
The Variability Model of The Linux Kernel

Steven She∗, Rafael Lotufo∗, Thorsten Berger†∗, Andrzej Wąsowski‡, Krzysztof Czarnecki∗

∗University of Waterloo, Canada, {shshe, rlotufo, kczarnec}@gsd.uwaterloo.ca
†University of Leipzig, Germany, berger@informatik.uni-leipzig.de

‡IT University of Copenhagen, Denmark, wasowski@itu.dk

Abstract—Lack of realistic benchmarks hinders efficient design
and evaluation of analysis techniques for feature models. We
extract a variability model from the code base of the Linux
kernel, obtaining a model larger by an order of magnitude than
the largest publicly available feature model so far. We analyze
properties of this model, compare it with previously available
benchmarks, and emphasize the differences from published
academic examples. As a result, we broaden our understanding
of what a feature model is, hopefully challenging tool designers
by providing an interesting benchmark, giving input to design
of random model generators, and last but not least, inspiring
designers of variability modeling languages.

I. INTRODUCTION

Reports from tool vendors and users in the series of pro-

ceedings of the Software Products Lines conference witness

a broad industrial interest and experience in using variability

modeling. Nevertheless, many researchers feel that realistic

benchmarks for evaluating variability modeling tools are in-

accessible [1]. Many variability models are in fact available

already (see www.splot-research.org, fm.gsdlab.org), however

very few of them originate from realistic processes; most are

small examples from research publications or outcomes of

student run case studies. Given the lack of realistic large-

scale models, many authors resort to using randomly generated

models [2], [3], [4].

In order to help the community mitigate this limitation, we

bring a large and realistic variability model, extracted from the

build system of the Linux kernel. Linux has an explicit vari-

ability specification expressed in the Kconfig language [5]—a

language developed specifically for this purpose by the kernel

developers. The Kconfig model so closely resembles feature

models [6], [7] that it can be naturally interpreted as one [8].

We present the Kconfig model—available online in a feature

modeling friendly format (see fm.gsdlab.org). We detail the

model transformation from the Kconfig language to feature

model. Foremostly, we extensively study the properties of

the Kconfig model, contrasting it to metrics of a corpus of

published feature models.

We intend to attract the attention of designers of feature

modeling tools to our result, so they can use the Kconfig model

as a particularly tough benchmark and its characteristics as a

source of requirements on tools. Some would also be interested

to know that randomly generated models used in previous

works are likely much easier to analyze than the Linux model.

Last but not the least, the Kconfig notation, together with

the size and structure of the Linux model, should inspire

designers of variability modeling languages, in particular when

Fig. 1. The xconfig configurator GUI

it comes to support for modularity and user interface aspects

like visibility of features.

II. THE KCONFIG LANGUAGE

Configuration options are known as configs in Linux. Kcon-

fig is the language used to specify the available configs and

dependencies among them: configs can be nested under other

configs; they can also be grouped under menus and choice

groups. The kernel configurator, xconfig, renders the Kconfig

model as a tree of options, which users select to specify

configurations to be built. Cross-tree dependencies, if any, are

indicated in the bottom part of xconfig’s GUI (Fig. 1).

Figure 2 shows a fragment of the Linux variability model

in the Kconfig language. The fragment contains a menu with

four Boolean configs as children.

Configs are named parameters with a specified value type:

Boolean, tristate, integer (int or hex), or string. Boolean

configs represent options that can be switched on (y) or

off (n). Tristate configs are similar, except that they have

two ‘on’ states: y indicates that the code implementing the

option should be linked into the kernel statically, whereas

m indicates that it should be compiled as a dynamically

loadable module. Thus, tristate is a simple form of a binding

mode specification [7]. We refer to Boolean and tristate configs

collectively as switch configs, since they appear in xconfig as

switches (e.g., checkboxes). Integer configs are used to specify

menu "Power management and ACPI options"

depends on !X86_VOYAGER

config PM

bool "Power Management support"

depends on !IA64_HP_SIM

---help---

"Power Management" means that . . .

