
Feature and Meta-Models in Clafer:

Mixed, Spe
ialized, and Coupled

Ka
per B¡k1, Krzysztof Czarne
ki1, and Andrzej W¡sowski2

1 Generative Software Development Lab, University of Waterloo, Canada,
{kbak,kczarnec}@gsd.uwaterloo.ca

2 IT University of Copenhagen, Denmark, wasowski@itu.dk

Abstra
t. We present Clafer, a meta-modeling language with �rst-
lass
support for feature modeling. We designed Clafer as a
on
ise notation
for meta-models, feature models, mixtures of meta- and feature mod-
els (su
h as
omponents with options), and models that
ouple feature
models and meta-models via
onstraints (su
h as mapping feature
on-
�gurations to
omponent
on�gurations or model templates). Clafer also
allows arranging models into multiple spe
ialization and extension layers
via
onstraints and inheritan
e. We identify four key me
hanisms allow-
ing a meta-modeling language to express feature models
on
isely and
show that Clafer meets its design obje
tives using a sample produ
t line.
We evaluated Clafer and how it lends itself to analysis on sample feature
models, meta-models, and model templates of an E-Commer
e platform.

1 Introdu
tion

Both feature and meta-modeling have been used in software produ
t line en-

gineering to model variability. Feature models are tree-like menus of mostly

Boolean�but sometimes also integer and string�
on�guration options, aug-

mented with
ross-tree
onstraints [22℄. These models are typi
ally used to show

the variation of user-relevant
hara
teristi
s of produ
ts within a produ
t line.

In
ontrast, meta-models, as supported by the Meta Obje
t Fa
ility (MOF) [28℄,

represent
on
epts of�possibly domain-spe
i�
�modeling languages, used to

represent more detailed aspe
ts su
h as behavioral or ar
hite
tural spe
i�
ation.

For example, meta-models are often used to represent the
omponents and
on-

ne
tors of produ
t line ar
hite
tures and the valid ways to
onne
t them. The

nature of variability expressed by ea
h type of models is di�erent: feature models

apture simple sele
tions from prede�ned (mostly Boolean)
hoi
es within a �xed

(tree) stru
ture; and meta-models support making new stru
tures by
reating

multiple instan
es of
lasses and
onne
ting them via obje
t referen
es.

Over the last eight years, the distin
tion between feature models and meta-

models (represented as
lass models) has been blurred somewhat in the literature

due to 1) feature modeling extensions, su
h as
ardinality-based feature model-

ing [15, 4℄, or 2) attempts to express feature models as
lass models in Uni�ed

Modeling Language (UML) [11, 16℄; note that MOF is essentially the
lass mod-

eling subset of UML. A key driver behind these developments has been the

desire to express
omponents and
on�guration options in a single notation [14℄.

Cardinality-based feature modeling a
hieves this by extending feature models

with multiple instantiation and referen
es. Class modeling, whi
h natively sup-

ports multiple instantiation and referen
es, enables feature modeling by a styl-

ized use of
omposition and the pro�ling me
hanisms of MOF or UML.

Both developments have notable drawba
ks, however. An important advan-

tage of feature modeling as originally de�ned by Kang et al. [22℄ is its simpli
ity;

several respondents to a re
ent survey
on�rmed this view [23℄. Extending feature

modeling with multiple instantiation and referen
es diminishes this advantage

by introdu
ing additional
omplexity. Further, models that
ontain signi�
ant

amounts of multiply-instantiatable features and referen
es
an be hardly
alled

feature models in the original sense; they are more of
lass models. On the other

hand, whereas the model parts requiring multiple instantiation and referen
es

are naturally expressed as
lass models, the parts that have feature-modeling na-

ture
annot be expressed elegantly in
lass models, but only
lumsily simulated

using
omposition hierar
hy and
ertain modeling patterns.

We present Clafer (
lass, feature, referen
e), a meta-modeling language with

�rst-
lass support for feature modeling. The language was designed to natu-

rally express meta-models, feature models, mixtures of meta- and feature mod-

els (su
h as
omponents with options), and models that
ouple feature models

with meta-models and their instan
es via
onstraints (su
h as mapping feature

on�gurations to
omponent
on�gurations or to model templates [13℄). Clafer

also allows arranging models into multiple spe
ialization and extension layers

via
onstraints and inheritan
e, whi
h we illustrate using a sample produ
t line.

We developed a translator from Clafer to Alloy [19℄, a
lass modeling lan-

guage with a modern
onstraint notation. The translator gives Clafer pre
ise

translational semanti
s and enables model analyses using Alloy Analyzer. Dif-

ferent strategies are applied for distin
t model
lasses. They all preserve meaning

of the models, but speed up analysis by exploiting the Alloy
onstru
tions.

We evaluate Clafer analyti
ally and experimentally. The analyti
 evaluation

argues that Clafer meets its design obje
tives. It identi�es four key me
hanisms

allowing a meta-modeling language to express feature models
on
isely. The ex-

perimental evaluation shows that a wide range of realisti
 feature models, meta-

models, and model templates
an be expressed in Clafer and that useful analyses

an be run on them within se
onds. Many useful analyses su
h as
onsisten
y

he
ks, element liveness,
on�guration
ompletion, and reasoning on model edits

an be redu
ed to instan
e �nding by
ombinatorial solvers [7, 9, 12℄; thus, we use

instan
e �nding and element liveness as representatives of su
h analyses.

The paper is organized as follows. We introdu
e our running example in

Se
t. 2. We dis
uss the
hallenges of representing the example using either only

lass modeling or only feature modeling and de�ne a set of design obje
tives for

Clafer in Se
t. 3. We then present Clafer in Se
t. 4 and demonstrate that it sat-

is�es these obje
tives. We evaluate the language analyti
ally and experimentally

in Se
t. 5. We
on
lude in Se
t. 7, after having
ompared Clafer with related

work in Se
t. 6.

Problem spa
e Mapping Solution spa
e

telematics

System

extra

Display
channel displaySize

single dual small large server

*1

small large

cache

fixed

size : int

options

displayECU

version : int

sizecomp

a) Produ
t features b) Component model
) Display options

Fig. 1. Telemati
s produ
t line

2 Running Example: A Telemati
s Produ
t Line

Vehi
le telemati
s systems integrate multiple tele
ommuni
ation and informa-

tion pro
essing fun
tions in an automobile, su
h as navigation, driving assistan
e,

emergen
y and warning systems, hands-free phone, and entertainment fun
tions,

and present them to the driver and passengers via multimedia displays. Figure 1

presents a variability model of a sample telemati
s produ
t line, whi
h we will

use as a running example. The features o�ered are summarized in the problem-

spa
e feature model (Fig. 1a). A
on
rete telemati
s system
an support either

a single or two
hannels; two
hannels a�ord independent programming for the

driver and the passengers. The
hoi
e is represented as the xor-group channel,

marked by the ar
h between edges. By default, ea
h
hannel has one asso
iated

display; however, we
an add one extra display per
hannel, as indi
ated by

the optional feature extraDisplay. Finally, we
an
hoose large or small displays

(displaySize).

Figure 1b shows a meta-model of
omponents making up a telemati
s system.

