines:

2.5 + ( 3.5 – 4. )

and

2.5 + ( 3.5 , 4. )

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this fact is

not known until the ‘‘,’’ is read; by this time, 2.5 is finished, and the parser cannot go back and change

its mind. More generally, it might be necessary to look ahead an arbitrary number of tokens to decide

whether to convert a scalar to an interval. This problem is evaded by having two rules for each binary

interval valued operator: one when the left operand is a scalar, and one when the left operand is an inter-

val. In the second case, the right operand must be an interval, so the conversion will be applied

automatically. Despite this evasion, there are still many cases where the conversion may be applied or

not, leading to the above conflicts. They are resolved by listing the rules that yield scalars first in the

specification file; in this way, the conflicts will be resolved in the direction of keeping scalar valued

expressions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there were many

kinds of expression types, instead of just two, the number of rules needed would increase dramatically,

and the conflicts even more dramatically. Thus, while this example is instructive, it is better practice in

a more normal programming language environment to keep the type information as part of the value,

and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating

point constants. The C library routine atof is used to do the actual conversion from a character string to

a double precision value. If the lexical analyzer detects an error, it responds by returning a token that is

illegal in the grammar, provoking a syntax error in the parser, and thence error recovery.
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%{

# include <stdio.h>

# include <ctype.h>

typedef struct interval {

double lo, hi;

} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

double dreg[ 26 ];

INTERVAL vreg[ 26 ];

%}

%start lines

%union {

int ival;

double dval;

INTERVAL vval;

}

%token <ival> DREG VREG /∗ indices into dreg, vreg arrays ∗/

%token <dval> CONST /∗ floating point constant ∗/

%type <dval> dexp /∗ expression ∗/

%type <vval> vexp /∗ interval expression ∗/

/∗ precedence information about the operators ∗/

%left ´+´ ´– ´

%left ´∗´ ´/´

%left UMINUS /∗ precedence for unary minus ∗/

%%

lines : /∗ empty ∗/

| lines line

;

line : dexp ´\n´

{ printf( "%15.8f\n", $1 ); }

| vexp ´\n´

{ printf( "(%15.8f , %15.8f )\n", $1.lo, $1.hi ); }

| DREG ´=´ dexp ´\n´

{ dreg[$1] = $3; }

| VREG ´=´ vexp ´\n´



- 29 -

{ vreg[$1] = $3; }

| error ´\n´

{ yyerrok; }

;

dexp : CONST

| DREG

{ $$ = dreg[$1]; }

| dexp ´+´ dexp

{ $$ = $1 + $3; }

| dexp ´– ´ dexp

{ $$ = $1 – $3; }

| dexp ´∗´ dexp

{ $$ = $1 ∗ $3; }

| dexp ´/´ dexp

{ $$ = $1 / $3; }

| ´– ´ dexp %prec UMINUS

{ $$ = – $2; }

| ´(´ dexp ´)´

{ $$ = $2; }

;

vexp : dexp

{ $$.hi = $$.lo = $1; }

| ´(´ dexp ´,´ dexp ´)´

{

$$.lo = $2;

$$.hi = $4;

if( $$.lo > $$.hi ){

printf( "interval out of order\n" );

YYERROR;

}

}

| VREG

{ $$ = vreg[$1]; }

| vexp ´+´ vexp

{ $$.hi = $1.hi + $3.hi;

$$.lo = $1.lo + $3.lo; }

| dexp ´+´ vexp

{ $$.hi = $1 + $3.hi;

$$.lo = $1 + $3.lo; }

| vexp ´– ´ vexp

{ $$.hi = $1.hi – $3.lo;

$$.lo = $1.lo – $3.hi; }

| dexp ´– ´ vexp

{ $$.hi = $1 – $3.lo;

$$.lo = $1 – $3.hi; }

| vexp ´∗´ vexp

{ $$ = vmul( $1.lo, $1.hi, $3 ); }

| dexp ´∗´ vexp

{ $$ = vmul( $1, $1, $3 ); }

| vexp ´/´ vexp

{ if( dcheck( $3 ) ) YYERROR;

$$ = vdiv( $1.lo, $1.hi, $3 ); }
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| dexp ´/´ vexp

{ if( dcheck( $3 ) ) YYERROR;

$$ = vdiv( $1, $1, $3 ); }

| ´– ´ vexp %prec UMINUS

{ $$.hi = – $2.lo; $$.lo = – $2.hi; }

| ´(´ vexp ´)´

{ $$ = $2; }

;

%%

# define BSZ 50 /∗ buffer size for floating point numbers ∗/

/∗ lexical analysis ∗/

yylex(){

register c;

while( (c=getchar()) == ´ ´ ){ /∗ skip over blanks ∗/ }

if( isupper( c ) ){

yylval.ival = c –  ´A´;

return( VREG );

}

if( islower( c ) ){

yylval.ival = c –  ´a´;

return( DREG );

}

if( isdigit( c ) || c==´.´ ){

/∗ gobble up digits, points, exponents ∗/

char buf[BSZ+1], ∗cp = buf;

int dot = 0, exp = 0;

for( ; (cp– buf)<BSZ ; ++cp,c=getchar() ){

∗cp = c;

if( isdigit( c ) ) continue;

if( c == ´.´ ){

if( dot++ || exp ) return( ´.´ ); /∗ will cause syntax error ∗/

continue;

}

if( c == ´e´ ){

if( exp++ ) return( ´e´ ); /∗ will cause syntax error ∗/

continue;

}

/∗ end of number ∗/

break;

}

∗cp = ´\0´;

if( (cp– buf) >= BSZ ) printf( "constant too long: truncated\n" );
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else ungetc( c, stdin ); /∗ push back last char read ∗/

yylval.dval = atof( buf );

return( CONST );

}

return( c );

}

INTERVAL hilo( a, b, c, d ) double a, b, c, d; {

/∗ returns the smallest interval containing a, b, c, and d ∗/

/∗ used by ∗, / routines ∗/

INTERVAL v;

if( a>b ) { v.hi = a; v.lo = b; }

else { v.hi = b; v.lo = a; }

if( c>d ) {

if( c>v.hi ) v.hi = c;

if( d<v.lo ) v.lo = d;

}

else {

if( d>v.hi ) v.hi = d;

if( c<v.lo ) v.lo = c;

}

return( v );

}

INTERVAL vmul( a, b, v ) double a, b; INTERVAL v; {

return( hilo( a∗v.hi, a∗v.lo, b∗v.hi, b∗v.lo ) );

}

dcheck( v ) INTERVAL v; {

if( v.hi >= 0. && v.lo <= 0. ){

printf( "divisor interval contains 0.\n" );

return( 1 );

}

return( 0 );

}

INTERVAL vdiv( a, b, v ) double a, b; INTERVAL v; {

return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo ) );

}
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Appendix D: Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical continuity, but,

for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes ‘‘"’’.

2. Literals may be more than one character long. If all the characters are alphabetic, numeric, or _,

the type number of the literal is defined, just as if the literal did not have the quotes around it.

Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it suggests

that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash ‘‘\’’ may be used. In particular, \\ is the same as %%,

\left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left

%> is the same as %right

%binary and %2 are the same as %nonassoc

%0 and %term are the same as %token

%= is the same as %prec

5. Actions may also have the form

={ . . . }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules section, as well as in the

declaration section.