config PM_DEBUG

bool "Power Management Debug Support"

depends on PM

config CPU_IDLE

bool "CPU idle PM support"

default ACPI

config PM_SLEEP

bool

depends on SUSPEND || HIBERNATION ||

XEN_SAVE_RESTORE

default y

. . .
endmenu

Fig. 2. Fragment of a Kconfig model

numerical options such as buffer sizes. String configs are used

to specify names of, for example, files or disk partitions. We

refer to integer and string configs as entry-field configs, since

the configuration tool shows them as editable fields.

Config definitions can include other elements besides type.

If the type is followed by a prompt, i.e., a short explanation

text shown to the user in xconfig, the config is user-selectable;

otherwise it is not. A config can have a visibility condition

directly following the prompt (not shown in the example). A

longer help text can also be provided (see the PM entry in

Figure 2).

A depends-on clause introduces a dependency that must be

satisfied when selecting the config. In the example, PM can

only be selected if IA64_HP_SIM is not selected. Reversely,

a select clause (not shown) enforces immediate selection

of another config when this config is selected by the user.

Depends-on is also used to specify nesting, when referencing

its previous config: for example PM_DEBUG is nested under

PM.

A default clause has a two-fold effect. First, if the config

is user-selectable, default is used to provide an initial value,

which can still be overridden by the user. For example,

CPU_IDLE takes the same value as ACPI by default. If the

config is not user-selectable, then the default enforces a value

for the feature, effectively defining a cross-tree constraint. For

example, PM_SLEEP is non-user-selectable and set to y if its

depends-on condition holds; otherwise it is set to n.

Menus are used for grouping. Kconfig provides a condi-

tional visibility mechanism for menus. We call conditionally

visible menus simply conditional menus; if their condition, a

cross-tree constraint, is false, they and their children are grayed

out in the configurator.

Finally, choices (not shown) group configs into alternatives,

which we call choice configs. Choices themselves can be

Boolean or tristate. When the choice state is y, the choice

configs underneath are constrained with XOR; when the value

PM_MENU →¬X86_VOYAGER

PM →¬IA64_HP_SIM

PM_SLEEP ↔ SUSPEND || HIBERNATION || . . .

Fig. 3. Feature model for the example of Fig. 2

is m, the configs are constrained with OR. A choice marked

as optional can be set to n and no choice config needs to

be selected. Choices without the mark are mandatory and

cannot be set to n. Tristate choices reflect a common binding

variation: static binding requires an exclusive module to be

linked statically; dynamic binding allows multiple alternative

modules to be compiled—a single module is loaded at runtime.

Kconfig as a Feature Modeling Notation. We will interpret the

hierarchy of configs, menus, and choices as the Linux feature

model. Table I maps Kconfig concepts to feature modeling

concepts. Figure 3 shows the feature model for the Kconfig

example of Figure 2 generated by this mapping.

Switch configs map to optional features (Table I); each

feature for a tristate config additionally has an attribute of type

bmode, defined as enum {y,m}. An entry-field config maps to

a mandatory feature with an attribute of an appropriate type,

integer or string.

We map conditional menus to optional features; a more

faithful translation would require extending the feature mod-

eling notation with visibility conditions. Unconditional menus

map to mandatory features.

We map a choice to a feature with a group underneath con-

taining the grouped features representing the choice configs. A

mandatory choice maps to a mandatory feature with an XOR-

TABLE I
MAPPING KCONFIG MODELS TO FEATURE MODELS

Kconfig concepts Feature modeling concepts

Switch config

ß

Optional feature

Entry-field config Mandatory feature

Conditional menu Optional feature

Unconditional menu Mandatory feature

Choice

Mandatory Mandatory feat. + XOR-group

Optional Optional feat. + XOR-group

Mandatory tristate Mandatory feat. + OR-group

Optional tristate Optional feat. + OR-group

Choice config Grouped feature

Config, menu or
choice nesting ß Sub-feature relation

Visibility conditions

ß Cross-tree constraintSelects

Constraining defaults

group. An optional choice maps to an optional feature with

an XOR-group. In a slightly lossy manner, we map a tristate

choice to a feature with the less restrictive OR-group.