There are two types of
omponents: ECUs (ele
troni

ontrol units) and displays.

Ea
h display has exa
tly one ECU as its server. All
omponents have a version.

Components themselves may have options, like the display size or cache

(Fig. 1
). We
an also spe
ify the
a
he size and de
ide whether it is fixed or

an be updated dynami
ally. Thus, the solution spa
e model
onsists of a
lass

model of
omponent types and a feature model of
omponent options.

Finally, the variability model maps the problem-spa
e feature
on�gurations

to the solution-spa
e
omponent and option
on�gurations. A big arrow in Fig. 1

represents this mapping; we will spe
ify it
ompletely and pre
isely in Se
t. 4.3.

3 Feature vs. Meta-Modeling

The solution spa
e in Fig. 1
ontains a meta- and a feature model. To
apture

our intention, the models are
onne
ted via UML
omposition. Sin
e the pre
ise

semanti
s of su
h notational mixture are not
lear, this
onne
tion should be

understood only informally for now.

options

display ECU

root

*

server : ECU

*

a) Cardinality-based
feature model of
omponents

small large

options

cache

size :int
fixed : bool

size
1

0..1

b) Meta-model of display options

Fig. 2. Feature model as meta-model and vi
e versa

We have at least two
hoi
es to represent
omponents and options in a single

notation. The �rst is to show the entire solution spa
e model using
ardinality-

based feature modeling [15℄. Figure 2a shows the
omponent part of the model

(the subfeatures of options are elided). The model introdu
es a syntheti
 root

feature; display and ECU
an be multiply instantiated; and display has server sub-

feature representing a referen
e to instan
es of ECU. Versions
ould be added to

both display and ECU to mat
h the meta-model in Fig. 1b or we
ould extend the

notation with inheritan
e. The latter would bring the
ardinality-based feature

modeling notation very
lose to meta-modeling based on
lass modeling, posing

the question whether
lass modeling should not be used for the entire solution

spa
e model instead.

We explore the
lass modeling alternative in Fig. 2b. The �gure shows only

the options model, as the
omponent model remains un
hanged (as in Fig. 1b).

Subfeature relationships are represented as UML
omposition and feature
ardi-

nalities
orrespond to
omposition
ardinalities at the part end. The xor-group

is represented by inheritan
e and
a
he size and fixed as attributes of cache.

Representing a feature model as a UML
lass model worked reasonably well

for our small example; however, it does have several drawba
ks. First, the feature

model showed fixed as a property of size by nesting; this intention is lost in the

lass model. A solution would be to
reate a separate
lass size,
ontaining the

size value and a
lass fixed; thus, adding a subfeature to a feature represented

as a
lass attribute requires refa
toring. The name of the new
lass size would

lash with the
lass size representing the display size; thus, we would have to

rename one of them, or use nested
lasses, whi
h further
ompli
ates the model.

Moreover,
onverting an xor-group to an or-group in feature modeling is simple:

the empty ar
h needs to be repla
ed by a �lled one. For example, displaySize

(Fig. 1a)
ould be
onverted to an or-group in a future version of the produ
t

line to allow systems with both large and small displays simultaneously. Su
h

hange is tri
ky in UML
lass models: we would have to either allow one to

two obje
ts of type displaySize and write an OCL
onstraint forbidding two

obje
ts of the same subtype (small or large) or use overlapping inheritan
e (i.e.,

multiple
lassi�
ation). Thus, the representation of feature models in UML in
urs

additional
omplexity.

The examples in Fig. 2 lead us to the following two
on
lusions:

(1) �Cardinality-based feature modeling� is a misnomer. It en
ompasses multiple

instantiation and referen
es, me
hanisms
hara
teristi
 of
lass modeling, and

ould even be extended further towards
lass modeling, e.g., with inheritan
e;

however, the result
an hardly be
alled `feature modeling', as it
learly goes

beyond the original s
ope of feature modeling [22℄.

(2) Existing
lass modeling notations su
h as UML and Alloy do not o�er �rst-

lass support for feature modeling. Feature models
an still be represented in

these languages; however, the result
arries undesirable notational
omplexity.

The solution to these two issues is to design a (
lass-based) meta-modeling

language with �rst-
lass support for feature modeling. We postulate that su
h a

language should satisfy the following design goals:

1. Provide a
on
ise notation for feature modeling

2. Provide a
on
ise notation for meta-modeling

3. Allow mixing feature models and meta-models

4. Use minimal number of
on
epts and have uniform semanti
s

The last goal expresses our desire that the new language should unify the
on-

epts of feature and
lass modeling as mu
h as possible, both synta
ti
ally and

semanti
ally. In other words, we do not want a hybrid language.

4 Clafer: Meta-Modeling with First-Class Support for

Feature Modeling

We explain the meaning of Clafer models by relating them to their
orresponding

UML
lass models.3 Figure 3 shows the display options feature model in Clafer

(a) and the the
orresponding UML model (
). Figure 4 shows the
omponent

meta-model in Clafer; Fig. 1b has the
orresponding UML model.

A Clafer model is a set of type de�nitions, features, and
onstraints. A type

an be understood as a
lass or feature type; the distin
tion is immaterial. Fig-

ure 3a
ontains options as single top-level type de�nition. The de�nition
ontains

a hierar
hy of features (lines 2-8) and a
onstraint (lines 10-11); the en
losing

type provides a separate name spa
e for this
ontent. The abstract modi�er

prohibits
reating an instan
e of the type, unless extended by a
on
rete type.

A type de�nition
an
ontain one or more features; the type options has

two (dire
t) features: size (line 2) and cache (line 6). Features are slots that

an
ontain one or more instan
es or referen
es to instan
es. Mathemati
ally,

features are binary relations. They
orrespond to attributes or role names of

asso
iation or
omposition relationships in UML. For example, in Fig. 4, the

feature version (line 2)
orresponds to the attribute of the
lass comp in Fig. 1b;

and the feature server (line 6)
orresponds to the asso
iation role name next

to the
lass ECU in Fig. 1b. Features de
lared using the arrow notation and

having no subfeatures, like in server -> ECU, are referen
e features, i.e., they

hold referen
es to instan
es. Note that we model integral features, like version

3 For more pre
ise do
umentation in
luding meta-models see gsd.uwaterloo.ca/sle2010

abstract options1

xor size2

small3

large4

5

cache?6

size -> int7

fixed?8

9

[small && cache =>10

fixed]11

abstract <0-*> options {1

<1-1> size 1..1 {2

<0-*> small 0..1 {}3

<0-*> large 0..1 {}4

}5

<0-*> cache 0..1 {6

<0-*> size -> int 1..1 {7

<0-*> fixed 0..1 {}8

}9

}10

[some this.size.small &&11

some this.cache =>12

some this.cache.size.fixed]13

}14

small

1 cache 0..1

0..1 0..1 1

0..1

large

fixed

cache

options

size

val :int

size

a) Con
ise notation b) Full notation
) UML
lass model

Fig. 3. Feature model in Clafer and
orresponding UML
lass model

(line 2) in Fig. 4, as referen
es. Clafer has only one obje
t representing a given

number, whi
h speeds up automated analyses.