III. THE LINUX VARIABILITY STUDY

We analyzed aspects of features, hierarchy, constraints, and

natural-language content in the Linux model both quantita-

tively and qualitatively. When applicable, we applied the same

analysis to a corpus of published models and compared the

results with Linux.

Statistics gathering for Linux. Our statistics were gathered for

the 2.6.28.6 version of the kernel. The Kconfig model was

extracted from a normalized form using the kernel configurator

code. Prior to gathering the statistics, we apply a post-

processing stage to account for some special cases in the

Kconfig model (e.g. there were 11 multiply-defined features

in the hierarchy).

Corpus of published models. The corpus contains 32 models

available from the SPLOT website [9] (see Appendix A).

Most of these models are academic examples; from workshop

and conference publications and MSc and PhD theses. They

span many domains, including insurance, entertainment, web

applications, home automation, search engines, and databases.

Nineteen models represent software product lines; eight rep-

resent other types of product lines, e.g., hardware or business;

and five represent entire domains, e.g., electronic commerce

systems. Only five models describe real, existing software

systems, however even these appears to be results of research

efforts as opposed to regular industrial engineering practice.

To analyze the published models, we created a simple tool,

reusing Mendonca’s parser for SPLOT’s XML-based feature

model format (http://www.splot-research.org/sxfm.html).

A. Characterization of Features

Feature and group statistics. Table II gives statistics for

both Kconfig concepts and their feature modeling counterparts.

The Linux model has 5426 features, which is an order of

magnitude more than Electronic Shopping, the largest of the

published models, with 287 features. The vast majority (4744

or 89%) are user-selectable. Only about about 3% (188)

of features have integer and String attributes. Note that 71

TABLE II
LINUX FEATURE AND GROUP STATISTICS

Kconfig Concept Features Mand. Grouped XOR + OR

Config 5323 0 146 0

Non / User-Sel. 547 + 4744

Boolean 2005 0 136 0

Tristate 3130 0 10 0

Int 132 132 0 0

Hex 29 29 0 0

String 27 27 0 0

Menu 71 38 0 0

Choice 32 31 0 30 + 2

Total 5426 257 146 30 + 2

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f
F

e
a
tu

re
 M

o
d
e
ls

Number of Features

Fig. 4. Sizes of the published models

features correspond to menus, and 38 of these features are

mandatory. Choices contributed 32 features and 32 groups; 30

of them are XOR-groups; the two OR-groups were contributed

by two tristate choices.

Compared to published models (Figure 4, Table III) the

Linux model contains very small percentages of mandatory

features (5%), grouped features (3%), and groups (1%; relative

to the number of features). Thus, the Linux features are mostly

optional (92%).

Code-granularity of features. In order to assess the code-

granularity of an average feature in Linux, we computed the

set of source files included in the allno and in the allyes

configurations. Allno tries to approximate the smallest possible

configuration of Linux kernel, while allyes tries to approximate

the largest configuration (both are included as targets in the

build system and are based on a very simple algorithm).

Table IV reports that a mere 61 user-selectable features are

included in the former, and 3448 in the latter (which is about

73% of all user-selectable features). Moreover, all features

except one of allno are also features of allyes. We used

the difference between the sizes of the two configurations to

compute an average feature size. An average feature spans 2.76

TABLE III
PUBLISHED MODELS VS. LINUX

% relative to no. features Published Models Linux

median, min - max

mandatory features 25%, 0% - 66% 4.74%

grouped features 44%, 0% - 75% 2.69%

groups 16%, 0% - 35% 0.59%

XOR 9%, 0% - 30% 0.55%

OR 6%, 0% - 16% 0.04%

cross-tree constraint ratio 19%, 0% - 62% 82%

TABLE IV
CONFIGURATION STATISTICS

Metric allno allyes ∆ θ

Features 61 3,448 3387 1

Files 973 10,326 9,353 2.76

SLOC 210,302 4,266,171 4,055,869 1,197.48

∆i = allyes
i
− allnoi; θi = ∆i/∆1

source files, and roughly a thousand non-blank non-comment

lines of code (although surprisingly small, this number is still

an over-approximation of the actual average, as it ignores the

fact that lines not belonging to allyes are removed by the

preprocessor).

Qualitative characteristics. To understand types of features

and options in the Linux kernel, we performed a subjective

categorization of 180 randomly selected features. The selected

categories characterize the granularity of features from the

user’s point of view—whether a feature enables support for

a device or its option—as well as their type—whether the

feature is related to a driver, protocol, API, etc.

We categorized features based on the help descriptions

provided in the Kconfig files and by querying the web when

needed. We left features with no description information

in Kconfig uncategorized. As this type of classification is

subjective, we performed a sanity check by cross checking the

categories for 18 features. We found a discrepancy of only 8%

and so believe that the categorization is sound and relevant.

We used the following user-based granularity categories:

• Menu: grouping features, e.g., IO_SCHEDULERS, which

groups read/write schedulers for block devices;

• Support: features that support certain devices or proto-

cols, e.g., HID_SAMSUNG, which enables support for

Samsung’s InfraRed remote control;

• Option: features enabling/disabling a specific kernel or

driver capability, e.g., DASD, which enables DASD block

devices using S/390s channel commands;

• Debug: features enabling tracing and other debug func-

tions for developers, like BOOT_TRACER, which acti-

vates collection of run-time informations to assist boot

time optimization; or MEMSTICK_DEBUG, which acti-

vates debug info for memory stick devices.

Additionally, we categorized features into the following

types:

• API: features that provide an API for programming, e.g.,

CRYPTO_CTR, which enables API for the block cipher

algorithm, required for IPSec;

• Driver: features related to drivers, e.g., SND_ADLIB, that

enables support for AdLib cards;

• Kernel: change kernel behaviour, e.g., FAILSLAB, which

enables fault-injection capability for kmalloc;

TABLE V
USER-BASED GRANULARITY CATEGORIES OF LINUX FEATURES

Menu Support Option Debug No Info

1 97 46 13 23

TABLE VI
TYPES OF FEATURES IN LINUX KERNEL

API Driver Kernel Protocol Subsystem No Info

5 120 15 14 1 25

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
le

a
v
e
s

Depth

Fig. 5. Linux leaf depth

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 40 60 80-139

N
u
m

b
e
r

o
f
fe

a
tu

re
s

Number of children

Fig. 6. Linux branching factor

• Protocol: features that implement protocols, e.g., LLC2,

which enables support for PF_LLC sockets;

• Subsystem: features that enable whole subsystems, e.g.,

Bluetooth, BT, which enables the Bluetooth subsystem,

comprising of several layers of software.

We found a very high correlation between support features

and drivers, meaning that roughly 50% of features in the

Linux kernel are drivers that support certain devices and

protocols, greatly outnumbering features that enable smaller-

grained functionality.

Interesting is also the relatively high number of the

developer-oriented debug features.

B. Model Hierarchy

Figure 5 shows the number of leaves with a given depth for

Linux. The maximum leaf depth in the Linux model is 7 (we

assume level 0 for root). The maximum depth for published

models is 10. The shapes of the leaf-depth histogram for

the publish models vary significantly; however, the shape for

the largest published model, Electronic Shopping, has closest

resemblance to that of Linux. An interesting observation is

that the Linux model is relatively shallow (average depth of

4).