Features that do not have their type de
lared using the arrow notation, su
h

as size (line 2) and cache in Fig. 3a, or have subfeatures, su
h as size (line 7)

in Fig. 3a, are
ontainment features, i.e., features that
ontain instan
es. An

instan
e
an be
ontained by only one feature, and no
y
les in instan
e
on-

tainment are allowed. These features
orrespond to role names at the part end

of
omposition relationships in UML. For example, the feature cache in Fig. 3a

orresponds to the role name cache next to the
lass cache in Fig. 3
. By a UML

onvention, the role name at the asso
iation or
omposition end tou
hing a
lass

is, if not spe
i�ed, same as the
lass name.

A
ontainment feature de�nition
reates a feature and, impli
itly, a new

on
rete type, both lo
ated in the same name spa
e. For example, the feature

de�nition cache (line 6) in Fig. 3a de�nes both the feature cache,
orresponding

to the role name in Fig. 3
, and, impli
itly, the type cache,
orresponding to the

lass cache in Fig. 3
. The new type is nested in the type options; in UML this

nesting means that the
lass cache is an inner
lass of the
lass options, i.e., its

full name is options::cache. Figure 3
 shows UML
lass nesting relations in light

olor. Class nesting permits two
lasses named size in a single model, be
ause

ea
h en
losing
lass de�nes an independent name s
ope.

abstract comp1

version -> int2

3

abstract ECU extends comp4

abstract display extends comp5

server -> ECU6

‘options7

[version >= server.version]8

9

Fig. 4. Class model in Clafer

The feature size (line 7) in Fig. 3a is a
ontainment feature of general form:

the impli
itly de�ned type is a stru
ture
ontaining a referen
e, here to int, and

a subfeature, fixed. This type
orresponds to the
lass cache::size in Fig. 2b.

Features have feature
ardinalities, whi
h
onstrain the number of instan
es

or referen
es that a given feature
an
ontain. Cardinality of a feature is spe
i�ed

by an interval m..n, where m ∈ N, n ∈ N ∪ {∗},m ≤ n. Feature
ardinality

spe
i�
ation follows the feature name or its referen
e type, if any.

Con
iseness is an important goal for Clafer; therefore, we provide synta
ti

sugar for
ommon
onstru
tions. Figures 3a and 3b show the same Clafer model;

the �rst one is written in
on
ise notation, while the se
ond one is
ompletely

desugared
ode with resolved names in
onstraints.

Clafer provides synta
ti
 sugar similar to syntax of regular expressions: ? or

lone (optional) denote 0..1; * or any denote 0..∗; and + or some denote 1..∗. For
example, cache (line 6) in Fig. 3 is an optional feature. No feature
ardinality

spe
i�ed denotes 1..1 (mandatory) by default, modulo four ex
eptions explained

shortly. For example, size (line 7) in Fig. 3a is mandatory.

Features and types have group
ardinalities, whi
h
onstrain the number of

hild instan
es, i.e., the instan
es
ontained by subfeatures. Group
ardinality

is spe
i�ed by an interval 〈m�n〉, with the same restri
tions on m and n as

for feature
ardinalities, or by a keyword: xor denotes 〈1� 1〉; or denotes 〈1� ∗〉;
opt denotes 〈0� ∗〉; and mux denotes 〈0� 1〉; further, ea
h of the three keywords

makes subfeatures optional by default. If any, a group
ardinality spe
i�
ation

pre
edes a feature or type name. For example, xor on size (line 2) in Fig. 3a states

that only one
hild instan
e of either small or large is allowed. Be
ause the two

subfeatures small and large have no expli
it
ardinality atta
hed to them, they

are both optional (
f. Fig. 3b). No expli
it group
ardinality stands for 〈0� ∗〉,
ex
ept when it is inherited as illustrated later.

Constraints are a signi�
ant aspe
t of Clafer. They
an express dependen
ies

among features or restri
t string or integer values. Constraints are always sur-

rounded by square bra
kets and are a
onjun
tion of �rst-order logi
 expressions.

We modeled
onstraints after Alloy; the Alloy
onstraint notation is elegant,

on
ise, and expressive enough to restri
t both feature and
lass models. Logi
al

expressions are
omposed of terms and logi
al operators. Terms either relate val-

ues (integers, strings) or are navigational expressions. The value of navigational

expression is always a relation, therefore ea
h expression must be pre
eded by

a quanti�er, su
h as no, one, lone or some. However, la
k of expli
it quanti�er

(Fig. 3a) stands for some (Fig. 3b), signifying that the relation
annot be empty.

Ea
h feature in Clafer introdu
es a lo
al namespa
e, whi
h is rather di�erent

from namespa
es in popular programming languages. Name resolution is impor-

tant in two
ases: 1) resolving type names used in feature and type de�nitions

and 2) resolving feature names used in
onstraints. In both
ases, names are path

expressions, used for navigation like in OCL or Alloy, where the dot operator

joins two relations. A name is resolved in a
ontext of a feature in up to four

steps. First, it is
he
ked to be a spe
ial name like this. Se
ondly, the name is

looked up in subfeatures in breadth-�rst sear
h manner. If it is still not found,

the algorithm sear
hes in the top-level de�nition that
ontains the feature in

its hierar
hy. Otherwise, it sear
hes in other top-level de�nitions. If the name

annot be resolved or is ambiguous within a single step, an error is reported.

Clafer supports single inheritan
e. In Fig. 4, the type ECU inherits features

and group
ardinality of its supertype. The type display extends comp by adding

two features and a
onstraint. The referen
e feature server points to an existing

ECU instan
e. The meaning of ‘options notation is explained in Se
t. 4.1.

The
onstraint de�ned in the
ontext of display states that display's version

annot be lower than server's version. To dereferen
e the server feature, we use

dot, whi
h then returns version.

4.1 Mixing via Quotes and Referen
es

Mixing
lass and feature models in Clafer is a
hieved via quotation (see line

7 in Fig. 4) or referen
es. Synta
ti
ally, quotation is just a name of abstra
t

type pre
eded by left quote (‘), whi
h in the example is expanded as options

extends options. The �rst name indi
ates a new feature, and the se
ond refers

to the abstra
t type. Semanti
ally, this notation
reates a
ontainment feature

options with a new
on
rete type display.options, whi
h extends the top-level

abstra
t type options from Fig. 3a. The
on
rete type inherits group
ardinality

and features of its supertype. By using quotation only the quoted type is shared,

but no instan
es. Referen
es, on the other hand, are used for sharing instan
es.

The following example highlights the di�eren
e:

abstract options

-- content as in options in Fig. 3a

displayOwningOptions *

‘options -- shorthand for options extends options

options

displayOwningOptions

options

1

In the above snippet, ea
h instan
e of displayOwningOptions will have its own

instan
e of type options, as depi
ted in the
orresponding UML diagram. Other

types
ould also quote options to reuse it. Note that Clafer assumes the existen
e

of an impli
it root obje
t ; thus, a feature de�nition, su
h as displayOwningOptions

above, de�nes both a subfeature of the root obje
t and a new top-level
on
rete

type.

Now
onsider the following
ode with
orresponding UML diagram:

options *

-- content as in options in Fig. 3a

displaySharingOptions *

sharedOptions -> options displaySharingOptions

options

1

*

sharedOptions

Ea
h instan
e of displaySharingOptions has a referen
e named sharedOptions

pointing to an instan
e of options. Although there
an be many referen
es, they

might all point to the same instan
e living somewhere outside displaySharingOp-

tions.

abstract plaECU extends ECU1

‘display 1..22

[~cache3

server = parent]4

ECU1 extends plaECU5

ECU2 extends plaECU ?6

master -> ECU17

master

ECU2ECU1

display2
small
large

display1
small
large

display2
small
large

display1
small
large

Legend:
radio button

(alternative)

check box

(optional)

a) Clafer model b) A possible graphi
al rendering

Fig. 5. Ar
hite
tural template

4.2 Spe
ializing via Inheritan
e and Constraints

Let us go ba
k to our telemati
s produ
t line example. The ar
hite
tural meta-

model as presented in Fig. 4 is very generi
: the meta-model des
ribes in�nitely

many di�erent produ
ts, ea
h
orresponding to its parti
ular instan
e. We would

like to spe
ialize and extend the meta-model to
reate a parti
ular template.

A template makes most of the ar
hite
tural stru
ture �xed, but leaves some

points of variability. In previous work, we introdu
ed feature-based model tem-

plates (FBMT in short) as models (instan
es of meta-models) with optional

elements annotated with Boolean expressions over features known as presen
e

onditions [13℄. Below, we show how su
h templates
an be expressed in Clafer.

Figure 5a shows su
h a template for our example. We a
hieve spe
ialization

via inheritan
e and
onstraints. In parti
ular, we represent instan
es of meta-

model
lasses as singleton
lasses. In our example, a
on
rete produ
t must

have at least one ECU and thus we
reate ECU1 to represent the mandatory

instan
e. Then, optional instan
es are represented using
lasses with
ardinality

0..1. Our produ
t line
an optionally have another ECU, represented by ECU2.

Similarly, ea
h ECU has either one display or two displays, but none of the

displays has cache. Besides, we need to
onstrain the server referen
e in ea
h

display in plaECU, so that it points to its asso
iated ECU. The
onstraint in line

3 in Fig. 5a is nested under display. The referen
e parent points to the
urrent

instan
e of plaECU, whi
h is either ECU1 or ECU2. Also, ECU2 extends the base

type with master, pointing to ECU1 as the main
ontrol unit.

Figure 5b visualizes the template in a domain-spe
i�
 notation, showing both

the �xed parts, e.g., mandatory ECU1 and display1, and the variable parts, e.g.,

alternative display sizes (radio buttons) and optional ECU2 and display2 (
he
k-

boxes). Note that model templates su
h as UML models annotated with presen
e

onditions (e.g., [13℄)
an be translated into Clafer automati
ally by 1) repre-

senting ea
h model element e by a
lass with
ardinality 0..1 that extends the

element's meta-
lass and 2) a
onstraint of the form p &&
 <=> e, with p being

e's parent and
 being e's presen
e
ondition. In our example, we keep these

onstraints separate from the template (see Se
t. 4.3). Further, in
ontrast to

telematicsSystem1

xor channel2

single3

dual4

extraDisplay?5

xor displaySize6

small7

large8

[dual <=> ECU29

extraDisplay <=> #ECU1.display = 210

extraDisplay <=>11

(ECU2 <=> #ECU2.display = 2)12

small <=> ~plaECU.display.options.size.large13

large <=> ~plaECU.display.options.size.small14

]15

Fig. 6. Feature model with mapping
onstraints

-- concrete product1

[dual && extraDisplay && telematicsSystem.size.large && comp.version == 1]2

Fig. 7. Constraint spe
ifying a single produ
t

annotating models with presen
e
onditions, we
an use sub
lassing and
on-

straints to spe
ialize and extend the meta-model in multiple layers.

4.3 Coupling via Constraints

Having de�ned the ar
hite
tural template, we are ready to expose the remaining

variability points as a produ
t-line feature model. Figure 6 shows this model (
f.

Fig. 1a) along with a set of
onstraints
oupling its features to the variability

points of the template. Note that the template allowed the number of displays

(ECU1.display and ECU2.display) and the size of every display to vary indepen-

dently; however, we further restri
t the variability in the feature model, requiring

either all present ECUs to have two displays or all to have no extra display and

either all present displays to be small or all to be large. Also note that we opted

to explain the meaning of ea
h feature in terms of the model elements to be

sele
ted rather than de�ning the presen
e
ondition of ea
h element in terms of

the features. Both approa
hes are available in Clafer, however.

Constraints allow us restri
ting a model to a single instan
e. Figure 7 shows

a top-level
onstraint spe
ifying a single produ
t, with two ECUs, two large

displays per ECU, and all
omponents in version 1. Based on this
onstraint,

we
an automati
ally instantiate the produ
t line using the Alloy analyzer, as

des
ribed in Se
t. 5.2.

5 Evaluation

5.1 Analyti
al Evaluation

We now dis
uss to what extent Clafer meets its design goals from Se
t. 3.

(1) Clafer provides a
on
ise notation for feature modeling. This
an be seen

by
omparing Clafer to TVL, a state-of-the-art textual feature modeling lan-

guage [8℄. Feature models in Clafer look very similar to feature models in TVL,

Options group allof {1

Size group oneof { Small, Large },2

opt Cache group allof {3

CacheSize group allof {4

SizeVal { int val; },5

opt Fixed6

}7

},8

Constraint { (Small && Cache) -> Fixed; }9

}10

class Comp {1

reference version : Integer2

}3

4

class ECU extends Comp{ }5

6

class Display extends Comp {7

reference server : ECU8

attribute options : Options9

}10

a) Options feature model in TVL b) Component meta-model in KM3

Fig. 8. Our running example in TVL and KM3

ex
ept that TVL uses expli
it keywords (e.g., to de
lare groups) and bra
es for

nesting. Figure 8a shows the TVL en
oding of the feature model from Fig. 3.

Clafer's language design reveals four key ingredients allowing a
lass modeling

language to provide a
on
ise notation for feature modeling:

� Containment features: A
ontainment feature de�nition
reates both a fea-

ture (a slot) and a type (the type of the slot); for example, all features in Figs.

3 and 6 are of this kind. Neither UML nor Alloy provide this me
hanism; in

there, a slot and the
lass used as its type are de
lared separately.

� Feature nesting : Feature nesting a

omplishes instan
e
omposition and type

nesting in a single
onstru
t. UML provides
omposition, but type nesting

is spe
i�ed separately (
f. Fig. 3
). Alloy has no built-in support for
om-

position and thus requires expli
it parent-
hild
onstraints. It also has no

signature nesting, so name
lashes need to be avoided using pre�xes or alike.

� Group
onstraints: Clafer's group
onstraints are expressed
on
isely as inter-

vals. In UML groups
an be spe
i�ed in OCL, but using a lengthy en
oding,

expli
itly listing features belonging to the group. Same applies to Alloy.