Figure 6 shows the number of features for a given branching

factor, i.e., number of children, for Linux. The vast majority

of features are leaves (4544; not shown in the histogram).

Surprisingly, as many as 384 features are single-child parents;

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 3 4 5 6 7 8 9 10-22

N
u
m

b
e
r

o
f
c
o
n
s
tr

a
in

ts

Number of unique features

Requires
Excludes

Other

Fig. 7. Constraints categorized by the number of features they reference

these include features representing choices and singular op-

tions. The histogram has a long tail: 58 features have between

20 and 139 children. In contrast, the published models have

maximum branching of 11, which is vastly smaller than for

Linux. Interestingly, when generating models, White et al. [2]

assume a branching factor of at most 5, which appears very

low in the face of our data.

As before, histogram shapes of the published models vary

significantly, with the shape for Electronic Shopping resem-

bling most closely that of Linux. A notable difference, when

compared to Linux, is the relatively low number of single-child

parents in Electronic Shopping, where it is far lower than the

number of two-child parents.

C. Constraints

A constraint restricts legal combinations of features. Ob-

viously, hierarchical dependencies, discussed in the previous,

section are constraints. Not all dependencies can be expressed

as hierarchical dependencies, however. Additional cross-tree

constraints, specified in a suitable logic, are typically added

besides the nesting structure. The Kconfig language includes

a language of boolean expressions extended with equality

predicates on non-boolean values for this purpose.

We determined three sources of cross-tree constraints in

the Kconfig model: visibility conditions, select clauses, and

constraining defaults (see Section II). The excerpt from Fig. 2

maps to the cross-tree constraints shown under the diagram

in Fig. 3. The constraint on PM_DEBUG is not a cross-tree

constraint—it belongs to the hierarchy. Also, the default in

CPU_IDLE does not give rise to any cross-tree constraints,

since it is not constraining itself, but merely proposes a default

value that can be overridden.

As Mendonca [4] points out, the hardness of analysis of

feature models lies in the complexity of their cross-tree con-

straints. At the same time, it is not uncommon that researchers

believe that cross-tree constraints are rare and not crucial

to feature modeling. For example in our reference corpus,

eleven models do not have any cross tree constraints, and a

further eleven only have one or two constraints. Only 37% of

models in our sample have a significant amount of cross-tree

dependencies. In the Kconfig model, a total of 4186 (77%)

of features declare a constraint in their definitions, sometimes

more than one, giving rise to a total of 9291 constraints in the

feature-modeling sense (top-level conjuncts).

It is interesting to see how these conjuncts distribute over

more standard types of constraints (see Figure 7). 5313 (89%)

of them are positive implications (also known as requires

constraints), and 649 (11%) are excludes constraints (i.e.

constraints of the form f → ¬g). 3324 constraints represent

more complex relations involving more than two features. The

most complex of these includes 22 distinct literals in one

constraint:

(MWINCHIP3D ∨ MCRUSOE ∨ MEFFICEON ∨ MCYRIXIII∨

MK7 ∨ MK6 ∨ MPENTIUM4 ∨ MPENTIUMM ∨ MPENTIUMIII∨

MPENTIUMII ∨ M686 ∨ M586MMX ∨ M586TSC ∨ MK8∨

MVIAC3_2 ∨ MVIAC7 ∨ MGEODEGX1 ∨ MGEODE_LX∨

MCORE2) ∧ ¬X86_NUMAQ) ∨ X86_64) → X86_TSC = y

In contrast, published models almost exclusively contain

binary constraints. Only 4 (12%) models in the sample contain

a constraint relating 3 features, and none contained larger

constraints. We should mention here that for analysis tools,

binary constraints are easy. Consistency checking of a 2-CNF

formula can be done in polynomial time, while consistency

checking for a formula with ternary clauses is NP-complete.

Thus the Linux model sets a new challenge for analysis tools.