� Constraints with default quanti�ers: Default quanti�ers on relations, su
h as

some in Fig. 3, allow writing
onstraints that look like propositional logi
,

even though their underlying semanti
s is �rst-order predi
ate logi
.

(2) Clafer provides a
on
ise notation for meta-modeling. Figure 8b shows the

meta-model of Fig. 4 en
oded in KM3 [21℄, a state-of-the-art textual meta-model-

ing language. The most visible synta
ti
 di�eren
e between KM3 and Clafer is

the use of expli
it keywords introdu
ing elements and mandatory bra
es estab-

lishing hierar
hy. KM3
annot express additional
onstraints in the model. They

are spe
i�ed separately, e.g. as OCL invariants.

It is instru
tive to
ompare the size of the Clafer and Alloy models of the

running example. With similar
ode formatting (no
omments and blank lines),

Clafer representation has 43 LOC and the automati
ally generated Alloy
ode is

over two times longer. Sin
e the Alloy model
ontains many long lines, let us also

ompare sour
e �le sizes: 1kb for Clafer and over 4kb for Alloy. The
ode gener-

ator favors
on
iseness of the translation over uniformity of the generated
ode.

Still, in the worst
ase, the la
k of the previously listed
onstru
ts makes Alloy

models ne
essarily larger. Other language di�eren
es tip the balan
e further in

favor of Clafer. For example, an abstra
t type de�nition in Clafer guarantees

that the type will not be automati
ally instantiated; however, unextended ab-

stra
t sets
an be still instantiated by Alloy Analyzer. Therefore, ea
h abstra
t

signature in Alloy needs to be extended by an additional signature.

(3) Clafer allows mixing feature and meta-models. Quotations allow reusing fea-

ture or
lass types in multiple lo
ations; referen
es allow reusing both types and

instan
es. Feature and
lass models
an be related via
onstraints (Fig. 6).

(4) Clafer tries to use a minimal number of
on
epts and has uniform seman-

ti
s. While integrating feature modeling into meta-modeling, our goal was to

avoid
reating a hybrid language with dupli
ate
on
epts. In Clafer, there is no

distin
tion between
lass and feature types. Features are relations and, besides

their obvious role in feature modeling, they also play the role of attributes in

meta-modeling. We also
ontribute a simpli�
ation to feature modeling: Clafer

has no expli
it feature group
onstru
t; instead, every feature
an use a group

ardinality to
onstrain the number of
hildren. This is a signi�
ant simpli�
a-

tion, as we no longer need to distinguish between �grouping features� (features

used purely for grouping, su
h as menus) and feature groups. The grouping in-

tention and grouping
ardinalities are orthogonal: any feature
an be annotated

as a grouping feature and any feature may
hose to impose grouping
onstraints

on
hildren. Finally, both feature and
lass modeling have a uniform semanti
s:

a Clafer model instan
e, just like Alloy's, is a set of relations.

5.2 Experimental Evaluation

Our experiment aims to show that Clafer
an express a variety of realisti
 feature

models, meta-models and model templates and that useful analyses
an be per-

formed on these en
odings in reasonable time. Then it follows that the ri
hness

of Clafer's appli
ations, does not
ome at a
ost of lost analysis potential with

respe
t to models in more spe
ialized languages.

The experiment methodology is summarized in the following steps:

1. Identify a set of models representative for the three main use
ases of Clafer:

feature modeling, meta-modeling, and mixed feature and meta-modeling.

2. Sele
t representative analyses. We studied the analyses in published litera-

ture and de
ided to fo
us on a popular
lass of analyses, whi
h redu
e to

model instan
e �nding. These in
lude in
onsisten
y dete
tion, element live-

ness analysis, o�ine and intera
tive
on�guration, guided editing, et
. Sin
e

all these have similar performan
e
hara
teristi
s, we de
ided to use model

instan
e �nding,
onsisten
y and element liveness analysis as representative.

3. Translate models into Clafer and re
ord observations. We
reated automati

translators for
onverting models to Clafer if it was enough to apply simple

rewriting rules. In other
ases, translation was done manually.

4. Run the analyses and reporting performan
e results. The analyses are imple-

mented by using our Clafer-to-Alloy translator, and then employing Alloy

Analyzer (whi
h is an instan
e �nder) to perform the analysis.

The Clafer-to-Alloy translator is written in Haskell and
omprises several

hained modules: lexer, layout resolver, parser, desugarer, semanti
 analyzer,

and
ode generator. Layout resolver makes bra
es grouping subfeatures optional.

Clafer is
omposed of two languages: the
ore and the full language. The �rst

one is a minimal language with well-de�ned semanti
s. The latter is built on top

of the
ore language and provides large amount of synta
ti
 sugar (
f. Fig. 3).

Semanti
 analyzer resolves names and deals with inheritan
e. The
ode genera-

tor translates the
ore language into Alloy. The generator has bene�ted from the

knowledge about the
lass of models it is working with to optimize the transla-

tion, in the same way as analyzers for spe
ialized languages have this knowledge.

The experiment was exe
uted on a laptop with a Core Duo 2 �2.4GHz pro-

essor and 2.5GB of RAM, running Linux. Alloy Analyzer was
on�gured to

use Minisat as a solver. All Clafer and generated Alloy models are available at

gsd.uwaterloo.ca/sle2010. In the subsequent paragraphs we present and dis
uss

the results for the three sub
lasses of models.

Feature Models. In order to �nd representative models we have
onsulted SPLOT

[27℄ � a popular repository of feature models. We have su

eeded in automat-

i
ally translating all 58 models from SPLOT to Clafer (non-generated, human-

made models; available as of July 4th, 2010). These in
lude models with and

without
ross-tree
onstraints, ranging from a dozen to hundreds of features.

Results for all models are available online at the above link. Here, we report

the most interesting
ases together with further four, whi
h have been randomly

generated; all listed in Table 1. Digital Video Systems is a small example with few

ross-tree
onstraints. Dell Laptops models a set of laptops o�ered by Dell in 2009.

This is one of few models that
ontains more
onstraints than features. Arcade

Game des
ribes a produ
t line of
omputer games; it
ontains tens of features

and
onstraints. EShop [25℄ is the largest realisti
 model that we have found

on SPLOT. It is a domain model of online stores. The remaining models are

randomly generated using SPLOT, with a �xed 10%
onstraint/variable ratio.

We
he
ked
onsisten
y of ea
h model by instan
e �nding. Table 1 presents

summary of results. The analysis time was less then a se
ond for up to several

hundred features and less than a minute for up to several thousand features. In-

terestingly, the biggest bottlene
k was the Alloy Analyzer itself (whi
h translates

Alloy into a CNF formula)�reasoning about the CNF formula in a SAT-solver

takes no more than hundreds of millise
onds.

Meta-Models In order to identify representative meta-models, we have turned

to the E
ore Meta-model Zoo (www.emn.fr/z-info/atlanmod/index.php/Ecore), from

where we have sele
ted the following meta-models: AWK Programs, ATL, ANT, Bib-

Tex, UML2, ranging from tens to hundreds of elements. We translated all these

into Clafer automati
ally. One interesting mapping is the translation of ERef-

erence elements with eOpposite attribute (symmetri
 referen
e), as there is no

�rst-
lass support for symmetri
 referen
es in Clafer. We modeled them as
on-

straints relating referen
es with their symmetri

ounterparts. Moreover we have

not handled multiple inheritan
e in our translation.

Sin
e none of these meta-models
ontained OCL
onstraints, we extra
ted

OCL
onstraints from the UML spe
i�
ation [29℄ and manually added them

to the Clafer en
oding of UML2. We did observe
ertain patterns during that

translation and believe that this task
an be automated for a large
lass of

onstraints. Table 2 presents sample OCL
onstraints translated into Clafer.

Ea
h
onstraint, but last, is written in a
ontext of some
lass. Their intuitive

meanings are as follows: 1) ownedReception is empty if there is no isActive; 2)

endType aggregates all types of memberEnds; 3) if memberEnd's aggregation is

di�erent from none then there are two instan
es of memberEnd; 4) there are

no two types of the same names. All Clafer en
odings of the meta-models are

available at the above link.

There are several reasons why Clafer
onstraints are more
on
ise and uni-

form
ompared with OCL invariants. Similarly to Alloy, every Clafer de�nition

is a relation. This approa
h, eliminates extra
onstru
tions su
h as OCL's collect,

allInstances. Finally, assuming the default some quanti�er before relational op-

erations (e.g. memberEnd.aggregation - none), we
an treat result of an operation

as if it was a propositional formula, thus eliminating extra exists quanti�ers.

We applied automated analyses to sli
es of the UML2 meta-model: Class

Diagram from [10℄, State Machines, and Behaviors (Table 3). Ea
h sli
e has tens of

lasses and our goal was to in
lude a wide range of OCL
onstraints. We
he
ked

the strong
onsisten
y property [9℄ for these meta-models. To verify this property,

we instantiated meta-models' elements that were at the bottom of inheritan
e

hierar
hy, by restri
ting their
ardinality to be at least one. The same
onstraints

were imposed on
ontainment referen
es within all meta-model elements. The

analysis
on�rmed that none of the meta-models had dead elements. Our results

show that liveness analysis
an be done e�
iently for realisti
 meta-models of

moderate size.

Feature-Based Model Templates. The last
lass of models are feature-based

model templates akin to our telemati
s example. A FBMT
onsists of a fea-

Table 1. Results of
onsisten
y analysis for feature models expressed in Clafer.

model name nature size [# features] [# constraints] running time [s]

Digital Video System Realisti
 26 3 0.012
Dell Laptops Realisti
 46 110 0.025
Arcade Game Realisti
 61 34 0.040
eShop Realisti
 287 21 0.15
FM-500-50-1 Generated 500 50 0.45
FM-1000-100-2 Generated 1000 100 1.5
FM-2000-200-3 Generated 2000 200 4.5
FM-5000-500-4 Generated 5000 500 28.0

ture model (
f. Fig. 6, left), a meta-model (
f. Fig. 4), a template (
f. Fig. 5a),

and a set of mapping
onstraints (
f. Fig. 6, right). To the best of our knowledge,

Ele
troni
 Shopping [25℄ is the largest example of a model template found in the

literature. We used its templates, listed in Table 4, for evaluation: FindProduct

and Checkout are a
tivity diagram templates, and TaxRule is a
lass diagram

template. Ea
h template had substantial variability in it. All templates have be-

tween 10 and 20 features, tens of
lasses and from tens to hundreds
onstraints.

For
omparison, we also in
lude our telemati
s example.

We manually en
oded the above FBMTs in Clafer. For ea
h of the diagrams in

[25℄, we took a sli
e of UML2 meta-model and
reated a template that
onforms

to the meta-model, using mandatory and optional singleton
lasses as des
ribed

in Se
t. 4.2. To
reate useful and simple sli
es of UML diagrams, we removed

unused attributes and �attened inheritan
e hierar
hy, sin
e many super
lasses

were left without any attributes. Thus, the sli
e preserved the
ore semanti
s.

Furthermore, we sli
ed the full feature model, so that it
ontains only features

that appear in diagram. Finally, we added mappings to express dependen
ies

between features and model elements, as des
ribed in Se
t. 4.3.

We performed two types of analyses on FBMTs. First, we
reated sample

feature
on�gurations (like in Fig. 7) and instantiated templates in the Alloy

Analyzer. We inspe
ted ea
h instan
e and veri�ed that it was the expe
ted one.

Se
ond, we performed element liveness analysis for the templates. The analy-

sis is similar to element liveness for meta-models [9℄, but now applied to template

elements. We performed the analysis by repeated instan
e �nding; in ea
h iter-

ation we required the presen
e of groups of non-ex
lusive model elements.

Table 4 presents summary of inspe
ted models and times of analyses. Often

the time of liveness analysis is very
lose to the time of instantiation multiplied

by the number of element groups. For instan
e, for FindProduct, liveness analysis

was three times longer than time of instantiation, be
ause elements were ar-

ranged into 3 groups of non-
on�i
ting elements. This rule holds when the Alloy

Analyzer uses the same s
ope for element instan
es.

We
onsider our results promising, sin
e we obtained a

eptable timings for

sli
es of realisti
 models, without fully exploiting the potential of Alloy. The

Table 2. Constraints in OCL and Clafer.

Context OCL Clafer

Class (not self.isActive) implies ∼isActive => no ownedReception

self.ownedReception->isEmpty()

Asso
iation self.endType = self.memberEnd-> endType = memberEnd.type

collect(e | e.type)

Asso
iation self.memberEnd->exists(aggregation memberEnd.aggregation - none =>

<> Aggregation::none) implies #memberEnd = 2

self.memberEnd->size() = 2

� Type.allInstances() -> forAll (t1, t2 | all disj t1, t2 : Type | t1.name != t2.name

t1 <> t2 implies t1.name <> t2.name)

results
an
learly be further improved by better en
oding of sli
es (for example,

representing a
tivity diagram edges as relations instead of sets in Alloy) and

using more intelligent sli
ing methods; e.g. some
onstraints are redundant, su
h

as setting sour
e and target edges in ActivityNodes, so removing these
onstraints

would speed up reasoning pro
ess. However already now we
an see that Clafer

is a suitable vehi
le for spe
ifying FBMTs and analyzing them automati
ally.

Threats to Validity

External Validity Our evaluation is based on the assumption that we
hose

representative models and useful and representative analyses.

All models, ex
ept the four randomly generated feature models, were
re-

ated by humans to model real-word artifa
ts. As all, ex
ept UML2,
ome from

a
ademia, there is no guarantee that they share
hara
teristi
s with industrial

models. Majority of pra
ti
al models have less than a thousand features [24℄, so

reasoning about
orresponding Clafer models is feasible and e�
ient. Perhaps

the biggest real-world feature model up to date is the Linux Kernel model (al-

most 5500 features and thousands of
onstraints) [31℄. It would presently pose a

hallenge for our tools. Working with models of this size requires proper engi-

neering of analyses. Our obje
tive here was to demonstrate feasibility of analyses.

We will
ontinue to work on robust tools for Clafer in future.