Not only does the Linux kernel model contains a large num-

ber of constraints, but these constraints also involve unusu-

ally many features. Mendonca [4], [10] introduces cross-tree

constraints ratio (CTCR)—a normalized measure comparing

the number of features participating in cross-tree constraints

(more precisely a percentage of features in the model that

are referenced in constraints). As we can see in Table III,

CTCR for published models varies between 0 and 60%, with

19% being a typical value. In the Linux model, all 82% of

features participate in cross tree constraints. Effectively the

Linux hierarchy says relatively little about the combinatorial

dependencies between features, indicating a certain limitation

of hierarchical models for describing dependencies in very

complex software projects.

D. Natural Language Properties

Natural language processing techniques gain popularity in

software engineering tools, including feature modeling [11],

[12]. It is thus relevant to investigate the main properties of

texts available in the Kconfig model. The Linux model has

three kinds of textual attributes: feature identifiers (like PM),

prompt texts (Power management support), and descriptions

("Power Management" means that . . .).

Available Textual Information. We have counted the length

of feature identifiers (considering strings separated by un-

derscores as separate words), of prompts, and of descrip-

tions. Table VII summarizes the findings. The majority of

identifiers are 13 characters long, but there do exist some

of length 2 (such as MD, SX, VT), and some of length 43

(SECURITY_SELINUX_POLICYDB_VERSION_MAX_VALUE). The major-

ity of identifiers contains two or three words, with some

approaching as many as nine. Most prompts include 3–5

words, with some reaching up to 13.

The help descriptions exhibit a similar pattern. The majority

is around 30 words long, but some reach as much as 392

words. At the same time 823 features have no descriptions

at all. Out of these, 540 are non-user-selectable, and 102 are

menus or choices. As many as 181 of user-selectable configs

contain no descriptions.

These numbers demonstrate a considerable effort of kernel

developers to make features descriptions valuable for users.

Still, about 20% of features have poor data like unhelpful iden-

tifiers or descriptions under 20 words. Most short descriptions

are not very explanatory, containing texts such as Say Y here or

If unsure say N or just the full name of the supported device.

Longer descriptions have detailed explanations, such as when

to enable the given feature and suggestions of other related

features to enable or disable.

Vocabulary. We analyzed the most frequent domain specific

terms in the Linux model. We consider any word not included

in the aspell (0.60.5) English dictionary to be a domain term.

Table VIII shows the most frequent domain words for the

text attributes. Most common terms clearly relate to popular

hardware kinds or to kernel subsystems.

Moreover, identifiers of 3601 features share com-

mon words with identifiers of their immediate parents

(not necessarily domain specific words). For example:

CRYPTO_DEV_HIFN_795X_RNG is a child of CRYPTO_DEV_HIFN_795X,

or DVB_USB_DIBUSB_MB_FAULTY is a child of DVB_USB_DIBUSB_MB.

Consequently, for about half of the features, it should be

possible to automatically determine their immediate parents

using a string similarity metric.

IV. THREATS TO VALIDITY

External Validity. Our baseline corpus is comprised of 32

models selected from published sources. Due to their academic

origin, these models are not realistic. However, they are a

suitable baseline here, as they support our main point that

TABLE VII
SIZE OF TEXTUAL ARTIFACTS IN THE KCONFIG MODEL

artifact no. of characters no. of words

median min max median min max

identifiers 13 2 58 2 1 9

prompts 27 2 82 4 1 13

description - - - 29 2 392

TABLE VIII
TOP DOMAIN TERMS IN THE KCONFIG MODEL

Text source Most frequent domain terms

Identifier usb snd md serial fb debug

Prompt usb ethernet pci intel scsi pcmcia

Description usb linux scsi ethernet pci howto

there exist realistic models that do not share characteristics

with published models.

Studying the Linux kernel as a single subject raises a doubt

whether the reported values of metrics are representative.