We believe that the sli
es of UML2 sele
ted for the experiment are represen-

tative of the entire meta-model be
ause we pi
ked the parts with more
omplex

onstraints. While there are not many existing FBMTs to
hoose from, the e-

ommer
e example [25℄ was reversed engineered from the do
umentation of an

IBM e-
ommer
e platform, whi
h makes the model quite realisti
.

Not all model analyses
an be redu
ed to instan
e �nding performed using

ombinatorial solvers (relational model �nder in
ase of Alloy [34℄). However

ombinatorial analyses belong to most widely re
ognized and e�e
tive [7℄.

Instan
e �nding for models has similar uses to testing and debugging for

programs [19℄�it helps to un
over �aws in models, assists in evolution and

on�guration. For example it helped us dis
over that our original Clafer
ode

was missing
onstraints (lines 9�10 and 14�15 in Fig. 5a and line 14 in Fig. 6).

Some software platforms already provide
on�guration tools using reasoners; for

example, E
lipse uses a SAT solver to help users sele
t valid sets of plug-ins [26℄.

Liveness analysis for model elements has been previously exploited, for in-

stan
e in [33, 9℄. Tartler et al. [33℄ analyze liveness of features in the Linux kernel

Table 3. Results of strong
onsisten
y analysis for UML2 meta-model sli
es in Clafer

meta-model/instance size [#classes] [#constraints] running time [s]

State Machines 11 28 0.08
Class Diagram 19 17 0.15
Behaviors 20 13 0.23

ode, reporting about 60 previously unreported dead features in the released ker-

nel versions. Linux is not stri
tly a feature-based model template, but its build

ar
hite
ture, whi
h relies on (a form of) feature models and presen
e
onditions

on
ode (
onditional
ompilation) highly resembles our model templates.

Analyzers based on instan
e �nding solve an NP-hard problem. Thus no hard

guarantees
an be given for their running times. Although progress in solver

te
hnologies has pla
ed these problems in the range of pra
ti
ally tra
table,

there do exist instan
es of models and meta-models, whi
h will e�e
tively break

the performan
e of our tools. Our experiments aim at showing that this does

not happen for realisti
 models.

There exist more sophisti
ated analyzes (and
lasses of models) that
annot

be addressed with Clafer infrastru
ture, and are not re�e
ted in our experiment.

For example instan
e �nding is limited to instan
es of bounded size. It is possible

to build sophisti
ated meta-models that only have very large instan
es. This

problem is irrelevant for feature models and model templates as they allow no

no
lasses that
an be instantiated without bounds.

Moreover spe
ial purpose languages may require more sophisti
ated analy-

ses te
hniques su
h as behavioral re�nement
he
king, model
he
king, model

equivalen
e
he
king, et
. These properties typi
ally go beyond stati
 semanti
s

expressed in meta-models and thus are out of s
ope for generi
 Clafer tools.

Internal Validity Translating models from one language to another
an introdu
e

errors and
hange semanti
s of the resulting model.

We used our own tools to
onvert SPLOT and E
ore models to Clafer and

then to translate Clafer to Alloy. We translated FBMTs and OCL
onstraints

manually. The former is rather straightforward; the latter is more involved. We

publish all the models so that their
orre
tness
an be reviewed independently.

Another threat to
orre
tness is the sli
e extra
tion for UML2 and e-
ommer
e

models. Meta-model sli
ing is a
ommon te
hnique used to speed-up model anal-

yses, where reasoner pro
esses only relevant parts of the meta-model. We per-

formed it manually, while making sure that all parts relevant to the sele
ted

onstraints were in
luded; however, the te
hnique
an be automated [30℄.

The
orre
tness of the analyses relies on the
orre
tness of the Clafer-to-

Alloy translator and the Alloy analyzer. The Alloy analyzer is a mature pie
e of

software. We tested Clafer-to-Alloy translator by translating sample models to

Alloy and inspe
ting the results.

Table 4. Analyses for Feature-Based Model Templates expressed in Clafer. Parentheses
by the model names indi
ate the number of optional elements in ea
h template.

FBMT #features/#classes/#constraints instantiation [s] element liveness [s]

Telematics (8) 8/7/17 0.04 0.26
FindProduct (16) 13/29/10 0.07 0.18
TaxRules (7) 16/24/62 0.11 0.12
Checkout (41) 18/78/314 1.6 5.8

6 Related Work

We have already mentioned related work on model analysis; here we fo
us on

work related to our main
ontribution, Clafer's novel language design.

Asikainen and Männistö present Forfamel, a uni�ed
on
eptual foundation for

feature modeling [4℄. The basi

on
epts of Forfamel and Clafer are similar; both

in
lude subfeature, attribute, and subtype relations. The main di�eren
e is that

Clafer's fo
us is to provide
on
ise
on
rete syntax, su
h as being able to de�ne

feature, feature type, and nesting by stating an indented feature name. Also, the

on
eptual foundations of Forfamel and Clafer di�er; e.g., features in Forfamel

orrespond to Clafer's instan
es, but features in Clafer are relations. Also, a

feature instan
e in Forfamel
an have several parents; in Clafer, an instan
e

has at most one parent. These di�eren
es likely stem from the di�eren
e in

perspe
tive: Forfamel takes a feature modeling perspe
tive and aims at providing

a foundation unifying the many existing extensions to feature modeling; Clafer

limits feature modeling to its original FODA s
ope [22℄, but integrates it into

lass modeling. Finally, Forfamel
onsiders a
onstraint language as out of s
ope,

hinting at OCL. Clafer
omes with a
on
ise
onstraint notation.

TVL is a textual feature modeling language [8℄. It favors the use of ex-

pli
it keywords, whi
h some software developers may prefer. The language
overs

Boolean features and features of other primitive types su
h as integer. The key

di�eren
e is that Clafer is also a
lass modeling language with multiple instantia-

tion, referen
es, and inheritan
e. It would be interesting to provide a translation

from TVL to Clafer. The opposite translation is only partially possible.

As mentioned earlier,
lass-based meta-modeling languages, su
h as KM3 [21℄

and MOF [28℄
annot express feature models as
on
isely as Clafer.

Nivel is a meta-modeling language, whi
h was applied to de�ne feature and

lass modeling languages [3℄. It supports deep instantiation, enabling
on
ise

de�nitions of languages with
lass-like instantiation semanti
s. Clafer's purpose

is di�erent: to provide a
on
ise notation for
ombining feature and
lass models

within a single model. Nivel
ould be used to de�ne the abstra
t syntax of Clafer,

but it would not be able to naturally support our
on
ise
on
rete syntax.

Clafer builds on our several previous works, in
luding en
oding feature mod-

els as UML
lass models with OCL [16℄; a Clafer-like graphi
al pro�le for E
ore,

having a bidire
tional translation between an annotated E
ore model and its

rendering in the graphi
al syntax [32℄; and the Clafer-like notation used to spe
-

ify framework-spe
i�
 modeling languages [2℄. None of these works provided

a proper language de�nition and implementation like Clafer; also, they la
ked

Clafer's
on
ise
onstraint notation.