However, we do not make any general claims about feature

models based on these metrics. Rather we postulate that this

model, which describes a realistic and wide-spread software

system, should be included in benchmark sets of feature mod-

els. While a single model cannot be claimed to be representa-

tive, it does witness a departure from expected characteristics.

Moreover, as Tartler [13] suggests, it is unlikely that Linux

is an exception among operating systems, since other have

similar qualities.

Arguably, the Kconfig model has not been created as a

feature model but rather as a specification of a configuration

system. Our interpretation of this model as a feature model can

be seen as a violation of the original intention. Nevertheless

Kconfig shares structural characteristics with feature models,

and its main purpose (modeling a range of configuration

choices) is consistent with the main objective of feature

modeling. Unlike typical feature models, which are created

during domain analysis, the Kconfig model has been grown

bottom up—by adding features during evolution of the system.

While these two processes, domain analysis and evolution—

are different—the evolutionary bottom up construction is a

realistic scenario, resembling the processes during evolution

of mature product lines.

Internal Validity. The qualitative classification of Linux fea-

tures has been done manually by one member of the project

team for a randomly selected subset of 180 features. In order

to ensure the representativeness of this result we have selected

the 180 feature sample uniformly; in the sense that every

feature in the kernel had equal probability to be selected. For

a subsample of uniformly selected 18 features (out of the 180)

we have independently verified the classification using another

member of the project.

No formal definition of the Kconfig language is available,

besides the only existing implementation itself. Thus, we could

not verify whether our transformation of the Kconfig model to

the feature modeling notation is semantics preserving. In order

to decrease the chance of misinterpretations, we have used the

original Linux configurator code to perform the first phase of

that translation consisting of normalizing the representation

and removing any syntactic sugar. Thus, we are confident that

the first phase of the translation is in agreement with whatever

the kernel developers have intended. For the remaining part of

translation usual best practice measures were applied, such like

investigating test cases using our translator against the Linux

configurator tool.

Because there is no single accepted canonical syntactic

representation for constraint systems, counting constraints is

always subject to applied translations. In our case, however,

it is very clear that regardless of which of the reasonable

translations was used, the complexity of constraints in the

Linux model is much higher than any constraints in the

published models.

V. RELATED WORK

The connection between the Kconfig language and feature

modeling was previously described by Sincero and Schröder-

Preikschat [14]. In their paper, they describe feature modeling

concepts in terms of Kconfig constructs. Our work differs

in that we investigate the inverse mapping—from Kconfig to

feature model.

Tartler et al. [13] propose an architecture for a tool to

detect dead features in the Linux Kernel. They make the same

assumption as we do, i.e. that Kconfig can be naturally and

meaningfully interpreted as a feature model. However, they are

not interested in the properties of the model itself, except for

existence of dead features. They extend a classic feature model

analysis (dead feature detection) to the mapping of features to

code to diagnose quality errors in the Linux codebase. It will

be interesting to see if their analysis actually scales to the

model we have described here.

Segura and Ruiz–Cortés [1] complain about the lack of

realistic benchmarks for feature model analysis tools, and

postulate creating a common standardized benchmark set with

a repository of realistic models. Our contribution can be seen

as one step towards addressing their concern, by providing

a large and realistic feature model, which is now available

online.

Randomly generated benchmarks have been applied in

evaluation of analyzes tools for feature models [3], [2], [4],

[10]. The generators applied in these projects have been tuned

to generate models that resemble published models. However

these characteristics turn out not to be true for large real life

models, as exemplified by the Linux model described in this

paper. Our results can serve as an input to design a statistically

significant generator of random benchmarks for tools.

The European Project AMPLE has investigated use of

automatic information retrieval techniques for extraction of

feature models from requirement documents [11], [12]. The

applicability and tuning of such algorithms to practical models

heavily depends on properties of documentation available such

as the size of provided descriptions and the amount of domain

specific terms in them. The statistics of Section III-D are

hopefully inspiring for this purpose.

Earlier we have presented reverse engineering algorithms

that can be used to obtain examples of feature models from

systems, where no explicit model is embedded—directly from

compatibility constraints [15], or from sets of legal configura-

tions [16].

VI. CONCLUSION

The Linux model is an excellent example of a large-scale

variability model used in practice. We have shown that it

challenges many of the long-held assumptions in the product-

line community. It offers a wealth of information and acts as an

excellent benchmark for the evaluation of automated analysis

tools.

REFERENCES

[1] S. Segura and A. Ruiz-Cortés, “Benchmarking on the automated anal-
yses of feature models: A preliminary roadmap,” in VaMoS, 2009, pp.
9–17.

[2] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. R. Cortés,
“Automated diagnosis of product-line configuration errors in feature
models,” in SPLC. IEEE Computer Society, 2008, pp. 225–234.

[3] P. Trinidad, D. Benavides, A. R. Cortés, S. Segura, and A. Jimenez,
“Fama framework,” in SPLC. IEEE Computer Society, 2008, p. 359.

[4] M. Mendonca, A. Wąsowski, and K. Czarnecki, “Sat-based analysis of
feature models is easy,” in SPLC’09. IEEE, 2009.

[5] R. Zippel and numerous contributors, “kconfig-language.txt,” seen 2009-
11-23.

[6] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Technical Report
CMU/SEI-90-TR-21, 1990.

[7] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,

Tools, and Applications. Boston, MA: Addison-Wesley, 2000.
[8] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk, “Is

The Linux Kernel a Software Product Line?” in Workshop SPLC-OSSPL

2007, 2007.
[9] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T.: software

product lines online tools,” in OOPSLA Companion. ACM, 2009,
http://www.splot-research.org.

[10] M. Mendonca, A. Wasowski, K. Czarnecki, and D. D. Cowan, “Efficient
compilation techniques for large scale feature models,” in GPCE’08,
2008, pp. 13–22.

[11] N. Weston, R. Chitchyan, and A. Rashid, “A framework for constructing
semantically composeable feature models from natural language require-
ments,” in SPLC. IEEE Computer Society, 2009.

[12] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P. Rayson,
C. Pohl, and A. Rummler, “An exploratory study of information retrieval
techniques in domain analysis,” in SPLC. IEEE Computer Society,
2008, pp. 67–76.

[13] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann, “Dead
or alive: Finding zombie features in the linux kernel,” in FOSD, 2009,
pp. 81–86.

[14] J. Sincero and W. Schröder-Preikschat, “The linux kernel configurator
as a feature modeling tool,” in Proceedings of the Workshop on Analyses

of Software Product Lines (ASPL), 2008, pp. 257–260.
[15] K. Czarnecki and A. Wąsowski, “Feature models and logics: There and

back again,” in SPLC ’07. IEEE, 2007.
[16] K. Czarnecki, S. She, and A. Wąsowski, “Sample spaces and feature

models: There and back again,” in SPLC’08. IEEE, 2008.
[17] Software Product Lines, 12th International Conference, SPLC 2008,

Limerick, Ireland, September 8-12, 2008, Proceedings. IEEE Computer
Society, 2008.

APPENDIX A

CORPUS OF PUBLISHED MODELS

The corpus includes 32 models downloaded from the SPLOT web-
site [9] on 16 November 2009:

Aircraft PL, Arcade Game PL, Car PL, Cellphone, CFDP Library,
Connector PL, Digital Video System, Documentation_Generation,
Electronic Shopping, FAME-DBMS, Graph, Graph Product Line,
HIS, Insurance Policy, Insurance_Product, Inventory, James, JPlug,
Key_Word_In_Context_index_systems, Model_Transformation,
Monitor_Engine_System, MoviesApp PL, SAL, Search_Engine_PL,
Smart Home, Stack PL, Telecommunication_System, Text_Editor,
Thread, Virtual_Office_of_the_Future, Weather Station, Web_Portal