Gheyi et al. [17℄ pioneered translating Boolean feature models into Alloy.

Anastasakis et al. [1℄ automati
ally translated UML
lass diagrams with OCL

onstraints to Alloy. Clafer
overs both types of models.

Relating problem-spa
e feature models and solution-spa
e models has a long

tradition. For example, feature models have been used to
on�gure model tem-

plates before [13, 18℄. That work
onsidered model templates as superimposed in-

stan
es of a metamodel and presen
e
onditions atta
hed to individual elements

of the instan
es; however, the solution in Se
t. 4.2 implements model templates

as spe
ializations of a metamodel. Su
h a solution allows us treating the fea-

ture model, the metamodel, and the template at the same metalevel, simply as

parts of a single Clafer model. This design allows us to elegantly reuse a single

onstraint language at all these levels. As another example, Janota and Botter-

we
k show how to relate feature and ar
hite
tural models using
onstraints [20℄.

Again, our work di�ers from this work in that our goal is to provide su
h integra-

tion within a single language. Su
h integration is given in Kumbang [5℄, whi
h is

a language that supports both feature and ar
hite
tural models, related via
on-

straints. Kumbang models are translated to Weight Constraint Rule Language

(WCRL), whi
h has a reasoner supporting model analysis and instantiation.

Kumbang provides a ri
h domain-spe
i�
 vo
abulary, in
luding features,
om-

ponents, interfa
es, and ports; however, Clafer's goal is a minimal
lean language

overing both feature and
lass modeling, and serving as a platform to derive

su
h domain spe
i�
 languages, as needed.

7 Con
lusion

The premise for our work are usage s
enarios mixing feature and
lass models

together, su
h as representing
omponents as
lasses and their
on�guration

options as feature hierar
hies and relating feature models and
omponent models

using
onstraints. Representing both types of models in single languages allows

us to use a
ommon infrastru
ture for model analysis and instantiation.

We set o� to integrate feature modeling into
lass modeling, rather than try-

ing to extend feature modeling as previously done [15℄. We propose the
on
ept

of a
lass modeling language with �rst-
lass support for feature modeling and

de�ne a set of design goals for su
h languages. Clafer is an example of su
h a

language, and we demonstrate that it satis�es these goals. The design of Clafer

revealed that a
lass modeling language
an provide a
on
ise notation for feature

modeling if it supports
ontainment feature de�nitions, feature nesting, group

ardinalities, and
onstraints with default quanti�ers. Our design
ontributes a

pre
ise
hara
terization of the relationship between feature and
lass modeling

and a uniform framework to reason about both feature and
lass models.

Referen
es

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On
hallenges of model transfor-
mation from UML to Alloy. Software and Systems Modeling 9(1) (2008)

2. Antkiewi
z, M., Czarne
ki, K., Stephan, M.: Engineering of framework-spe
i�

modeling languages. IEEE TSE 35(6) (2009)

3. Asikainen, T., Männistö, T.: Nivel: a metamodelling language with a formal se-
manti
s. Software and Systems Modeling 8(4) (2009)

4. Asikainen, T., Männistö, T., Soininen, T.: A uni�ed
on
eptual foundation for
feature modelling. In: SPLC'06

5. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: A domain ontology for mod-
elling variability in software produ
t families. Adv. Eng. Inform. 21(1) (2007)

6. Bart Veer, J.D.: The eCos Component Writer's Guide (2000)
7. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models

20 years later: a literature review. Information Systems 35(6) (2010)
8. Bou
her, Q., Classen, A., Faber, P., Heymans, P.: Introdu
ing TVL, a text-based

feature modelling language. In: VaMoS'10
9. Cabot, J., Clarisó, R., Riera, D.: Veri�
ation of UML/OCL Class Diagrams Using

Constraint Programming. In: MoDeVVA'08
10. Cariou, E., Belloir, N., Barbier, F., Djemam, N.: O
l
ontra
ts for the veri�
ation

of model transformations. In: OCL workshop of MoDELS'09
11. Clauÿ, M., Jena, I.: Modeling variability with UML. In: YRW at GCSE'01
12. Czarne
ki, K., Pietroszek, K.: Verifying feature-based model templates against

well-formedness o
l
onstraints. In: GPCE'06
13. Czarne
ki, K., Antkiewi
z, M.: Mapping features to models: A template approa
h

based on superimposed variants. In: GPCE'05
14. Czarne
ki, K., Bednas
h, T., Unger, P., Eisene
ker, U.: Generative programming

for embedded software: An industrial experien
e report. In: GPCE'02
15. Czarne
ki, K., Helsen, S., Eisene
ker, U.: Formalizing
ardinality-based feature

models and their spe
ialization. SPIP 10(1) (2005)
16. Czarne
ki, K., Kim, C.H.: Cardinality-based feature modeling and
onstraints: A

progress report. In: OOPSLA'05 Workshop on Software Fa
tories
17. Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in Alloy. In: First

Alloy Workshop (2006)
18. Heidenrei
h, F., Kop
sek, J., , Wende, C.: FeatureMapper: Mapping Features to

Models. In: ICSE'08
19. Ja
kson, D.: Software Abstra
tions: Logi
, Language, and Analysis. The MIT Press

(2006)
20. Janota, M., Botterwe
k, G.: Formal approa
h to integrating feature and ar
hite
-

ture models. In: FASE'08
21. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Spe
i�
ation. In: IFIP'06
22. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain

analysis (FODA) feasibility study. Te
h. Rep. CMU/SEI-90-TR-21, CMU (1990)
23. Kang, K.C.: FODA: Twenty years of perspe
tive on feature modeling. In: VaMoS'10
24. Kästner, C.: Virtual Separation of Con
erns: Toward Prepro
essors 2.0. Ph.D.

thesis, University of Magdeburg (2010)
25. Lau, S.Q.: Domain Analysis of E-Commer
e Systems Using Feature-Based Model

Templates. Master's thesis, University of Waterloo (2006)
26. Le Berre, D., Rapi
ault, P.: Dependen
y management for the E
lipse e
osystem:

E
lipse p2, metadata and resolution. In: IWOCE'09
27. Mendonça, M., Bran
o, M., Cowan, D.: S.P.L.O.T. - Software Produ
t Lines Online

Tools. In: OOPSLA'09
28. OMG: Meta Obje
t Fa
ility (MOF) Core Spe
i�
ation (2006)
29. OMG: OMG Uni�ed Modeling Language (2009)
30. Shaikh, A., Clarisó, R., Wiil, U.K., Memon, N.: Veri�
ation-Driven Sli
ing of

UML/OCL Models. In: ASE'10
31. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarne
ki, K.: Variability model of

the linux kernel. In: VaMoS'10
32. Stephan, M., Antkiewi
z, M.: E
ore.fmp: A tool for editing and instantiating
lass

models as feature models. Te
h. Rep. 2008-08, Univeristy of Waterloo (2008)
33. Tartler, R., Sin
ero, J., Lohmann, D.: Dead or Alive: Finding Zombie Features in

the Linux Kernel. In: FOSD'09
34. Torlak, E., Ja
kson, D.: Kodkod: A relational model �nder. In: TACAS'07

